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ABSTRACT

Query by melody is the problem of retrieving musical per-
formances from melodies. Retrieval of real performances is
complicated due to the large number of variations in per-
forming a melody and the presence of colored accompani-
ment noise. We describe a simple yet effective probabilistic
model for this task. We describe a generative model that is
rich enough to capture the spectral and temporal variations
of musical performances and allows for tractable melody re-
trieval. While most of previous studies on music retrieval
from melodies were performed with either symbolic (e.g.
MIDI) data or with monophonic (single instrument) per-
formances, we performed experiments in retrieving live and
studio recordings of operas that contain a leading vocalist
and rich instrumental accompaniment. Our results show
that the probabilistic approach we propose is effective and
can be scaled to massive datasets.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—DMultimedia
databases, query processing; H.3.3 [Information storage
and retrieval]: Information Search and Retrieval—Query
formulation, Retrieval models; 1.5.4 [Pattern Recogni-
tion]: Applications—Signal processing.

General Terms

Algorithms, Experimentation.

Keywords

Music Information Retrieval, Query by Melody, Graphical
Models, Spectral Modeling.

1. INTRODUCTION

A natural way for searching a musical audio database for
a song is to look for a short audio segment containing a
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melody from the song. Most of the existing systems are
based on textual information, such as the title of the song
and the name of the composer. However, people often do
not remember the name of the composer and the song’s title
but can easily recall fragments from the soloist’s melody.

The task of query by melody attempts to automate the
music retrieval task. It was first discussed in the context
of query by humming [11, 13, 14]. These works focus on
converting hummed melodies into symbolic MIDI format
(MIDI is an acronym for Musical Instrument Digital Inter-
face. It is a symbolic format for representing music). Once
the query is converted into a symbolic format the challenge
is to search for musical performances that approximately
match the query. Most of the research so far has been con-
ducted with music stored in MIDI format [12] or in mono-
phonic (i.e. single vocal or instrument) recordings (see for
instance [9, 7] and the references therein). In this paper,
we suggest a method for query by melody where the query
is posed in symbolic form as a monophonic melody and the
database consists of real polyphonic recordings.

When dealing with real polyphonic recordings we need to
address several complicating factors. Ideally melodies can
be represented as sequences of notes, each is a pair of fre-
quency and temporal duration. In real recordings two major
sources of difficulty arise. The first is the high variability of
the actual durations of notes. A melody can be performed
faster or slower than the one dictated by the musical score.
This type of variation is often referred to as tempo vari-
ability. Furthermore, the tempo can vary within a single
performance. For instance, a performance can start with a
slow tempo which gradually increases. The second compli-
cating factor is the high variability of the spectrum due to
many factors such as differences in tone colors (timbre) of
different singers/instruments, the intentional variation by
the leading vocalists (e.g. vibrato and dynamics) and by
“spectral masking” of the leading vocal by the accompany-
ing vocals and orchestra.

We propose to tackle these difficulties by using a gener-
ative probabilistic approach that models the temporal and
spectral variations. We associate each note with a hidden
tempo variable. The tempo variables capture the temporal
variations in the durations of notes. To enable efficient com-
putation, the hidden tempo sequence is modeled as a first
order Markov process. In addition, we also describe a sim-
ple probabilistic spectral distribution model that is robust
to the masking noise of the accompanying instruments and



singers. This spectral distribution model is a variant of the
harmonic likelihood model for pitch detection [16]. Combin-
ing the temporal and spectral probabilistic components, we
obtain a joint model which can be thought of as a dynamic
Bayesian network [8]. This representation enables efficient
alignment and retrieval using dynamic programming.

This probabilistic approach is related to several recent
works that employ Hidden Markov Models (HMM) for music
processing. Raphael [15] uses melody information (pitches
and durations of notes) in building an HMM for a score
following application. A similar approach is taken by Durey
and Clements [9] who use the pitch information of notes
for building HMMs for melody retrieval. However, both
approaches were designed for and evaluated on monophonic
music databases. Most work on polyphonic music processing
addressed tasks such as music segmentation into textures [6],
polyphonic pitch tracking [18], and genre classification [17,
10]. We believe that the approach we describe in this paper
is a step toward an effective retrieval procedure for massive
musical datasets.

2. PROBLEM SETTING

In our setting, we are given a melody and our task is
to retrieve musical performances containing the requested
melody and to find its location within the retrieved perfor-
mances. A melody is a sequence of notes where each note
is a pair of a pitch value and a duration value. Our goal
is to retrieve melodies from audio signals representing real
performances.

Formally, let R+ denote the positive real numbers. Let
f1, fn € R+ be frequency values (in Hz) and let [fi, fn] be a
diapason. A diapason of a singer (or an instrument) is the
range of pitch frequencies that are in use by the singer (or
by the instrument). For instance, a tenor singer typically
employs a diapason of [110Hz,530Hz]. Let A denote the
set of all possible frequencies of notes. In the well-tempered
Western music tuning system, A = {frey - 251215 ¢ 2},
where frey = 440Hz. Let T' = [fiow, frigh] N A denote all
the possible pitches of notes in the diapason. A melody is
described formally by a sequence of pitches, p € T'*, and a
sequence of durations, d € R,*, in a predefined time units
(e.g. seconds or samples).

A performance of a melody is a discrete time sampled au-
dio signal, 0 = 01, ..., 0. A performance is formally entirely
defined given the melody: play or sing using pitch p; for the
first di seconds, then play or sing pitch ps for the next d»
seconds, and so on and so forth. In reality, a melody does
not impose a rigid framework. The actual frequency con-
tent of a given note varies with the type of instrument that
is played and by the performer. Examples for such variations
are the vibrato and timbre effects. The accompaniment also
greatly influences the spectral distribution. While playing a
note using pitch p, we are likely to see a local concentration
of energy close to multiples of the frequency p in the power
spectrum of the signal. However, there may be other spec-
tral regions with high levels of energy. We will address this
problem later on in this section. Another source of variation
is local scaling of the durations of notes as instructed by the
melody. The performer typically uses a tempo that scales
the duration and moves from one tempo to another, thus

Rallentando | 1.2 1.2 1.25 1.3 1.3
Accelerando | 0.7 0.65 0.6 0.5 0.5

Table 1: Examples of scaling factor sequences: In
the first sequence the scaling factors are gradu-
ally increasing and thus the tempo is decreasing
(”Rallentando”). In the second example the scaling
factors are decreasing and the tempo is increasing
(“Accelerando”).

using a different time scale to play the notes. Therefore,
we also need to model the variation in the tempo which we
describe now.

A tempo sequence is a sequence of scaling factors, m €
R.,_k. Th~e actual duration of note 7, denoted d; is d; scaled
by mi, di = d;m,;. Seemingly, allowing different scaling
factors for the different notes adds a degree of freedom that
makes the melody duration values redundant. However, a
typical tempo sequence does not change rapidly and thus
reflects most of the information of the original durations
(up to a scaling factor). Table 1 shows two examples of
tempo sequences. A pitch—duration-tempo triplet (p,d, m)
generates an actual pitch duration pair (p, E) .

In order to describe the generation of the actual perfor-
mance audio signal o from (p, d) we introduce one more vari-
able, s € R4" where s; is the starting time (sample number)
of note ¢ in the performance. We define s; =1 +E;;11 (Z for
i=1,...,k+ 1. Notes generate consecutive blocks of signal
samples. Let 0; = (0s;,...,05,,, 1) be the block of samples
generated by note 7.

The power spectrum of 9; varies significantly from perfor-
mance to performance, according to various factors such as
the spectral envelope of the soloist and pitches of accompa-
niment instruments. Since our goal is to locate and retrieve
a melody from a dataset that may contain thousands of per-
formances, we resort to a very simple spectral model and do
not explicitly model these variables. We use an approxima-
tion to the likelihood of a block spectrum given its pitch.

3. FROM MELODY TO SIGNAL:
A GENERATIVE MODEL

To pose the problem in a probabilistic framework, we need
to describe the likelihood of a performance given the melody,
P(o|p,d). We cast the tempo sequence m as a hidden ran-
dom variable, thus the likelihood can be written as,

P(olp.d) = P(o.mlp.d) . (1)

For simplicity, we assume that the tempo sequence does not
depend on the melody. While this assumption, naturally,
does not always hold, we found empirically that these types
of correlations can be ingnored in short pieces of perfor-
mances. With this assumption and the identity d = dm,



Equ. (1) can be rewritten as,

P(olp,d) =Y _ P(m|p,d)P(ol|p,d, m)
=Y P(m)P(olp,d,m)
=Y P(m)P(olp.d) .

We now need to specify the prior distribution over the tempo,
P(m), and the posterior distribution of the signal given the
pitches and the actual durations of the notes P(o|p,d).

3.1 Tempo modeling

We chose to model the tempo sequence as a first order
Markov process. As we see in the sequel this choice on one
hand allows an efficient alignment and retrieval, and on the
other hand, was found empirically to be rich enough. There-
fore, the likelihood of m is given by,

k
P(m) = P(TTL1) H P(mi|mi,1)
i=2
We use the log-normal distribution to model the conditional
probability P(m;|m;—1), that is log,(m;) ~ N (logs(mi—1), p),
where p is a scaling parameter of the variance. The prior
distribution of the first scaling factor P(m1) is also assumed
to be log-normal around zero with variance p, logy(m;) ~
N(0,p). In our experiments, the parameter p was deter-
mined manually according to musical knowledge. This pa-
rameter can also be learned from MIDI files.

3.2 Spectral Distribution M odel

In this section we describe our spectral distribution model.
There exist quite a few models for the spectral distribution
of singing voices and harmonic instruments. However, most
of these models are rather general. These models typically
assume that the musical signal is contaminated with white
noise whose energy is statistically independent of the signal.
See for instance [16] and the references therein. In contrast,
we assume that there is a leading instrument, or soloist, that
is accompanied by an orchestra or a chorus. The energy of
the accompaniment is typically highly correlated with the
energy of the soloist. Put another way, the dynamics of the
accompaniment matches the dynamics of the soloist. For
instance, when the soloist sings pianissimo the chorus fol-
lows her with pianissimo voices. We therefore developed a
simple model whose parameters can be efficiently estimated
that copes with the correlation in energy between the lead-
ing soloist and the accompaniment. In Fig. 1 we show the
spectrum of one frame of a performance signal from our
database. The harmonics are designated by dashed lines. It
is clear from the figure that there is a large concentration
of energy at the designated harmonics. The residual en-
ergy, outside the harmonics, is certainly non-negligible but
is clearly lower than the energy of the harmonics. Thus, our
assumptions, although simplistic, seem to capture to a large
extent the characteristics of the spectrum of singing with
accompaniment.

Using the definition of a block 9; from Sec. 2, the likeli-
hood of the signal given the sequences of pitches and dura-
tions can be decomposed into a product of likelihood values
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Figure 1: The spectrum of a single frame along with
an impulse train designating the harmonics of the
soloist.

of the individual blocks,

k
P(ol|d,p) = HP(5i|pi)
i=1
Therefore, the core of our modeling approach is a probabilis-
tic model for the spectral distribution of a whole block given
the underlying pitch frequency of the soloist. Our starting
point is similar to the model presented in [16]. We assume
that a note with pitch p; attains high energy at frequen-
cies which are multiples of p;, namely at p;h for integer h.
These frequencies are often referred to as harmonics. Since
our signal is band limited, we only need to consider a finite
set of harmonics h, h € {1,2, ..., H}. For practical purposes
we set H to be 20 which enables a fast parameter estima-
tion procedure. Let F'(w) denote the observed energy of the
block 0; at frequency w. Let S(w) denote the energy of the
soloist at frequency w. The harmonic model assumes that
S(-) is bursts of energy centered at the harmonics of the
pitch frequency, p;h, and we model it as a weighted sum of
delta functions,

H

S(w) =Y AR)s(pih —w) (2)

h=1

where A(h) is the volume gain for the harmonic whose in-
dex is h. The residual of the spectrum at frequency w is
denoted N(w) and is equal to N(w) = F(w) — S(w). We
now describe a probabilistic model that leads to the follow-
ing log-likelihood score,

[l

log P(0ip:) o< log INE 3)

where || - || denotes the £3-norm.

To derive the above equation we assume that the spectrum
of the ith block, F, is comprised of two components. The
first component is the energy of the soloist, S(w) as defined
in Equ. (2). The second component is a general masking



noise that encompasses the signal’s energy due to the ac-
companiment and affects the entire spectrum. We denote
the noise energy at frequency w as n(w). The energy of the
spectrum at frequency w is therefore modeled as,

Fw) =Y A(h) (nw) + 8(pih —w)) . (4)
h=1

We now impose another simplifying assumption by setting
the noise n to be a multivariate normal random variable and
further assuming that the noise values at each frequency w
are statistically independent with equal variance. Thus, the
noise density function is

1 _Ini?
f(nlv) = @iz v (5)

where v is the variance and L is the number of spectral
points computed by the discrete Fourier transform. (We
chose L = 2" to get a good spectral resolution.) Taking the
log of the above density function we get,

tog £ () = — = log(2rv) — LI ©)

The gain values A(h) are free parameters which we need to
estimate from the spectrum. Assuming that the noise level
is relatively small compared to the bursts of energy at the
harmonics of the pitch frequency, we set the value of A(h)
to be F(p;h). We also do not know the noise variance v. For
this free parameter we use the simple maximum likelihood
(ML) estimate which can be easily found as follows. The
maximum likelihood estimate of v is found by taking the
derivative of log f(n|v) with respect to v,
Olog f(nlv) _ L 2m  |n?

v 227rv+ 202 Y L

Rearranging Equ. (4), the noise value at frequency w, n(w),
can be written as,

_ Fw) = 35, A(W)d(pih — w)
Y1 Alh)
By using above equation for n(w) along with values set for

A(h) and the maximum likelihood estimate v* in Equ. (6)
we get,

n(w)

(log(27) + log((ln]|*) — log(Z) — 1)
L (1S
= +21"g(||N||2) ' ®

Since the stochastic ingredient of our spectral model is the
accompanying noise, the noise likelihood above also consti-
tute the likelihood of the spectrum.

To summarize, we now overview our approach for retrieval.
We are given a melody (p,d) and we want to find an au-
dio signal o which represents a performance of this melody.
Using our probabilistic framework, we cast the problem as
the problem of finding a signal portion o whose likelihood
given the melody, P(o|p,d), is high. Our search strategy
is as follows. We find the best alignment of the signal to
the melody as we describe in the next section. The score
of the alignment procedure we devise is also our means for

tog fnlvs) = %

1. Initialization
Vicier,7(0,4,1) =1
2. Recursion

V(i t,§) =
maX’)/(i_la tla gl)P(ﬂfl)P(Ot’Hr : 'a0t|pi)

geM
where t' =t — d;&.
3. Termination

P*= max
1<t<T, €eM

v(k,t,€)

Figure 2: The alignment algorithm.

retrieval. We then rank the segments of signals in accor-
dance with their likelihood scores and return the segments
achieving high likelihoods scores.

4. ALIGNMENT AND RETRIEVAL

Alignment of a melody to a signal is performed by find-
ing the best assignment of a tempo sequence. Formally,
we are looking for the scaling factors m™ that attain the
highest likelihood score, m* = arg maxm, P(o, m|d,p). Al-
though the number of possible sequences of scaling factors
m grows exponentially with the sequence length, the prob-
lem of finding m™ can be efficiently solved using dynamic
programming, as we now describe.

Let m' = (mi,...,m;) denote the scaling factors of the
first i notes of a melody. Let o = (01, ..., 0;) denote the first
t samples of a signal. Let M be a discrete set of possible
scaling factor values. For { € M, let M;:¢ be a set of
all possible sequences of i scaling factors, m’, such that
m; = & is the scaling factor of note ¢ and ¢t = 23:1 mjd; is
the actual ending time of note 7. Let 7(i,t,&) be the joint
likelihood of o' and m® € M, + ¢

y(i,t,8) =

max P(o',m'|p,d)
mrEM; ¢ ¢

The pseudo code for computing ~(,t, &) recursively is
shown in Fig. 2.

The most likely sequence of scaling factors m™ is obtained
from the algorithm by saving the intermediate values that
maximize each expression in the recursion step. The com-
plexity of the algorithm is O(kT|M|? D), where k is the num-
ber of notes, T is the number of samples in the digital signal,
|M| is the number of all possible tempo values and D is the
maximal duration of a note. Using a pre-computation of
the likelihood values we can reduce the time complexity by
a factor of D and thus the run time of the algorithm re-
duces to O(KT|M|?). Tt is important to clarify that the pre-
computation does not completely determine a single pitch
value for a frame. It calculates the probability of the frame
given each possible pitch in the diapason.

As mentioned above, our primary goal is to retrieve the
segments of signals representing the melody given by the



query. Theoretically, we need to assign a segment o its like-
lihood score, P(o|p,d) = >, P(m|p.d). However, this
marginal probability is rather expensive to compute. We
thus approximate this probability with the joint probabil-
ity of the signal and most likely sequence of scaling factors,
P(o,m™|p,d) . That is, we use the likelihood score of the
alignment procedure as a retrieval score.

5. EXPERIMENTAL RESULTS

To evaluate our algorithm we collected 50 different melodies
from famous opera arias, and queried these melodies in a
database of real recordings. The recordings consist of 832
performances of opera arias performed by more then 40
different tenor singers with full orchestral accompaniment.
Each performance is one minute. The data was extracted
from seven audio CDs [2, 3, 5, 1, 4], and saved in wav for-
mat. Most of the performances (about 90 percent) are dig-
ital recordings (DDD/ADD). Yet, some performances are
digital remastering of old analog recordings (AAD). This
introduced additional complexity to the retrieval task due
to varying level of noise.

The melodies for the experiments were extracted from
MIDI files. About half of the MIDI files were downloaded
from the Internet ' and the rest of the MIDI files were per-
formed on a MIDI keyboard and saved as MIDI files.

We compared three different tempo-based approaches for
retrieval. The first method simply uses the original dura-
tions given in the query without any scaling. We refer to
this simplistic approach as the Fized Tempo (FT) model.
The second approach uses a single scaling factor for all the
durations of a given melody. However, this scaling factor is
determined independently for each signal so as to maximize
the signals likelihood. We refer to this model as the Locally
Fized Tempo (LFT) model. The third retrieval method is
our variable tempo model that we introduced in this paper.
We therefore refer to this method as the Variable Tempo
(VT) model. By taking a prefix subset of each melody used
in a query we evaluated three different lengths of melodies:
5 seconds, 15 seconds, and 25 seconds.

To assess the quality of the spectral distribution model
described in Sec. 3.2, we implemented the spectral distribu-
tion model described in [16]. This model assumes that the
harmonics of the signal are contaminated with noise whose
mean energy is independent of the energy of the harmonics.
We refer to our model as the Harmonics with Scaled Noise
(HSN) model and to the model from [16] as the Harmonics
with Independent Noise (HIN) model.

To evaluate the performances of the methods we used
three evaluation measures: one-error, coverage and aver-
age precision. To explain these measures we introduce the
following notation. Let N be the number of performances
in our database and let M be the number of melodies that
we search for. (As mentioned above, in our experiments
N = 832 and M = 50.) For a melody index ¢ we denote
by Y; the set of the performances containing melody . The
probabilistic modeling we discussed in this paper induces a
natural ordering over the performances for each melody. Let

"http://www.aria-database.com,
http: //www.musicscore.freeserve.co.uk,
http://www.classicalmidi.gothere.uk.com

R;(j) denote the ranking of the performance indexed j with
respect to melody ¢. Based on the above definitions we now
give the formal definitions of the performance measures we
used for evaluation.

One-Error. The one-error measures how many times the
top-ranked performance did not contain the melody posed
in the query. Thus, if the goal of our system is to return a
single performance that contains the melody, the one-error
measures how many times the retrieved performance did not
contain the melody. Formally, the definition of the one-error
is,
LM
OErr = i ;ﬂarg mjin Ri(5) € Yi] .

where [rr] = 1 if predicate 7 holds and 0 otherwise.

Coverage. While the one-error evaluates the performance
of a system with respect to the top-ranked performance, the
goal of the coverage measure is to assess the performance of
the system for all of the possible performances of a melody.
Informally, Coverage measures the number of excess (non-
relevant) performances we need to scan until we retrieve all
the relevant performances. Formally, Coverage is defined as,

M
1 ;
Cov = iV ;:1(5%@)5&(]) =Yl .

Average Precision. The above measures do not suffice in
evaluating the performances of retrieval systems as one can
achieve good (low) coverage but suffer high one-error rates,
and vice versa. In order to assess the ranking performance
as a whole we use the frequently used average precision mea-
sure. Formally, the average precision is defined as,

M
1 1 Hi" € YilRi(5) < Ri(4)}

AvgP = — — E - .
M ; Y3 jev, Ri(5)

In addition we also use precision versus recall graphs to il-
lustrate the overall performances of the different approaches
discussed in the paper. A precision-recall graph shows the
level of precision for different recall values. The graphs pre-
sented in this paper are non-interpolated, that is, they were
calculated based on the precision and recall values achieved
at integer positions of the ranked lists.

In Table 2 we report results with respect to the perfor-
mance measures described for the FT, LFT, and VT mod-
els. For each tempo model we conducted the experiments
with the two spectral distribution models HIN and HSN.
It is clear from the table that the Variable Tempo model
with the Harmonics with Scaled Noise spectral distribution
outperforms the rest of the models and achieves superior
results. Moreover, the performance of the Variable Tempo
model consistently improves as the duration of the queries
increases. In contrast, the Fired Tempo does not exhibit
any improvement as the duration of the queries increases
and the Locally Fired Tempo shows only a moderate im-
provement when using fifteen second long queries instead of
five second long queries and it does not improve as the dura-
tion grows to twenty five seconds. A reasonable explanation
for these phenomena is that the amount of variability in a
very short query is naturally limited and thus the leverage
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Figure 3: Precision-recall curves comparing the per-
formance of three tempo models for queries consist-
ing of five seconds (top), fifteen second (middle),
and twenty five seconds (bottom).

Figure 4: Precision-recall curves comparing the per-
formance of each of the tempo models for three dif-
ferent query lengths.



Spectral Distribution Model

HSN HIN
AvgP Cov Oerr|AvgP Cov Oerr
VT | 0.95 0.21 0.08| 0.92 0.40 0.10
25|LFT| 0.66 5.90 0.46 | 0.63 5.98 0.48
FT | 034 20.69 0.77| 0.33 22.46 0.79
VT | 0.86 1.75 0.19| 0.83 3.02 0.19
I5|LFT| 0.66 8.10 0.44 | 0.66 8.15 0.42
FT | 038 19.83 0.71| 0.36 19.08 0.73
VT | 0.51 10.67 0.65| 0.46 11.83 0.69
5 |LFT| 0.43 17.33 0.69 | 0.37 17.94 0.75
FT | 038 2296 0.69| 0.35 21.67 0.75

Melody length (sec.)

Table 2: Retrieval results

gained by accurate tempo modeling which takes into account
the variability in tempo is rather small. Thus, as the query
duration grows the power of the variable tempo model is
better exploited. The Locally Fized Tempo can capture the
average tempo of a performance but clearly fails to capture
changes in the tempo. Since the chance of a tempo change
grows with the duration of the query the average tempo
stops from being a good approximation and we do not see
further improvement in the retrieval quality.

In Fig 3 we give precision-recall graphs that compare the
three tempo models. Each graph compares FT, LFT and
VT for different query durations. The VT model clearly
outperforms both the FT and LFT models. The longer the
query the wider the gap in performance. In Fig 4 we com-
pare the precision-recall graphs for each model as a function
of the query duration. Each graph shows the precision-recall
curves for 5, 15, and 25 seconds queries. We again see that
only the VT model consistently improves with the increase
in the query duration. Using a globally fixed tempo (FT) is
clearly inadequate as it results in very poor performance —
precision is never higher than 0.35 even for low level of re-
call. The performance of the LF'T model is more reasonable.
A precision of about 0.5 can be achieved for a recall value of
0.5. However, the full power of our approach is utilized only
when we use the VT model. We achieve an average preci-
sion of 0.92 with a recall of 0.75. It seems that with the VT
model we reach an overall performance that can serve as the
basis for large scale music retrieval systems.

Lastly, as a final sanity check of the conjecture of the ro-
bustness of the VT model we used the VT and LFT model
with three long melody queries (one minute) and applied
the retrieval and alignment process. We then let a profes-
sional musician listen to the segmentation and browse the
segmented spectogram. An example of a spectogram with a
segmentation of the VT model is given in Fig 5. The exam-
ple is of a performance where the energy of accompaniment
is higher than the energy of the leading tenor. Nonetheless,
a listening experiment verified that our system was able to
properly segment and align the melody posed by the query.
Although these perceptual listening tests are subjective, the
experiments indicated that the VT model also provides an
accurate alignment and segmentation.
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Figure 5: An illustration of the alignment and seg-
mentation of the VT model. The pitches of the notes
in the melody are overlayed in solid lines.

6. DISCUSSION

In this paper we presented a robust probabilistic model
for query by melody. The proposed approach is simple
to implement and was found to work well on polyphony-
rich recordings with various types of accompaniments. The
probabilistic model that we developed focuses on two main
sources of variability. The first is variations in the actual
durations of notes in real recordings (tempo variability) and
the second is the variability of the spectrum mainly due to
the “spectral masking” of the leading vocal by the accom-
panying vocals and orchestra. In this work we assumed that
the pitch information in a query is accurate and only the
duration can be altered in the performance. This assump-
tion is reasonable if the queries are posed using a symbolic
input mechanism such as a MIDI keyboard. However, an
easier and more convenient mechanism is to hum or whistle
a melody. This task is often called “query by humming”.
In addition to the tempo variability and spectral masking,
a query by humming system also needs to take into account
imperfections in the pitch of the hummed melody. Indeed,
much of the work on query by humming have been devoted
to music retrieval using noisy pitch information. The major-
ity of the work on query by humming though have focused
on search of noisy queries in symbolic databases. Since the
main thrust of this research is searches in real polyphonic
recordings, it complements the research on query by hum-
ming and can supplement numerous systems that search in
symbolic databases. We plan to extend our algorithm so it
can be combined with a front end for hummed queries. In
addition, we have started conducting research on supervised
methods for musical genre classification. We believe that by
combining highly accurate genre classification with a robust
retrieval and alignment we will be able to provide an effec-
tive tool for searching and browsing for both professionals
and amateurs.
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