
Large-Scale Convex Minimization with a Low-Rank Constraint

Shai Shalev-Shwartz shais@cs.huji.ac.il
Alon Gonen alongnn@gmail.com

School of Computer Science and Engineering, The Hebrew University of Jerusalem, ISRAEL

Ohad Shamir ohadsh@microsoft.com

Microsoft Research New-England, USA

Abstract

We address the problem of minimizing a con-
vex function over the space of large matri-
ces with low rank. While this optimization
problem is hard in general, we propose an ef-
ficient greedy algorithm and derive its formal
approximation guarantees. Each iteration of
the algorithm involves (approximately) find-
ing the left and right singular vectors cor-
responding to the largest singular value of
a certain matrix, which can be calculated
in linear time. This leads to an algorithm
which can scale to large matrices arising in
several applications such as matrix comple-
tion for collaborative filtering and robust low
rank matrix approximation.

1. Introduction

Our goal is to approximately solve an optimization
problem of the form:

min
A:rank(A)≤r

R(A) , (1)

where R : Rm×n → R is a convex and smooth function.
This problem arises in many machine learning appli-
cations such as collaborating filtering (Koren et al.,
2009), robust low rank matrix approximation (Ke &
Kanade, 2005; Croux & Filzmoser, 1998; A. Baccini &
Falguerolles, 1996), and multiclass classification (Amit
et al., 2007). The rank constraint on A is non-convex
and therefore it is generally NP-hard to solve Equa-
tion (1) (this follows from (Natarajan, 1995; Davis
et al., 1997)).

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

In this paper we describe and analyze an approxi-
mation algorithm for solving Equation (1). Roughly
speaking, the proposed algorithm is based on a sim-
ple, yet powerful, observation: instead of representing
a matrix A using m × n numbers, we represent it us-
ing an infinite dimensional vector λ, indexed by all
pairs (u, v) taken from the unit spheres of Rm and Rn
respectively. In this representation, low rank corre-
sponds to sparsity of the vector λ.

Thus, we can reduce the problem given in Equation (1)
to the problem of minimizing a vector function f(λ)
over the set of sparse vectors, ‖λ‖0 ≤ r. Based on
this reduction, we apply a greedy approximation algo-
rithm for minimizing a convex vector function subject
to a sparsity constraint. At first glance, a direct ap-
plication of this reduction seems impossible, since λ
is an infinite-dimensional vector, and at each iteration
of the greedy algorithm one needs to search over the
infinite set of the coordinates of λ. However, we show
that this search problem can be cast as the problem of
finding the first leading right and left singular vectors
of a certain matrix.

After describing and analyzing the general algorithm,
we show how to apply it to the problems of matrix
completion and robust low-rank matrix approxima-
tion. As a side benefit, our general analysis yields
a new sample complexity bound for matrix comple-
tion. We demonstrate the efficacy of our algorithm
by conducting experiments on large-scale movie rec-
ommendation data sets.

1.1. Related work

As mentioned earlier, the problem defined in Equa-
tion (1) has many applications, and therefore it was
studied in various contexts. A popular approach is to
use the trace norm as a surrogate for the rank (e.g.
(Fazel et al., 2002)). This approach is closely related
to the idea of using the `1 norm as a surrogate for spar-

Large-Scale Convex Minimization with a Low-Rank Constraint

sity, because low rank corresponds to sparsity of the
vector of singular values and the trace norm is the `1
norm of the vector of singular values. This approach
has been extensively studied, mainly in the context
of collaborating filtering. See for example (Cai et al.,
2008; Candes & Plan, 2010; Candès & Recht, 2009;
Keshavan et al., 2010; Keshavan & Oh, 2009).

While the trace norm encourages low rank solutions, it
does not always produce sparse solutions. Generalizing
recent studies in compressed sensing, several papers
(e.g. (Recht et al., 2007; Cai et al., 2008; Candes &
Plan, 2010; Candès & Recht, 2009; Recht, to appear))
give recovery guarantees for the trace norm approach.
However, these guarantees rely on rather strong as-
sumptions (e.g., it is assumed that the data is indeed
generated by a low rank matrix, that certain inco-
herence assumptions hold, and for matrix completion
problems, it requires the entries to be sampled uni-
formly at random). In addition, trace norm minimiza-
tion often involves semi-definite programming, which
usually does not scale well to large-scale problems.

In this paper we tackle the rank minimization directly,
using a greedy selection approach, without relying on
the trace norm as a convex surrogate. Our approach
is similar to forward greedy selection approaches for
optimization with sparsity constraint (e.g. the MP
(Mallat & Zhang, 1993) and OMP (Pati et al., 2002)
algorithms), and in particular we extend the fully cor-
rective forward greedy selection algorithm given in
(Shalev-Shwartz et al., 2010)). We also provide formal
guarantees on the competitiveness of our algorithm rel-
ative to matrices with small trace norm.

Recently, (Lee & Bresler, 2010) proposed the ADMiRA
algorithm, which also follows the greedy approach.
However, the ADMiRA algorithm is different, as in
each step it first chooses 2r components and then uses
SVD to revert back to a r rank matrix. This is more
expensive then our algorithm which chooses a single
rank 1 matrix at each step. The difference between
the two algorithms is somewhat similar to the differ-
ence between the OMP (Pati et al., 2002) algorithm for
learning sparse vectors, to CoSaMP (Needell & Tropp,
2009) and SP (Dai & Milenkovic, 2008). In addition,
the ADMiRA algorithm is specific to the squared loss
while our algorithm can handle any smooth loss. Fi-
nally, while ADMiRA comes with elegant performance
guarantees, these rely on strong assumptions, e.g. that
the matrix defining the quadratic loss satisfies a rank-
restricted isometry property. In contrast, our analysis
only assumes smoothness of the loss function.

The algorithm we propose is also related to Hazan’s
algorithm (Hazan, 2008) for solving PSD problems,

which in turns relies on Frank-Wolfe algorithm (Frank
& Wolfe, 1956) (see Clarkson (Clarkson, 2008)), as well
as to the follow-up paper of (Jaggi & Sulovskỳ, 2010),
which applies Hazan’s algorithm for optimizing with
trace-norm constraints. There are several important
changes though. First, we tackle the problem directly
and do not enforce neither PSDness of the matrix nor
a bounded trace-norm. Second, our algorithm is ”fully
corrective”, that is, it extracts all the information from
existing components before adding a new component.
These differences between the approaches are analo-
gous to the difference between Frank-Wolfe algorithm
and fully corrective greedy selection, for minimizing
over sparse vectors, as discussed in (Shalev-Shwartz
et al., 2010). Finally, while each iteration of both
methods involves approximately finding leading eigen-
vectors, in (Hazan, 2008) the quality of approximation
should improve as the algorithm progresses while our
algorithm can always rely on the same constant ap-
proximation factor.

2. The GECO algorithm

In this section we describe our algorithm, which we
call Greedy Efficient Component Optimization (or
GECO for short). Let A ∈ Rm×n be a matrix,
and without loss of generality assume that m ≤ n.
The SVD theorem states that A can be written as
A =

∑m
i=1 λiuiv

T
i , where u1, . . . , um are members of

U = {u ∈ Rm : ‖u‖ = 1}, v1, . . . , vm comes from
V = {v ∈ Rn : ‖v‖ = 1}, and λ1, . . . , λm are scalars.
To simplify the presentation, we assume that each real
number is represented using a finite number of bits,
therefore the sets U and V are finite sets.1 It follows
that we can also write A as A =

∑
(u,v)∈U×V λu,vuv

T ,

where λ ∈ R|U×V| and we index the elements of λ using
pairs (u, v) ∈ U×V. Note that the representation of A
using a vector λ is not unique, but from the SVD the-
orem, there is always a representation of A for which
the number of non-zero elements of λ is at most m, i.e.
‖λ‖0 ≤ m where ‖λ‖0 = |{(u, v) : λu,v 6= 0}|. Further-
more, if rank(A) ≤ r then there is a representation of
A using a vector λ for which ‖λ‖0 ≤ r.

Given a (sparse) vector λ ∈ R|U×V| we define the cor-

1This assumption greatly simplifies the presentation but
is not very limiting since we do not impose any restriction
on the amount of bits needed to represent a single real
number. We note that the assumption is not necessary
and can be waived by writing A =

R
(u,v)∈U×V uv

T dλ(u, v),

where λ is a measure on U×V, and from the SVD theorem,
there is always a representation with λ which is non-zero
on finitely many points.

Large-Scale Convex Minimization with a Low-Rank Constraint

Algorithm 1 GECO
1: Input: Convex-smooth function R : Rm×n → R ;

rank constraint r ; tolerance τ ∈ [0, 1/2]
2: Initialize: U = [], V = []
3: for i=1,. . . ,r do
4: (u, v) = ApproxSV(∇R(UV T), τ)
5: Set U = [U , u] and V = [V , v]
6: Set B = argminB:∈Ri×i R(UBV T)
7: Calculate SVD: B = PDQT

8: Update: U = UPD, V = V Q
9: end for

responding matrix to be

A(λ) =
∑

(u,v)∈U×V

λu,vuv
T .

Note that A(λ) is a linear mapping. Given a function
R : Rm×n → R, we define a function

f(λ) = R(A(λ)) = R

 ∑
(u,v)∈U×V

λu,vuv
T

 .

It is easy to verify that if R is a convex function over
Rm×n then f is convex over R|U×V| (since f is a com-
position of R over a linear mapping). We can therefore
reduce the problem given in Equation (1) to the prob-
lem

min
λ∈R|U×V|:‖λ‖0≤r

f(λ) . (2)

While the optimization problem given in Equation (2)
is over an arbitrary large space, we next show that
a forward greedy selection procedure can be imple-
mented efficiently. The greedy algorithm starts with
λ = (0, . . . , 0). At each iteration, we first find the vec-
tors (u, v) that maximizes the magnitude of the partial
derivative of f(λ) with respect to λu,v. Assuming that
R is differentiable, and using the chain rule, we obtain:

∂f(λ)
∂λu,v

= 〈∇R(A(λ)), uvT 〉 = uT∇R(A(λ))v ,

where ∇R(A(λ)) is the m×n matrix of partial deriva-
tives of R with respect to the elements of A(λ). The
vectors u, v that maximizes the magnitude of the above
expression are the left and right singular vectors corre-
sponding to the maximal singular value of ∇R(A(λ)).
Therefore, even though the number of elements in
U × V is very large, we can still perform a greedy se-
lection of one pair (u, v) ∈ U × V in an efficient way.

In some situations, even the calculation of the leading
singular vectors might be too expensive. We there-
fore allow approximate maximization, and denote by

ApproxSV(∇R(A(λ)), τ) a procedure2 which returns
vectors for which

uT∇R(A(λ))v ≥ (1− τ) max
p,q

pT∇R(A(λ))q .

Let U and V be matrices whose columns contain the
vectors u and v we aggregated so far. The second
step of each iteration of the algorithm sets λ to be the
solution of the following optimization problem:

min
λ∈R|U×V|

f(λ) s.t. supp(λ) ⊆ span(U)×span(V), (3)

where supp(λ) = {(u, v) : λu,v 6= 0}, and
span(U), span(V) are the linear spans of the columns
of U, V respectively.

We now describe how to solve Equation (3). Let s
be the number of columns of U and V . Note that
any vector u ∈ span(U) can be written as Ubu, where
bu ∈ Rs, and similarly, any v ∈ span(V) can be written
as V bv. Therefore, if the support of λ is in span(U)×
span(V) we have that A(λ) can be written as

A(λ) =
∑

(u,v)∈supp(λ)

λu,v(Ubu)(V bv)T

= U

 ∑
(u,v)∈supp(λ)

λu,vbub
T
v

V T .

Thus, any λ whose support is in span(U) × span(V)
yields a matrix B(λ) =

∑
u,v λu,vbub

T
v . The SVD the-

orem tells us that the opposite direction is also true,
namely, for any B ∈ Rs×s there exists λ whose sup-
port is in span(U) × span(V) that generates B (and
also UBV T). Denote R̃(B) = R(UBV T), it follows
that Equation (3) is equivalent to the following uncon-
strained optimization problem minB∈Rs×s R̃(B). It is
easy to verify that R̃ is a convex function, and there-
fore can be minimized efficiently. Once we obtain the
matrix B that minimizes R̃(B) we can use its SVD to
generate the corresponding λ.

In practice, we do not need to maintain λ at all, but
only to maintain matrices U, V such thatA(λ) = UV T .

2 An example of such a procedure is the power iter-
ation method, which can implement ApproxSV in time
O(N log(n)/τ), where N is the number of non-zero ele-
ments of ∇R(A(λ)). See Theorem 3.1 in (Kuczyński &
Woźniakowski, 1992). Our analysis shows that the value
of τ has a mild effect on the convergence of GECO, and
one can even choose a constant value like τ = 1/2. This is
in contrast to (Hazan, 2008; Jaggi & Sulovskỳ, 2010) which
require the approximation parameter to decrease when the
rank increases. Note also that the ApproxEV procedure de-
scribed in (Hazan, 2008; Jaggi & Sulovskỳ, 2010) requires
an additive approximation, while we require a multiplica-
tive approximation.

Large-Scale Convex Minimization with a Low-Rank Constraint

A summary of the pseudo-code is given in Algorithm
1. The runtime of the algorithm is as follows. Step 4
can be performed in time O(N log(n)/τ), where N is
the number of non zero elements of ∇R(UV T), using
the power method (see Footnote 2). Since our analy-
sis (given in Section 3) allows τ to be a constant (e.g.
1/2), this means that the runtime is O(N log(n)). The
runtime of Step 6 depends on the structure of the func-
tion R. We specify it when describing specific applica-
tions of GECO in later sections. Finally, the runtime
of Step 7 is at most r3, and step 8 takes O(r2(m+n)).

2.1. Variants of GECO

2.1.1. How to choose (u, v)

GECO chooses (u, v) to be the leading singular vec-
tors, which are the maximizers of uT∇R(A) v over unit
spheres of Rm and Rn. Our analysis in the next section
guarantees that this choice yields a sufficient decrease
of the objective function. However, there may be a pair
(u, v) which leads to an even larger decrease in the ob-
jective value. Choosing such a direction can lead to
improved performance. We note that our analysis in
the next section still holds, as long as the direction
we choose leads to a larger decrease in the objective
value, relative to the increase we can get from using
the leading singular vectors. In Section 6 we describe
a method that finds better directions.

2.1.2. Additional replacement steps

Each iteration of GECO increases the rank by 1. In
many cases, it is possible to decrease the objective by
replacing one of the components without increasing
the rank. If we verify that this replacement step indeed
decreases the objective (by simply evaluating the ob-
jective before and after the change), then the analysis
we present in the next section remains valid. We now
describe a simple way to perform a replacement. We
start with finding a candidate pair (u, v) and perform
steps 5−7 of GECO. Then, we approximate the matrix
B by zeroing its smallest singular value. Let B̂ denote
this approximation. We next check if R(UB̂V T) is
strictly smaller than the previous objective value. If
yes, we update U, V based on B̂ and obtain that the
rank of UV T has not been increased while the objec-
tive has been decreased. Otherwise, we update U, V
based on B, thus increasing the rank, but our analysis
tells us that we are guaranteed to sufficiently decrease
the objective. If we restrict the algorithm to perform
at most O(1) attempted replacement steps between
each rank-increasing iteration, then its runtime guar-
antee is only increased by an O(1) factor, and all the
convergence guarantees remain valid.

2.1.3. Adding Schatten norm regularization

In some situations, rank constraint is not enough for
obtaining good generalization guarantees and one can
consider objective functions R(A) which contains addi-
tional regularization of the form h(λ(A)), where λ(A)
is the vector of singular values of A and h is a vec-
tor function such as h(x) = ‖x‖2p. For example, if
p = 2, this regularization term is equivalent to Frobe-
nius norm regularization of A. In general, adding a
convex regularization term should not pose any prob-
lem. A simple trick to do this is to orthonormalize the
columns of U and V before Step 6. Therefore, for any
B, the singular values of B equal the singular values
of UBV T . Thus, we can solve the problem in Step
6 more efficiently while regularizing B instead of the
larger matrix UBV T .

2.1.4. Optimizing over diagonal matrices B

Step 6 of GECO involves solving a problem with i2

variables, where i ∈ {1, . . . , r}. When r is small this
is a reasonable computational effort. However, when
r is large, Steps 6 − 7 can be expensive. For exam-
ple, in matrix completion problems, the complexity of
Step 6 can scale with r6. If runtime is important, it
is possible to restrict B to be a diagonal matrix, or
in other words, we only optimize over the coefficients
of λ corresponding to U and V without changing the
support of λ. Thus, in step 6 we solve a problem with
i variables, and Step 7 is not needed. It is possible to
verify that the analysis we give in the next section still
holds for this variant.

3. Analysis

In this section we give a competitive analysis for
GECO. The first theorem shows that after perform-
ing r iterations of GECO, its solution is not much
worse than the solution of all matrices Ā, whose trace
norm3 is bounded by a function of r. The second the-
orem shows that with additional assumptions, we can
be competitive with matrices whose rank is at most
r. The proofs can be found in the long version of this
paper.

To formally state the theorems we first need to define
a smoothness property of the function f .

Definition 1 (smoothness) We say that f is β-
smooth if for any λ and (u, v) ∈ U × V we have

f(λ+ ηeu,v) ≤ f(λ) + η
∂f(λ)
∂λu,v

+
β η2

2
,

3The trace norm of a matrix is the sum of its singular
values.

Large-Scale Convex Minimization with a Low-Rank Constraint

where eu,v is the all zeros vector except 1 in the coordi-
nate corresponds to (u, v). We say that R is β-smooth
if the function f(λ) = R(A(λ)) is β-smooth.

Theorem 1 Fix some ε > 0. Assume that GECO
(or one of its variants) is run with a β-smooth func-
tion R, a rank constraint r, and a tolerance parameter
τ ∈ [0, 1). Let A be its output matrix. Then, for all
matrices Ā with

‖Ā‖2tr ≤
ε (r + 1)(1− τ)2

2β

we have that R(A) ≤ R(Ā) + ε.

The previous theorem shows competitiveness with ma-
trices of low trace norm. Our second theorem shows
that with additional assumptions on the function f we
can be competitive with matrices of low rank as well.
We need the following definition.

Definition 2 (strong convexity) Let I ⊂ U × V.
We say that f is σ-strongly-convex over I if for any
λ1, λ2 whose support4 is in I we have

f(λ1)− f(λ2)− 〈∇f(λ2), λ1 − λ2〉 ≥
σ

2
‖λ1 − λ2‖22 .

We say that R is σ-strongly-convex over I if the func-
tion f(λ) = R(A(λ)) is σ-strongly-convex over I.

Theorem 2 Assume that the conditions of Theorem 1
hold. Then, for any Ā such that

rank(Ā) ≤ ε (r + 1)(1− τ)2 σ

4βR(0)
.

and such that R is σ-strongly-convex over the singular
vectors of Ā, we have that R(A) ≤ R(Ā) + ε.

We discuss the implications of these theorems for sev-
eral applications in the next sections.

4. Application I: Matrix Completion

Matrix completion is the problem of predicting the
entries of some unknown target matrix Y ∈ Rm×n
based on a random subset of observed entries, E ⊂
[m]× [n]. For example, in the famous Netflix problem,
m represents the number of users, n represents the
number of movies, and Yi,j is a rating user i gives to
movie j. One approach for learning the matrix Y is
to find a matrix A of low rank which approximately
agrees with Y on the entries of E (in mean squared

4The support of λ is the set of (u, v) for which λu,v 6= 0.

error terms). Using the notation of this paper, we
would like to minimize the objective

R(A) =
1
|E|

∑
(i,j)∈E

(Ai,j − Yi,j)2,

over low rank matrices A.

We now specify GECO for this objective function. It
is easy to verify that the (i, j) element of ∇R(A) is
2(Ai,j − Yi,j) if (i, j) ∈ E and 0 otherwise. The
number of non-zero elements of ∇R(A) is at most
|E|, and therefore Step 4 of GECO can be imple-
mented using the power method in time O(|E| log(n)).
Given matrices U, V , let ui be the i’th row of U
and vj be the j’th row of V . We have that the
(i, j) element of the matrix UBV T can be written as
〈vec(uTi vj), vec(B)〉, where vec of a matrix is the vec-
tor obtained by taking all the elements of the matrix
column wise. We can therefore rewrite R(UBV t) as

1
|E|
∑

(i,j)∈E(〈vec(uTi vj), vec(B)〉 − Yi,j), which makes
Step 6 of GECO a vanilla least squares problem over at
most r2 variables. The runtime of this step is therefore
bounded by O(r6 + |E|r2).

4.1. Analysis

To apply our analysis for matrix completion we first
bound the smoothness parameter.

Lemma 1 For matrix completion the smoothness pa-
rameter is at most 2/|E|.

Proof For any u, v and i, j we can rewrite (Ai,j +
ηuivj − Yi,j)2 as

(Ai,j − Yi,j)2 + 2(Ai,j − Yi,j) ηuivj + η2u2
i v

2
j .

Taking expectation over (i, j) ∈ E we obtain:

f(λ+ ηeu,v) ≤ f(λ) + η∇u,vf(λ) + η2 1
|E|

∑
(i,j)∈E

u2
i v

2
j .

Since
∑

(i,j)∈E u
2
i v

2
j ≤

∑
i u

2
i

∑
j v

2
j = 1, the proof

follows.

Our general analysis therefore implies that for any
Ā, GECO can find a matrix with rank r ≤
O(‖Ā‖2tr/(ε|E|)), such that R(A) ≤ R(Ā) + ε.

Let us now discuss the implications of this result for
the number of observed entries required for predicting
the entire entries of Y . Suppose that the entries E
are sampled i.i.d. from some unknown distribution
D ∈ Rm×n, Di,j ≥ 0 for all i, j and

∑
i,j Di,j = 1.

Large-Scale Convex Minimization with a Low-Rank Constraint

Denote the generalization error of a matrix A by

F (A) =
∑
i,j

Di,j(Ai,j − Yi,j)2 .

Using generalization bounds for low rank matrices (e.g.
(Srebro et al., 2005)), it is possible to show that for
any matrix A of rank at most r we have that with
high probability5

|F (A)−R(A)| ≤ Õ(
√
r(m+ n)/|E|) .

Combining this with our analysis for GECO, and op-
timizing ε, it is easy to derive the following:

Corollary 1 Fix some matrix Ā. Then, GECO can
find a matrix A such that with high probability over the
choice of the entries in E

F (A) ≤ F (Ā) + Õ

((
‖Ā‖tr

√
m+ n

|E|

)2/3
)

.

Without loss of generality assume that m ≤ n. It
follows that if ‖Ā‖tr is order of

√
mn then order of n3/2

entries are suffices to learn the matrix Y . This matches
recent learning-theoretic guarantees for distribution-
free learning with the trace norm (Shalev-Shwartz &
Shamir, 2011).

5. Application II: Robust Low Rank
Matrix Approximation

A very common problem in data analysis is finding a
low-rank matrix A which approximates a given matrix
Y , namely solving minA:rank(A)≤r d(A, Y), where d is
some discrepancy measure. For simplicity, assume that
Y ∈ Rn×n. When d(A, V) is the normalized Frobenius
norm d(A, V) = 1

n2

∑
i,j(Ai,j−Yi,j)2, this problem can

be solved efficiently via SVD. However, due to the use
of the Frobenius norm, this procedure is well-known
to be sensitive to outliers.

One way to make the procedure more robust is to re-
place the Frobenius norm by a less sensitive norm,
such as the l1 norm d(A, V) = 1

n2

∑
i,j |Ai,j−Yi,j | (see

for instance (A. Baccini & Falguerolles, 1996),(Croux
& Filzmoser, 1998),(Ke & Kanade, 2005)). Unfor-
tunately, there are no known efficient algorithms to
obtain the global optimum of this objective function,
subject to a rank constraint on A. However, using

5To be more precise, this bound requires that the ele-
ments of A are bounded by a constant. But, since we can
assume that the elements of Y are bounded by a constant,
it is always possible to clip the elements of A to the range
of the elements of Y without increasing F (A).

our proposed algorithm, we can efficiently find a low-
rank matrix which approximately minimizes d(A, V).
In particular, we can apply it to any convex discrep-
ancy measure d, including robust ones such as the l1
norm. The only technicality is that our algorithm re-
quires d to be smooth, which is not true in the case of
the l1 norm. However, this can be easily alleviated by
working with smoothed versions of the l1 norm, which
replace the absolute value by a smooth approximation.
One example is a Huber loss, defined as L(x) = x2/2
for |x| ≤ 1, and L(x) = |x| − 1/2 otherwise.

Lemma 2 The smoothness parameter of d(A, Y) =
1
n2

∑
i,j L(Ai,j − Yi,j), where L is the Huber loss, is at

most 1/n2.

Proof It is easy to verify that the smoothness param-
eter of L(x) is 1, since L(x) is upper bounded by the
parabola x2/2, whose smoothness parameter is exactly
1. Therefore,

L(Ai,j + ηuivj − Yi,j) ≤ L(Ai,j − Yi,j)

+ ηL′(Ai,j − Yi,j)uivj +
η2

2
u2
i v

2
j .

Taking the average over all entries, this implies that

f(λ+ ηeu,v) ≤ f(λ) + η∇u,vf(λ) +
η2

n2

∑
i,j

u2
i v

2
j .

Since the last term is at most η2/n2, the result follows.

We therefore obtain:

Corollary 2 Let d(A, Y) be the Huber loss discrep-
ancy as defined in Lemma 2. Then, for any matrix Ā,
GECO can find a matrix A with d(A, Y) ≤ d(Ā, Y)+ε

and rank(A) = O(‖Ā‖
2
tr

n2ε).

6. Experiments

We evaluated GECO for the problem of matrix
completion by conducting experiments on three
standard collaborative filtering datasets: Movie-
Lens100K, MovieLens1M, and MovieLens10M6. The
different datasets contain 105, 106, 107 ratings of
943, 6040, 69878 users on 1682, 3706, 10677 movies, re-
spectively. All the ranking are integers in 1 − 5. We
partitioned each data set into training and testing sets
as done in (Jaggi & Sulovskỳ, 2010).

We implemented GECO while applying two of the vari-
ants described in Section 2.1 as we explain in details

6Available through www.grouplens.org

www.grouplens.org

Large-Scale Convex Minimization with a Low-Rank Constraint

0 10 20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

rank

R
M

S
E

GECO

JS

0 10 20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

1

1.05

1.1

rank

R
M

S
E

GECO

JS

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

rank

R
M

S
E

GECO
JS

Figure 1. Root Mean Squared Error on the test set as a function of the rank. The horizontal line corresponds to the
minimal error achieved by JS. Left: MovieLens100k, Middle: MovieLens1M, Right: MovieLens10M.

below. The first variant (see Section 2.1.1) tries to find
update vectors (u′, v′) which leads to a larger decrease
of the objective function relatively to the leading sin-
gular vectors (u, v) of the gradient matrix ∇R(A). In-
spired by the proof of Theorem 1, we observe that the
decrease of the objective function inversely depends on
the smoothness of the scalar function R(A+ηuvt). We
therefore would like to find a pair which on one hand
has a large correlation with ∇R(A) and on the other
hand yields a smooth scalar function R(A+ηuvt). The
smoothness of R(A + ηuvt) is analyzed in Lemma 1
and is shown to be at most 2

|E| . Examining the proof
lines more carefully, we see that for balanced vectors,
i.e. ui = ± 1√

m
, vj = ± 1√

n
, we obtain a lower smooth-

ness parameter of 2
mn . Thus, a possible good update

direction is to choose u, v that maximizes uT∇R(A)v
over vectors of the form ui = ± 1√

m
, vj = ± 1√

n
. This

is equivalent to maximizing uT∇R(A)v over the `∞
balls of Rm and Rn, which is unfortunately known to
be NP-hard. Nevertheless, a simple alternate max-
imization approach is easy to implement and often
works well. That is, fixing some u, we can see that
v = sign(uT∇(A))/

√
n maximizes the objective, and

similarly, fixing v we have that u = sign(∇R(A)v)/
√
m

is optimal. We therefore implement this alternate
maximization at each step and find a candidate pair
(u′, v′). As described in section Section 2.1.1, we com-
pare the decrease of loss as obtained by the leading
singular vectors, (u, v), and the candidate pair men-
tioned previously, (u′, v′), and update using the pair
which leads to a larger decrease of the objective. We
remind the reader that although (u′, v′) are obtained
heuristically, our implementation is still provably cor-
rect and our guarantees from Section 3 still hold.

In addition we performed the additional replacement
steps as described in Section 2.1.2. For that purpose,
let q be the number of times we try to perform addi-
tional replacement steps for each rank. Each replace-

ment attempt is done using the alternate maximiza-
tion procedure described previously. After utilizing q
attempts of additional replacement steps, we force an
increase of the rank. In our experiments, we set q = 20.
Finally, we implemented the ApproxSV procedure us-
ing 30 iterations of the power iteration method.

We compared GECO to a state-of-the-art method, re-
cently proposed in (Jaggi & Sulovskỳ, 2010), which we
denote as the JS algorithm. JS, similarly to GECO,
iteratively increases the rank by computing a direction
that maximizes some objective function and perform-
ing a step in that direction. See more details in Sec-
tion 1.1. In Figure 1, we plot the root mean squared
error (RMSE) on the test set as a function of the rank.
As can be seen, GECO decreases the error much faster
than the JS algorithm. This is expected — see again
the discussion in Section 1.1. We observe that GECO
achieves slightly larger test error on the small data set,
slightly smaller test error on the medium data set, and
the same error on the large data set. On the small data
set, GECO starts to overfit when the rank increases
beyond 4. The JS algorithm avoids this overfitting by
constraining the trace-norm, but also starts overfit-
ting after around 30 iterations. On the other hand, on
the medium data, the trace-norm constraint employed
by the JS algorithm yields a higher estimation error,
and GECO, which does not constrain the trace-norm,
achieves a smaller error. In any case, GECO achieves
very good results while using a rank of at most 10.

7. Discussion

GECO is an efficient greedy approach for minimizing
a convex function subject to a rank constraint. One
of the main advantages of GECO is that each of its
iterations involves running few (precisely, O(log(n)))
iterations of the power method, and therefore GECO
scales to large matrices. In future work we intend to

Large-Scale Convex Minimization with a Low-Rank Constraint

apply GECO to additional applications such as mul-
ticlass classification and learning fast quadratic classi-
fiers.

Acknowledgements

This work emerged from fruitful discussions with
Tomer Baba, Barak Cohen, Harel Livyatan, and Oded
Schwarz. The work is supported by the Israeli Science
Foundation grant number 598-10.

References

A. Baccini, P. Besse and Falguerolles, A. A l1-norm pca
and a heuristic approach. In E. Diday, Y. Lechevalier
and Opitz, P. (eds.), Ordinal and Symbolic Data Analy-
sis, pp. 359–368. Springer, 1996.

Amit, Yonatan, Fink, Michael, Srebro, Nathan, and Ull-
man, Shimon. Uncovering shared structures in multi-
class classification. In International Conference on Ma-
chine Learning, 2007.

Cai, J.F., Candes, E.J., and Shen, Z. A singular value
thresholding algorithm for matrix completion. preprint,
2008.

Candes, E.J. and Plan, Y. Matrix completion with noise.
Proceedings of the IEEE, 98(6):925–936, 2010. ISSN
0018-9219.

Candès, E.J. and Recht, B. Exact matrix completion
via convex optimization. Foundations of Computational
Mathematics, 9(6):717–772, 2009. ISSN 1615-3375.

Clarkson, K.L. Coresets, sparse greedy approximation, and
the Frank-Wolfe algorithm. In Proceedings of the nine-
teenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 922–931, 2008.

Croux, C. and Filzmoser, P. Robust factorization of a data
matrix. In COMPASTAT, Proceedings in Computational
Statistics, 1998.

Dai, W. and Milenkovic, O. Subspace pursuit for compres-
sive sensing: Closing the gap between performance and
complexity, 2008.

Davis, G., Mallat, S., and Avellaneda, M. Greedy adaptive
approximation. Journal of Constructive Approximation,
13:57–98, 1997.

Fazel, M., Hindi, H., and Boyd, S.P. A rank minimiza-
tion heuristic with application to minimum order system
approximation. In American Control Conference, 2001.
Proceedings of the 2001, volume 6, pp. 4734–4739. IEEE,
2002. ISBN 0780364953.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval Res. Logist. Quart., 3:95–110, 1956.

Hazan, Elad. Sparse approximate solutions to semidefinite
programs. In Proceedings of the 8th Latin American con-
ference on Theoretical informatics, pp. 306–316, 2008.

Jaggi, M. and Sulovskỳ, M. A simple algorithm for nuclear
norm regularized problems. In ICML, 2010.

Ke, Q. and Kanade, T. Robust l1 norm factorization in
the presence of outliers and missing data by alternative
convex programming. In CVPR, 2005.

Keshavan, R.H. and Oh, S. Optspace: A gradient descent
algorithm on the grassman manifold for matrix comple-
tion. Arxiv preprint arXiv:0910.5260 v2, 2009.

Keshavan, R.H., Montanari, A., and Oh, S. Matrix com-
pletion from a few entries. Information Theory, IEEE
Transactions on, 56(6):2980–2998, 2010. ISSN 0018-
9448.

Koren, Yehuda, Bell, Robert M., and Volinsky, Chris. Ma-
trix factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

Kuczyński, J. and Woźniakowski, H. Estimating the largest
eigenvalue by the power and Lanczos algorithms with
a random start. SIAM journal on matrix analysis and
applications, 13:1094, 1992.

Lee, K. and Bresler, Y. Admira: Atomic decomposition
for minimum rank approximation. Information Theory,
IEEE Transactions on, 56(9):4402–4416, 2010. ISSN
0018-9448.

Mallat, S. and Zhang, Z. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal
Processing, 41:3397–3415, 1993.

Natarajan, B. Sparse approximate solutions to linear sys-
tems. SIAM J. Computing, 25(2):227–234, 1995.

Needell, D. and Tropp, J.A. CoSaMP: Iterative signal re-
covery from incomplete and inaccurate samples. Applied
and Computational Harmonic Analysis, 26(3):301–321,
2009. ISSN 1063-5203.

Pati, YC, Rezaiifar, R., and Krishnaprasad, PS. Orthogo-
nal matching pursuit: Recursive function approximation
with applications to wavelet decomposition. In Signals,
Systems and Computers, 1993. 1993 Conference Record
of The Twenty-Seventh Asilomar Conference on, pp. 40–
44. IEEE, 2002. ISBN 0818641207.

Recht, B. A simpler approach to matrix completion.
JMLR, to appear.

Recht, B., Fazel, M., and Parrilo, P.A. Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. preprint, 2007.

Shalev-Shwartz, Shai and Shamir, Ohad. Collaborative
filtering with the trace norm: Learning, bounding, and
transducing. In COLT, 2011.

Shalev-Shwartz, Shai, Zhang, Tong, and Srebro, Nathan.
Trading accuracy for sparsity in optimization problems
with sparsity constraints. SIAM Journal on Optimiza-
tion, 20:2807–2832, 2010.

Srebro, N., Alon, N., and Jaakkola, T. Generalization er-
ror bounds for collaborative prediction with low-rank
matrices. Advances In Neural Information Processing
Systems, 17, 2005.

Large-Scale Convex Minimization with a Low-Rank Constraint

A. Proofs

A.1. Proof of Theorem 1

To prove the theorem we need the following key
lemma, which generalizes a result given in (Shalev-
Shwartz et al., 2010).

Lemma 3 Assume that f is β-smooth. Let I, Ī be
two subsets of U × V. Let λ be a minimizer of f(λ)
over all vectors with support in I and let λ̄ be a vec-
tor supported on Ī. Assume that f(λ) > f(λ̄), de-
note s = ‖λ̄‖1, and let τ ∈ [0, 1). Let (u, v) =
ApproxSV(∇R(A(λ)), ε). Then, there exists η such
that

f(λ)− f(λ+ ηeu,v) ≥ (f(λ)− f(λ̄))2(1− τ)2

2βs2
.

Proof

Without loss of generality assume that λ̄ ≥ 0 (if
λ̄p,q < 0 for some (p, q) we can set λ̄−p,q = −λ̄p,q
and λ̄p,q = 0 without effecting the objective) and as-
sume that ut∇(R(A(λ)))v ≤ 0 (if this does not hold,
let u = −u). For any (p, q), let ∇p,q = pt∇R(A(λ))q
be the partial derivative of f w.r.t. coordinate (p, q)
at λ and denote

Qp,q(η) = f(λ) + η∇p,q +
β η2

2
.

Note that the definition of (u, v) and our assumption
above implies that

−∇u,v = |∇u,v| ≥ (1− τ) max
p,q
|∇p,q| ,

which gives

∇u,v ≤ (τ − 1) max
p,q
|∇p,q| = (1− τ) min

p,q
∇p,q .

Therefore, for all η ≥ 0 we have

Qu,v(η) ≤ f(λ) + (1− τ)ηmin
p,q
∇p,q +

βη2

2
.

In addition, the smoothness assumption tells us that
for all η we have f(λ + ηeu,v) ≤ Qu,v(η). Thus, for
any η ≥ 0 we have

min
a
f(λ+ aeu,v) ≤ f(λ+ ηeu,v) ≤ Qu,v(η)

Combining the above we get

min
a
f(λ+aeu,v) ≤ f(λ)+(1−τ)η min

(p,q)∈Ī\I
∇p,q+

βη2

2
.

Multiplying both sides by s and noting that

s min
(p,q)∈Ī\I

∇p,q ≤
∑

(p,q)∈Ī\I

λ̄p,q∇p,q

we get that

smin
a
f(λ+ aeu,v)

≤ sf(λ) + (1− τ)η
∑

(p,q)∈Ī\I

λ̄p,q∇p,q + s
β η2

2
.

Since λ is a minimizer of f over I we have that∇p,q = 0
for (p, q) ∈ I. Combining this with the fact that λ is
supported on I and λ̄ is supported on Ī we obtain that∑

(p,q)∈Ī\I

λ̄p,q∇p,q = 〈λ̄,∇f(λ)〉 = 〈λ̄− λ,∇f(λ)〉 .

From the convexity of f we know that 〈λ̄−λ,∇f(λ)〉 ≤
f(λ̄)− f(λ). Combining all the above we obtain

smin
a
f(λ+aeu,v) ≤ sf(λ)+(1−τ)η(f(λ̄)−f(λ))+s

β η2

2
.

This holds for all η ≥ 0 and in particular for η =
(f(λ)− f(λ̄))(1− τ)/(sβ) (which is positive). Thus,

smin
a
f(λ+ aeu,v) ≤ sf(λ)− (f(λ)− f(λ̄))2(1− τ)2

2βs
.

Rearranging the above concludes our proof.

Equipped with the above lemma we are ready to prove
Theorem 1.

Fix some Ā and let λ̄ be the vector of its singu-
lar values. Thus, ‖λ̄‖1 = ‖Ā‖tr and f(λ̄) = R(Ā).
For each iteration i, denote εi = f(λ(i)) − f(λ̄),
where λ(i) is the value of λ at the beginning of it-
eration i of GECO, before we increase the rank to
be i. Note that all the operations we perform in
GECO or one if its variants guarantee that the loss
is monotonically non-increasing. Therefore, if εi ≤ ε
we are done. In addition, whenever we increase the
rank by 1, the definition of the update implies that
f(λ(i+1)) ≤ minη f(λ(i) + ηeu,v), where (u, v) =
ApproxSV(R(A(λ(i))), τ). Lemma 3 implies that

εi − εi+1 = f(λ(i))− f(λ(i+1)) ≥ ε2i (1− τ)2

2β ‖Ā‖2tr
. (4)

Using Lemma B.2 from (Shalev-Shwartz et al., 2010),
the above implies that for i ≥ 2β ‖Ā‖2tr/(ε(1− τ)2) we
have that εi ≤ ε. We obtain that if ‖Ā‖2tr ≤ ε (r +
1)(1 − τ)2/(2β) then εr+1 ≤ ε, which concludes the
proof of Theorem 1.

A.2. Proof of Theorem 2

Let λ̄ be the vector obtained from the SVD of Ā,
that is, Ā = A(λ̄) and ‖λ̄‖0 = rank(Ā). Note that

Large-Scale Convex Minimization with a Low-Rank Constraint

f is σ-strongly-convex over the support of λ̄. Using
Lemma 2.2 of (Shalev-Shwartz et al., 2010) we know
that ‖λ̄‖21 ≤

2‖λ̄‖0 f(0)
σ . But, since ‖Ā‖tr = ‖λ̄‖1,

rank(Ā) = ‖λ̄‖0, and f(0) = R(0), we get

‖Ā‖2tr ≤
2rank(Ā)R(0)

σ
.

The proof follows from the above using Theorem 1.

