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Abstract
Feature ranking is a fundamental machine learning task withvarious applications, including fea-

ture selection and decision tree learning. We describe and analyze a new feature ranking method
that supports categorical features with a large number of possible values. We show that existing
ranking criteria rank a feature according to thetraining error of a predictor based on the feature.
This approach can fail when ranking categorical features with many values. We propose the Ginger
ranking criterion, that estimates thegeneralizationerror of the predictor associated with the Gini
index. We show that for almost all training sets, the Ginger criterion produces an accurate esti-
mation of the true generalization error, regardless of the number of values in a categorical feature.
We also address the question of finding the optimal predictorthat is based on a single categori-
cal feature. It is shown that the predictor associated with the misclassification error criterion has
the minimal expected generalization error. We bound the bias of this predictor with respect to the
generalization error of the Bayes optimal predictor, and analyze its concentration properties. We
demonstrate the efficiency of our approach for feature selection and for learning decision trees in a
series of experiments with synthetic and natural datasets.
Keywords: feature ranking, categorical features, generalization bounds, Gini index, decision trees

1. Introduction

In this paper we address the problem of supervised feature ranking in the presence of categorical
features. Feature ranking mechanisms have various applications; For instance, they can be used
to define a filter for feature selection or as a splitting criterion for growing decision trees. In the
feature ranking task we order a given set of features according to their relevance for predicting a
target label. As in other supervised learning tasks, the ranking of the features is generated based
on an input training set. Examples of widely used feature ranking criteria are the Gini index, the
misclassification error, and Information Gain, also termed ‘cross-entropy’ (Hastie et al., 2001). The
focus of this paper is feature ranking in the presence ofcategoricalfeatures. We show that a direct
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application of existing ranking criteria might lead to poor results in the presence of categorical
features that can take many values. We propose an adaptation of existing ranking criteria that copes
with these difficulties.

Many feature ranking methods are equivalent to the following two-phase process: First, each
individual feature is used to construct a predictor of the label. Then, thefeatures are ranked based on
the errors of these predictors. Most current approaches use the same training set both for construct-
ing the predictor and for evaluating its error. When dealing with binary features, the training error is
likely to be close to the generalization error, and therefore the ranking generated by current methods
works rather well. However, this is not the case when dealing with categorical features that can take
a large number of values. To illustrate this fact, consider the problem of predicting whether someone
is unemployed, based on their social security number (SSN). A predictor constructed using any fi-
nite training set would have zero error on the training set but a large generalization error. Therefore,
a ranking criterion that supports categorical features should employ a more robust estimation of the
generalization error.

The first contribution of this paper is an estimator for the generalization error of the predictor
associated with the Gini index. This estimator can be calculated from the trainingset and we propose
to use it instead of the original Gini index criterion in the presence of categorical features. We
prove that regardless of the underlying distribution, our estimation is close tothe true value of the
generalization error for almost all training sets.

Based on our perspective of ranking criteria as estimators of the generalization error of a certain
predictor, a natural question that arises is which predictor to use. Among all predictors that are based
on a single feature, we ultimately would like to use the one whose generalization error is minimal.
We prove that the best predictor in this sense is the predictor associated withthe misclassification
error criterion. We analyze the difference between the expected generalization error of this predictor
and the error of the Bayes optimal hypothesis. Finally, we show a concentration result for the
generalization error of this predictor.

Feature ranking criteria have been extensively studied in the context of decision trees (Mingers,
1989, Kearns and Mansour, 1996, Quinlan, 1993). The failure of existing feature ranking criteria
in the presence of categorical features with a large number of possible values has been previously
discussed inQuinlan(1993), Mitchell (1997). Quinlan suggested the Information Gain Ratio as
a correction to the Information Gain criterion. In a broader context, information-theoretic mea-
sures are commonly used for feature ranking (see for exampleTorkkola (2006) and the references
therein). One justification for their use is the existence of bounds on the Bayes optimal error that are
based on these measures (Torkkola, 2006). However, obtaining estimators for the entropy or mu-
tual information seems to be difficult in the general case (Antos and Kontoyiannis, 2001). Another
ranking criterion designed to address the above difficulty is a distance-based measure introduced
by de Mantaras(1991).

The problem we address shares some similarities with the problem of estimating the
missing mass of a sample, typically encountered in language modeling (Good, 1953,
McAllester and Schapire, 2000, Drukh and Mansour, 2005). The missing mass of a sample is the
total probability mass of the values not occurring in the sample. Indeed, in theaforementioned ex-
ample of the SSN feature, the value of the missing mass will be close to one. In some of our proofs
we borrow ideas fromMcAllester and Schapire(2000), Drukh and Mansour(2005). However, our
problem is more involved, as even for a value that we do observe in the sample, if it appears only
a small number of times then the training error is likely to diverge from the generalization error.
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Finally, we would like to note that classical VC theory for bounding the difference between the
training error and the generalization error is not applicable here. This is because the VC dimension
grows with the number of values a categorical feature may take, and in our framework this number
is unbounded.

This paper is organized as follows. In Sec.2 we formally describe our problem setting. We
introduce our main results in Sec.3 and prove them in Sec.4. We present experimental results in
Sec.5 and concluding remarks are given in Sec.6.

2. Problem Setting

In this section we establish the notation used throughout the paper and formally describe our prob-
lem setting. In the supervised feature ranking setting we are provided withk categorical features
and with a label. Each categorical feature is a random variable that takes values from a finite set.
We denote a feature byX and the set of valuesX can take byV . We make no assumptions on the
identity ofV for eachX nor on its size. The label is a binary random variable, denotedY , that takes
values from{0, 1}.

Generally speaking, the goal of supervised feature ranking is to rank the features based on their
merit in constructing an accurate classification rule. The features are ranked according to their
“relevance” to the label. Different criteria exist for assessing the relevance of a feature to the label.
Since relevance is assessed for each feature separately, let us ignore the fact that we havek features
and from now on focus on defining a relevance measure for a single featureX. We denote byV the
set of values thatX can take. To simplify our notation we denote

pv
∆
= Pr[X = v] and qv

∆
= Pr[Y = 1|X = v].

In practice, the probabilities{pv} and{qv} are unknown. Instead, it is assumed that we have
a training setS = {(xi, yi)}m

i=1, which is sampled i.i.d. according to the joint probability distribu-
tion Pr[X, Y ]. Based onS, the probabilities{pv} and{qv} are usually estimated as follows. Let
cv = |{i : xi = v}| be the number of examples inS for which the feature takes the valuev and let
c+
v = |{i : xi = v ∧ yi = 1}| be the number of examples in which the value of the feature isv and

the label is 1. Then{pv} and{qv} are estimated as follows:

p̂v
∆
=

cv

m
and q̂v

∆
=

{

c+v
cv

cv > 0
1
2 cv = 0

(1)

Note thatp̂v andq̂v are implicit functions of the training setS.
Two popular relevance criteria (Hastie et al., 2001) are the misclassification error

∑

v∈V

p̂v min{q̂v, (1 − q̂v)} , (2)

and the Gini index
2
∑

v∈V

p̂v q̂v(1 − q̂v) . (3)

In these criteria, smaller values indicate more relevant features.
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Both the misclassification error and the Gini index were found to work ratherwell in practice
when |V | is small. However, for categorical features with a large number of possible values, we
might end up with a poor feature ranking criterion. As an example (see alsoMitchell (1997)),
suppose thatY indicates whether a person is unemployed and we have two features:X1 is the
person’s SSN andX2 is 1 if the person has a mortgage and0 otherwise. For the first feature,V is
the set of all the SSNs. Because the SSN alone determines the target label, we have that̂qv is either
0 or 1 for anyv such that̂pv > 0. Thus, both the misclassification error and the Gini index are zero
for this feature. For the second feature, it can be shown that with high probability over the choice
of the training set, the two criteria mentioned above take positive values. Therefore, both criteria
prefer the first feature over the second. In contrast, for our purposesX2 is much better thanX1.
This is becauseX2 can be used later for learning a reasonable classification rule based on afinite
training set, whileX1 will suffer from over-fitting.

It would have been natural to attribute the failure of the relevance criteria tothe fact that we use
estimated probabilities instead of the true (unknown) probabilities. However,note that in the above
example, the same problem would arise even if we used{pv} and{qv} in Eq. (2) and Eq. (3). The
aforementioned problem was previously underscored in the context of the Information Gain crite-
rion (Quinlan, 1993, de Mantaras, 1991, Mitchell, 1997). In that context,Quinlan(1993) suggested
an adaptation of the Information Gain, called Information Gain Ratio, which wasfound rather ef-
fective in practice.

In this paper we take a different approach, and propose to interpret afeature ranking criterion as
the generalization error of a classification rule that can be inferred fromthe training set. To do so, let
us first introduce some additional notation. A probabilistic hypothesis is a functionh : V → [0, 1],
whereh(v) is the probability to predict the label1 given the valuev. The generalization error ofh
is the probability to incorrectly predict the label,

ℓ(h)
∆
=
∑

v∈V

pv (qv (1 − h(v)) + (1 − qv)h(v)) . (4)

We now define two hypotheses based on the training setS. The first one is

hGini
S (v) = q̂v . (5)

As its name indicates,hGini
S is closely related to the Gini index filter given in Eq. (3). To see this, we

note that the generalization error ofhGini
S is

ℓ(hGini
S ) =

∑

v∈V

pv (qv (1 − q̂v) + (1 − qv) q̂v) . (6)

If the estimated probabilities{p̂v} and{q̂v} coincide with the true probabilities{pv} and{qv}, then
ℓ(hGini

S ) is identical to the Gini index defined in Eq. (3). This will be approximately true, for example,
whenm ≫ |V |. In other words, the Gini index is the training error ofhGini

S . When the training set is
small, usingℓ(hGini

S ) is preferable to using the Gini index given in Eq. (3), becauseℓ(hGini
S ) takes into

account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

hBayes

S (v) =











1 q̂v > 1
2

0 q̂v < 1
2

1
2 q̂v = 1

2

. (7)
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Note that if{q̂v} coincide with{qv} thenhBayes

S is the Bayes optimal classifier, which we denote by
hBayes
∞ . If in addition {p̂v} and{pv} are the same, thenℓ(hBayes

S ) is identical to the misclassification
error defined in Eq. (2). Here again, the misclassification error might differ fromℓ(hBayes

S ) for small
training sets.

To illustrate the advantage ofℓ(hGini
S ) and ℓ(hBayes

S ) over their counterparts given in Eq. (3)
and Eq. (2), we return to the example mentioned above. ForX1, the SSN feature we have

ℓ(hGini
S ) = ℓ(hBayes

S ) = 1
2M0, whereM0

∆
=
∑

v:cv=0 pv. In general, we denote

Mk
∆
=

∑

v:cv=k

pv . (8)

The quantityM0 is known as the missing mass (Good, 1953, McAllester and Schapire, 2000) and
for the SSN feature,M0 ≥ (|V | − m)/|V |. Therefore, the generalization error of bothhGini

S and
hBayes

S would be close to1 for a reasonablem. On the other hand, forX2, the feature of having a
mortgage, it can be verified that bothℓ(hBayes

S ) andℓ(hGini
S ) are likely to be small. Therefore, using

ℓ(hGini
S ) or ℓ(hBayes

S ) yields a correct ranking for this naive example.
We have proposed a modification of the Gini index and the misclassification error that uses the

generalization error and therefore is suitable even whenm is smaller than|V |. In practice, however,
we cannot directly use the generalization error criterion since it dependson the unknown probabil-
ities {pv} and{qv}. To overcome this obstacle, we must derive estimators for the generalization
error that can be calculated from the training set. In the next section we discuss the problem of
estimatingℓ(hGini

S ) andℓ(hBayes

S ) based on the training set. Additionally, we analyze the difference
betweenℓ(hBayes

S ) and the error of the Bayes optimal hypothesis.

3. Main Results

We start this section with a derivation of an estimator forℓ(hGini
S ), which can serve as a new feature

ranking criterion. We show that for most training sets, this estimator will be close to the true value
of ℓ(hGini

S ). We then shift our attention toℓ(hBayes

S ). First, we prove that among all predictors with
no prior knowledge on the distributionPr[X, Y ], the generalization error ofhBayes

S is smallest in
expectation. Next, we bound the difference between the generalization error of hBayes

S and the error
of the Bayes optimal hypothesis. Finally, we prove a concentration bound for ℓ(hBayes

S ). Regretfully,
we could not find a good estimator forℓ(hBayes

S ). Nevertheless, we believe that our concentration
results can be utilized for finding such an estimator. This task is left for future research.

We propose the following estimator for the generalization error ofhGini
S :

ℓ̂
∆
=

|{v : cv = 1}|
2m

+
∑

v:cv>1

2cv

cv − 1
p̂v q̂v(1 − q̂v) . (9)

This estimator can be derived using a leave-one-out technique (see e.g.Wasserman(2004)). In the
next section we show a different derivation, based on a conditional cross-validation technique. We
suggest to use the estimation ofℓ(hGini

S ) given in Eq. (9) rather than the original Gini index given
in Eq. (3) as a feature ranking criterion. Let us compare these two criteria: First, for valuesv that
appear many times in the training set we have thatcv

cv−1 ≈ 1. If for all v ∈ V we have that the size
of the training set is much larger than1/pv, then all values inV are likely to appear many times in
the training set and thus the definitions in Eq. (9) and Eq. (3) consolidate. The two definitions differ
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when there are values that appear rarely in the training set. For such values, the correction term is
larger than 1. Special consideration is given to values that appear exactly once in the training set.
For such values we estimate the generalization error to be1

2 , which is the highest possible error.
Intuitively, since one example provides us with no information as to the variance of the labelY
givenX = v, we cannot have a more accurate estimation for the contribution of this value tothe
total generalization error. Furthermore, the fraction of values that appear exactly once in the training
set is an estimator for the probability mass of those values that do not appearat all in the training
set (see alsoGood(1953), McAllester and Schapire(2000)).

We now turn to analyze the quality of the proposed estimator. We first show in Thm.1 that the
bias of this estimator is small. Then, in Thm.2, we prove a concentration bound for the estimator,
which holds for any joint distribution ofPr[X, Y ] and does not depend on the size ofV . Specifically,
we show that for anyδ ∈ (0, 1), in a fraction of at least1 − δ of the training sets the error of the
estimator isO( ln(m/δ)√

m
).

Theorem 1 Let S be a set ofm examples sampled i.i.d. according to the probability measure
Pr[X, Y ]. LethGini

S be the Gini hypothesis given in Eq. (5) and letℓ(hGini
S ) be the generalization error

of hGini
S , whereℓ is as defined in Eq. (4). Let ℓ̂ be the estimation ofℓ(hGini

S ) as given in Eq. (9). Then,
∣

∣

∣E[ℓ(hGini
S )] − E[ℓ̂]

∣

∣

∣ ≤ 1
2m , where expectation is taken over all samplesS of m examples.

The next theorem shows that for most training sets, our estimator is close to the true generaliza-
tion error ofhGini

S .

Theorem 2 Under the same assumptions as in Thm.1, let δ be an arbitrary scalar in(0, 1). Then,
with probability of at least1 − δ over the choice ofS, we have

∣

∣

∣ℓ(hGini
S ) − ℓ̂

∣

∣

∣ ≤ O

(

ln(m/δ)
√

ln(1/δ)√
m

)

.

Based on the above theorem,ℓ̂ can be used as a ranking criterion. The convergence rate shown can
be used to establish confidence intervals on the true Gini generalization error. The proofs of Thm.1
and Thm.2 are given in the next section.

So far we have derived an estimator for the generalization error of the Gini hypothesis and
shown that it is close to the true Gini error. The Gini hypothesis has the advantage of being highly
concentrated around its mean. This is important especially when the sample sizeis fairly small.
However, the Gini hypothesis does not produce the lowest generalization error in expectation. We
now turn to show that the hypothesishBayes

S defined in Eq. (7) is optimal in this respect, but that its
concentration might be weaker. These two facts are characteristic of the well known bias-variance
tradeoff commonly found in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have used the Bayes optimal
hypothesis,hBayes

∞ , that achieves the smallest possible generalization error. When the underlying
distribution is unknown, the training set is used to construct the hypothesis.Thm. 3 below shows
that among all hypotheses that can be learned from a finite training set,hBayes

S achieves the smallest
generalization error in expectation. More precisely,hBayes

S is optimal among all the hypotheses that
are symmetric with respect to both|V | and the label values. Clearly, symmetric hypotheses cannot
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exploit prior knowledge on the underlying distributionPr[X, Y ]. Formally, letF be the set of all
symmetric functions overN × N, that is,

F = { f : N × N → [0, 1] | ∀n1, n2 ∈ N, f(n1, n2) = 1 − f(n1, n1 − n2) }

and letH be the following set of mappings from samples of sizem to hypotheses:

H =
{

h : (V × {0, 1})m → V [0,1]
∣

∣ (10)

∃f ∈ F s.t.∀S ∈ (V × {0, 1})m,∀v ∈ V, h[S](v) = f(cv(S), c+
v (S))

}

.

That is,H is the set of mappings that given a sample, generate a hypothesis based solely on the
sample. Thus, hypotheses that rely on any prior knowledge onPr[X, Y ] are excluded.

The following theorem establishes the optimality ofhBayes

S and bounds the difference between
the Bayes optimal error and the error achieved byhBayes

S .

Theorem 3 Let S be a set ofm examples sampled i.i.d. according to the probability measure
Pr[X, Y ]. For any hypothesish, let ℓ(h) be the generalization error ofh, as defined in Eq. (4). Let
hBayes

S be the hypothesis given in Eq. (7), let hBayes
∞ be the Bayes optimal hypothesis, and letH be the

set of hypothesis mappings defined in Eq. (10). Then

E[ℓ(hBayes

S )] = min
h∈H

E[ℓ(h[S])], (11)

and

E[ℓ(hBayes

S )] − ℓ(hBayes
∞ ) ≤ 1

2
E[M0] +

1

8
E[M1] +

1

8
E[M2] +

m
∑

k=3

1√
ek

E[Mk], (12)

whereMk is as defined in Eq. (8). Furthermore,

lim
m→∞

(

1

2
E[M0] +

1

8
E[M1] +

1

8
E[M2] +

m
∑

k=3

1√
ek

E[Mk]

)

= 0. (13)

Note that the first term in the difference betweenE[ℓ(hBayes

S )] and ℓ(hBayes
∞ ) is exactly half the ex-

pectation of the missing mass. This is expected, because we cannot improve our prediction over
the baseline error of12 for values not seen in the training set, as exemplified in the SSN example
described in the previous section. Subsequent terms in the bound can be attributed to the fact that
even for values observed in the training set, a wrong prediction might be generated if there is a small
number of examples.

We have shown thathBayes

S has the smallest generalization error in expectation, but this does not
guarantee a small generalization error on a given sample. Thm.4 below bounds the concentration of
ℓ(hBayes

S ). This concentration along with Thm.3 provides us with a bound on the difference between
hBayes

S and the Bayes optimal error that is true for most samples.

Theorem 4 Under the same assumptions of Thm.3, assume thatm ≥ 8 and letδ be an arbitrary
scalar in(0, 1). Then, with probability of at least1 − δ over the choice ofS, we have

|ℓ(hBayes

S ) − E[ℓ(hBayes

S )]| ≤ O

(

ln (m/δ)
√

ln(1/δ)

m1/6

)

.
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The concentration bound forℓ(hBayes

S ) is weaker than the concentration bound forℓ(hGini
S ), sug-

gesting that indeed the choice betweenhGini
S andhBayes

S is not trivial. To useℓ(hBayes

S ) as a ranking
criterion, an estimator for this quantity is needed. However, at this point we cannot provide such an
estimator. We conjecture that based on Thm.4 an estimator with a small bias but a weak concen-
tration can be constructed. We leave this task to further work. Finally, we would like to note that
Antos et al.(1999) have shown that the Bayes optimal error cannot be estimated based on a finite
training set. Finding an estimator forℓ(hBayes

S ) would allow us to approximate the Bayes optimal
error up to the bias term quantified in Thm.3.

4. Proofs of Main Results

4.1 Proof of Thm. 1

In the previous section, an estimator for the generalization error of the Ginihypothesis was pre-
sented. We stated that for most training sets this estimation is reliable. In this section, we first
derive the estimator̂ℓ given in Eq. (9) using a conditional cross-validation technique, and then uti-
lize this interpretation of̂ℓ to prove Thm.1 and Thm.2.

To derive the estimator given in Eq. (9), let us first rewriteℓ(hGini
S ) as the sum

∑

v ℓv(h
Gini
S ), where

ℓv(h
Gini
S ) is the amount of error due to valuev and is formally defined as

ℓv(h)
∆
= Pr[X = v] Pr[h(X) 6= Y | X = v] = pv (qv (1 − h(v)) + (1 − qv)h(v)) .

We now estimate the two factorsPr[X = v] andPr[hGini
S (X) 6= Y | X = v] independently. Later

on we multiply the two estimations. The resulting local estimator ofℓv(h) is denoted̂ℓv and our

global estimator iŝℓ
∆
=
∑

v ℓ̂v.
To estimatePr[X = v], we use the straightforward estimatorp̂v. Turning to the estimation of

Pr[hGini
S (X) 6= Y | X = v], recall thathGini

S , defined in Eq. (5), is a probabilistic hypothesis wherêqv

is the probability to return the label 1 given that the value ofX is v. Equivalently, we can think of the
label thathGini

S (v) returns as being generated based on the following process: LetS(v) be the set of
those indices in the training set in which the feature takes the valuev, namely,S(v) = {i : xi = v}.
Then, to set the labelhGini

S (v) we randomly choose an indexi ∈ S(v) and return the labelyi. Based
on this interpretation, a natural path for estimatingPr[hGini

S (X) 6= Y | X = v] is through cross-
validation: Select ani ∈ S(v) to determinehGini

S (v), and estimate the generalization error to be the
fraction of the examples whose label is different from the label of the selected example. That is,
the estimation is 1

cv−1

∑

j∈S(v):j 6=i 1yi 6=yj . Obviously, this procedure cannot be used ifcv = 1. We
handle this case separately later on. To reduce the variance of this estimation, this process can be
repeated, selecting each single example fromS(v) in turn and validating each time using the rest
of the examples inS(v). It is then possible to average over all the choices of the examples. The
resulting estimation therefore becomes

∑

i∈S(v)

1

cv





1

cv − 1

∑

j∈S(v):j 6=i

1yi 6=yj



 =
1

cv(cv − 1)

∑

i,j∈S(v):i6=j

1yi 6=yj .
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Thus, we estimatePr[hGini
S (X) 6= Y | X = v] based on the fraction of differently-labeled pairs of

examples inS(v). Multiplying this estimator bŷpv we obtain the following estimator forℓv(h
Gini
S ),

ℓ̂v = p̂v
1

cv(cv − 1)

∑

i,j∈S(v),i6=j

1yi 6=yj (14)

= p̂v
2c+

v (cv − c+
v )

cv(cv − 1)
= p̂v

2c2
v q̂v(1 − q̂v)

cv(cv − 1)
= p̂v ·

2cv

cv − 1
q̂v(1 − q̂v).

Finally, for valuesv that appear only once in the training set, the above cross-validation procedure
cannot be applied, and we therefore estimate their generalization error to be 1

2 , the highest possible
error. The full definition of̂ℓv is thus:

ℓ̂v =

{

p̂v · 1
2 cv ≤ 1

p̂v · 2cv
cv−1 q̂v(1 − q̂v) cv ≥ 2

(15)

The resulting estimator̂ℓ defined in Eq. (9) is exactly the sum
∑

v ℓ̂v.
Based on the above derivation ofℓ̂v, we now turn to prove Thm.1, in which it is shown that the

expectations of our estimator and of the true generalization error of the Ginihypothesis are close.
To do so, we first inspect each of these expectations separately, starting with E[ℓ̂v]. The following
lemma calculates the expectation ofℓ̂v over those training sets with exactlyk appearances of the
valuev.

Lemma 5 For k such that1 < k ≤ m, E[ℓ̂v | cv(S) = k] = k
m · 2qv(1 − qv).

Proof If cv = k, thenp̂v = k
m . Therefore, based on Eq. (14), we have

E[ℓ̂v | cv(S) = k] =
k

m

1

k(k − 1)
E
[

∑

i,j∈S(v),i6=j

1yi 6=yj | cv(S) = k
]

. (16)

Let Z1, . . . , Zk be independent binary random variables withPr[Zi = 1] = qv for all i ∈ [k]. The
conditional expectation on the right-hand side of Eq. (16) equals to

E[
∑

i6=j

1Zi 6=Zj ] =
∑

i6=j

E[1Zi 6=Zj ] =
∑

i6=j

2 qv (1 − qv) = k(k − 1) · 2 qv (1 − qv) .

Combining the above with Eq. (16) concludes the proof.

Based on the above lemma, we are now ready to calculateE[ℓ̂v]. We have

E[ℓ̂v] =
∑

S

Pr[S] E[ℓ̂v] =
m
∑

k=0

∑

S:cv(S)=k

Pr[S] · E[ℓ̂v | cv(S) = k]. (17)

9
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From the definition of̂ℓ, we haveE[ℓ̂v | cv(S) = 1] = 1
2m andE[ℓ̂v | cv(S)=0] = 0. Combining

this with Lemma5 and Eq. (17), we get

E[ℓ̂v] = Pr[cv = 1] · 1

2m
+

m
∑

k=2

Pr[cv = k] · k

m
· 2qv(1 − qv)

=
1

m
(
1

2
− 2qv(1 − qv)) Pr[cv = 1] + 2qv(1 − qv)

m
∑

k=0

Pr[cv = k] · k

m

=
1

m
(
1

2
− 2qv(1 − qv)) Pr[cv = 1] + pv · 2qv(1 − qv) , (18)

where the last equality follows from the fact that
∑m

k=0 Pr[cv = k] k
m = E[p̂v] = pv. Having

calculated the expectation ofℓ̂v we now calculate the expectation ofℓv(h
Gini
S ).

Lemma 6 E[ℓv(h
Gini
S )] = pv(

1
2 − 2qv(1 − qv)) Pr[cv = 0] + pv · 2qv(1 − qv).

Proof From the definition ofℓv(h
Gini
S ), we have that

E[ℓv(h
Gini
S )] = E[pv (qv(1 − hGini

S (v)) + (1 − qv)h
Gini
S (v))]

= pv (qv(1 − E[hGini
S (v)]) + (1 − qv) E[hGini

S (v)])

= pv (qv + (1 − 2 qv) E[hGini
S (v)])) . (19)

Next, we calculateE[hGini
S (v)] as follows

E[hGini
S (v)] =

∑

S

Pr[S]hGini
S (v)

= Pr[cv(S) = 0] · 1

2
+

m
∑

k=1

k
∑

i=0

Pr[cv(S) = k andc+
v (S) = i]

i

k

= Pr[cv(S) = 0] · 1

2
+

m
∑

k=1

Pr[cv(S) = k]
k
∑

i=0

Pr[c+
v (S) = i | cv(S) = k]

i

k

= Pr[cv(S) = 0] · 1

2
+

m
∑

k=1

Pr[cv(S) = k] · qv

= Pr[cv(S) = 0] · 1

2
+ Pr[cv(S) > 0] · qv

= qv +
1

2
(1 − 2 qv) Pr[cv(S) = 0] . (20)

Plugging Eq. (20) into Eq. (19) and rearranging terms we conclude our proof.

Equipped with the expectation of̂ℓv given in Eq. (18) and the expectation ofℓv(h
Gini
S ) given in

Lemma6, we are now ready to prove Thm.1.
Proof [of Thm. 1] Using the definitions ofℓ(hGini

S ) andℓ̂ we have that

E[ℓ̂] − E[ℓ(hGini
S )] = E[

∑

v

ℓ̂v] − E[
∑

v

ℓv(h
Gini
S )] =

∑

v

(E[ℓ̂v] − E[ℓv(h
Gini
S )]) . (21)

10
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Fix somev ∈ V . From Eq. (18) and Lemma6 we have

E[ℓ̂v] − E[ℓv(h
Gini
S )] = (

1

2
− 2qv(1 − qv))(

1

m
Pr[cv = 1] − pv Pr[cv = 0]) . (22)

Also, it is easy to see that

1

m
Pr[cv = 1] − pv Pr[cv = 0] = pv(1 − pv)

m−1 − pv(1 − pv)
m

= p2
v(1 − pv)

m−1 =
pv

m
Pr[cv = 1] .

Plugging this into Eq. (22) we obtain:

E[ℓ̂v] − E[ℓv(h
Gini
S )] = (

1

2
− 2qv(1 − qv))

1

m
pv Pr[cv = 1].

For anyqv we have that0 ≤ 2qv(1 − qv) ≤ 1
2 , which implies the following inequality:

0 ≤ E[ℓ̂v] − E[ℓv(h
Gini
S )] ≤ 1

2m
pv Pr[cv = 1] ≤ pv

2m
.

Summing this overv and using Eq. (21) we conclude that

0 ≤ E[ℓ̂] − E[ℓ(hGini
S )] ≤

∑

v

pv

2m
=

1

2m
.

4.2 Proof of Thm. 2

We now turn to prove Thm.2 in which we argue that with high confidence on the choice ofS, the
value of our estimator is close to the actual generalization error ofhGini

S . To do this, we show that
both our estimator and the true generalization error ofhGini

S are concentrated around their mean. The
proof of Thm.2 will then follow from Thm.1.

We start by showing that our estimatorℓ̂ is concentrated around its expectation. The concen-
tration of ℓ̂ follows relatively easily by application of McDiarmid’s Theorem (McDiarmid, 1989):

Theorem 7 (McDiarmid) LetX1, . . . , Xm be independent random variables taking values in a set
V and letf : V m → R be such that for every1 ≤ i ≤ m

sup |f(x1, . . . , xm) − f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci

where the supremum is taken over allx1, . . . , xm, x′
i ∈ V . Then with probability at least1 − δ

f(X1, . . . , Xm) ≤ E[f(X1, . . . , Xm)] +

√

√

√

√

1

2
ln(

1

δ
)

m
∑

i=1

ci

and with probability at least1 − δ

f(X1, . . . , Xm) ≥ E[f(X1, . . . , Xm)] −

√

√

√

√

1

2
ln(

1

δ
)

m
∑

i=1

ci .

11
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To simplify our notation, we will henceforth use the shorthand∀δS π[S, δ] to indicate that the
predicateπ[S, δ] holds with probability of at least1 − δ over the choice ofS.

Lemma 8 Let δ ∈ (0, 1). Then,∀δS
∣

∣

∣
ℓ̂ − E[ℓ̂]

∣

∣

∣
≤ 12

√

ln( 2

δ
)

2m .

Proof We prove the lemma using McDiardmid’s theorem. To do so, we need to show thatℓ̂ has the
bounded differences property; namely, we shall find an upper boundfor the effect of any change of a
single example inS on ℓ̂. Changing example(xi, yi) in S to (x′

i, y
′
i) is tantamount to first removing

(xi, yi) and then adding(x′
i, y

′
i). Since the effect of adding is simply the opposite of the effect of

removing, it is sufficient to find an upper bound for the effect a single removal of example can have.
Then the effect of a change on the sample would be no larger than twice the effect of the removal.

Let S\i denote the setS \ {(xi, yi)}. We therefore need to bound|ℓ̂(S) − ℓ̂(S\i)|. Assume,
without loss of generality, thatxi = v andyi = 0. Then, using the definition of̂ℓv we have that

|ℓ̂(S) − ℓ̂(S\i)| = |ℓ̂v(S) − ℓ̂v(S
\i)| .

Based on the definitions of̂pv = cv/m andq̂v = c+
v /cv, we can rewrite Eq. (15) as

ℓ̂v(S) =

{

1
2m cv = 1
2c+v (cv−c+v )

m(cv−1) cv ≥ 2

Therefore, ifcv ≥ 3,

|ℓ̂v(S) − ℓ̂v(S
\i)| =

2c+
v

m

(

cv − c+
v

cv − 1
− cv − c+

v − 1

cv − 2

)

=
2c+

v (c+
v − 1)

m(cv − 1)(cv − 2)

≤ 2cv(cv − 1)

m(cv − 1)(cv − 2)
=

2cv

m(cv − 2)
≤ 6

m
,

while if cv = 2 then

|ℓ̂v(S) − ℓ̂v(S
\i)| =

2c+
v (2 − c+

v )

m
− 1

2m
≤ 2

m
.

Lastly, if cv = 1 then|ℓ̂v(S) − ℓ̂v(S
\i)| = 1

2m . Therefore for any sampleS

|ℓ̂v(S) − ℓ̂v(S
\i)| ≤ 6

m
,

and thus the effect of a single change inS is no larger than12m . We can now apply McDiarmid’s
theorem to get that with probability of at least1 − δ:

|ℓ̂ − E[ℓ̂]| ≤
√

1

2
ln

(

2

δ

)

m(
12

m
)2 = 12

√

ln
(

2
δ

)

2m
.

We now turn to show a concentration bound on the true generalization errorℓ(hGini
S ). Here we cannot

directly use McDiarmid’s Theorem since the bounded differences property does not hold forℓ(hGini
S ).

12
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To see this, suppose thatV = {0, 1}, p0 = p1 = 1
2 , q0 = 0.99 andq1 = 1. Assume in addition

that |S(0)| = 1; namely, there is only a single example inS for which the feature takes the value
0, an unlikely but possible scenario. In this case, if the single example inS(0) is labeled1, then
ℓ(hGini

S ) = 0.01, but if this example is labeled0, thenℓ(hGini
S ) = 0.99. That is, a change of a single

example might have a dramatic effect onℓ(hGini
S ). This problem can intuitively be attributed to the

fact thatS is an atypical sample of the underlying distribution{pv}. To circumvent this obstacle, we
use the following lemma. Note that a similar result can be derived from the results in Kutin (2002),
albeit with much larger constants. The lemma below provides tighter bounds fora more restricted
case.

Lemma 9 LetS be a sample withm examples drawn i.i.d from the distributionPr[X, Y ]. Letδ be
a confidence parameter. For two samplesS1 andS2 with m examples, we say thatd(S1, S2) ≤ 1 if
there is at most one example that is different between the two samples. Letf be a real function of
the sample. If there exists a function of the sampleg and real numbersc, b such that the following
conditions hold:

∀S1, S2 s.t. d(S1, S2) ≤ 1 |g(S1) − g(S2)| ≤
c

m
(23)

∀δS f(S) = g(S) (24)

|E[f(S)] − E[g(S)]| ≤ b√
m

, (25)

then

∀2δS |f(S) − E[f(S)]| ≤
c
√

ln(2
δ ) + b

√
2

√
2m

.

Proof From Eq. (23) and McDiarmid’s theorem we have

∀δS |g(S) − E[g(S)]| ≤
c
√

ln(2
δ )

√
2m

.

In addition,

|f(S) − E[f(S)]| ≤ |f(S) − g(S)| + |g(S) − E[g(S)]| + |E[f(S)] − E[g(S)]| .

Therefore, using Eq. (24) and Eq. (25) and applying a union bound, we have

∀2δS |f(S) − E[f(S)]| ≤ 0 +
c
√

ln(2
δ )

√
2m

+
b√
m

=
c
√

ln(2
δ ) + b

√
2

√
2m

To use Lemma9 we define a new hypothesishδ
S that depends both on the sampleS and on the

desired confidence parameterδ. This hypothesis would ‘compensate’ for atypical samples. We let

f
∆
= ℓ(hGini

S ) andg
∆
= ℓ(hδ

S), and show that the conditions of the lemma hold.
We construct a hypothesishδ

S such thatg satisfies the three requirements given in Eqs. (23-25)
based on Lemma10 below. This lemma states that except for values with small probabilities, we

13
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can assure that with high confidence,cv(S) grows withpv. This means that as long aspv is not too
small, a change of a single example incv(S) does not changehδ

S(v) too much. On the other hand,
if pv is small then the valuev has little effect on the error to begin with. Therefore, regardless of
the probabilitypv, the errorℓ(hδ

S) cannot be changed too much by a single change of example inS.
This would allow us to prove a concentration bound onℓ(hδ

S) using McDiardmid’s theorem. Let us
first introduce a new notation. Given a confidence parameterδ > 0, a probabilityp ∈ [0, 1], and a
sample sizem, we define

ρ(δ, p, m)
∆
= mp −

√

mp · 3 ln(2/δ). (26)

Lemma10 below states thatcv(S) is likely to be at leastρ(δ/m, pv, m) for all values with non-
negligible probabilities.

Lemma 10 Let δ ∈ (0, 1) be a confidence parameter. Then,

∀δS ∀v ∈ V : pv ≥ 6 ln(2m
δ )

m
⇒ cv(S) ≥ ρ(δ/m, pv, m) > 1.

Proof The proof is based on lemma 44 fromDrukh and Mansour(2005). This lemma states that

for all v ∈ V such thatpv ≥ 3 ln( 2

δ
)

m we have that

∀δS |pv − p̂v| ≤

√

pv · 3 ln(2
δ )

m
. (27)

Based on this lemma, we immediately get that for allv such thatpv ≥ 3 ln(2
δ )/m,

∀δS cv ≥ ρ(δ, pv, m).

Note, however, that this bound is trivial forpv = 3 ln(2
δ )/m, because in this caseρ(δ, pv, m) = 0.

We therefore use the bound for values in whichpv ≥ 6 ln(2
δ )/m. For these values it is easy to

show thatρ(δ, pv, m) > 1 for any δ ∈ (0, 1). Trivially, there are at mostm valuesv for which
pv ≥ 6 ln(2/δ)

m . Hence, substitutingδ/m for δ and applying a union bound, we conclude our proof.

Based on the bound given in the above lemma, we definehδ
S to be

hδ
S(v)

∆
=







hGini
S (v) pv <

6 ln( 2m
δ

)

m or cv ≥ ρ( δ
m , pv, m)

c+v +qv(⌈ρ( δ
m

,pv ,m)⌉−cv)

⌈ρ( δ
m

,pv ,m)⌉ otherwise

That is,hδ
S(v) is equal tohGini

S (v) if either pv is negligible or if there are enough representatives
of v in the sample. If this is not the case, thenS is not a typical sample and thus we “force” it to
be typical by adding⌈ρ( δ

m , pv, m)⌉ − cv ‘pseudo-examples’ toS with the valuev and with labels
that are distributed according toqv. Therefore, except for values with negligible probabilitypv,
the hypothesishδ

S(v) is determined by at least⌈ρ( δ
m , pv, m)⌉ ‘examples’. As a direct result of this

construction we obtain that a single example fromS has a small effect on the value ofℓ(hδ
S).

We can now show that each of the properties in (23-25) hold. From the definition ofhδ
S and

Lemma10 it is clear that Eq. (24) holds. Let us now show that Eq. (25) holds, withb.

14
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Lemma 11
∣

∣E[ℓ(hGini
S )] − E[ℓ(hδ

S)]
∣

∣ ≤ 1
m .

Proof We have
E[ℓ(hGini

S )] − E[ℓ(hδ
S)] =

∑

v

(

E[ℓv(h
Gini
S ) − ℓv(h

δ
S)]
)

. (28)

We boundE[ℓv(h
Gini
S ) − ℓv(h

δ
S)] as follows. First, for valuesv such thatpv < 6 ln(2m

δ )/m, we
have thathGini

S (v) = hδ
S(v). ThusE[ℓv(h

Gini
S ) − ℓv(h

δ
S)] = 0. For the rest of the values,

pv ≥ 6 ln(2m
δ )/m and thus the definition ofℓv(h

δ
S) implies

E[ℓv(h
Gini
S ) − ℓv(h

δ
S)] =

Pr [cv < ρ(δ/m, pv, m)] · E
[

ℓv(h
Gini
S ) − ℓv(h

δ
S) | cv < ρ(δ/m, pv, m)

]

. (29)

Using Eq. (27) again, we obtain thatPr[cv < ρ(δ/m, pv, m)] ≤ δ/m. In addition, since both
ℓv(h

Gini
S ) andℓv(h

δ
S) are in[0, pv] we have that

∣

∣

∣E

[

ℓv(h
Gini
S ) − ℓv(h

δ
S) | cv < ρ(δ/m, pv, m)

]∣

∣

∣ ≤ pv.

Combining the above two facts with Eq. (29) we get
∣

∣

∣
E[ℓv(h

Gini
S ) − ℓv(h

δ
S)]
∣

∣

∣
≤ pvδ

m
≤ pv

m
.

Summing the above overv and using Eq. (28) we conclude that,
∣

∣

∣E[ℓ(hGini
S ) − ℓ(hδ

S)]
∣

∣

∣ ≤
∑

v

pv

m
=

1

m
.

Finally, the following lemma shows that Eq. (23) also holds.

Lemma 12 For any δ > 0, and for any two samplesS1 and S2 with m examples such that
d(S1, S2) ≤ 1 with d defined as in Lemma9,

∣

∣

∣
ℓ(hδ

S1
) − ℓ(hδ

S2
)
∣

∣

∣
≤ 12 ln(2m

δ )

m
.

The proof of this lemma is deferred to the appendix.

We have shown that the functionsg
∆
= ℓ(hδ

S) andf
∆
= ℓ(hGini

S ) satisfy the three requirements
given in Eqs. (23-25) and therefore Lemma9 can be used to show thatℓ(hGini) is concentrated.

Lemma 13 ∀δ > 0 ∀δS
∣

∣ℓ(hGini
S ) − E[ℓ(hGini

S )]
∣

∣ ≤ 12 ln( 4m
δ )

q

ln( 4

δ )√
2m

+ 1
m .

Proof In Lemma9, let f
∆
= ℓ(hGini

S ) and letg
∆
= ℓ(hδ

S). Let c
∆
= 12 ln(2m

δ ), and letb
∆
= 1√

m
.

By Lemma10, Eq. (24) holds. By Lemma12, Eq. (23) holds, and by Lemma11, Eq. (25) holds.
Therefore, from Lemma9 we have

∀δ > 0 ∀2δS |f(S) − E[f(S)]| ≤
12 ln(2m

δ )
√

ln(2
δ )

√
2m

+
1

m
.
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The proof is concluded by substitutingδ2 for δ.

Thm.2 states that with high confidence, the estimatorℓ̂ is close to the true generalization error of the
Gini hypothesis,ℓ(hGini

S ). We conclude the analysis of the Gini estimator by proving this theorem.
Proof [of Thm. 2] Substitutingδ

2 for δ and applying a union bound, we have that all three properties
stated in Lemma13, Thm. 1 and Lemma8 hold with probability of at least1 − δ. We therefore
conclude that with probability of at least1 − δ,

∣

∣

∣
ℓ(hGini

S ) − ℓ̂
∣

∣

∣
≤ |ℓ(hGini

S ) − E[ℓ(hGini
S )]| +

∣

∣

∣
E[ℓ(hGini

S )] − E[ℓ̂]
∣

∣

∣
+
∣

∣

∣
E[ℓ̂] − ℓ̂

∣

∣

∣

≤ 2

m
+

12 ln
(

8m
δ

)

√

ln
(

8
δ

)

√
2m

+ 12

√

ln(4
δ )

2m
= O





ln(m
δ )
√

ln(1
δ )

√
m



 .

4.3 Proof of Thm. 3

Throughout this section we use the notationS(m) to denote a random training set ofm examples.
Before proving Thm.3, we provide the following lemma, that shows that the expectation ofMk

converges to0 for anyk.

Lemma 14 For any naturalk and a countableV ,

lim
m→∞

E[Mk(S
(m))] = 0

Proof FollowingMcAllester and Schapire(2000) we have that for anym

E[Mk(S
(m))] =

∑

v∈V

pv Pr[|S(m)
v | = k] .

SinceV is a countable set we can rewrite it asV
∆
= {v1, v2, v3, . . .}. Let ǫ > 0, and letN be a

positive integer such that
∑N

i=1 pvi > 1 − ǫ
2 . Sincelimm→∞

(

Pr[|S(m)
v | = k]

)

= 0 for any natural

k, there exists anm′ such that for anym > m′,
∑N

i=1 pvi Pr[|S(m)
vi | = k] < ǫ

2 . In addition,
∑|V |

i=N+1 pvi < ǫ
2 . Hence, for everym > m′,

E[Mk(S
(m))] =

N
∑

i=1

pvi Pr[|S(m)
vi

| = k] +

|V |
∑

i=N+1

pvi Pr[|S(m)
vi

| = k] < ǫ.

Proof [of Thm. 3] To prove Eq. (11), we calculate the expectation of the generalization error
E[ℓ(hS)] of an arbitrary hypothesis mappingh ∈ H and show that this error is minimized when
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h[S] = hBayes

S . Let fh : N × N → [0, 1] be a function such thatfh(n1, n2) = 1 − fh(n1, n1 − n2)
and leth be a hypothesis mapping such that for allv ∈ V , h[S](v) = fh(cv(S), c+

v (S)). Then,

E[ℓ(h[S])] =
∑

v

pv E[qv(1 − fh(cv(S), c+
v (S))) + (1 − qv)fh(cv(S), c+

v (S))]

=
∑

v

pv(qv + (1 − 2qv)) E[fh(cv(S), c+
v (S))].

From the above expression it is clear that ifqv < 1
2 then E[ℓ(h[S])] is minimal

when E[fh(cv(S), c+
v (S))] is minimal, and if qv > 1

2 then E[ℓ(h[S])] is minimal when
E[fh(cv(S), c+

v (S))] is maximal. If qv = 1
2 the expectation equals12 regardless of the choice of

fh. We have

E[fh(cv(S), c+
v (S))] =

∑

S

Pr[S]fh(cv(S), c+
v (S))

=

m
∑

k=0

Pr[cv(S) = k]

k
∑

i=0

Pr[c+
v (S) = i | cv(S) = k]fh(k, i)

Consider the summation oni for a singlek from the above sum. Ifk is odd, then

k
∑

i=0

Pr[c+
v = i | cv = k]fh(k, i)

=

k−1

2
∑

i=0

Pr[c+
v = i | cv = k]fh(k, i) +

k
∑

i= k+1

2

P [c+
v = i | cv = k](1 − fh(k, k − i))

=

k−1

2
∑

i=0

Pr[c+
v = i | cv = k]fh(k, i) +

k−1

2
∑

i=0

Pr[c+
v = k − i | cv = k](1 − fh(k, i))

= C +

k−1

2
∑

i=0

(

Pr[c+
v = i | cv = k] − Pr[c+

v = k − i | cv = k]
)

fh(k, i)

whereC is a constant that does not depend onfh. In the above expression, note that ifqv < 1
2 then

for eachi ≤ k−1
2 , Pr[c+

v = i | cv = k] − Pr[c+
v = k − i | cv = k] is positive, and that ifqv > 1

2
then this expression is negative. This means that in both cases, to minimizeE[ℓ(hS)], we need to
maximizefh(k, i) for i ≤ k−1

2 . For an evenk the analysis is similar, except that we have the special
case ofi = k

2 that does not pair with another summand. However, from the symmetry constraint
on fh it follows thatfh(k, k

2 ) = 1
2 . Therefore no maximization or minimization is allowed for this

value ofi. Based on the above analysis, the functionfh that minimizesE[ℓ(hS)] is:

fh(n1, n2) =











1 n2 ≤ n1−1
2

0 n2 ≥ n1+1
2

1
2 n2 = n1

2

SettinghS(v) = fh(cv(S), c+
v (S)) we have thathS(v) = hBayes

S (v) for all valuesv in V .

17
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To prove Eq. (12), we first calculate the difference betweenℓv(h
Bayes
∞ ) and the expectation of

ℓv(h
Bayes

S ). Assume without loss of generality thatqv > 1
2 . Thenℓv(h

Bayes
∞ ) = pv(1 − qv), and

E[ℓv(h
Bayes

S )] = pv(qv Pr[q̂v <
1

2
] + (1 − qv)(1 − Pr[q̂v <

1

2
]) +

1

2
Pr[q̂v =

1

2
]).

Subtracting, we have

E[ℓv(h
Bayes

S )] − ℓv(h
Bayes
∞ ) = pv(2qv − 1)(Pr[q̂v <

1

2
] +

1

2
Pr[q̂v =

1

2
])

≤ pv(2qv − 1)Pr[cv = 0] · 1

2
+ pv

m
∑

k=1

Pr[cv = k](2qv − 1)Pr[q̂v ≤ 1

2
|cv = k].

We use Lemma17 below to bound(2qv − 1)Pr[q̂v ≤ 1
2 |cv = k] for k ≥ 3. For k = 0, 1, 2 we

maximize this term individually for eachk. This leads us to the following bound:

E[ℓv(h
Bayes

S )] − ℓv(h
Bayes
∞ )

≤ 1

2
pv Pr[cv = 0] +

1

8
pv Pr[cv = 1] +

1

8
pv Pr[cv = 2] +

m
∑

k=3

1√
ek

pv Pr[cv = k].

Recall thatMk is the probability mass of the values seenk times in the sample. Following
McAllester and Schapire(2000) we have that fork ≥ 0, E[Mk] =

∑

v pv Pr[cv = k]. Hence,
summing over all the valuesv, we have

E[ℓ(hBayes

S )] − ℓ(hBayes
∞ ) =

∑

v

(E[ℓv(h
Bayes

S )] − ℓv(h
Bayes
∞ ))

≤ 1

2
E[M0] +

1

8
E[M1] +

1

8
E[M2] +

m
∑

k=3

1√
ek

E[Mk].

To prove Eq. (13), denote byS(m) a sample ofm examples. Letǫ > 0 be a scalar. Then there
exists an integert such that 1√

et
< ǫ

2 . Since
∑m

k=1 E[Mk(S
(m))] = 1, we have

m
∑

k=t

1√
ek

E[Mk(S
(m))] <

ǫ

2
. (30)

Now, by Lemma14, for everyk < t, limm→∞ E[Mk(S
(m))] = 0. Hence, there exists anm′ such

that for everym > m′,

1

2
E[M0(S

(m))] +
1

8
E[M1(S

(m))] +
1

8
E[M2(S

(m))] +
t
∑

k=3

1√
ek

E[Mk(S
(m))] <

ǫ

2
. (31)

Combining Eq. (30) and Eq. (31), we have that for everym > m′,

1

2
E[M0] +

1

8
E[M1] +

1

8
E[M2] +

m
∑

k=3

1√
ek

E[Mk] < ǫ.

Hence the limit of this expression whenm → ∞ is 0.

18
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4.4 Proof of Thm. 4

To prove Thm.4, we first introduce some additional notation. Letδ ∈ (0, 1) be a confidence param-
eter. LetV δ

1 , V δ
2 , andV δ

3 be three sets that partitionV according to the values of the probabilities
pv:

V δ
1 = {v | pv ≤ 6 ln

(

2m

δ

)

m− 2

3 }

V δ
2 = {v | 6 ln

(

2m

δ

)

m− 2

3 < pv ≤ 6 ln

(

2m

δ

)

m− 1

2 }

V δ
3 = {v | 6 ln

(

2m

δ

)

m− 1

2 < pv}

We denote the contribution of each set toℓ(hBayes

S ) by ℓδ
i (S)

∆
=
∑

v∈V δ
i

ℓv(h
Bayes

S ). Additionally, given

two samplesS andS′, let κ(S, S′) be the predicate that gets the value “true” if for allv ∈ V we
havecv(S) = cv(S

′).
Using the above definitions and the triangle inequality, we can bound|ℓ(hBayes

S ) − E[ℓ(hBayes

S )]|
as follows:

|ℓ(hBayes

S ) − E[ℓ(hBayes

S )]| =

∣

∣

∣

∣

∣

3
∑

i=1

(

ℓδ
i (S) − E[ℓδ

i ]
)

∣

∣

∣

∣

∣

≤
∣

∣

∣ ℓδ
1(S) − E[ℓδ

1]
∣

∣

∣+
∣

∣

∣ ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]

∣

∣

∣+
∣

∣

∣
ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]

∣

∣

∣
+
∣

∣

∣
E[ℓδ

2(S
′) + ℓδ

3(S
′) | κ(S, S′)] − E[ℓδ

2 + ℓδ
3]
∣

∣

∣
. (32)

To prove Thm.4 we bound each of the above terms as follows: First, to bound
∣

∣ ℓδ
1(S) − E[ℓδ

1]
∣

∣

(Lemma15 below), we use the fact that for eachv ∈ V δ
1 the probabilitypv is small. Thus, a

single change of an example inS has a moderate effect on the error and we can use McDiarmid’s
theorem. To bound

∣

∣ ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]

∣

∣ (Lemma16below) we note that the expectation
is taken with respect to those samplesS′ in whichcv(S

′) = cv(S) for all v. Therefore, the variables
ℓv(h

Bayes

S ) are independent. We show in addition that each of these variables is bounded in[0, pv] and
thus we can apply Hoeffding’s bound. Next, to bound

∣

∣ ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]

∣

∣ (Lemma19
below), we use the fact that in a typical sample,cv(S) is large for allv ∈ V δ

3 . Thus, we bound the
difference betweenℓv(h

Bayes

S ) andE[ℓv(S
′) | κ(S, S′)] for each value inV δ

3 separately. Then, we
apply a union bound to show that for all of these values the above difference is small. Finally, we
use the same technique to bound

∣

∣ E[ℓδ
2(S

′) + ℓδ
3(S

′) | κ(S, S′)] − E[ℓδ
2 + ℓδ

3]
∣

∣ (Lemma20below).
The proof of the first lemma, stated below, is omitted.

Lemma 15 ∀δ > 0 ∀δS |ℓδ
1(S) − E[ℓδ

1]| ≤
12 ln( 2m

δ )
m1/6

√

1
2 ln

(

2
δ

)

.

Proof We prove the lemma using McDiarmid’s theorem. To do so, we examine the effecta removal
of a single example(xi, yi) from S can have onℓδ

1(h
Bayes

S ). The largest effect occurs ifxi ∈ V δ
1 and

the removal ofyi changes the value ofhBayes(xi). In this case,

|ℓδ
1(S) − ℓδ

1(S
\i)| = |ℓxi(h

Bayes

S ) − ℓxi(h
Bayes

S\i )| ≤ pv ≤ 6 ln

(

2m

δ

)

m− 2

3 .
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Applying McDiarmid’s theorem, it follows that|ℓδ
1(S) − E[ℓδ

1]| is at most
√

1

2
ln

(

2

δ

)

m ·
(

12 ln

(

2m

δ

)

m− 2

3

)2

=
12 ln

(

2m
δ

)

m1/6

√

1

2
ln

(

1

δ

)

.

Lemma 16 ∀δ > 0 ∀δS |ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]| ≤

q

3 ln( 2m
δ ) ln( 2

δ )
m1/4 .

Proof Since the expectation is taken over samplesS′ for which cv(S
′) = cv(S) for eachv ∈ V ,

we get that the value of the random variableℓv(h
Bayes

S ) for eachv depends only on the assignment of
label for each example. Therefore the random variablesℓv(h

Bayes

S ) are all independent of each other
when conditioned onκ(S, S′), and ℓδ

2(S) =
∑

v∈V δ
2

ℓv(h
Bayes

S ) is a sum of independent random

variables. The expectation of this sum isE[ℓδ
2(S

′) | κ(S, S′)]. In addition, it is trivial to show that
ℓv(h

Bayes

S ) ∈ [0, pv] for all v. Thus, by Hoeffding’s inequality,

Pr[|ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e

−2t2/
P

v∈V δ
2

p2
v
. (33)

Using the fact that forv in V δ
2 , pv ≤ 6 ln

(

2m
δ

)

/
√

m we obtain that

∑

v∈V δ
2

p2
v ≤ max

v∈V δ
2

{pv} ·
∑

v∈V δ
2

pv ≤ 6 ln

(

2m

δ

)

/
√

m .

Plugging the above into Eq. (33) we get that

Pr[|ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e−2t2

√
m/(6 ln( 2m

δ )) .

Setting the right-hand side toδ and solving fort, we conclude our proof.

So far, we have bounded the terms
∣

∣ ℓδ
1(S) − E[ℓδ

1]
∣

∣ and
∣

∣ ℓδ
2(S) − E[ℓδ

2(S
′) | κ(S, S′)]

∣

∣. In
both of these cases, we utilized the fact thatpv is small for allv ∈ V δ

1 ∪ V δ
2 . We now turn to

bound the term
∣

∣ ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]

∣

∣. In this case, the probabilitiespv are no longer
negligible. Therefore, we use a different technique whereby we analyze the probability ofhBayes

S (v)
to be ‘wrong’, i.e. to return the less probable label. Sincepv is no longer small, we expectcv to
be relatively large. The following key lemma bounds the probability ofhBayes

S (v) to be wrong given
that cv is large. The resulting bound depends on the difference betweenqv and1/2 and becomes
vacuous wheneverqv is close to1/2. On the other hand, ifqv is close to1/2, the price we pay for a
wrong prediction is small. In the second part of this lemma, we balance these twoterms and end up
with a bound that does not depend onqv.

Lemma 17 Let Z̄ = (Z1, . . . , Zk) be a sequence of i.i.d. binary random variables such that
Pr[Zi = 1] = q for all i, and assume thatq ≥ 1

2 . Then,

Pr[
∑

i

Zi ≤ k/2] ≤ e−2(q− 1

2
)2 k and (2q − 1) Pr[

∑

i

Zi ≤ k/2] ≤ 1√
e k

.
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Proof The first inequality is a direct application of Hoeffding’s inequality. Multiplying both sides by
2q−1 we get that the left-hand side of the second inequality is bounded above by(2q−1)e−2(q− 1

2
)2k.

We now letx = q− 1
2 and utilize the inequality2xe−2x2k ≤ 1/

√
e k, which holds for allx ≥ 0 and

k > 0.

Based on the above lemma, we now bound
∣

∣ ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]

∣

∣. First, we show that if
cv(S) is large thenℓv(S) is likely to be close to the expectation ofℓv over samplesS′ in which
cv(S) = cv(S

′). This is equivalent to the claim of the following lemma.

Lemma 18 Under the same assumptions of Lemma17. Letf(Z̄) be the function

f(Z̄) =











(1 − q) if
∑

i Zi > k/2

q if
∑

i Zi < k/2
1
2 if

∑

i Zi = k/2

.

Then, for allδ ∈ (0, e−1/2] we have∀δZ̄ |f(Z̄) − E[f ]| ≤
√

2 ln( 1

δ )
ek .

Proof To simplify our notation, denoteα = Pr[
∑

i Zi > k/2], β = Pr[
∑

i Zi < k/2], and
γ = Pr[

∑

i Zi = k/2]. A straightforward calculation shows that

|f(Z̄) − E[f(Z̄)]| =











(2q − 1) (β + γ/2) with probabilityα

(2q − 1) (α + γ/2) with probabilityβ

(2q − 1) (α − β) with probabilityγ

.

Using the fact that(α, β, γ) is in the probability simplex we immediately obtain that

|f(z̄) − E[f(Z̄)]| ≤ (2 q − 1) .

If 2 q − 1 ≤
√

2 ln
(

1
δ

)

/k then the bound in the lemma clearly holds. Therefore, from now on we

assume that2 q − 1 >
√

2 ln
(

1
δ

)

/k. In this case, using the first inequality of Lemma17 we have

thatβ + γ ≤ e−2(q− 1

2
)2k ≤ δ. Therefore,1 − δ < α, and so with probability of at least1 − δ we

have that
|f(Z̄) − E[f(Z̄)]| = (2q − 1) (β + γ/2) ≤ (2q − 1) (β + γ) .

Applying the second inequality of Lemma17 on the right-hand side of the above inequality we get
that |f(Z̄) − E[f(Z̄)]| ≤

√

1/ek ≤
√

2 ln(1/δ)/ek, where the last inequality holds since we
assume thatδ ≤ e−1/2.

Equipped with the above lemma we are now ready to bound
∣

∣ ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]

∣

∣.

Lemma 19 If m ≥ 4 then ∀(2δ)S |ℓδ
3(S) − E[ℓδ

3(S
′) | κ(S, S′)]| ≤ 1/m

1

4 .

Proof Recall thatℓδ
3(S) =

∑

v∈V δ
3

ℓv(S). m ≥ 4, henceδ/m ≤ 1/m ≤ e−1/2. Choosev ∈ V δ
3

and without loss of generality assume thatqv ≥ 1/2. Thus, from Lemma18 and the definition of
ℓv(S) we get that with probability of at least1 − δ/m over the choice of the labels inS(v):

|ℓv(S) − E[ℓv(S
′) | κ(S, S′)]| ≤ pv

√

2 ln
(

m
δ

)

e · cv(S)
. (34)
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By the definition ofV δ
3 and Lemma10, ∀δS, ∀v ∈ V δ

3 , cv(S) ≥ ρ(δ/m, pv, m). Using the fact
thatρ is monotonically increasing with respect topv it is possible to show (see Lemma21 in the
appendix) thatρ(δ/m, pv, m) ≥ 2 ln

(

m
δ

)

m1/2 for all v ∈ V δ
3 for m ≥ 4. Therefore, if indeed

cv(S) ≥ ρ(δ/m, pv, m) for anyv ∈ V δ
3 , we have that

√

2 ln
(

m
δ

)

e · cv(S)
≤ pv m−1/4.

Using a union bound to make sure that this condition holds and Eq. (34) holds for allv ∈ V δ
3

simultaneously, we obtain that∀(2δ)S ∀v ∈ V δ
3 |ℓv(S) − E[ℓv(S

′) | κ(S, S′)]| ≤ pv m−1/4 .
Summing overv ∈ V δ

3 , using the triangle inequality, and using the fact that
∑

v pv = 1 we conclude
the proof.

Lemma 20 For m ≥ 8,

∀δS |E[ℓδ
2(S

′) + ℓδ
3(S

′) | κ(S, S′)] − E[ℓδ
2(S

′) + ℓδ
3(S

′)]| ≤ 1

m
+

1

m1/6
.

Proof As in the proof of Lemma19, we use the definitions ofV δ
3 andV δ

2 along with Lemma10
and Lemma21 to get that form ≥ 8

∀δS ∀v ∈ V δ
2 ∪ V δ

3 cv(S) ≥ ρ(δ/m, pv, m) ≥ 3 ln(m/δ)m1/3 . (35)

To bound the difference between the conditional expectation and the unconditional expectation,
let us first examine both these quantities for individual valuesv. To simplify our notation, de-
noteα1 = Pr[q̂v(S

′) > 1/2 | cv(S
′) = cv(S)], β1 = Pr[q̂v(S

′) < 1/2 | cv(S
′) = cv(S)],

and γ1 = Pr[q̂v(S
′) = 1/2 | cv(S

′) = cv(S)]. Similarly, denoteα2 = Pr[q̂v(S
′) > 1/2],

β2 = Pr[q̂v(S
′) < 1/2], andγ2 = Pr[q̂v(S

′) = 1/2]. Using the definition ofℓv we have that

E[ℓv(S
′) | cv(S) = cv(S

′)] = pv

(

(1 − qv)α1 + q β1 +
1

2
γ1

)

. (36)

Similarly, for the unconditional expectation:

E[ℓv(S
′)] = pv

(

(1 − qv)α2 + q β2 +
1

2
γ2

)

. (37)

Subtracting the above two equations and rearranging terms it can be shownthat

∆
∆
= |E[ℓv(S

′) | cv(S) = cv(S
′)] − E[ℓv(S

′)]|

= pv (q − 1

2
) | (β1 + γ1) − (β2 + γ2) + (γ1 − γ2) | . (38)

Let Z1, . . . , Zcv(S) be an i.i.d. sequence of random variables withPr[Zi = 1] = qv. Then we have

β1 + γ1 = Pr[
∑

i Zi ≤ cv(S)/2]. In additioncv(S) ≥ ⌈ρ(δ/m, pv, m)⌉ ∆
= ρ. Assume without loss
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of generality thatqv ≥ 1/2. Thus we havePr[
∑ρ

i=1 Zi ≤ ρ/2] ≥ Pr[
∑cv(S)

i=1 Zi ≤ cv(S)/2]. We
clearly have that0 ≤ β1 + γ1 ≤ Pr[

∑ρ
i=1 Zi ≤ ρ/2]. We now argue that

0 ≤ β2 + γ2 ≤ δ

m
+ Pr[

ρ
∑

i=1

Zi ≤ ρ/2] .

The left-hand side inequality is trivial. To prove the right-hand side inequality, we note that

β2 + γ2 =
m
∑

i=1

Pr[cv(S
′) = i] Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = i

]

≤ Pr[cv(S
′) ≤ ρ] + Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = ρ

]

≤ δ

m
+ Pr[

ρ
∑

i=1

Zi ≤ ρ/2] .

Therefore,

|(β1 + γ1) − (β2 + γ2)| ≤
δ

m
+ Pr[

k
∑

i=1

Zi ≤ k/2] . (39)

Similarly, since0 ≤ γ1 ≤ β1 + γ1 and0 ≤ γ2 ≤ β2 + γ2 we also have that

|γ1 − γ2| ≤
δ

m
+ Pr[

ρ
∑

i=1

Zi ≤ ρ/2] . (40)

Combining Eq. (39) and Eq. (40) with Eq. (38) we get that

∆ ≤ pv (2q − 1)

(

δ

m
+ Pr[

ρ
∑

i=1

Zi ≤ ρ/2]

)

≤ pv





1

m
+

1
√

e · ρ( δ
m , pv, m)



 ,

where the last inequality follows from Lemma17. Finally, by summing overv ∈ V δ
2 ∪ V δ

3 and
using Eq. (35) we conclude our proof.

5. Experiments

In this section we present experimental results that demonstrate the merits of our feature ranking
criterion given in Eq. (9). Throughout this section we compare the following four feature ranking
criteria:

1. IG: The Information Gain criterion (Quinlan, 1993, de Mantaras, 1991, Mitchell, 1997).

2. IGR: The Information Gain Ratio criterion (Quinlan, 1993).

3. Gini: The original Gini Index (Breiman et al., 1984), which is given in Eq. (3).
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Figure 1: Each of the plots above show the generalization error of each feature (the y axis) against
the ranking order of the feature in one of the ranking criteria (the x axis).Each column
corresponds to a specific ranking criteria. Each row corresponds to a specific synthetic
dataset.

4. Ginger: Our modified Gini criterion that aims to minimize the generalization error, given in
Eq. (9).

We first present experiments with synthetic data that exemplify the generalization properties of
the different criteria. Next, we compare the performance of the different criteria on a natural dataset
from the UCI repository. Finally, we compare the use of the different ranking criteria for the task of
growing a decision tree.

5.1 Synthetic Data

Three synthetic datasets were constructed to exemplify the generalization properties of the different
ranking criteria in different scenarios. In all of the synthetic datasets thetarget label was first
sampled according to the probability measurePr[Y = 1] = 1

2 . Synthetic dataset I includes only
binary features. The goal of dataset I is to show that the Ginger criterionbehaves similarly to the
Gini criterion on binary features.11 binary features were constructed. For eachi ∈ {0, 1, . . . , 10}
the ith feature was sampled according to the probability measurePr[Xi = Y |Y ] = 1+0.1 i

2 . Thus,
featureX0 is completely uncorrelated with the label, while featureX10 perfectly predicts the label.
A training set of5000 examples was generated, and the features were ranked using each of the four
ranking criteria on the training set. The generalization errors of the11 classification rules of each
feature, defined as in Eq. (7), were measured on a fresh test set of5000 examples. A plot of the
generalization error of each feature against the ranking order of the feature is given for each of the
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ranking criteria on the top row of Fig.1. This plot should be monotonically increasing for good
feature ranking criteria. As the plots show, all four criteria perform wellon this dataset.

Dataset II is identical to dataset I, except that one more feature, indexed X11, was added.X11 is
simply the index of the example (this simulates an SSN-like feature as described inSec.2). Clearly,
the generalization error ofX11 is 1

2 as no value of the feature that occurred in the training set would
occur in a test set. The performance of the four feature ranking criteriaon dataset II is shown on
the second row of Fig.1. As expected, the Gini criterion and the IG criterion both suffer from
overfitting and rankX11 very high. The IGR criterion, suggested byQuinlan(1993) attempts to
fix the overfitting effect of the IG criterion by dividing IG by the entropy ofthe feature. As the
plots show, this correction indeed causes IGR to rankX11 lower than do IG and Gini. However, the
correction is not strong enough, as the new feature is still ranked 8th outof 12 features although
its generalization error is the worst. Finally, it is clear from the plots that the new Ginger criterion
produces a correct ranking of the features in this example.

Dataset III is identical to dataset II, except that one more feature indexedX12 was added.X12

was constructed according to the following probability measure:

Pr[X = i | Y = 1] =

{

1
2000 if i ∈ {1, . . . , 2000}
0 otherwise

and

Pr[X = i | Y = −1] =

{

1
2000 if i ∈ {2001, . . . , 4000}
0 otherwise

X12 is thus categorical with many values but it is still highly predictive of the label. The performance
of the four feature ranking criteria on dataset III is shown on the bottom row of Fig.1. As the plots
show, the rankings of the Gini criterion and of the IG criterion are not adversely affected by the
addition of this feature, although they still fail onX11, the SSN-like feature. IGR penalizesX12

because it has a large number of values, thus its ranking for this feature istoo low. The new Ginger
criterion is the only one to rank the features in accordance with their respective generalization error,
as is apparent from its monotonically increasing plot.

5.2 Natural Data

To test the ranking criteria on natural data, we used the USCensus1990raw dataset from the UCI
Repository.1 This dataset contains person records, where each record has 125 features, such as age,
salary, marital status etc. Several labeled datasets were constructed from USCensus1990raw by
defining a binary target label based on one of the attributes, and using therest of the attributes as
features. For attributes that take more than two values, the binary label wasset to1 if the feature
takes its most frequent value and−1 otherwise. Only cases where the probability of the label to
be1 was at least0.1 and no more than0.9 were used. This process resulted in62 binary learning
problems.

In Fig. 2, each of the rows corresponds to one learning problem. A plot is shown for each
problem and each ranking criterion, depicting the generalization error ofeach feature against the

1. The original census dataset was used rather than the preprocessed dataset. The preprocessed dataset obtained from
Meek, Thiesson, and Heckerman eliminates categorical attributes that have many values, exactly the type of attributes
that this paper addresses. The dataset used in our experiments is available through
http://kdd.ics.uci.edu/databases/census1990/USCensus1990raw.data.txt.
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Label IG Gini IGR Ginger
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Figure 2: Each of the plots above show the generalization error of the features in a learning problem
(the y axis) against the ranking order of the features in one of the ranking criteria (the x
axis). Each column corresponds to a specific ranking criterion. Each row corresponds to
a specific learning problem, generated from USCensus1990raw by setting the label to be
the most common value of one of the attributes.
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Figure 3: Each plot above portrays the difference in generalization error between the feature that
was top-ranked by Ginger and the feature that was top-ranked by one of the other criteria,
for each of the62 learning problems obtained from USCensus1990raw.

ranking order of the features. Recall that good ranking criteria shouldproduce monotonically in-
creasing graphs. The plots clearly show that the Ginger criterion produces the most accurate feature
ranking. Fig.3 compares the Ginger criterion to each of the other ranking criteria. In eachof the
plots, each data point corresponds to one of the62 learning problems and portrays the difference
in generalization error between the feature that was top-ranked by Ginger and the feature that was
top-ranked by the other criterion. Positive data points are cases where Ginger outperformed the
other criterion. Again, it is apparent that the Ginger criterion outperformsthe other criteria.

5.3 Decision Trees

Decision tress are a popular classification tool (see for instanceMitchell (1997)). The process of
growing a decision tree is a greedy iterative procedure which is performed as follows: The procedure
starts with a tree composed only of a root node. At each iteration, one of theleaves of the tree is
turned into an inner node, whose children represent all the possible values of one feature. Choosing
which leaf to split and which feature to use for splitting can be based on feature ranking criteria
such as the ones discussed in this paper. In our experiments, we compared decision tree learning
with each of the four feature ranking criteria: IG, IGR, Gini, and Ginger.The experiments were
performed on the62 learning problems described in Sec.5.2.

Usually, the iterative process of growing a decision tree continues until nofurther splits can be
made. Then, as a post processing step, the tree is pruned, so as to improve the generalization error
of the decision tree. Since this paper focuses on splitting criteria rather thenon pruning methods,
the experiments do not include tree post-pruning. Instead, the generalization error is measured
as a function of the number of splits. Given a ranking criterion, the followingprocedure is used to
choose which leaf to split and which feature to split by: Letm be the number of training examples. A
decision treeT with k leaves is equivalent to a mappingT : {1, . . . , m} → {1, . . . , k}. That is, each
example is mapped to one of the leaves of the tree. We can think of the vector(T (1), . . . , T (m)) as
the vector of values of a constructed feature. At each iteration of the decision tree learning process,
a new tree needs to be generated from the current tree by splitting one of the current tree leaves
based on one of the features. Each possible new tree induces a different new constructed feature
as described above. To select the leaf to split and the feature to split by, we assess the quality of
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Label Gini IGR Ginger
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Figure 4: The training and generalization errors of decision trees grownaccording to the Gini,
IGR, and Ginger splitting criteria, as a function of the number of splits. Each column
corresponds to a specific splitting criterion. Each row corresponds to a specific learning
problem, generated from USCensus1990raw by setting the label to be the most common
value of one of the attributes.
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Figure 5: Left: The minimal generalization error of the IG criterion minus the minimal generaliza-
tion error of the Ginger criterion for each of the labeled datasets. Middle: Same for IGR.
Right: Same for Gini.

each new constructed feature based on the ranking criterion in use. Theselected leaf and feature are
those that correspond to the top-ranked constructed feature.

Fig. 4 shows the training error and generalization error of the Gini, IGR and Ginger splitting
criteria as a function of the number of splits, for several learning problems. The IG criterion plot
was omitted since its behavior was almost identical to that of the Gini criterion. Ascan be seen
from the plots, the training error of the Gini criterion drops faster, but theresulting tree suffers from
severe overfitting. In contrast, the generalization error of the Ginger criterion is much smaller and
remains close to the training error, as long as the number of splits is not too large. As expected, after
making a large number of splits all criteria exhibit an overfitting effect. Comparing the IGR and the
Ginger criteria, we observe that both methods perform rather well, each showing an advantage on
some of the learning problems.

Lastly, Fig.5 compares the performance of the decision tree learning with the Ginger splitting
criterion to decision tree learning with the other splitting criteria. In each of the plots, the data points
correspond to the62 learning problems, and portray the difference in the minimal generalization
error achieved by the decision tree grown using Ginger and the one that was achieved using the
other criterion. Positive data points are cases where Ginger outperformed the other criterion. The
plots show that the Ginger criterion outperforms the IG and Gini criteria, andthat in most cases the
Ginger criterion outperforms the IGR criterion as well.

6. Discussion

In this paper, a new approach for feature ranking is proposed, based on a direct estimation of the
true generalization error of predictors that are deduced from the training set. We focused on two
specific predictors, namelyhGini

S andhBayes

S . An estimator for the generalization error ofhGini
S , termed

the Ginger criterion, was proposed and its convergence was analyzed.Experimental evaluation
suggests that the Ginger criterion outperforms existing feature ranking methods. We showed that
the expected error ofhBayes

S is optimal and proved a concentration bound for this error. Constructing
an estimator forhBayes

S is left for future work.
There are various extensions for this work that we did not pursue. First, it is interesting to

analyze the number of categorical features one can rank while avoiding overfitting. The experiments
with decision trees suggest that the Ginger criterion has potential to improve the generalization
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error of decision trees. It may be possible to use the bounds for constructing a stopping criterion
for growing the decision tree. Second, our view of a ranking criterion asan estimator for the
generalization error of a predictor can be used for constructing new ranking criteria by defining
other predictors. Finally, understanding the relationship between this view and information theoretic
measures is also an interesting future direction.
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Appendix A. Technical Proofs

Lemma 21 Let c be a positive constant. Then, ifpv > 6 ln
(

2
δ

)

m−c, andm ≥ 2
1

1−c we have

∀δ > 0 ρ(δ, pv, m) ≥ 3 ln
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m1−c.

Proof By the definition ofρ,
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.

Therefore,ρ( δ
m , pv, m) is upward monotonic withpv. Thus ifpv > 6 ln

(

2m
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Proof [Lemma12] Similarly to the proof of Lemma8, we will bound the effect a single removal of
an example fromS can have onℓ(hδ

S). The maximal effect of a single change in the sample is no
larger than twice the maximal effect of a single removal. Assume without loss ofgenerality that the
removed example isxi = (v, 0), and denote the resulting sample byS\i. The removal only affects
ℓv(h

δ
S). Therefore

|ℓ(hδ
S) − ℓ(hδ

S\i)| = |ℓv(h
δ
S) − ℓv(h

δ
S\i)|

=
∣

∣

∣pv

(

qv(1 − hδ
S(v)) + (1 − qv)h

δ
S(v) − pvqv(1 − hδ

S\i(v)) + (1 − qv)h
δ
S(v)

)∣

∣

∣

=
∣

∣

∣
pv(1 − 2qv)(h

δ
S(v) − hδ

S\i(v))
∣

∣

∣

≤ pv

∣

∣

∣hδ
S(v) − hδ

S\i(v)
∣

∣

∣ .
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Forv such thatpv <
6 ln( 2m

δ
)

m ,

|ℓ(hδ
S) − ℓ(hδ

S\i)| ≤ pv <
6 ln(2m

δ )

m
. (41)

Forv such thatpv ≥ 6 ln( 2m
δ

)

m , we distinguish between three cases bycv, the number of examples of
v in S:

1. cv < ρ( δ
m , pv, m),

2. ρ( δ
m , pv, m) ≤ cv < ρ( δ

m , pv, m) + 1,

3. ρ( δ
m , pv, m) + 1 ≤ cv.

In case1,

hδ
S(v) =

c+
v + qv(⌈ρ( δ

m , pv, m)⌉ − cv)

⌈ρ( δ
m , pv, m)⌉

and hδ
S\i(v) =

c+
v + qv(⌈ρ( δ

m , pv, m)⌉ − (cv − 1))

⌈ρ( δ
m , pv, m)⌉

,

hence
|hδ

S(v) − hδ
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qv

⌈ρ( δ
m , pv, m)⌉

.

In case2, ⌈ρ( δ
m , pv, m)⌉ = cv, therefore

hδ
S(v) = hGini

S (v) =
c+
v

cv
and hδ
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,
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Combining this with Eq. (41), we have

|ℓ(hδ
S) − ℓ(hδ

S\i)| ≤ max

{

4

m
,
6 ln(2m

δ )

m

}

=
6 ln(2m

δ )

m
.

Hence, doubling the effect of a single removal, we have that for any two samplesS1 andS2 such
thatd(S1, S2) ≤ 1

|ℓ(hδ
S1

) − ℓ(hδ
S2

)| ≤ 12 ln(2m
δ )

m
.
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