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Abstract

The fundamental theorem of statistical learning states that for binary classification prob-
lems, any Empirical Risk Minimization (ERM) learning rule has close to optimal sample
complexity. In this paper we seek for a generic optimal learner for multiclass prediction.
We start by proving a surprising result: a generic optimal multiclass learner must be im-
proper, namely, it must have the ability to output hypotheses which do not belong to the
hypothesis class, even though it knows that all the labels are generated by some hypothesis
from the class. In particular, no ERM learner is optimal. This brings back the fundma-
mental question of “how to learn”? We give a complete answer to this question by giving
a new analysis of the one-inclusion multiclass learner of Rubinstein et al. (2006) showing
that its sample complexity is essentially optimal. Then, we turn to study the popular
hypothesis class of generalized linear classifiers. We derive optimal learners that, unlike
the one-inclusion algorithm, are computationally efficient. Furthermore, we show that the
sample complexity of these learners is better than the sample complexity of the ERM rule,
thus settling in negative an open question due to Collins (2005).
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1. Introduction

Multiclass classification is the problem of learning a classifier h from a domain X to a label
space Y, where |Y| > 2 and the error of a prediction is measured by the probability that
h(x) is not the correct label. It is a basic problem in machine learning, surfacing a variety
of domains, including object recognition, speech recognition, document categorization and
many more. Over the years, multiclass classification has been subject to intense study,
both theoretical (Natarajan, 1989; Ben-David et al., 1995; Rubinstein et al., 2006; Daniely
et al., 2011, 2012) and practical (e.g. (Shalev-Shwartz et al., 2004; Collins, 2005; Keshet
et al., 2005; Torralba et al., 2007)). Many methods have been developed to tackle this
problem, starting from the the naive one-vs-all method, to more complex methods, such as
structured output prediction (Collins, 2000, 2002; Lafferty et al., 2001; Taskar et al., 2003;
Tsochantaridis et al., 2004), error correcting output codes (Dietterich and Bakiri, 1995) and
others. These developments made it possible to handle a variety of multiclass classification
problems, including even problems that have a very complex label space, that is structured
and exponentially large (e.g. speech recognition, OCR, and multiple object categorization).

Despite being very basic and natural, and despite these developments and efforts, our
theoretical understanding of multiclass classification is still far from being satisfactory, in
particular relatively to our understanding of binary classification (i.e., when |Y| = 2). In
this work, we focus on the sample complexity of (distribution free) learning of hypothesis
classes H ⊆ YX . The two most fundamental questions are:

1. What is learnable? More quantitatively, what is the sample complexity of a given
class H?

2. How to learn? In particular, is there a generic algorithm with optimal sample com-
plexity?

For binary classification problems, these two questions are essentially solved (up to log-
factors of the error and confidence parameters ε and δ): The fundamental result of Vapnik
and Chervonenkis (1971) asserts that the VC dimension characterizes the sample complex-
ity, and that any Empirical Risk Minimization (ERM) algorithm enjoys close-to-optimal
sample complexity.

In a recent surprising result, Daniely et al. (2011) have shown that in multiclass classi-
fication there might be substantial gaps between the sample complexity of different ERMs.
We start by showing an even stronger “peculiarity”, discriminating binary from multiclass
classification. Recall that an algorithm is called improper if it might return a hypothesis that
does not belong to the learnt class. Traditionally, improper learning has been applied to
enable efficient computations. It seems counter intuitive that computationally unbounded
learner would benefit from returning a hypothesis outside of the learnt class. Surprisingly,
we show that an optimal learning algorithm must be improper! Namely, we show that
there are classes that are learnable only by an improper algorithm. Pointing out that we
actually do not understand how to learn optimally, these results “reopen” the above two
basic questions for multiclass classification.

In this paper we essentially resolve these two questions. We give a new analysis of the
multiclass one inclusion algorithm (Rubinstein et al. (2006) based on Haussler et al. (1988),
see also Simon and Szörényi (2010)), showing that it is optimal up to a constant factor of 2 in
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a transductive setting. This improves on the original analysis, that yielded optimality only
up to a factor of log(|Y|) (which, as explained, might be quite large in several situations).
By showing reductions from transductive to inductive learning, we consequently obtain an
optimal learner in the PAC model, up to a logarithmic factor of 1

δ and 1
ε . The analysis

of the one inclusion algorithm results with a characterization of the sample complexity of
a class H by a sequence of numbers µH(m). Concretely, it follows that the best possible

guarantee on the error, after seeing m examples, is Θ
(
µH(m)
m

)
.

Comparing to binary classification, we should still strive for a better characterization:
We would like to have a characterization of the sample complexity by a single number
(i.e. some notion of dimension) rather than a sequence. Our analysis of the one inclusion
algorithm naturally leads to a new notion of dimension, of somewhat different character than
previously studied notions. We show that this notion have certain advantages comparing to
other previously studied notions, and formulate a concrete combinatorial conjecture that,
if true, would lead to a crisper characterization of the sample complexity.

Departing general theory, we turn our focus to investigate hypothesis classes that are
used in practice, in light of the above results and the result of Daniely et al. (2011). We
consider classes of multiclass linear classifiers that are learnt by several popular learning
paradigms, including multiclass SVM with kernels (Crammer and Singer, 2001), structured
output prediction (Collins, 2000, 2002; Lafferty et al., 2001; Taskar et al., 2003; Tsochan-
taridis et al., 2004), and others. Arguably, the two most natural questions in this context
are: (i) is the ERM rule still sub-optimal even for such classes? and (ii) If yes, are there
efficient optimal learnears for these classes?

Regarding the first question, we show that even though the sample complexity of these
classes is upper bounded in terms of the dimension or the margin, there are sub-optimal
ERMs whose sample complexity has additional multiplicative factor that depends on the
number of labels. This settles in negative an open question due to Collins (2005). Regarding
the second question above, as opposed to the one-inclusion algorithm, which is in general
inefficient, for linear classes we derive computationally efficient learners (provided that the
hypotheses can be evaluated efficiently), that enjoy optimal sample complexity.

Basic definitions: Let X be an instance space and Y a label space. To account for
margin-based classifiers as well, it would be convenient to allow classifiers to return the
label � that will stand for “don’t know”. A classifier (or hypothesis) is a mapping h :
X → (Y ∪ {�}). A hypothesis class is a set of classifiers, H ⊂ (Y ∪ {�})X . The error of a
classifier with respect to a joint distribution over X × Y is the probability that h(x) 6= y.
Throughout this paper, we mainly consider learning in the realizable case, which means that
there is h∗ ∈ H which has zero error (extensions to agnostic learning are discussed in section
A). Therefore, we can focus on the marginal distribution D over X and denote the error of a
classifier h with respect to the realizing classifier h∗ as ErrD,h∗(h) := Prx∼D (h(x) 6= h∗(x)).

A learning algorithm is a function A that receives a training set of m instances, S ∈ Xm,
together with their labels according to h∗. We denote the restriction of h∗ to the instances
in S by h∗|S . The output of the algorithm A, denoted A(S, h∗|S) is a classifier. A learning
algorithm is proper if it always outputs a hypothesis from H. A learning algorithm is an
ERM learner for the class H if, for any sample, it returns a function in H that minimizes
the empirical error relative to any other function in H. The (PAC) sample complexity
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of a learning algorithm A is the function mA,H defined as follows: For every ε, δ > 0,
mA,H(ε, δ) is the minimal integer such that for every m ≥ mA,H(ε, δ), every distribution
D on X , and every target hypothesis h∗ ∈ H, PrS∼Dm (ErrD,h∗(A(S, h∗|S)) > ε) ≤ δ. Here
and in subsequent definitions, we omit the subscript H when it is clear from context. If
no integer satisfying the inequality above, define mA(ε, δ) = ∞. H is learnable with A if
for all ε and δ the sample complexity is finite. The (PAC) sample complexity of a class H
is mPAC,H(ε, δ) = infAmA,H(ε, δ), where the infimum is taken over all learning algorithms.
The ERM sample complexity (a.k.a. the uniform convergence sample complexity) of H
is the sample complexity that can be guaranteed for any ERM learner. It is defined by
mERM,H(ε, δ) = supA∈ERMma

A,H(ε, δ) where the supremum is taken over all ERM learners
for H. Clearly, we always have mPAC ≤ mERM.

We use [m] to denote the set {1, . . . ,m}. We treat vectors as column vectors. We denote
by ei ∈ Rd the i’th vector in the standard basis of Rd. We denote by Bd the closed unit ball
in Rd. We denote by Md×k the space of real matrices with d rows and k columns. For a
matrix X ∈Md×k and i ∈ [k], we denote by Xi ∈ Rd the i’th column of X. Given a subset
A ⊆ X , we define H|A = {h|A : h ∈ H}.

2. No optimal learner can be proper

Our first result shows that, surprisingly, any learning algorithm with a close to optimal
sample complexity must be improper.

Theorem 1 For every 1 ≤ d ≤ ∞ there exists a hypothesis class Hd, with 2d + 1 labels
such that:

� The PAC sample complexity of Hd is O
(

log(1/δ)
ε

)
.

� The PAC sample complexity of any proper learning algorithm for Hd is Ω
(
d+log(1/δ)

ε

)
.

� In particular, H∞ is a learnable class that is not learnable by a proper algorithm.

A detailed proof is given in the appendix, and here we sketch the main idea of the proof. Let
X be some finite set and let Y = 2X ∪{∗}. For every A ⊆ X define hA : X → Y by hA(x) ={
A x ∈ A
∗ otherwise

. Consider the hypothesis class HX ,Cantor = {hA | A ⊂ X} . This class is

due to Daniely et al. (2011) and we call it the first Cantor class due to the resemblance to
the construction used for proving the famous theorem of Cantor from set theory (e.g., http:
//en.wikipedia.org/wiki/Cantor’s_theorem). Daniely et al. (2011) employed this class
to establish gaps between the sample complexity of different ERM learners. In particular,
they have shown that there is an ERM learner with sample complexity ≤ ln(1/δ)

ε , while there

are other ERMs whose sample complexity is Ω
(
|X |+ln(1/δ)

ε

)
.

To show that no proper learner can be optimal, let Xd be a set consisting of d el-
ements and define the following subclass of HXd,Cantor: Hd =

{
hA | |A| =

⌊
d
2

⌋}
. Since

Hd ⊂ HXd,Cantor, we can apply the “good” ERM learner described in Daniely et al. (2011)
with respect to the class HXd,Cantor and obtain an algorithm for Hd whose sample complex-

ity is ≤ ln(1/δ)
ε . Note that this algorithm is improper — it might output a hypothesis from

3

http://en.wikipedia.org/wiki/Cantor's_theorem
http://en.wikipedia.org/wiki/Cantor's_theorem


Daniely Shalev-Shwartz

HXd,Cantor which is not in Hd. As we show, no proper algorithm is able to learn Hd us-
ing o

(
d
ε

)
examples. To understand the main point in the proof, suppose that an adversary

chooses hA ∈ Hd uniformly at random, and let the algorithm learn it, where the distribution
on Xd is uniform on the complement of A, denoted Ac. Now, the error of every hypothesis
hB ∈ Hd is |B\A|d . Therefore, to return a hypothesis with small error, the algorithm must
recover a set that is almost disjoint from A, and therefore should recover A. However, if
it sees only o(d) examples, all it knows is that some o(d) elements in X do not belong to
A. It is not hard to be convinced that with this little information, the probability that the
algorithm will succeed is negligible.

3. An optimal learner for general classes

In this section we describe and analyze a generic optimal learning algorithm. We start
with an algorithm for a transductive learning setting, in which the algorithm observes
m − 1 labeled examples and an additional unlabeled example, and it should output the
label of the unlabeled example. Later, in Section 3.3 we show a generic reduction from the
transductive setting to the usual inductive learning model (that is, the vanilla PAC model).

Formally, in the transductive model, the algorithm observes a set of m unlabeled ex-
amples, S ∈ Xm, and then one of them is picked uniformly at random, x ∼ U(S). The
algorithm observes the labels of all the examples but the chosen one, and should predict
the label of the chosen example. That is, the input of the algorithm, A, is the set S ∈ Xm,
and the restriction of some h∗ ∈ H to S \ x, denoted h∗|S\x. The algorithm should output
y ∈ Y. The error rate of a transductive algorithm A is the function εA,H : N→ [0, 1] defined
as εA,H(m) = supS∈Xm,h∗∈H

[
Prx∼U(S)

(
A(S, h∗|S\x) 6= h∗(x)

)]
. The error rate of a class

H in the transductive model is defined as εH(m) = infA εA,H(m), where the infimum is over
all transductive learning algorithms.

3.1. The one-inclusion algorithm

We next describe the one-inclusion transductive learning algorithm of Rubinstein et al.
(2006). Let S = {x1, . . . , xm} be an unlabelled sample. For every i ∈ [m] and h ∈ H|S , let
ei,h ⊂ H|S be all the hypotheses in H|S whose restriction to S\{xi} equals to h|S\{xi}. That
is, h′ ∈ ei,h iff for all j 6= i we have h′(xj) = h(xj). Note that if h′ ∈ ei,h then ei,h′ = ei,h.

Given (x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xm, ym) let h ∈ H|S be some hypothesis
for which h(xj) = yj for all j 6= i. We know that the target hypothesis can be any hypothesis
in ei,h. Therefore, we can think on the transductive algorithm as an algorithm that obtains
some ei,h and should output one hypothesis from ei,h. Clearly, if |ei,h| = 1 we know that
the target hypothesis is h. But, what should the algorithm do when |ei,h| > 1 ?

The idea of the one-inclusion algorithm is to think on the collection E = {ei,h}i∈[m],H∈H|S
as a collection of hyperedges of a hypergraph G = (V,E). Recall that in a hypergraph, V is
some set of vertices and each hyperedge e ∈ E is some subset of V . In our case, the vertex
set is V = H|S . This hypergraph is called the one-inclusion hypergraph. Note that if |e| = 2
for every e ∈ E we obtain the usual definition of a graph. In such a case, an orientation of
an undirected edge e = {v1, v2} is picking one of the vertices (e.g. v1) to be the “head” of
the edge. Similarly, an orientation of a hyperedge is choosing one v ∈ e to be the “head” of
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the hyperedge. And, an orientation of the entire hypergraph is a function f : E → V such
that for all e ∈ E we have that f(e) ∈ e.

Getting back to our transductive learning task, it is easy to see that any (deterministic)
transductive learning algorithm is equivalent to an orientation function f : E → V of the
one-inclusion hypergraph. The error rate of such an algorithm, assuming the target function
is h∗ ∈ H|S , is

Pr
i∼U([m])

[f(ei,h∗) 6= h∗] =
1

m

m∑
i=1

1[f(ei,h∗) 6= h∗] =
|{e ∈ E : h∗ ∈ e ∧ f(e) 6= h∗}|

m
. (1)

The quantity |{e ∈ E : h∗ ∈ e ∧ f(e) 6= h∗}| is called the out-degree of the vertex h∗

and denoted d+(h∗). It follows that the error rate of an orientation f is maxh∗∈H|S
d+(h∗)
m .

It follows that the best deterministic transductive algorithm should find an orientation of
the hypergraph that minimizes the maximal out degree. This leads to the one-inclusion
algorithm.

Algorithm 1 Multiclass one inclusion algorithm for H ⊂ YX

1: Input: unlabeled examples S = (x1, . . . , xm), labels (y1, . . . , yi−1, yi+1, . . . , ym)
2: Define the one-inclusion graph G = (V,E) where V = H|S and E = {ej,h}j∈[m],h∈V
3: Find orientation f : E → V that minimizes the maximal out-degree of G
4: Let h ∈ V be s.t. h(xj) = yj for all j 6= i, and let ĥ = f(ei,h)

5: Output: predict ĥ(xi)

3.2. Analysis

The main result of this section is a new analysis of the one inclusion algorithm, showing its
optimality in the transductive model, up to a constant factor of 1/2. In the next subsection
we deal with the PAC model.

To state our results, we need a few definitions. Let G = (V,E) be a hypergraph.
Throughout, we only consider hypergraphs for which E is an antichain (i.e., there are no
e1, e2 ∈ E such that e1 is strictly contained in e2). Given U ⊆ V , define the induced
hypergraph, G[U ], as the hypergraph whose vertex set is U and whose edge set is all sets
e ⊆ U such that e = U∩e′ for some e′ ∈ E, |e| ≥ 2, and e is maximal w.r.t. these conditions.

The degree of a vertex v in a hypergraph G = (V,E) is the number of hyperedges, e ∈ E,
such that |e| ≥ 2 and v ∈ e. The average degree of G is d(G) = 1

|V |
∑

v∈V d(v). The maximal

average degree of G is md(G) = maxU⊆V :|U |<∞ d(G[U ]). For a hypothesis class H define

µH(m) = max{md(G(H|S)) | S ∈ Xm} ,

where G(H|S) is the one-inclusion hypergraph defined in Algorithm 1.

Theorem 2 For every class H, 1
2
µH(m)
m ≤ εH(m) ≤ µH(m)

m .

Proof To prove the upper bound, recall that the one inclusion algorithm uses an orientation
of the one-inclusion hypergraph that minimizes the maximal out-degree, and recall that in
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(1) we have shown that the error rate of an orientation function is upper bounded by the
maximal out-degree over m. Therefore, the proof of the upper bound of the theorem follows
directly from the following lemma:

Lemma 3 Let G = (V,E) be a hypergraph with maximal average degree d. Then, there
exists an orientation of G with maximal out-degree of at most d.

The proof of the lemma is given in the appendix.
While the above proof of the upper bound is close in spirit to the arguments used by

Haussler et al. (1988) and Rubinstein et al. (2006), the proof of the lower bound relies on
a new argument. As opposed to Rubinstein et al. (2006) who lower bounded εH(m) using
the Natarajan dimension, we give a direct analysis.

Let S ∈ Xm be a set such that md(G(H|S)) = µH(m). For simplicity we assume that
|S| = m (i.e., S does not contain multiple elements). Since md(G(H|S)) = µH(m), there
is finite F ⊂ G with d(G(F|S)) = µH(m). Consider the following scenario. Suppose that
h∗ ∈ F|S is chosen uniformly at random, and in addition, a point x ∈ S is also chosen
uniformly at random. Now, suppose that a learner A is given the sample S with all points
labelled by h∗ except x that is unlabelled. It is enough to show that the probability that A
errs is ≥ µH(m)

2m .
Denote by U the event that x correspond to an edge in G(F|S) coming out of h∗. Given

U , the value of h∗(x), given what the algorithm sees, is distributed uniformly in the set
{h(x) | h ∈ F and h|S\{x} = h∗|S\{x}}. Since this set consists of at least two elements,

given U , the algorithm errs with probability ≥ 1
2 .

It is therefore enough to prove that Pr(U) ≥ µH(m)
m . Indeed, given h∗, the probability

that x corresponds to an edge coming out of h∗ is exactly the degree of h∗ over m. There-
fore, the probability that x corresponds to an edge coming out of a randomly chosen h∗ is
the average degree of G(F|S) over m, i.e., µH(m)

m .

3.3. PAC optimality: from transductive to inductive learning

In the previous section we have analyzed the optimal error rate of learning in the trans-
ductive learning. We now turn to the inductive PAC model. By a simple reduction from
inductive to transductive learning, we will show that a variant of the one-inclusion algorithm
is essentially optimal in the PAC model.

First, any transductive algorithm A can be naturally interpreted as an inductive al-
gorithm, which we denote by Ai. Specifically, Ai returns, after seeing the sample S =
{(xi, yi)}m−1

i=1 , the hypothesis h : X → Y such that h(x) is the label A would have predicted
for x after seeing the labelled sample S.

It holds that (see the appendix) the (worst case) expectation of the error of the hypoth-
esis returned by Ai operating on m points sample, is the same, up to a factor of e to εA(m).
Using this fact and a simple amplification argument, it is not hard to show that a variant
of the one-inclusion algorithm is essentially optimal in the PAC model.

Namely, we consider the algorithm I that splits the sample into 2 log(1/δ) parts, run the
one inclusion algorithm on log(1/δ) different parts to obtain log(1/δ) candidate hypotheses,
and finally chooses the best one, by validation on the remaining points. As the following
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theorem (whose proof is given in the appendix) shows, I is optimal up to a factor of
O
(
log
(

1
δ

)
log
(

1
ε

))
in the PAC model, in the following sense:

Theorem 4 For some c > 0, and every class H, mI,H(ε, δ) ≤ mPAC,H (cε, δ)·1c log(1/δ) log(1/ε).

4. Efficient optimal learning and gaps for linear classes

In this section we study the family of linear hypothesis classes. This family is widely used
in practice and received a lot of attention in the literature—see for example Crammer and
Singer (2001); Collins (2000, 2002); Lafferty et al. (2001); Taskar et al. (2003); Tsochan-
taridis et al. (2004). We show that, rather surprisingly, even for such simple classes, there
can be gaps between the ERM sample complexity and the PAC sample complexity. This
settles in negative an open question raised by Collins (2005). We also derive computa-
tionally efficient optimal learners for linear classes, based on the concept of compression
schemes. This is in contrast to the one-inclusion algorithm from the previous section, which
in general is inefficient. Due to the lack of space, most proofs are deferred to the appendix.

4.1. Linear hypothesis classes

We first define the various hypothesis classes of multiclass linear classifiers that we study.
All of these classes depend on a class-specific feature mapping, Ψ : X × Y → Rd. We will
provide several examples of feature mappings that are widely used in practice.

4.1.1. Dimension based linear classifiers (denoted HΨ)

For w ∈ Rd and x ∈ X , define the multiclass predictor hw(x) = argmaxy∈Y〈w,Ψ(x, y)〉.
In case of a tie, hw(x) is assumed to be the “don’t know label”, �. The corresponding
hypothesis class is defined as HΨ = {hw | w ∈ Rd}.

Example 1 (multivector construction) If the labels are unstructured, a canonical choice
of Ψ is the so called multivector construction. Here, Y = [k], X = Rd and Ψ : X ×Y → Rdk
is defined as follows: Ψ(x, y) is the d × k matrix whose y’th column is x, while the rest
are 0. In this case, every classifier corresponds to a matrix W , and the prediction on an
instance x ∈ Rd is the index of the column that maximizes the inner product with x.

4.1.2. Large margin linear classifiers (denoted HΨ,R)

The second kind of hypothesis class induced by Ψ is margin based. Here, we assume that
the range of Ψ is contained in the unit ball of Rd. Every vector w ∈ Rd defines a function
hw : X → (Y ∪ {�}) by

∀x ∈ X , hw(x) =

{
y if〈w,Ψ(x, y)−Ψ(x, y′)〉 ≥ 1 for every y′ 6= y

� if no such y exists

The class of linear classifiers of complexity R > 0 induced by Ψ is HΨ,R =
{
hw | ‖w‖2 ≤ R

}
.

Example 2 (multivector construction with margin) The margin based analogue to
example 1 is defined similarly. This class is the class that is learnt by multiclass SVM.
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4.1.3. The classes Hd,t,q and Hd,t,q,R for structured output prediction

Next we consider an embedding Ψ that is specialized and used in classification tasks where
the number of possible labels is exponentially large, but the labels are structured (e.g.
Taskar et al. (2003)). For example, in speech recognition, the label space might me the
collection of all sequences of ≤ 20 English words.

To motivate the definition, consider the case that we are to recognize a t-letter word
appearing in an image. Let q be the size of the alphabet. The set of possible labels is
naturally associated with [q]t. A popular method to tackle this task (see for example Taskar
et al. (2003)) is the following: The image is broken into t parts, each of which contains a
single letter. Each letter is represented as a vector in Rd. Thus, each image is represented
as a matrix in Md×t. To devise a linear hypothesis class to this problem, we should specify
a mapping Ψ : Md×t × [q]t → Rn for some n. Given X ∈ Md×t and y ∈ [q]t, Ψ(X, y) will
be a pair (Ψ1(X, y),Ψ2(X, y)). The mapping Ψ1 allows the classifiers to take into account
the shape of the letters appearing in the different t parts the word was broken into. The
mapping Ψ2 allows the classifiers to take into account the structure of the language (e.g.
the fact that the letter “u” usually appears after the letter “q”). Ψ1(X, y) ∈ Md×q is
the matrix whose j’th column is the sum of the columns Xi with yi = j (in other words,
the j’th column is the sum of the letters in the image that are predicted to be j by y).
Ψ2(X, y) ∈Mq,q will be the matrix with 1 in the (i, j) entry if the letter j appears after the
letter i somewhere in the word y, and 0 in all other entries. Even though the number of
labels is exponential in t, this class (in the realizable case) can be learnt in time polynomial
in d, t and q (see Collins (2005)).

We will show gaps in the performance of different ERMs for the class HΨ. If fact, we
will prove a slightly stronger result. We will consider the class HΨ1 , that we will denote by
Hd,t,q. It is easy to see that HΨ1 can be realized by HΨ. Therefore, any lower bound for
HΨ1 automatically lower bounds also HΨ. As for upper bounds, as long as q = O(d), the
upper bounds we show are the same for HΨ and HΨ1 . To summarize, the gaps we show for
HΨ1 automatically (as long as q = O(d)) hold for HΨ as well.

Finally, we define a margin-based analogue toHd,t,q. The instance space is (Bd)t, and we
treat each X ∈ (Bd)t as a matrix with t columns, each of which is a vector in Bd. The labels
are [q]t. Define Ψ : (Bd)t × [q]k → Md×q as follows: for X ∈ (Bd)t and y ∈ [q]t, Ψ(X, y) is
the matrix whose j’th column is 1

q of the average of all columns Xi such that yi = j. Note
that the range of Ψ is contained in the unit ball. For R > 0, define Hd,t,q,R := HΨ,R.

4.2. Results

We begin with linear predictors without margin. The first part of the following theorem
asserts that for every Ψ : X ×Y → Rd there is some algorithm that learns HΨ with sample

complexity O
(
d log(1/ε)+log(1/δ)

ε

)
. The second part of the theorem shows that in several

cases (i.e., for some Ψ’s), this algorithm outperforms other ERMs, by a factor of log(|Y|).

Theorem 5
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� For every Ψ : X × Y → Rd, the PAC sample complexity of HΨ is O
(
d log(1/ε)+log(1/δ)

ε

)
,

and is achievable by a new efficient1 compression scheme.
� For every Y and d > 0, there is some Ψ : X × Y → Rd for which the ERM sample

complexity of HΨ is Ω
(
d log(|Y|)+log(1/δ)

ε

)
.

To put the result in the relevant context, it was known (e.g. Daniely et al. (2011)) that the

sample complexity of every ERM for this class is O
(
d log(|Y|) log(1/ε)+log(1/δ)

ε

)
. In particular,

the second part of the theorem is tight, up to the logarithmic dependence over 1
ε . However,

it was not known whether the factor of log(|Y|) for general ERM is necessary. The second
part of the theorem shows that this factor is indeed necessary.

As to the tightness of the first part, for certain embeddings, including the multivector

construction (example 1), a lower bound of Ω
(
d+log(1/δ)

ε

)
is known for every algorithm.

Hence, the first part of the theorem is also tight up to the logarithmic dependence over 1
ε .

Our second theorem for linear classes is analogous to theorem 5 for margin based classes.
The first part shows that for every Ψ : X × Y → Bd there is some algorithm that learns

HΨ,R with sample complexity O
(
R log(1/ε)+log(1/δ)

ε

)
. The second part of the theorem shows

that in several cases, the above algorithm outperforms other ERMs, by a factor of log(|Y|).

Theorem 6

� For every Ψ : X × Y → Bd and R > 0, the PAC sample complexity of HΨ,R is

O
(
R log(1/ε)+log(1/δ)

ε

)
.

� For every Y and R > 0, there is some Ψ : X × Y → Bd for2 which the ERM sample

complexity of HΨ,R is Ω
(
R log(|Y|)+log(1/δ)

ε

)
.

The first part of the theorem is not new. An algorithm that achieves this bound is the
perceptron. It was known (e.g. Collins (2005)) that the sample complexity of every ERM

for this class is O
(
R log(|Y|/ε)+log(1/δ)

ε

)
. In particular, the second part of the theorem is tight,

up to the logarithmic dependence over 1
ε . However, it was not known whether the gap is

real: In (Collins, 2005), it was left as an open question to show whether the perceptron’s
bound holds for every ERM. The second part of the theorem answers this open question in
negative. Regarding lower bounds, as in the case of HΨ, for certain embeddings, including

the multivector construction with margin (example 1), a lower bound of Ω
(
R+log(1/δ)

ε

)
is

known and valid for every learning algorithm. In particular, the first part of the theorem
is also tight up to the logarithmic dependence over 1

ε .
An additional result that we report on shows that, for every Ψ : X × Y → Rd, the

Natarajan dimension of HΨ is at most d (the definition of the Natarajan dimension is
recalled in the appendix). This strengthens the result of (Daniely et al., 2011) who showed
that it is bounded by O(d log(d)). It is known (e.g. Daniely et al. (2012)) that for the
multivector construction (example 1), in which the dimension of the range of Ψ is dk, the

1. Assuming we have an appropriate separation oracle.
2. Here, d can be taken to be polynomial in R and log(|Y|).

9
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Natarajan dimension is lower bounded by (d − 1)(k − 1). Therefore, the theorem is tight
up to a factor of 1 + o(1).

Theorem 7 For every Ψ : X × Y → Rd, Ndim(HΨ) ≤ d.

Next, we give analogs to theorems 5 and 6 for the structured output classes Hd,k and Hd,k,R.
These theorems show that the phenomenon of gaps between different ERMs, as reported in
(Daniely et al., 2011), happens also in hypothesis classes that are used in practice.

Theorem 8

� For every d, t, q > 0, the PAC sample complexity of Hd,t,q is O
(
dq log(1/ε)+log(1/δ)

ε

)
.

� For every d, t, q > 0 the ERM sample complexity of Hd,t,q is Ω
(
dq log(t)+log(1/δ)

ε

)
.

Theorem 9

� For every d, t, q, R > 0, the PAC sample complexity of Hd,t,q,R is O
(
R log(1/ε)+log(1/δ)

ε

)
.

� For every t, q, R > 0 and d ≥ (t + 1)R, the ERM sample complexity of Hd,t,q,R is

Ω
(
R log(t)+log(1/δ)

ε

)
.

The first parts of theorems 8 and 9 are direct consequences of theorems 5 and 6. These
results are also tight up to the logarithmic dependence over 1

ε . The second parts of the
theorems do not follow from theorems 5 and 6. Regarding the tightness of the second part,
the best known upper bounds for the ERM sample complexity of Hd,t,q and Hd,t,q,R are

O
(
dqt log( 1

ε
)+log(1/δ)

ε

)
and O

(
Rt log( 1

ε
)+log(1/δ)

ε

)
respectively. Closing the gap between these

upper bounds and the lower bounds of theorems 8 and 9 is left as an open question.

4.3. The compression-based optimal learners

Each of the theorems 5, 6, 8 and 9 are composed of two statements. The first claims that
some algorithm have a certain sample complexity, while the second claims that there exists
an ERM whose sample complexity is worse than the sample complexity of the algorithm
from the first part. As explained in this subsection, the first parts of these theorems are
established by devising (efficient) compression schemes. In the next subsection we will elab-
orate on the proof of the second parts (the lower bounds on specific ERMs). Unfortunately,
due to lack of space, we must be very brief.

We now show that for linear classes, it is possible to derive optimal learners which are
also computationally efficient. For the case of margin-based classes, this result is not new
— an efficient algorithm based on the multiclass perceptron has been proposed in Collins
(2002). For completeness, we briefly survey this approach in the appendix. For dimension
based linear classes, we give a new efficient algorithm.

The algorithm relies on compression based generalization bounds (see Theorem 18 in
the appendix). Based on this theorem, it is enough to show that for every Ψ : X ×Y → Rd,
HΨ has a compression scheme of size d. We consider the following compression scheme.
Given a realizable sample (x1, y1), . . . , (xm, ym), let Z ⊆ Rd be the set of all vectors of the
form Ψ(xi, yi) − Ψ(xi, y) for y 6= yi. Let w be the vector of minimal norm in the convex
hull of Z, conv(Z). Note that by the convexity of conv(Z), w is unique and can be found
efficiently using a convex optimization procedure. Represent w as a convex combination of

10



Multiclass Learning

d vectors from Z. This is possible since, by claim 1 below, 0 6∈ conv(Z). Therefore, w is in
the boundary of the polytope conv(Z). Thus, w lies in a convex polytope whose dimension
is ≤ d− 1, and is the convex hull of points from Z. Therefore, by Caratheodory’s theorem
(and using its efficient constructive proof), w is a convex combination of ≤ d points from
Z. Output the examples in the sample that correspond to the vectors in the above convex
combination. If there are less than d such examples, arbitrarily output more examples.

The De-Compression procedure is as follows. Given (x1, y1), . . . , (xd, yd), let Z ′ ⊆ Rd be
the set of all vectors of the form Ψ(xi, yi)−Ψ(xi, y) for y 6= yi. Then, output the minimal
norm vector w ∈ conv(Z ′).

In the appendix (Section D.5) we show that this is indeed a valid compression scheme,
that is, if we start with a realizable sample (x1, y1), . . . , (xm, ym), compress it, and then
de-compress it, we are left with a hypothesis that makes no errors on the original sample.

4.4. Lower bounds for specific ERMs

Next, we explain how we prove the second parts of theorems 5, 6, 8 and 9. For theorems
5 and 6, the idea is to start with the first Cantor class (introduced in section 2) and by a
geometric construction, realize it by a linear class. This realization enables us to extend
the “bad ERM” for the first Cantor class, to a “bad ERM” for that linear class. The idea
behind the lower bounds of theorems 8 and 9 is similar, but technically more involved.
Instead of the first Cantor class, we introduce a new discrete class, the second Cantor class,
which may be of independent interest. This class, which can be viewed as a dual to the first
Cantor class, is defined as follows. Let Ỹ be some non-empty finite set. Let X = 2Ỹ and

let Y = Ỹ ∪ {∗}. For every y ∈ Ỹ define a function hy : X → Y by hy(A) =

{
y y ∈ A
∗ otherwise

.

Also, let h∗ : X → Y be the constant function ∗. Finally, let HY,Cantor = {hy | y ∈ Y}. In
section C we show that the graph dimension (see a definition in the appendix) of HY,Cantor

is Θ(log(|Y|)). The analysis of the graph dimension of this class is more involved than the
first Cantor class: by a probabilistic argument, we show that a random choice of Ω (log(|Y|))
points from X is shattered with positive probability. We show also (see section C) that the

PAC sample complexity of HY,Cantor is ≤ log(1/δ)
ε . Since the graph dimension characterizes

the ERM sample complexity (see the appendix), this class provides another example of a
hypothesis class with gaps between ERM and PAC learnability.

5. A new dimension

Consider again the question of characterizing the sample complexity of learning a class H.
Theorem 2 shows that the sample complexity of a class H is characterized by the sequence
of densities µH(m). A better characterization would be a notion of dimension that assigns
a single number, dim(H), that controls the growth of µH(m), and consequently, the sample
complexity of learning H. To reach a plausible generalization, let us return for a moment
to binary classification, and examine the relationships between the VC dimension and the
sequence µH(m). It is not hard to see that

� The VC dimension of H is the maximal number d such that µH(d) = d.

11
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Moreover, a beautiful result of Haussler et al. (1988) shows that

� If |Y| = 2, then VCdim(H) ≤ µH(m) ≤ 2 VCdim(H) for every m ≥ VCdim(H).

These definition and theorem naturally suggest a generalization to multiclass classification:

Definition 10 The dimension, dim(H), of the class H ⊂ YX is the maximal number d
such that µH(d) = d.

Conjecture 11 There exists a constant C > 0 such that for every H and m ≥ dim(H),
dim(H) ≤ µH(m) ≤ C · dim(H) . Consequently, by Theorem 2,

εH(m) = Θ

(
dim(H)

m

)
and Ω

(
dim(H) + log

(
1
δ

)
ε

)
≤ mH(ε, δ) ≤ O

(
dim(H) log

(
1
δ

)
ε

)

For concreteness, we give an equivalent definition of dim(H) and a formulation of conjecture
11 that are somewhat simpler, and do not involve the sequence µH(m)

Definition 12 Let H ⊂ YX . We say that A ⊂ X is shattered by H is there exists a finite
F ⊂ H such that for every x ∈ A and f ∈ F there is g ∈ F such that g(x) 6= f(x) and
g|A\{x} = f |A\{x}. The dimension of H is the maximal cardinality of a shattered set.

Recall that the degree (w.r.t. H ⊂ YX ) of f ∈ H is the number of points x ∈ X for which
there exists g ∈ H that disagree with f only on x. We denote the average degree of H by
d(H).

Conjecture 13 There exists C > 0 such that for every finite H, d(H) ≤ C · dim(H).

By combination of theorems 2 and Rubinstein et al. (2006), a weaker version of conjecture
11 is true. Namely, that for some absolute constant C > 0

dim(H) ≤ µH(m) ≤ C · log(|Y|) · dim(H) . (2)

In addition, it is not hard to see that the new dimension is bounded between the Natarajan
and Graph dimensions, Ndim(H) ≤ dim(H) ≤ Gdim(H). For the purpose of characterizing
the sample complexity, this inequality is appealing for two reasons. First, it is known
(Daniely et al., 2011) that the graph dimension does not characterize the sample complexity,
since it can be substantially larger than the sample complexity in several cases. Therefore,
any notion of dimension that do characterize the sample complexity must be upper bounded
by the graph dimension. As for the Natarajan dimension, it is known to lower bound the
sample complexity. By Theorem 2 and equation (2), the new dimension also lower bounds
the sample complexity. Therefore, the left inequality shows that the new dimension always
provides a lower bound that is at least as good as the Natarajan dimension’s lower bound.
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Appendix A. Agnostic learning and further directions

In this work we focused on learning in the realizable setting. For general hypothesis classes,
it is left as an open question to find an optimal algorithm for the agnostic setting. How-
ever, for linear classes, our upper bounds are attained by compression schemes. Therefore,
as indicated by Theorem 18, our results can be extended to the agnostic setting, yield-

ing algorithms for HΨ and HΨ,R whose sample complexity is O
(
d log(d/ε)+log(1/δ)

ε2

)
and

O
(
R log(R/ε)+log(1/δ)

ε2

)
respectively. We note that these upper bounds are optimal, up to the

factors of log(d/ε) and log(R/ε). Our lower bounds clearly hold for agnostic learning (this
is true for any lower bound on the realizable case). Yet, we would be excited to see better
lower bounds for the agnostic setting. Specifically, are there classes H ⊂ YX of Natarajan

dimension d with ERMs whose agnostic sample complexity is Ω
(
d log(|Y|)

ε2

)
?

Except extensions to the agnostic settings, the current work suggests several more di-
rections for further research. First, it would be very interesting to go beyond multiclass
classification, and to devise generic optimal algorithms for other families of learning prob-
lems. Second, as noted before, naive implementation of the one-inclusion algorithm is
prohibitively inefficient. Yet, we still believe that the ideas behind the one-inclusion algo-
rithm might lead to better efficient algorithms. In particular, it might be possible to derive
efficient algorithms based on the principles behind the one-inclusion algorithm, and maybe
even give an efficient implementation of the one-inclusion algorithm for concrete hypothesis
classes.
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Appendix B. Background

B.1. The Natarajan and Graph Dimensions

We recall two of the main generalizations of the VC dimension to multiclass hypothesis
classes.

Definition 14 (Graph dimension) Let H ⊆ (Y ∪ {�})X be a hypothesis class. We say
that A ⊆ X is G-shattered if there exists h : A → Y such that for every B ⊆ A there is
h′ ∈ H with h(A) ⊂ Y for which

∀x ∈ B, h′(x) = h(x) while ∀x ∈ A \B, h′(x) 6= h(x) .

The graph dimension of H, denoted Gdim(H), is the maximal cardinality of a G-shattered
set.

As the following theorem shows, the graph dimension essentially characterizes the ERM
sample complexity.

Theorem 15 (Daniely et al. (2011)) For every hypothesis class H with graph dimen-
sion d,

Ω

(
d+ log(1/δ)

ε

)
≤ mERM(ε, δ) ≤ O

(
d log(1/ε) + log(1/δ)

ε

)
.

Definition 16 (Natarajan dimension) Let H ⊆ (Y ∪ {�})X be a hypothesis class. We
say that A ⊆ X is N -shattered if there exist h1, h2 : A→ Y such that ∀x ∈ A, h1(x) 6= h2(x)
and for every B ⊆ A there is h ∈ H for which

∀x ∈ B, h(x) = h1(x) while ∀x ∈ A \B, h(x) = h2(x) .

The Natarajan dimension of H, denoted Ndim(H), is the maximal cardinality of an N -
shattered set.

Theorem 17 (essentially Natarajan (1989)) For every hypothesis class H ⊂ (Y ∪ {�})X
with Natarajan dimension d,

Ω

(
d+ log(1/δ)

ε

)
≤ mPAC(ε, δ) ≤ O

(
d log(|Y|) log(1/ε) + log(1/δ)

ε

)
.

We note that the upper bound in the last theorem follows from theorem 15 and the fact
that (see Ben-David et al. (1995)) for every hypothesis class H,

Gdim(H) ≤ 5 log(|Y|) Ndim(H) . (3)

We also note that (Daniely et al., 2011) conjectured that the logarithmic factor of |Y| in
Theorem 17 can be eliminated (maybe with the expense of poly-logarithmic factors of 1

ε ,
1
δ

and Ndim(H)).
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B.2. Compression Schemes

A compression scheme of size d for a class H is a pair of functions:

Com : ∪∞m=d(X × Y)m → (X × Y)d and DeCom : (X × Y)d → YX ,

with the property that for every realizable sample

S = (x1, y1), . . . , (xm, ym)

it holds that, if h = DeCom ◦Com(S) then

∀1 ≤ i ≤ m, yi = h(xi) .

Each compression scheme yields a learning algorithm, namely, DeCom ◦Com. It is known
that the sample complexity of this algorithm is upper bounded by the size of the compression
scheme. Precisely, we have:

Theorem 18 (Littlestone and Warmuth (1986)) Suppose that there exists a com-
pression scheme of size d for a class H. Then:

� The PAC sample complexity of H is upper bounded by O
(
d log(1/ε)+ 1

δ
ε

)
� The agnostic PAC sample complexity of H is upper bounded by O

(
d log(d/ε)+ 1

δ
ε2

)
Appendix C. The Cantor classes

C.1. The first Cantor class

Let X be some finite set and let Y = 2X ∪ {∗}. For every A ⊆ X define hA : X → Y by

hA(x) =

{
A x ∈ A
∗ otherwise

.

Finally, let
HX ,Cantor = {hA | A ⊂ X} .

Lemma 19 (Daniely et al. (2011))

� The graph dimension of HX ,Cantor is |X |. Therefore, the ERM sample complexity of

HX ,Cantor is Ω
(
|X |+log(1/δ)

ε

)
.

� The Natarajan dimension of HX ,Cantor is 1. Furthermore, the PAC sample complexity

of HX ,Cantor is O
(

log(1/δ)
ε

)
.

Proof For the first part, it is not hard to see that the function f∅ witnesses the G-shattering
of X . The second part follows directly from Lemma 20, given below.
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Lemma 20 (essentially Daniely et al. (2011)) Let H ⊂ YX be a hypothesis class with
the following property: There is a label ∗ ∈ Y such that, for every f ∈ H and x ∈ X , either
f(x) = ∗ or f is the only function in H whose value at x is f(x). Then,

� The PAC sample complexity of H is ≤ log(1/δ)
ε .

� Ndim(H) ≤ 1.

Proof We first prove the second part. Assume on the way of contradiction that Ndim(H) >
1. Let {x1, x2} ⊆ X be an N -shattered set of cardinality 2 and let f1, f2 be two functions
that witness the shattering. Since f1(x1) 6= f2(x1), at least one of f1(x1), f2(x1) is different
from ∗. W.l.o.g, assume that f1(x1) 6= ∗. Now, by the definition of N -shattering, there is
a function f ∈ HY,Cantor such that f(x1) = f1(x1) and f(x2) = f2(x2) 6= f1(x2). However,
the only function in H satisfying f(x1) = f1(x1) is f1. A contradiction.

We proceed to the first part. Assume w.l.o.g. the the function f∗ ≡ ∗ is in H. Consider
the following algorithm. Given a (realizable) sample

(x1, y1), . . . , (xm, ym),

if yi = ∗ for every i then return the function f∗. Otherwise, return the hypothesis h ∈ H,
that is consistent with the sample. Note the the existence of a consistent hypothesis is
guaranteed, as the sample is realizable. This consistent hypothesis is also unique: if yi 6= ∗
then, by the assumption on H, there is at most one function f ∈ H for which h(xi) = yi.

This algorithm is an ERM with the following property: For every learnt hypothesis and
underlying distribution, the algorithm might return only one out of two functions – either
f∗ or the learnt hypothesis. We claim that the sample complexity of such an ERM must be
≤ log(1/δ)

ε . Indeed such an algorithm returns a hypothesis with error ≥ ε only if:

� Err(f∗) ≥ ε.

� For every i ∈ [m], yi = ∗.

However, if Err(f∗) ≥ ε, the probability that yi = ∗ is ≤ 1 − ε. Therefore, the probability

of the the second condition is ≤ (1− ε)m ≤ e−mε, which is ≤ δ if m ≥ log(1/δ)
ε .

C.2. The second Cantor class

Let Ỹ be some non-empty finite set. Let X = 2Ỹ and let Y = Ỹ ∪ {∗}. For every y ∈ Ỹ
define a function hy : X → Y by

hy(A) =

{
y y ∈ A
∗ otherwise

.

Also, let h∗ : X → Y be the constant function ∗. Finally, let HY,Cantor = {hy | y ∈ Y}.

Lemma 21
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� The graph dimension of HY,Cantor is Θ (log (|Y|)). Therefore, the ERM sample com-

plexity of HY,Cantor is Ω
(

log(|Y|)+log(1/δ)
ε

)
.

� The Natarajan dimension of HY,Cantor is 1. Furthermore, the PAC sample complexity

of HY,Cantor is O
(

log(1/δ)
ε

)
.

Proof The second part of the lemma follows from Lemma 20. We proceed to the first
part. First, by equation (3) and the second part, Gdim(HY,Cantor) ≤ 5 log(|Y|). It remains
to show that Gdim(HY,Cantor) ≥ Ω (log(|Y|)). To do so, we must show that there are
r = Ω (log(|Y|)) sets A = {A1, . . . , Ar} ⊆ X such that A is G-shattered by HY,Cantor. To
do so, we will use the probabilistic method (see e.g. Alon and Spencer (2000)). We will
choose A1, . . . , Ar ⊆ Ỹ at random, such that each Ai is chosen uniformly at random from
all subsets of Ỹ (i.e., each y ∈ Ỹ is independently chosen to be in Ai with probability 1

2)

and the different Ai’s are independent. We will show that if r = b log(|Y|−1)
2 c − 2, then

with positive probability A = {A1, . . . , Ar} is G-shattered and |A| = r (i.e., the Ai’s are
different).

Denote d = |Ỹ|. Let ψ : [r] → X be the (random) function ψ(i) = Ai and let φ :
Y → {0, 1} be the function that maps each y ∈ Ỹ to 1 and ∗ to 0. Consider the (random)

binary hypothesis class H = {φ ◦ hy ◦ ψ | y ∈ Ỹ}. As we will show, for r = b log(d)
2 c − 2,

E[|H|] > 2r − 1. In particular, there exists some choice of A = {A1, . . . , Ar} for which
|H| > 2r − 1. Fix those sets for a moment. Since always |H| ≤ 2r, it must be the case that
|H| = 2r, i.e., H = 2[r]. By the definition of H, it follows that for every B ⊆ [r], there is
hy ∈ HY,Cantor such that for every i ∈ B, hy(Ai) = ∗, while for every i /∈ B, hy(Ai) 6= ∗. It
follows that |A| = r and A is G-shattered.

It remains to show that indeed, for r = b log(d)
2 c − 2, E[|H|] > 2r − 1. For every S ⊆ [r],

Let χS be the indicator random variable that is 1 if and only if 1S ∈ H. We have

E[|H|] = E[
∑
S⊆[r]

χS ] =
∑
S⊆[r]

E[χS ] . (4)

Fix some S ⊆ [r]. For every y ∈ Ỹ let χS,y be the indicator function that is 1 if and
only if 1S = φ ◦ hy ◦ ψ. Note that

∑
y∈Ỹ χS,y > 0 if and only if χS = 1. Therefore,

E[χS ] = Pr (χS = 1) = Pr
(∑

y∈Ỹ χS,y > 0
)

. Observe that

E[
∑
y∈Ỹ

χS,y] =
∑
y∈Ỹ

Pr (y ∈ Ai iff i ∈ S) = d · 2−r .

We would like to use Chebyshev’s inequality for the sum
∑

y∈Ỹ χS,y. For this to be effective,

we show next that for different y1, y2 ∈ Ỹ, χS,y1 and χS,y2 are uncorrelated. Note that
E[χS,y1χS,y2 ] is the probability that for every i ∈ S, y1, y2 ∈ Ai while for every i /∈ S,
y1, y2 /∈ Ai. It follows that

E[χS,y1χS,y2 ] = 2−2r .
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Therefore, cov(χS,y1χS,y2) = E[χS,y1χS,y2 ] − E[χS,y1 ]E[χS,y2 ] = 2−2r − 2−r2−r = 0. We
conclude that χS,y1 and χS,y2 are uncorrelated. Thus, by Chebyshev’s inequality,

Pr (χS = 0) = Pr

∑
y∈Ỹ

χS,y = 0


≤ Pr

∣∣∣∣∣∣
∑
y∈Ỹ

χS,y − d · 2−r
∣∣∣∣∣∣ ≥ d · 2−r−1


≤ 22r+2

d2
var

∑
y∈Ỹ

χS,y


=

22r+2

d2

∑
y∈Ỹ

var (χS,y)

≤ 22r+2

d2

∑
y∈Ỹ

E[χS,y]

=
22r+2

d2
d2−r =

2r+2

d
.

Remember that r = b log(d)
2 c−2, so that d > 22r+2. Hence, E[χS ] = 1−Pr(χS = 0) ≥ 1−2−r.

Using equation (4), we conclude that

E[|H|] > (1− 2−r)2r = 2r − 1.

Appendix D. Proofs

D.1. Some lemmas and additional notations

Let X ′,Y ′ be another instance and label spaces. Let Γ : X ′ → X and Λ : Y∪{�} → Y ′∪{�}.
We denote

Λ ◦ H ◦ Γ = {Λ ◦ h ◦ Γ | h ∈ H} .

If Γ (respectively Λ) is the identity function we simplify the above notation to Λ ◦ H
(respectively H ◦ Γ). We say that a hypothesis class H′ ⊆ (Y ′ ∪ {�})X

′
is realizable by

H ⊆ (Y ∪ {�})X if H′ ⊆ Λ ◦ H ◦ Γ for some functions Γ and Λ. Note that in this case,
the different notions of sample complexity with respect to H′ are never larger than the
corresponding notions with respect to H.

Let H ⊂ (Y ∪ {�})X be a hypothesis class. The disjoint union of m copies of H is the
hypothesis class Hm whose instance space is Xm := X × [m], whose label space is Y ∪ {�},
and that is composed of all functions f : Xm → Y ∪ {�} whose restriction to each copy of
X is a function in H (namely, for every i ∈ [m], the function x 7→ f(x, i) belongs to H).
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Lemma 22 Let H ⊆ YX be a hypothesis class. Let Hm be a disjoint union of m copies of
H.

1. If H is realized by HΨ for some Ψ : X ′ × Y ′ → Rd, then Hm is realized by HΨm for
some Ψm : X ′m × Y ′ → Rdm. Here, X ′m is a disjoint union of m copies of X ′.

2. If H is realized by HΨ,R for some Ψ : X ′ × Y ′ → Bd, then Hm is realized by HΨm,mR

for some Ψm : X ′m × Y ′ → Bdm. Here, X ′m is a disjoint union of m copies of X ′.

3. If H is realized by Hd,k, then Hm is realized by Hdm,k.

4. If H is realized by Hd,k,R, then Hm is realized by Hdm,k,mR.

Proof We prove only part 1. The remaining three are very similar. Let Γ : X → X ′,Λ :
Y ′ → Y be two mappings for which

H ⊆ Λ ◦ HΨ ◦ Γ .

Let Xm = X × [m] be a disjoint union of m copies of X . Let Ti : Rd → Rdm be the
linear mapping that maps ej to e(i−1)d+j . Define Ψm : Xm × Y → Rdm by Ψm((x, i), y) =
Ti(Ψ(x, y)). Define Γm : Xm → X ′m by Γm(x, i) = (Γ(x), i). It is not hard to check that

Hm ⊆ Λ ◦ HΨm ◦ Γm .

Lemma 23 Let H ⊆ (Y ∪ {�)X be a hypothesis class and let Hm be a disjoint union of
m copies of H. Then Gdim(Hm) = m ·Gdim(H).

Proof A routine verification.

D.2. Proof of Theorem 1

For simplicity, we prove the theorem for d even and d =∞. For finite d, fix some d-elements
set Xd. Let Yd = 2Xd ∪ {∗}. For A ⊆ Xd define hA : Xd → Yd by

hA(x) =

{
A x ∈ A
∗ otherwise

.

Finally, let

Hd =

{
hA | |A| =

d

2

}
.

We next define a “limit” of the classes Hd. Suppose that the sets {Xd}d is even integer are

pairwise disjoint. Let X∞ = ∪d is evenXd and Y∞ =
(
∪d is even2Xd

)
∪ {∗}. For A ⊆ Xd,

extend hA : Xd → Yd to a function hA : X∞ → Y∞ by defining it to be ∗ outside of Xd.
Finally, let

H∞ =

{
hA | for some d, A ⊆ Xd and |A| = d

2

}
.

We will use the following version of Chernoff’s bound:
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Theorem 24 Let X1, . . . , Xn ∈ {0, 1} be independent random variables, X = X1+. . .+Xn

and µ = E[X]. Then Pr (X ≥ 2µ) ≤ exp
(
−µ

3

)
.

We are now ready to prove Theorem 1. The first part follows from Lemma 20. The
last part is a direct consequence of the first and second part. We proceed to the second
part. For d < ∞, the task of properly learning Hd can be easily reduced to the task
of properly learning H∞. Therefore, the sample complexity of learning H∞ by a proper
learning algorithm is lower bounded by the sample complexity of properly learning Hd.
Therefore, it is enough to prove the second part for finite d.

Fix some x0 ∈ X . Let ε > 0. Let A ⊂ Xd \ {x0} be a set with d
2 elements. Let DA be a

distribution on Xd × Yd that assigns a probability of 1 − 16ε to some point (x0, hA(x0)) ∈
Xd × Yd and is uniform on the remaining points of the form {(x, hA(x)) | x 6∈ A}.

We claim that there is some A such that whenever A runs on DA with m ≤ 1
128

d
ε

examples, it outputs with probability ≥ 1
2 a hypothesis with error ≥ ε. This shows that

for every δ < 1
2 , mA(ε, δ) ≥ 1

128
d
ε . Also, since Hd contains two different function that agree

on some point, by a standard argument, we have mA(ε, δ) = Ω
(

log(1/δ)
ε

)
. Combining these

two estimates, the proof is established.
It remains to show the existence of such A. Suppose that A is chosen uniformly at

random among all subsets of Xd \ {x0} of size d
2 . Let X be the random variable count-

ing the number of samples, out of 1
128

d
ε i.i.d. examples drawn from DA, which are not

(x0, hA(x0)). We have E[X] = 1
8d. Therefore, by Chernoff’s bound 24, with probability

> 1 − exp
(
− d

24

)
> 1

2 , the algorithm will see less than d
4 examples whose instance is from

X \ {x0} \A. Conditioning on this event, A is a uniformly chosen random set of size d
2 that

is chosen uniformly from all subsets of a set X ′ ⊂ X with |X ′| ≥ 3
4d (X ′ is the set of all

points that are not present in the sample), and the hypothesis returned by the algorithm
is hB, where B ⊂ X is a subset of size d

2 that is independent from A. It is not hard to see
that in this case E|B \ A| ≥ 1

6d. Hence, there exists some A for which, with probability
> 1

2 over the choice of the sample, |B \ A| ≥ 1
6d. For such A we have, since hB errs on all

elements in B \A and the probability of each such element is ≥ 16ε
d
2

= 32
d ε,

ErrDA(hB) ≥ |B \A|32ε

d
≥ d

6

32ε

d
> ε

with probability > 1
2 over the choice of the sample.

D.3. Proof of Lemma 3

We first prove it to finite hypergraphs. We use induction on the number of vertices. By
assumption, d(G) ≤ d. Therefore, there is v0 ∈ V with d(v0) ≤ d. Let G′ = (V ′, E′) =
G[V \ {v0}]. By the induction hypothesis, there exists an orientation h′ : E′ → V ′ with
maximal out-degree d. We define an orientation h : E → V by

h(e) =

{
v e = {v0, v}
h′(e \ {v0}) otherwise

The lemma extend to the case where Y is infinite by a standard application of the com-
pactness theorem for propositional calculus.
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D.4. Proof of theorem 4

Let A be some learning algorithm, and denote by I the one inclusion algorithm. Suppose
that we run A on mA,H

(
ε
2 ,

ε
2

)
examples, obtain a hypothesis h and predict h(x) on some

new example. The probability of error if ≤
(
1− ε

2

)
ε
2 + ε

2 ≤ ε. By theorem 2, it follows that

mA,H

( ε
2
,
ε

2

)
≥ min

{
m | 1

2e

µH(m)

m
≤ ε
}

=: m̄ .

Now, if we run the one inclusion algorithm on m̄ examples then, again by theorem 2, the
probability that the hypothesis it return will err a new example is ≤ 2eε. Therefore, the
probability that the error of the returned hypothesis is ≥ 4eε is ≤ 1

2 . In follows that

m̄ ≥ mI,H
(

4eε,
1

2

)
.

Combining the two inequalities, we obtain that

mI,H

(
4eε,

1

2

)
≤ mA,H

( ε
2
,
ε

2

)
Since this is true for every algorithm A, we have

mI,H

(
4eε,

1

2

)
≤ mPAC,H

( ε
2
,
ε

2

)
≤ mPAC,H

(
ε

4
,
1

2

)
·O (log(1/ε))

Here, the last inequality follows by a standard repetition argument. Equivalently,

mI,H

(
ε,

1

2

)
≤ mPAC,H

(
ε

16e
,
1

2

)
·O (log(1/ε))

Again, using a repetition argument we conclude that

mI,H(ε, δ) ≤ mI,H
(
ε

2
,
1

2

)
·O (log(1/δ)) ≤ mPAC,H

(
ε

32e
,
1

2

)
·O (log(1/δ) log(1/ε))

D.5. Validity of the compression scheme given in Section 4.3

It is not hard to see that the hypothesis we output is the minimal-norm vector w ∈ conv(Z)
(where Z is the set defined in the compression step). It is left to show that w makes no
errors on the original sample. Indeed, otherwise there exists z ∈ Z for which 〈w, z〉 ≤ 0.

By claim 1, z 6= 0. For α = ‖w‖2
‖z‖2+‖w‖2 ∈ (0, 1), let w′ = (1 − α)w + αz. We have that

w′ ∈ conv(Z). Moreover,

‖w′‖2 = (1− α)2‖w‖2 + α2‖z‖2 + 2α(1− α)〈w, z〉 ≤ (1− α)2‖w‖2 + α2‖z‖2

=
‖z‖4‖w‖2 + ‖w‖4‖z‖2

(‖z‖2 + ‖w‖2)2 =
‖z‖2‖w‖2

‖z‖2 + ‖w‖2
< ‖w‖2 .

This contradicts the minimality of w. It only remains to prove the following claim, which
was used in the analysis.
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Claim 1 Let (x1, y1), . . . , (xm, ym) be a realizable sample and let Z be the set of all vectors
of the form Ψ(xi, yi)−Ψ(xi, y) for y 6= yi. Then 0 6∈ conv(Z).

Proof Since the sample is realizable, there exists a vector w in Rd for which, ∀z ∈
Z, 〈w, z〉 > 0. Clearly, this holds also for every z ∈ conv(Z), hence 0 6∈ conv(Z).

D.6. Proof of the second part of Theorem 5

Without loss of generality, we assume that Y consists of 2n + 1 elements for some natural
number n (otherwise, use only 2n + 1 labels, where n is the largest number satisfying
2n + 1 ≤ |Y|). Let X be a set consisting of n elements. By renaming the names of the
labels, we can assume that Y = 2X ∪ {∗}. By Lemma 21, the ERM sample complexity of

HX ,Cantor is Ω
(

log(|Y|)+log(1/δ)
ε

)
. We will show that there exists a function Ψ : X ×Y → R3,

such that HX ,Cantor is realized by HΨ. It follows that the ERM sample complexity of HΨ is

also Ω
(

log(|Y|)+log(1/δ)
ε

)
. Therefore, the second part of Theorem 5 is proved for d = 3. The

extension of the result to general d follows from Lemma 22.
Definition of Ψ: Denote k = 2|X | and let f : 2X → {0, 1, . . . , k − 1} be some one-to-one

mapping. For A ⊆ X define

φ(A) =

(
cos

(
2πf(A)

k

)
, sin

(
2πf(A)

k

)
, 0

)
.

Also, define
φ(∗) = (0, 0, 1) .

Note that for different subsets A,B ⊆ X we have that

〈φ(A), φ(B)〉 = cos

(
2π(f(A)− f(B))

k

)
≤ cos

(
2π

k

)
<

1

2
+

1

2
cos

(
2π

k

)
< 1 (5)

Define Ψ : X × Y → R3 by

∀A ⊂ X , Ψ(x,A) =

{
φ(A) x ∈ A
0 x 6∈ A

Ψ(x, ∗) =

(
1

2
+

1

2
cos

(
2π

k

))
· φ(∗)

Claim 2 HX ,Cantor is realized by HΨ.

Proof We will show that HX ,Cantor ⊆ HΨ. Let B ⊆ X . We must show that hB ∈ HΨ. Let
w ∈ R3 be the vector

w = φ(B) + φ(∗) .

We claim that for the function hw ∈ HΨ, defined by w we have hw = hB. Indeed, let x ∈ X
we split into the cases x ∈ B and x /∈ B.
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Case 1 (x ∈ B): We must show that hw(x) = B. That is, for every y ∈ Y \ {B},

〈w,Ψ(x,B)〉 > 〈w,Ψ(x, y)〉 .

Note that
〈w,Ψ(x,B)〉 = 〈φ(B) + φ(∗), φ(B)〉 = 1 .

Therefore, for every y ∈ Y \ {B}, we must show that 1 > 〈w,Ψ(x, y)〉. We split into three
cases. If y = A for some A ⊆ X and x ∈ A then, using equation (5),

〈w,Ψ(x, y)〉 = 〈φ(B) + φ(∗), φ(A)〉 = 〈φ(B), φ(A)〉 < 1 .

If y = A for some A ⊆ X and x 6∈ A then,

〈w,Ψ(x, y)〉 = 〈φ(B) + φ(∗), 0〉 = 0 < 1 .

If y = ∗ then,

〈w,Ψ(x, y)〉 =

〈
φ(B) + φ(∗),

(
1

2
+

1

2
cos

(
2π

k

))
· φ(∗)

〉
=

1

2
+

1

2
cos

(
2π

k

)
< 1 .

Case 2 (x /∈ B): We must show that hw(x) = ∗. That is, for every A ∈ Y \ {∗},

〈w,Ψ(x, ∗)〉 > 〈w,Ψ(x,A)〉 .

Note that

〈w,Ψ(x, ∗)〉 =

〈
φ(B) + φ(∗),

(
1

2
+

1

2
cos

(
2π

k

))
φ(∗)

〉
=

1

2
+

1

2
cos

(
2π

k

)
.

Therefore, for every A ∈ Y \{B}, we must show that 1
2 + 1

2 cos
(

2π
k

)
> 〈w,Ψ(x,A)〉. Indeed,

if x ∈ A then A 6= B (since x /∈ B). Therefore, using equation (5),

〈w,Ψ(x,A)〉 = 〈φ(B) + φ(∗), φ(A)〉 = 〈φ(B), φ(A)〉 < 1

2
+

1

2
cos

(
2π

k

)
.

If x /∈ A then

〈w,Ψ(x,A)〉 = 〈φ(B) + φ(∗), 0〉 = 0 <
1

2
+

1

2
cos

(
2π

k

)
.

D.7. Proof of Theorem 6

To prove the first part of Theorem 6, we will rely again on Theorem 18. We will show
a compression scheme of size O(R), which is based on the multiclass perceptron. This
compression scheme is not new. However, for completeness, we briefly survey it next.
Recall that the multiclass perceptron is an online classification algorithm. At each step it
receives an instance and tries to predict its label, based on the observed past. The two
crucial properties of the preceptron that we will rely on are the following:

� If the perceptron runs on a sequence of examples that is realizable by HΨ,R, then it
makes at most O(R) mistakes.
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� The predictions made by the perceptron algorithm, are affected only by previous
erroneous predictions.

Based on these two properties, the compression scheme proceeds as follows: Given a re-
alizable sample S = {(x1, y1), . . . , (xm, ym)}, it runs the preceptron algorithm Ω(R) times
on the sequence (x1, y1), . . . , (xm, ym) (without a reset between consecutive runs). By the
first property, in at least one of these runs, the preceprton will make no mistakes on the
sequence (x1, y1), . . . , (xm, ym) (otherwise, there would be Ω(R) mistakes in total). The
output of the compression step would be the erroneous examples previous to this sequence.
By the first property, the number of such examples is O(R). The decompression will run
the preceptron on these examples, and output the hypothesis h : X → Y, such that h(x)
is the prediction of the perceptron on x, after operating on these examples. By the second
property, h is correct on every xi.

We proceed to the second part. By Lemma 23 and Lemma 19, it is enough to show
that a disjoint union of Ω(R) copies of HX ,Cantor, with |X | = Ω(log(|Y|)), can be realized
by HΨ,R for an appropriate mapping Ψ : X × Y → Bd for some d > 0. By Lemma 22, it is
enough to show that, for some universal constant C > 0, HX ,Cantor, with |X | = Ω(log(|Y|)),
can be realized by HΨ,C for an appropriate mapping Ψ : X × Y → Bd for some d > 0.

Without loss of generality, we assume that |Y| − 1 is a power of 2 (otherwise, use only
k labels, where k is the largest integer such that k− 1 is a poser of 2 and k ≤ |Y|). Denote
k = |Y| − 1. Fix some finite set X of cardinality log(|Y| − 1). By renaming the labels, we
can assume that Y = 2X ∪ {∗}.

Let {ey}y∈Y be a collection of unit vectors in Rd with the property that for y1 6= y2,

|〈ey1 , ey2〉| <
1

100
. (6)

Remark 25 Clearly, it is possible to find such a collection when d = k + 1 (simply take
{ey}y∈Y to be an orthogonal basis of Rk+1). However, equation (6) requires the collection
to be just “almost orthogonal”. Such a collection can be found in Rd for d = O(log(k)) (see,
e.g. Matousek (2002), chapter 13).

Define Ψ : X × Y → Bd by

∀A ⊂ X , Ψ(x,A) =

{
eA x ∈ A
0 x 6∈ A

Ψ(x, ∗) = e∗

The following claim establishes the proof of Theorem 6.

Claim 3 HX ,Cantor is realized by HΨ,8.

Proof We will show that HX ,Cantor ⊆ HΨ,8. Let B ⊆ X . We must show that hB ∈ HΨ,8.
Let w = W ·(eB+ 1

2e∗) for W = 100
45 . We claim that the hypothesis in HΨ,8 that corresponds

to w is hB. Indeed, let x ∈ X . We split into the cases x ∈ B and x /∈ B.
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Case 1 (x ∈ B): We must show that for every y ∈ Y \ {B},

〈w,Ψ(x,B)〉 ≥ 1 + 〈w,Ψ(x, y)〉 .

Note that

〈w,Ψ(x,B)〉 =

〈
W ·

(
eB +

1

2
e∗

)
, eB

〉
= W

(
1 +

1

2
〈e∗, eB〉

)
≥W

(
1− 1

100

)
.

Now, if y ∈ Y \ {B} then either y ⊆ X and x 6∈ y. In this case, 〈w,Ψ(x, y)〉 = 〈w, 0〉 = 0.
In the remaining cases,

〈w,Ψ(x, y)〉 =

〈
W ·

(
eB +

1

2
e∗

)
, ey

〉
= W

(
〈ey, eB〉+

1

2
〈e∗, eB〉

)
≤W 1

50
.

It follows that

〈w,Ψ(x,B)〉 − 〈w,Ψ(x, y)〉 ≥ 24

25
W ≥ 1 .

Case 2 (x /∈ B): We must show that for every y ∈ Y \ {∗},

〈w,Ψ(x, ∗)〉 ≥ 1 + 〈w,Ψ(x, y)〉 .

Note that

〈w,Ψ(x, ∗)〉 =

〈
W ·

(
eB +

1

2
e∗

)
, e∗

〉
= W

(
〈eB, e∗〉+

1

2

)
≥W

(
1

2
− 1

100

)
.

Now, suppose that A = y ∈ Y \ {∗}. If x /∈ A then,

〈w,Ψ(x, y)〉 =

〈
W ·

(
eB +

1

2
e∗

)
, 0

〉
= 0 ≤ 1

25
W .

If x ∈ A then A 6= B. Therefore,

〈w,Ψ(x, y)〉 =

〈
W ·

(
eB +

1

2
e∗

)
, eA

〉
= W

(
〈eB, eA〉+

1

2
〈e∗, eA〉

)
≤ 1

25
W .

It follows that

〈w,Ψ(x, ∗)〉 − 〈w,Ψ(x, y)〉 ≥ 45

100
W ≥ 1 .

D.8. Proof of Theorem 9

The first part of the theorem follows directly from the first part of Theorem 6. We proceed
to the second part. First, we note that Hd,t,2,R can be realized by Hd,t,q,R. Therefore, it is
enough to restrict to the case q = 2. To simplify notations, we denote Hd,t,2,R by Hd,t,R.
Also, the label space of Hd,t,R will be {0, 1}t instead of [2]q.

By Lemma 23 and Lemma 21, it is enough to show that a disjoint union of Ω(R) copies
of HY,Cantor, with |Y| = Ω(t), can be realized by Hd,t,R for d ≥ (t+ 1)R. By Lemma 22, it
is enough to show that, for some universal constant C > 0, HY,Cantor, with |Y| = t+ 1, can
be realized by Ht+1,t,C . Indeed:
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Claim 4 Let Ỹ = [t]. The class HY,Cantor is realized by Ht+1,t,128.

Proof Recall that the instance space of HY,Cantor is X = 2[t]. Also, let e∗ := et+1 ∈ Bt+1.
Consider the mapping Γ : X → (Bt+1)t defined as follows. For every A ∈ X , Γ(A) is the
matrix whose i’th column is 1

2ei + 1
4e∗ if i ∈ A and 1

4e∗ otherwise. Let Λ : {0, 1}t ∪ {�} →
[t] ∪ {∗} be any mapping that maps ei ∈ {0, 1}t to i and 0 ∈ {0, 1}t to ∗. To establish the
claim we will show that

HY,Cantor ⊆ Λ ◦ Ht+1,t,128 ◦ Γ .

We must show that for every i ∈ [t], hi ∈ Λ ◦ Ht+1,t,128 ◦ Γ and that h∗ ∈ Λ ◦ Ht+1,t,128 ◦ Γ.
We start with hi. Let W ∈M(t+1)×2 be the matrix whose left column is 0 and whose right
column is 8ei − 8e∗. Let hW ∈ Ht+1,t,128 be the hypothesis corresponding to W . We claim
that hi = Λ ◦ hW ◦ Γ. Indeed, let A ∈ X . We must show that Λ(hW (Γ(A))) = hi(A).
By the definition of Λ and hi, it is enough to show that hW (Γ(A)) = ei if i ∈ A, while
hW (Γ(A)) = 0 otherwise. Let Ψ : (Bt+1)t × {0, 1}t → Mt+1,2 be the mapping for which
Ht+1,t,128 = HΨ,128. Since the left column of W is zero, we have that 〈W,Ψ(Γ(A), 0)〉 = 0,
and for 0 6= y ∈ {0, 1}t,

〈W,Ψ(Γ(A), y)〉 =
1

2 · |{j | yj = 1}|
∑
j|yj=1

〈4ei − 4e∗, (Γ(A))j〉

=
1

|{j | yj = 1}|
∑
j|yj=1

(2 · 1[i = j and i ∈ A]− 1)

=
2 · 1[i ∈ A and yi = 1]

|{j | yj = 1}|
− 1 .

It follows that if i ∈ A then 〈W,Ψ(Γ(A), ei)〉 = 1 while 〈W,Ψ(Γ(A), y)〉 ≤ 0 for every y 6= ei.
Therefore, hW (Γ(A)) = ei. If i /∈ A then 〈W,Ψ(Γ(A), 0)〉 = 0 while 〈W,Ψ(Γ(A), y)〉 ≤ −1
for every y 6= 0. Therefore hW (Γ(A)) = 0.

The fact that h∗ ∈ Λ◦Ht+1,t,128◦Γ follows from a similar argument, where W ∈M(t+1)×2

is the matrix whose left column is 0 and whose right column is −8e∗. It is not hard to see
that if hW ∈ Ht+1,t,128 is the hypothesis corresponding to W , we have h∗ = Λ ◦ hW ◦ Γ.

D.9. Proof of Theorem 8

The first part of the theorem follows directly from the first part of Theorem 5. We proceed
to the second part. First, by the following lemma, it is enough to restrict ourselves to
the case q = 2. Given two hypothesis classes H ⊆ YX and H′ ⊆ Y ′X

′
, we say that H′

finitely realizes H if, for every finite U ⊂ X , H′ realizes H|U . It is clear that in this case
Gdim (H′) ≥ Gdim (H).

Lemma 26 For every d, t and q ≥ 2, a disjoint union of b q2c copies of Hd,t,2 is finitely
realized by Hd+2,t,q

Proof For simplicity, assume that q is even and let r = q
2 . Let X1, . . . , Xr be finite subsets

of Md,t. We should show that there is a mapping Γ : X1∪̇ . . . ∪̇Xr →Md+2,t and a mapping
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Λ : [q]t → [2]t such that

(Hd,t,2)m |X1∪̇...∪̇Xr ⊂ (Λ ◦ Hd+2,t,q ◦ Γ) |X1∪̇...∪̇Xr (7)

For x ∈ Xj we define

Γ(x) =

(
xT , cos

(
j

2π

r

)
, sin

(
j

2π

r

))T
Also, let λ : [q]→ [2] be the function that maps odd numbers to 1 and even numbers to 2.
Finally, define Λ : [q]t → [2]t by Λ(y1, . . . , yt) = (λ(y1), . . . , λ(yt)). We claim that (7) holds
with these Λ and Γ.

Indeed, letW1, . . . ,Wr ∈Md×2. We should show that the function g ∈ (Hd,t,2)m |X1∪̇...∪̇Xr
defined by these function is of the form (Λ ◦ h ◦ Γ) |X1∪̇...∪̇Xr for some h ∈ Hd+2,t,q. Fix
M > 0 and let h be the hypothesis defined by the matrix W ∈Md+2,q defined as follows

W =

 W 1
1 W 2

1 W 1
2 W 2

2 · · · W 1
r W 2

r

M cos
(

2π
r

)
M cos

(
2π
r

)
M cos

(
22π
r

)
M cos

(
22π
r

)
· · · M cos

(
r 2π
r

)
M cos

(
r 2π
r

)
M sin

(
2π
r

)
M sin

(
2π
r

)
M sin

(
22π
r

)
M sin

(
22π
r

)
· · · M sin

(
r 2π
r

)
M sin

(
r 2π
r

)


It is not hard to check that for large enough M , g = (Λ ◦ h ◦ Γ) |X1∪̇...∪̇Xr

Next we prove Theorem 8 for q = 2. To simplify notation, we let Hd,t := Hd,t,2. We
make one further reduction, showing that it is enough to prove the theorem for the case
d = 3. Indeed, by Lemma 23 and Lemma 21, it is enough to show that a disjoint union
of Ω(d) copies of HY,Cantor, with |Y| = Ω(k), can be realized by Hd,t. By Lemma 22, it is
enough to show that, for some universal constant C > 0 (we will take C = 3), HY,Cantor,
with |Y| = t+ 1, can be realized by HC,t. Indeed:

Claim 5 Let Ỹ = [t]. The class HY,Cantor is realized by H3,t.

Proof [(sketch)] The proof is similar to the proof of the second part of Theorem 9. Recall
that the instance space ofHY,Cantor is X = 2[t]. For i ∈ [t] define φ(i) =

(
cos
(
i2π
t

)
, sin

(
i2π
t

)
, 0
)
.

Also, let

φ(∗) =

(
0, 0,

1

2
+

1

2
cos

(
2π

t

))
.

Consider the mapping Γ : X → (B3)t defined as follows. For everyA ∈ X , Γ(A) is the matrix
whose i’th column is 1

2φ(i) + 1
2φ(∗) if i ∈ A and 1

2φ(∗) otherwise. Let Λ : {0, 1}t ∪ {�} →
[k] ∪ {∗} be any mapping that maps ei ∈ {0, 1}t to i and 0 ∈ {0, 1}t to ∗. To establish the
claim we will show that

HY,Cantor ⊆ Λ ◦ H3,t ◦ Γ .

We must show that for every i ∈ [t], hi ∈ Λ ◦ H3,t ◦ Γ and that h∗ ∈ Λ ◦ H3,t ◦ Γ. We start
with hi. Let W ∈ M3×2 be the matrix whose left column is 0 and whose right column is
φ(i)− e3. It is not hard to see that if hW ∈ H3,t is the hypothesis corresponding to W , we
have hi = Λ ◦ hW ◦ Γ.

For h∗, let W ∈ M3×2 be the matrix whose left column is 0 and whose right column is
−e3. It is not hard to see that for hW ∈ H3,t, we have h∗ = Λ ◦ hW ◦ Γ.
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D.10. Proof of Theorem 7

Theorem 27 For every Ψ : X × Y → Rd, Ndim(HΨ) ≤ d.

Proof Let C ⊆ X be an N -shattered set, and let f0, f1 : C → Y be two functions
that witness the shattering. We must show that |C| ≤ d. For every x ∈ C let ρ(x) =
Ψ(x, f0(x)) − Ψ(x, f1(x)). We claim that ρ(C) = {ρ(x) | x ∈ C} consists of |C| elements
(i.e. ρ is one to one) and is shattered by the binary hypothesis class of homogeneous linear
separators on Rd,

H = {x 7→ sign(〈w, x〉) | w ∈ Rd} .

Since VCdim(H) = d, it will follow that |C| = |ρ(C)| ≤ d, as required.
To establish our claim it is enough to show that |H|ρ(C)| = 2|C|. Indeed, given a subset

B ⊆ C, by the definition of N -shattering, there exists hB ∈ HΨ for which

∀x ∈ B, hB(x) = f0(x) and ∀x ∈ C \B, hB(x) = f1(x) .

It follows that there exists a vector wB ∈ Rd such that, for every x ∈ B,

〈w,Ψ(x, f0(x))〉 > 〈w,Ψ(x, f1(x))〉 ⇒ 〈w, ρ(x)〉 > 0 .

Similarly, for every x ∈ C \B,
〈w, ρ(x)〉 < 0 .

It follows that the hypothesis gB ∈ H defined by w ∈ Rd label the points in ρ(B) by 1
and the points in ρ(C \ B) by 0. It follows that if B1, B2 ⊆ C are two different sets then
(hB1)|ρ(C) 6= (hB2)|ρ(C). Therefore |H|C | = 2|C| as required.

Remark 28 (Tightness of Theorem 7) Theorem 7 is tight for some functions Ψ : X ×
Y → Rd. For example, consider the case that X = [d], Y = {±1} and Ψ(x, y) = y · ex.
It is not hard to see that HΨ = YX . Therefore, Ndim(HΨ) = VCdim(HΨ) = d. On the
other hand, the theorem is not tight for every Ψ. For example, if |X | < d, then for every
Ψ, Ndim(HΨ) ≤ |X | < d.
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