
Online Learning of Complex Prediction Problems Using
Simultaneous Projections

Yonatan Amit mitmit@cs.huji.ac.il
The Hebrew University
Jerusalem, 91904, Israel

Shai Shalev-Shwartz shai@tti-c.org
Toyota Technological Institute
Chicago, IL 60637, USA

Yoram Singer singer@google.com

Google Inc.
Mountain View, CA 94043, USA

Editor: Manfred K. Warmuth

Abstract

We describe and analyze an algorithmic framework for online classification where each online trial
consists of multiple prediction tasks that are tied together. We tackle the problem of updating the
online predictor by defining a projection problem in which each prediction task corresponds to a
single linear constraint. These constraints are tied together through a single slack parameter. We
then introduce a general method for approximately solving the problem by projecting simultaneously
and independently on each constraint which corresponds to a prediction sub-problem, and then
averaging the individual solutions. We show that this approach constitutes a feasible, albeit not
necessarily optimal, solution of the original projection problem. We derive concrete simultaneous
projection schemes and analyze them in the mistake bound model. We demonstrate the power of
the proposed algorithm in experiments with synthetic data and with multiclass text categorization
tasks.

1. Introduction

We discuss and analyze an algorithmic framework for complex prediction problems in the online
learning model. Our construction unifies various complex prediction tasks by considering a setting
in which at each trial the learning algorithm should make multiple binary decisions. We present
a simultaneous online update rule that utilizes the entire set of binary examples received at each
trial while retaining the simplicity of algorithms whose update is based on a single binary example.

Online learning is performed in a sequence of consecutive trials. At the beginning of each
trial, the algorithm first receives an instance and is required to make a prediction in some complex
domain. The prediction is generated using an hypothesis constructed by the algorithm. Once the
algorithm makes a prediction it receives the correct target and is allowed to update its hypothesis.
In this paper we consider an online learning model in which the complex prediction task can be
cast as multiple binary decisions. Such a view is common in Multiclass categorization tasks, for
example in Crammer et al. (2006), Crammer and Singer (2003), Allwein et al. (2000). There, the
complex problem of predicting which label out of k possible labels is the correct label is cast as a
set of binary prediction problems, each of which focuses on two labels.

1

Previous approaches to this construction can be roughly divided into two paradigms. The first
paradigm, which we term the max update, tackles the problem by selecting a single binary problem
and updating the algorithm’s hypothesis based on that problem solely. While this approach is sub-
optimal, it is often very simple to implement and quite effective in practice. The second approach
considers all the binary problems and incorporates the entire information contained for updating the
hypothesis. The second approach thus performs an optimal update at the price of often incurring
higher computational costs.

We introduce a third approach, which enjoys the simplicity and performance of the max-update
approach, while incorporating information expressed in all binary problems. Our family of algo-
rithms achieves this goal by considering each instance separately and acting simultaneously. An
update is constructed for each binary sub-problem, and then all the updates are combine together
to form the new online hypothesis. As we show in the sequel, the update rule due to each binary
example amounts to a projection operation. We thus denote our approach as the simultaneous
projections approach.

We propose a simple, general, and efficient framework for online learning of a wide variety
of complex problems. We do so by casting the online update task as an optimization problem
in which the newly devised hypothesis is required to be close to the current hypothesis while
attaining a small loss on multiple binary prediction problems. Casting the online learning task as
a sequence of instantaneous optimization problems was first suggested and analyzed by Kivinen
and Warmuth Kivinen and Warmuth (1997) for binary classification and regression problems. In
our optimization-based approach, the complex decision problem is cast as an optimization problem
that consists of multiple linear constraints each of which represents a single binary example. These
constraints are tied through a single slack variable whose role is to assess the overall prediction
quality for the complex problem.

The max-update approach described above selects a single binary example, which translates
into a single constraint. Performing the update thus becomes a simple projection task, where an
analytical solution can often be easily devised. In contrast, the optimal update seeks the optimal
solution of the instantaneous optimization problem. However, in the general case no analytical
solution can be found, and the algorithm is required to resort to a full scale numeric solver.

We describe and analyze a family of two-phase algorithms. In the first phase, the algorithms
solve simultaneously multiple sub-problems. Each sub-problem distills to an optimization problem
with a single linear constraint from the original multiple-constraints problem. The simple structure
of each single-constraint problem results in an analytical solution, which is efficiently computable. In
the second phase, the algorithms take a convex combination of the independent solutions to obtain
a solution for the multiple-constraints problem. We further explore the structure of our problem
and attain an update form that combines the two phases while maintaining the simplicity of the
simultaneous projection scheme. The end result is an approach whose time complexity and mistake
bounds are equivalent to approaches which solely deal with the worst-violating constraint Crammer
et al. (2006). In practice, though, the performance of the simultaneous projection framework is
much better than update schemes that are based on a single-constraint .

We introduce an additive and multiplicative variants of our framework. The additive framework
extends additive algorithms such as the Perceptron Rosenblatt (1958) and the family of Passive-
Aggressive algorithms Crammer et al. (2006) to our settings. We then present a multiplicative
family of simultaneous algorithms that extends the Winnow family of algorithms Littlestone (1988).
We further extend our model showing its applicability when working with a larger family of loss

2

functions. Finally we present a unified analysis in the mistake bound model, based on the primal-
dual analysis presented in Shalev-Shwartz and Singer (2006a). Our results are on par with the best
known mistake bounds for multiclass algorithms.

Related Work The task of multiclass categorization can be thought of as a specific case of our
construction. In multiclass categorization the task is to predict a single label out of k possible
outcomes. Our simultaneous projection approach is based on the fact that we can retrospectively
(after receiving the correct label) cast the problem as the task of making k − 1 binary decisions,
each of which involves the correct label and one of the competing labels. Our framework then
performs an update on each of the problems separately and then combines the updates to form
a new hypothesis. The performance of the k − 1 predictions is measured through a single loss
function. Our approach stands in contrast to previously studied methods which can be roughly be
partitioned into three paradigms. The first paradigm follows the max update paradigm presented
above. For example, the algorithms by Crammer et al Crammer and Singer (2003), Crammer et al.
(2006) focus on the single, worst performing, derived sub-problem. While this approach adheres
with the original structure of the problem, the resulting update mechanism is by construction sub-
optimal as it oversees almost all of the constraints imposed by the complex prediction problem.
(See also Shalev-Shwartz and Singer (2006a) for analysis and explanation of the sub-optimality of
this approach.)

Since applying full scale numeric solvers in each online trial is usually prohibitive due to the
high computational cost, the optimal paradigm for dealing with complex problems is to tailor a
specific efficient solution for the problem on hand. While this approach yielded highly efficient
learning algorithms for multiclass categorization problems Crammer and Singer (2003), Shalev-
Shwartz and Singer (2006b) and aesthetic solutions for structured output problems Taskar et al.
(2003), Tsochantaridis et al. (2004), devising these algorithms required dedicated efforts. Moreover,
tailored solutions typically impose rather restrictive assumptions on the representation of the data
in order to yield efficient algorithmic solutions.

The third (and probably the simplest) previously studied approach is to break the problem into
multiple decoupled problems that are solved independently. Such translation effectively changes
the problem definition. Thus, the simplicity of this approach also underscores its deficiency as
it is detached from the original loss of the complex decision problem. Such an approach was
used for instance for batch learning of multiclass support vector machines Weston and Watkins
(1999) and boosting algorithms Schapire and Singer (1999). Decoupling approaches have further
been extended to various ways. Hastie and Tibshirani Hastie and Tibshirani (1998) considered
construction of a binary problem for each pair of classes. In Dietterich and Bakiri (1995), Allwein
et al. (2000), Crammer and Singer (2002) error correcting output codes are applied to solve the
multiclass problem as separate binary problems.

It is interesting to note that the methods for performing multiple projections simultaneously
have been studied in a different context in the optimization community. Similar ideas which can
be broadly characterized as row-action methods date back more than 50 years, see for example
Hildreth (1957), Bregman (1967), Pierro and Iusem (1986). These methods are used to find the
optimal solution of a convex function subject to a very large number of constraints. The core idea
behind row-action methods is to consider and isolate a few number of constraints and repeatedly
perform a projection on a small subset (typically a single constrain) until convergence. Iusem and
Depierro Pierro and Iusem (1986) introduced the concept of averaging to the general family of
Bregmans methods, where the projection step is relaxed and the new solution is the average of the

3

previous solution and the result of the projection. In Censor and Zenios (1997) Censor introduces
a parallel version of the row-action methods. The parallel algorithms perform the projection step
on each constraint separately and update the new solution to the average of all these projections.
For further extensive description of row-action methods see Censor and Zenios (1997). Row-actions
methods have recently received attention in the learning community, for problems such as finding
the optimal solution of SVM. For instance the SMO technique of Platt Platt (1998) can be viewed
as a row-action optimization method that manipulates two constraints at a time. In this paper
we take a different approach, and decompose a single complex constraint into multiple projections
problem which are tied together through a single slack variable.

The rest of the paper is organized as follows. We start with a description of the problem setting
in Sec. 2. In Sec. 3 we describe two complex decision tasks that can be tackled by our approach. A
template algorithm for additive simultaneous projection in an online learning setting with multiple
instances is described in Sec. 4. We propose concrete schemes for selecting an update form in Sec.
5 and analyze our algorithms within the mistake bound model in Sec. 6. We extend our algorithm
to a large family of losses in Sec. 7 and derive family of multiplicative algorithms in Sec. 8. We
demonstrate the merits of our approach in a series of experiments with synthetic and real datasets
in Sec. 9 and conclude in Sec. 10.

2. Problem Setting

In this section we introduce the notation used throughout the paper and formally describe our
problem setting. We denote vectors by lower case bold face letters (e.g. x and ω) where the j’th
element of x is denoted by xj . We denote matrices by upper case bold face letters (e.g. X), where
the j’th row of X is denoted by xj . The set of integers {1, . . . , k} is denoted by [k]. Finally, we use
the hinge function [a]+ = max{0, a}.

Online learning is performed in a sequence of trials. At trial t the algorithm receives a matrix
Xt of size kt × n, where each row of Xt is an instance, and is required to make a prediction on the
label associated with each instance. We denote the vector of predicted labels by ŷt. We allow ŷtj
to take any value in R, where the actual label being predicted is sign(ŷtj) and |ŷtj | is the confidence
in the prediction. After making a prediction ŷt the algorithm receives the correct labels yt where
ytj ∈ {−1, 1} for all j ∈ [kt]. In this paper we assume that the predictions in each trial are formed
by calculating the inner product between a weight vector ωt ∈ Rn with each instance in Xt, thus
ŷt = Xtωt. Our goal is to perfectly predict the entire vector yt. We thus say that the vector yt

was imperfectly predicted if there exists an outcome j such that ytj 6= sign(ŷtj). That is, we suffer a
unit loss on trial t if there exists j, such that sign(ŷtj) 6= ytj . Directly minimizing this combinatorial
error is a computationally difficult task. Therefore, we use an adaptation of the hinge-loss, defined
`
(
ŷt,yt

)
= maxj

[
1− ytj ŷtj

]
+

, as a proxy for the combinatorial error. The quantity ytj ŷ
t
j is often

referred to as the (signed) margin of the prediction and ties the correctness and the confidence in
the prediction. We use `

(
ωt; (Xt,yt)

)
to denote `

(
ŷt,yt

)
where ŷt = Xtωt. We also denote the

set of instances whose labels were predicted incorrectly by Mt = {j | sign(ŷtj) 6= ytj}, and similarly
the set of instances whose hinge-losses are greater than zero by Γt = {j | [1− ytj ŷtj]+ > 0}.

4

3. Derived Problems

In this section we further explore the motivation for our problem setting by describing two different
complex decision tasks and showing how they can be cast as special cases of our setting. We also
would like to note that our approach can be employed in other prediction problems (see Sec. 10).

Multilabel Categorization In the multilabel categorization task each instance is associated
with a set of relevant labels from the set [k]. The multilabel categorization task can be cast as a
special case of a ranking task in which the goal is to rank the relevant labels above the irrelevant
ones. Many learning algorithms for this task employ class-dependent features (for example, see
Schapire and Singer (2000)). For simplicity, assume that each class is associated with n features
and denote by φ(x, r) the feature vector for class r. We would like to note that features obtained
for different classes typically relay different information and are often substantially different.

A categorizer, or label ranker, is based on a weight vector ω. A vector ω induces a score for
each class ω · φ(x, r) which, in turn, defines an ordering of the classes. A learner is required to
build a vector ω that successfully ranks the labels according to their relevance, namely for each
pair of classes (r, s) such that r is relevant while s is not, the class r should be ranked higher than
the class s. Thus we require that ω · φ(x, r) > ω · φ(x, s) for every such pair (r, s). We say that a
label ranking is imperfect if there exists any pair (r, s) which violates this requirement. The loss
associated with each such violation is [1−(ω ·φ(x, r)−ω ·φ(x, s))]+ and the loss of the categorizer is
defined as the maximum over the losses induced by the violated pairs. In order to map the problem
to our setting, we define a virtual instance for every pair (r, s) such that r is relevant and s is not.
The new instance is the n dimensional vector defined by φ(x, r)−φ(x, s). The label associated with
all of the instances is set to 1. It is clear that an imperfect categorizer makes a prediction mistake
on at least one of the instances, and that the losses defined by both problems are the same.

Ordinal Regression In the problem of ordinal regression an instance x is a vector of n features
that is associated with a target rank y ∈ [k]. A learning algorithm is required to find a vector ω
and k thresholds b1 ≤ · · · ≤ bk−1 ≤ bk = ∞. The value of ω · x provides a score from which the
prediction value can be defined as the smallest index i for which ω · x < bi, ŷ = min {i|ω · x < bi}.
In order to obtain a correct prediction, an ordinal regressor is required to ensure that ω · x ≥ bi
for all i < y and that ω · x < bi for i ≥ y. It is considered a prediction mistake if any of these
constraints is violated. In order to map the ordinal regression task to our setting, we introduce
k− 1 instances. Each instance is a vector in Rn+k−1. The first n entries of the vector are set to be
the elements of x, the remaining k − 1 entries are set to −δi,j . That is, the i’th entry in the j’th
vector is set to −1 if i = j and to 0 otherwise. The label of the first y − 1 instances is 1, while the
remaining k − y instances are labeled as −1. Once we learned an expanded vector in Rn+k−1, the
regressor ω is obtained by taking the first n components of the expanded vector and the thresholds
b1, . . . , bk−1 are set to be the last k − 1 elements. A prediction mistake of any of the instances
corresponds to an incorrect rank in the original problem.

4. Simultaneous Projection Algorithms

Recall that on trial t the algorithm receives a matrix, Xt, of kt instances, and predicts ŷt = Xtωt.
After performing its prediction, the algorithm receives the corresponding labels yt. Each instance-
label pair casts a constraint on ωt, ytj

(
ωt · xtj

)
≥ 1. If all the constraints are satisfied by ωt then

5

Figure 1: Illustration of the simultaneous projections algorithm: each instance casts a constraint
on ω and each such constraint defines a halfspace of feasible solutions. We project on
each halfspace in parallel and the new vector is a weighted average of these projections

ωt+1 is set to be ωt and the algorithm proceeds to the next trial. Otherwise, we would like to set
ωt+1 as close as possible to ωt while satisfying all constraints.

Such an aggressive approach may be sensitive to outliers and over-fitting. Thus, we allow some
of the constraints to remain violated by introducing a trade-off between the change to ωt and the
loss attained on (Xt,yt). Formally, we would like to set ωt+1 to be the solution of the following
minimization problem,

min
ω∈Rn

1
2

∥∥ω − ωt∥∥2 + C `
(
ω;
(
Xt,yt

))
, (1)

where C is a trade-off parameter. As we discuss below, this formalism effectively translates to a
cap on the maximal change to ωt. We rewrite the above optimization by introducing a single slack
variable as follows:

min
ω∈Rn,ξ≥0

1
2

∥∥ω − ωt∥∥2 + Cξ

s.t. ∀j ∈ [kt] : ytj
(
ω · xtj

)
≥ 1− ξ ξ ≥ 0

. (2)

We denote the objective function of Eq. (2) by Pt and refer to it as the instantaneous primal
problem to be solved on trial t. The dual optimization problem of Pt is the maximization problem

max
αt1,..,α

t
kt

kt∑
j=1

αtj −
1
2

∥∥∥ωt +
kt∑
j=1

αtj y
t
j xtj
∥∥∥2

s.t.
kt∑
j=1

αtj ≤ C , ∀j : αtj ≥ 0 . (3)

The complete derivation is given in Appendix A.
Each dual variable corresponds to a single constraint of the primal problem. The minimizer

of the primal problem is calculated from the optimal dual solution as follows, ωt+1 = ωt +∑kt
j=1 α

t
j y

t
j xtj .

Unfortunately, in the common case, where each xtj is in an arbitrary orientation, there does
not exist an analytic solution for the dual problem (Eq. (3)). The difficulty stems from the fact

6

Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = (0, . . . , 0)

For t = 1, 2, . . . , T :
Receive instance matrix Xt ∈ Rkt×n

Predict ŷt = Xtωt

Receive correct labels yt

Suffer loss `
(
ωt;
(
Xt,yt

))
If ` > 0:

Choose importance weights µt s.t.
µtj ≥ 0 and

∑kt
j=1 µ

t
j = 1

Choose individual dual solutions αtj
Update ωt+1 = ωt +

∑kt
j=1 µ

t
j α

t
j y

t
j xtj

Figure 2: Template of simultaneous projections algorithm.

that the sum of the weights αtj cannot exceed C. We tackle the problem by breaking it down into
kt reduced problems, each of which focuses on a single dual variable. By doing so we replace the
global sum constraint,

∑kt
j=1 α

t
j , with multiple box constraints, αtj ≤ C, which can easily be dealt

with. Formally, for the j’th variable, the j’th reduced problem solves Eq. (3) while fixing αtj′ = 0
for all j′ 6= j. Each reduced optimization problem amounts to the following problem

max
αtj

αtj −
1
2

∥∥ωt + αtj y
t
j xtj
∥∥2 s.t. αtj ∈ [0, C] . (4)

As we demonstrate in the sequel, this reduction into independent problems serves two roles. First,
it leads to simple solutions for the reduced problems. Second, and more important, the individual
solutions can and are grouped into a feasible solution of the original problem for which we can
prove various loss bounds.

We thus next obtain an exact or approximate solution for each reduced problem as if it were
independent of the rest. We then choose a non-negative vector µ ∈ ∆kt where ∆kt is the kt
dimension probability simplex, formally µi ≥ 0 and

∑kt
j=1 µj = 1. Given the vector µ, we multiply

each αtj by a corresponding value µtj . Our choice of µ assures us {µtjαtj} constitutes a feasible
solution to the dual problem defined in Eq. (3) for the following reason. Each µtjα

t
j ≥ 0 and the

fact that αtj ≤ C implies that
∑kt

j=1 µ
t
jα

t
j ≤ C. Finally, the algorithm uses the combined solution

and sets ωt+1 = ωt +
∑kt

j=1 µ
t
j α

t
j y

t
j xtj . An illustration of the algorithm is provided in Fig. 4.

5. Solving the reduced problems

We next present four schemes to obtain a solution for the reduced problem (Eq. (4)) and then
combine the solution into a single update. The first three schemes provide feasible solutions for
the reduced problems and are easy to implement. However, these solutions are not necessarily
optimal. In Sec. 5.1 we describe a rather involved yet efficient procedure for finding the optimal

7

Variant Choosing µtj Choosing αtj

SimPerc

{
1
|Mt| j ∈Mt

0 otherwise
C

ConProj

{
1
|Mt| j ∈Mt

0 otherwise
min

{
C,

`(ωt;(xtj ,ytj))
‖xtj‖

2

}
ConProj

{
1
|Γt| j ∈ Γt

0 otherwise
min

{
C,

`(ωt;(xtj ,ytj))
‖xtj‖

2

}
SimOpt See Fig. 4

Figure 3: Schemes for choosing µ and α.

solution of each reduced problem along side with their weight vector µ which constitute the means
for combining the individual solutions.

Simultaneous Perceptron: The simplest of the update forms generalizes the famous Perceptron
algorithm from Rosenblatt (1958) by setting αtj to C if the j’th instance is incorrectly labeled, and
to 0 otherwise. We then set the weight of µtj to 1

|Mt| for j ∈Mt and to 0 otherwise. We abbreviate
this scheme as the SimPerc algorithm.

Soft Simultaneous Projections: The soft simultaneous projections scheme uses the fact that

each reduced problem has an analytic solution, yielding αtj = min
{
C, `

(
ωt; (xtj , y

t
j)
)
/
∥∥∥xtj∥∥∥2 }

. We

independently assign each αtj this optimal solution. We next set µtj to be 1
|Γt| for j ∈ Γt and to 0

otherwise. We would like to comment that this solution may update αtj also for instances which
were correctly classified as long as the margin they attain is not sufficiently large. We abbreviate
this scheme as the SimProj algorithm.

Conservative Simultaneous Projections: Combining ideas from the above methods, the con-
servative simultaneous projections scheme optimally sets αtj according to the analytic solution. It
differs from the SimProj algorithm in the way it selects µt. In the conservative scheme only the
instances which were incorrectly predicted (j ∈ Mt) are assigned a positive weight. Put another
way, µtj is set to 1

|Mt| for j ∈ Mt and to 0 otherwise. We abbreviate this scheme as the ConProj
algorithm.

5.1 Jointly Optimizing µ and α

Recall that our goal is to propose a feasible solution to Eq. (3) and we do so by independently
considering the optimization problem of Eq. (4) for each j. Following, we multiply each αtj by a
coefficient µtj so that all µtjα

t
j form a feasible solution. The following analysis shows that the two

steps can be unified. For brevity, we omit the superscript t. The task of jointly optimizing both µ
and α casts a seemingly non-convex optimization and finding the optimal solution is a priori a hard
problem. In this section we derive a somewhat counterintuitive result. By exploring the structure
of the problem on hand we show that this joint optimization problem can efficiently be solved in
kt log kt time. .

8

We begin by taking the derivative of the optimal values for αj while assuming that the values
µj are fixed and define a convex combination. The reduced problem of Eq. (4) becomes

max
αj

µjαj −
1
2
‖ω + µjαj yj xj‖2

s.t. αj ∈ [0, C] ,
(5)

which can be rewritten as

max
αj

µjαj (1− yj (ω · xj))−
1
2
µ2
jα

2
j ‖xj‖

2 − 1
2
‖ω‖2 s.t. αj ∈ [0, C] .

For brevity, we denote the squared norm of xj by νj . Thus, omitting constants that do not depend
on αj and µj , the above optimization problem can be written as

max
αj

µjαj (1− yj (ω · xj))−
1
2
µ2
jα

2
jνj s.t. 0 ≤ αj ≤ C . (6)

Let us denote the hinge-loss on instance j, max{0, 1− yj (ω · xj)} by `j . By taking the derivative
of the Lagrangian with respect to αj and equating the result with zero, we get that

αj = min
{
C,

lj
µjνj

}
.

We can now look at two disjoint cases. The first case is when αj = lj
µjνj

< C. In this case αj

takes the value of lj
µjνj

and the value of the optimization problem above becomes

`2j
νj
− 1

2
`2j
νj

=
1
2
l2j
νj
.

We note in passing that this expression does not depend on µj .
The second case is when αj = C. Plugging αj into Eq. (6) we get the following expression, as

a function of µ, which we denote by fj(µj),

fj(µj) = µjC`j −
1
2
µ2
jC

2νj . (7)

We next take the derivative of fj above with respect to µj and obtain

∂f

∂µj
= C`j − µjC2νj ,

from which we conclude that the optimal value for µj is

`j
Cνj

.

Plugging the optimal value for µj back in Eq. (7) we get that the maximum of fj(µj) is

fj

(
`j
Cνj

)
=
`2j
νj
− 1

2
`2j
νj

=
1
2
`2j
νj

.

9

To recap, we may express the optimal value of Eq. (6) as a function of µj as follows.

fj(µj) =

µjC`j −
1
2µ

2
jC

2νj µj ≤ `j
Cνj

1
2

`2j
νj

otherwise
. (8)

Thus, fj is monotonically increasing in the range 0 ≤ µj ≤ `j
Cνj

and is constant for values greater

than `j
Cνj

.
Recall that our primary goal is to find a convex combination of µj . Thus, we would like to

find the optimal assignment to µ given that α is set optimally. We end up with the following
optimization problem.

max
∑
j

fj (µj)

s.t. ∀j : µj ≥ 0
∑
j

µj = 1
. (9)

As previously discussed, for all j, fj increases in the range 0 ≤ µj ≤ `j
Cνj

and is constant
afterwards. We may use this fact to further classify the structure of the optimal solution of Eq.
(9). Assume first that

∑
j
`j
Cνj
≤ 1. In this case we can increment each, µj = `j

Cνj
+B, where B is

a non-negative constant which assures that
∑

j µj = 1. This assignment of µ is clearly optimal, as

fj is increasing and reaches its maximum obtainable value for µj ≥ `j
Cνj

.

Now, suppose
∑

j
`j
Cνj

> 1. In such a case there exists an optimal solution with µj ≤ `j
Cνj

for all

j. Suppose in contrary that for every optimal solution µ there exists some ̂ where µ̂ = `̂
Cν̂

+ ε for

some non-negative ε. Since
∑

j
`j
Cνj

> 1 there exists some j′ with µj′ <
`j′
Cνj′

. Since fj′ monotonely

increases when µj′ <
`j′
Cνj′

, while f̂ is constant for µ̂ >
`̂
Cν̂

we can create a new assignment µ?

increasing the value of the sum
∑

j fj(µj) by setting µ?̂ = `̂
Cν̂

and add ε to µ?j′ . We thus conclude

that for each solution where for some µ̂ >
`̂
Cν̂

there exists an assignment µ? where for all j,

µj ≤ `j
Cνj

and the objective of Eq. (9) is at least as high.

Thus, when
∑

j
`j
Cνj

> 1 we may add the constraint that µj ≤ `j
Cνj

and obtain the following
optimization problem.

max
µ

∑
j

fj (µj)

s.t. ∀j : 0 ≤ µj ≤
`j
Cνj

∑
j

µj = 1

We next introduce non-negative Lagrange multipliers τ , {βj}, and {ηj} to obtain the following
Lagrangian,

L =
∑
j

C`jµj −
1
2
µ2
jC

2νj −
∑
j

βjµj − τ

∑
j

µj − 1

+
∑
j

ηj

(
µj −

`j
Cνj

)
(10)

10

Taking the derivative with respect to µj and comparing to 0 we get the following condition.

C`j − µjC2νj − βj − τ + ηj = 0,

or

µj =
C`j − βj − τ + ηj

C2νj
.

The complementary slackness assures us that when µj > 0 then βj = 0 and thus

µj =
C`j − τ + ηj

C2νj
.

Similarly, ηj > 0 only when µj = `j
Cνj

and is used only when τ is negative, However, τ may be

negative only when
∑

j
`j
Cνj

< 1, which we covered before. To summarize, we can write the optimal
solution as

µj = max{0, C`j − τ
C2νj

} . (11)

We now focus our attention on the task of finding the value of τ . First, note that every value
of τ partitions the set 1, . . . , kt into two sets, indices j whose µj > 0 and indices for which µj = 0.
Formally, let H = {j|C`j > τ} and L = [kt] \ H denote the two sets partitioned according to τ .
Clearly j ∈ H ⇐⇒ µj > 0. Clearly, knowing the value τ allows us to compute the partition
to H and L. The converse, however, is also true. Had we known H and L it would have been
straightforward to compute τ by using the fact that µ is in the probability simplex,

∑
j µj = 1, to

get that ∑
j∈H

C`j − τ
C2νj

= 1 . (12)

Eq. (12) allows us to easily compute τ and obtain

τ =

∑
j∈H

C`j
C2νj

− 1∑
j∈H

1
C2νj

. (13)

In order to verify τ serve as a feasible solution, we’re required to verify that
∑

j∈H µj = 1 and that
for all j ∈ L : C`j − τ ≤ 0. The following lemma states that there is only a single feasible value
for τ .

Lemma 1 Let `j denote the hinge-loss of instance j, max{0, 1 − yj (ω · xj)}. Let νj denote the
squared norm of xj. Denote by fj the function of µj given by fj(µj) = µjC`j − 1

2µ
2
jC

2νj. Finally
let µ denote an optimal solution to Eq. (9) computed according to Eq. (11) and H(τ) denote the
set of indices j for which C`j > τ . Then, there is a single value τ that satisfies that

∑
j∈Hτ µj = 1

while maintaining that ∀j /∈ H : µj = 0.

Proof Suppose by contradiction that there are two feasible values for τ , and denote these values as
τ1 and τ2. Denote H(τ1) and H(τ2) by H1 and H2 respectively. Assume without loss of generality
that τ1 < τ2.

11

Input:
`j , νj j ∈ [kt]

Algorithm:
Sort the indices {1, . . . , kt} by decreasing order of `j
For i = 2, . . . , kt:

Define H = {1, . . . , i− 1}

Compute τ =
P
j∈H

C`j

C2νj
−1P

j∈H
1

C2νj

Validate C`i ≤ τ . If not, continue to next iteration
Set µj = C`j−τ

C2νj

Set αj = min
{
C,

lj
µjνj

}
Figure 4: Calculating µ and α efficiently.

First we note that H2 ⊂ H1. However,

1 =
∑
j∈H1

C`j − τ1

C2νj
>
∑
j∈H1

C`j − τ2

C2νj

Where the inequality is due to our assumption that τ1 < τ2. Since
∑

j∈H2

C`j−τ2
C2νj

must equal 1, we
conclude that H2 must strictly contain more items than H1. We have thus obtained a contradiction.

Using Lemma 1 we can devise an efficient algorithm for finding the optimal value for τ . We
first sort the indices 1, . . . , kt by decreasing order of `j . Then, for every i = 2, . . . , kt, we define
Hi = {1, . . . , i− 1} and compute the value suitable value of τ according to Eq. (13). Finally we
verify if C`i ≤ τ . The algorithm for finding τ is formally given in Fig. 4.

To recap, we have suggested a mechanism for jointly optimizing both µ and α. We showed that
it suffices to find a value τ which consistently divides the set [kt] into two sets as follows. The first
set corresponds to indices j for which µj is zero and the second includes the non-zero components
of µ. Furthermore, we showed that once τ is known, obtaining the vector µ is a simple task. Last,
we described how Lemma 1 translates into an efficient algorithm for finding τ . We thus derived
another simultaneous projections scheme, denoted by SimOpt, which jointly optimized α and µ.
This variant of the simultaneous projections framework is guaranteed to yield the largest increase
in the dual compared to all other simultaneous projections schemes. We describe empirical results
which validate experimentally this property in Sec. 9.

6. Analysis

The algorithms described in the previous section perform updates in order to increase the instan-
taneous dual problem defined in Eq. (3). We now use the mistake bound model to derive an upper
bound on the number of trials on which the predictions of SimPerc and ConProj algorithms are
imperfect. Following Shalev-Shwartz and Singer (2006a), the first step in the analysis is to tie the

12

instantaneous dual problems to a global loss function. To do so, we introduce a primal optimization
problem defined over the entire sequence of examples as follows,

min
ω∈Rn

1
2
‖ω‖2 + C

T∑
t=1

`
(
ω;
(
Xt, Y t

))
.

We rewrite the optimization problem as the following equivalent constrained optimization problem,

min
ω∈Rn,ξ∈RT

1
2
‖ω‖2 + C

T∑
t=1

ξt s.t. ∀t ∈ [T],∀j ∈ [kt] : ytj
(
ω · xtj

)
≥ 1− ξt ∀t : ξt ≥ 0. (14)

We denote the value of the objective function at (ω, ξ) for this optimization problem by P(ω, ξ).
A competitor who may see the entire sequence of examples in advance may in particular set (ω, ξ)
to be the minimizer of the problem which we denote by (ω?, ξ?). Standard usage of Lagrange
multipliers yields that the dual of Eq. (14) is,

max
λ

T∑
t=1

kt∑
j=1

λt,j −
1
2

∥∥∥ T∑
t=0

kt∑
j=1

λt,j y
t
j xtj

∥∥∥2
s.t. ∀t :

kt∑
j=1

λt,j ≤ C ∀t, j : λt,j ≥ 0 . (15)

We denote the value of the objective function of Eq. (15) by D(λ1, · · · ,λT), where each λt is a
vector in Rkt . Through our derivation we use the fact that any set of dual variables λ1, · · · ,λT
defines a feasible solution ω =

∑T
t=1

∑kt
j=1 λt,jy

t
jx
t
j with a corresponding assignment of the slack

variables.
Clearly, the optimization problem given by Eq. (15) depends on all the examples from the first

trial through time step T and thus can only be solved in hindsight. We note however, that if we
ensure that λs,j = 0 for all s > t then the dual function no longer depends on instances occurring on
rounds proceeding round t. As we show next, we use this primal-dual view to derive the skeleton
algorithm presented in Fig. 2 by finding a new feasible solution for the dual problem on every
trial. Formally, the instantaneous dual problem, given by Eq. (3), is equivalent (after omitting an
additive constant) to the following constrained optimization problem,

max
λ
D(λ1, · · · ,λt−1,λ,0, · · · ,0) s.t. λ ≥ 0 ,

kt∑
j=1

λj ≤ C . (16)

That is, the instantaneous dual problem is obtained from D(λ1, · · · ,λT) by fixing λ1, . . . ,λt−1 to
the values set in previous rounds, forcing λt+1 through λT to the zero vectors, and choosing a
feasible vector for λt. Given the set of dual variables λ1, . . . ,λt−1 it is straightforward to show that
the prediction vector used on trial t is ωt =

∑t−1
s=1

∑
j λs,jy

s
jx

s
j . Equipped with these relations and

omitting constants which do not depend on λt Eq. (16) can be rewritten as,

max
λ1,...,λkt

kt∑
j=1

λj −
1
2

∥∥∥∥∥∥ωt +
kt∑
j=1

λjy
t
jx
t
j

∥∥∥∥∥∥
2

s.t. ∀j : λj ≥ 0,
kt∑
j=1

λj ≤ C . (17)

The problems defined by Eq. (17) and Eq. (3) are equivalent. Thus, weighing the variables
αt1, . . . , α

t
kt

by µt1, . . . , µ
t
kt

also yields a feasible solution for the problem defined in Eq. (16), namely
λt,j = µtj α

t
j . We now tie all of these observations together by using the weak-duality theorem. Our

first bound is given for the SimPerc algorithm.

13

Theorem 2 Let
(
X1,y1

)
, . . . ,

(
XT ,yT

)
be a sequence of examples where Xt is a matrix of kt

examples and yt are the associated labels. Assume that for all t and j the norm of an instance xtj
is at most R. Then, for any ω? ∈ Rn the number of trials on which the prediction of SimPerc is
imperfect is at most,

1
2‖ω

?‖2 + C
∑T

t=1 `
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

.

Proof To prove the theorem we make use of the weak-duality theorem. Recall that any dual
feasible solution induces a value for the dual’s objective function which is upper bounded by the
optimum value of the primal problem, P (ω?, ξ?). In particular, the solution obtained at the end
of trial T is dual feasible, and thus D(λ1, . . . ,λT) ≤ P(ω?, ξ?) . We now rewrite the left hand-side
of the above equation as the following sum,

D(0, . . . ,0) +
T∑
t=1

[
D(λ1, . . . ,λt,0, . . . ,0)−D(λ1, . . . ,λt−1,0, . . . ,0)

]
. (18)

Note that D(0, . . . ,0) equals 0. Therefore, denoting by ∆t the difference in two consecutive dual ob-
jective values, D(λ1, . . . ,λt,0, . . . ,0)−D(λ1, . . . ,λt−1,0, . . . ,0), we get that

∑T
t=1 ∆t ≤ P(ω?, ξ?).

We now turn to bounding ∆t from below. First, note that if the prediction on trial t is perfect
(Mt = ∅) then SimPerc sets λt to the zero vector and thus ∆t = 0. We can thus focus on trials for
which the algorithm’s prediction is imperfect. We remind the reader that by unraveling the update
of ωt we get that ωt =

∑
s<t

∑ks
j=1 λs,jy

s
jx

s
j . We now rewrite ∆t as follows,

∆t =
kt∑
j=1

λt,j −
1
2

∥∥∥∥∥∥ωt +
kt∑
j=1

λt,jy
t
jx
t
j

∥∥∥∥∥∥
2

+
1
2

∥∥ωt∥∥2
. (19)

By construction, λt,j = µtjα
t
j and

∑kt
j=1 µ

t
j = 1, which lets us further expand Eq. (19) and write,

∆t =
kt∑
j=1

µtjα
t
j −

1
2

∥∥∥∥∥∥ωt +
kt∑
j=1

µtjα
t
jy
t
jx
t
j

∥∥∥∥∥∥
2

+
1
2

kt∑
j=1

µtj
∥∥ωt∥∥2

.

The squared norm, ‖·‖2 is a convex function in its vector argument and thus ∆t is concave, which
yields the following lower bound on ∆t,

∆t ≥
kt∑
j=1

µtj

[
αtj −

1
2

∥∥ωt + αtjy
t
jx
t
j

∥∥2 +
1
2

∥∥ωt∥∥2
]
. (20)

The SimPerc algorithm sets µtj to be 1/|Mt| for all j ∈ Mt and to be 0 otherwise. Furthermore,
for all j ∈ Mt, αtj is set to C. Thus, the right hand-side of Eq. (20) can be further simplified and
written as,

∆t ≥
∑
j∈Mt

µtj

[
C − 1

2

∥∥ωt + Cytjx
t
j

∥∥2 +
1
2

∥∥ωt∥∥2
]
.

In order to further explore Eq. (6) we require the following simple lemma

14

Lemma 3 Let ωt denote the predictor used by the SimPerc scheme on trial t. Let j ∈Mt denote
an index of a mispredicted instance on trial t. Then

1
2

∥∥ωt + Cytjx
t
j

∥∥2 − 1
2

∥∥ωt∥∥2 ≤ 1
2
C2
∥∥ytjxtj∥∥2

Proof We start by expanding the norm of the vector after the update,

1
2

∥∥ωt + Cytjx
t
j

∥∥2 =
1
2

∥∥ωt∥∥2 + Cytjω
t · xtj +

1
2
C2
∥∥ytjxtj∥∥2

.

Thus, the change in the norm is,

1
2

∥∥ωt + Cytjx
t
j

∥∥2 − 1
2

∥∥ωt∥∥2 =
1
2

∥∥ωt∥∥2 + Cytjω
t · xtj +

1
2
C2
∥∥ytjxtj∥∥2 − 1

2

∥∥ωt∥∥2

= Cytjω
t · xtj +

1
2
C2
∥∥ytjxtj∥∥2

.

The set Mt consists of indices of instances which were incorrectly classified. Thus, ytj(ω
t · xtj) ≤ 0

for every j ∈Mt. The equation above can thus be further bounded by 1
2C

2
∥∥∥ytjxtj∥∥∥2

Lemma 3 assures us that for all instances whose µj > 0 the term 1
2

∥∥∥ωt + Cytjx
t
j

∥∥∥2
− 1

2

∥∥ωt∥∥2

can be upper bounded. Therefore, ∆t can further be bounded from below as follows,

∆t ≥
∑
j∈Mt

µtj

[
C − 1

2
C2
∥∥ytjxtj∥∥2

]
≥
∑
j∈Mt

µtj

[
C − 1

2
C2R2

]
= C − 1

2
C2R2 , (21)

where for the second inequality we used the fact that the norm of all the instances is bounded by
R. To recap, we have shown that on trials for which the prediction is imperfect ∆t ≥ C − 1

2C
2R2,

while in perfect trials where no mistake is made ∆t = 0. Putting all the inequalities together we
obtain the following bound,

(
C − 1

2
C2R2

)
ε ≤

T∑
t=1

∆t = D(λ1, . . . ,λT) ≤ P(ω?, ξ?) , (22)

where ε is the number of imperfect trials. Finally, rewriting P(ω?, ξ?) as 1
2‖ω

?‖2+C
∑T

t=1 `(ω
?; (Xt,yt)

yields the bound stated in the theorem.

The ConProj algorithm updates the same set of dual variables as the SimPerc algorithm. How-
ever, it selects αtj to be the optimal solution of Eq. (4). Thus, the value of ∆t attained by the
ConProj algorithm is never lower than the value attained by the SimPerc algorithm, assuming both
versions start with the same predictor ωt. The case of the SimOpt algorithm is very similar, as it
promises to optimally increase the value of ∆t and thus is never lower than the value attained by
the SimPerc algorithm. The following corollary is a direct consequence of these observations.

15

Corollary 4 Under the same conditions of Thm. 2 and for any ω? ∈ Rn, the number of trials on
which the prediction of either ConProj or SimOpt is imperfect is at most,

1
2‖ω

?‖2 + C
∑T

t=1 `
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

.

Note that the predictions of the SimPerc algorithm do not depend on the specific value of C,
thus for R = 1 and an optimal choice of C the bound attained in Thm. 2 now becomes.

ε ≤ `
(
ω?; (Xt,yt)

)
+

1
2
‖ω?‖2 +

1
2

√√√√‖ω?‖4 + ‖ω?‖2
T∑
t=1

` (ω?; (Xt,yt)) .

See Appendix B for a complete analysis.
We conclude this section with a few closing words about the SimProj variant. The SimPerc and

ConProj algorithms ensure a minimal increase in the dual by focusing solely on classification errors
and ignoring margin errors. While this approach ensures a sufficient increase of the dual, in practice
it appears to be a double edged sword as the SimProj algorithm performs empirically better. This
superior empirical performance can be motivated by a viewing the similarity of the update forms
performed by the SimProj and SimOpt variants, which means that the actual increase in the dual
attained by the SimProj algorithm is larger than can be guaranteed using worst case analysis.

7. Decomposable Losses

Recall that our algorithms tackle complex decision problems by decomposing each instance into
multiple binary decision tasks, thus, on trial t the algorithm receives kt instances. The classification
scheme is evaluated by looking at the maximal violation of the margin constraints `

(
ŷt,yt

)
=

maxj
[
1− ytj ŷtj

]
+

. While such approach often captures the inherent relation between the multiple

binary tasks, it may often be desired to introduce more complex evaluation measures. In this section
we introduce a generalization of the algorithm for various decomposable losses. As a corollary we
obtain a Simultaneous Projection algorithm that is competitive with the average performance error
on each set of kt instances.

First, we introduce the notion of the decomposable losses. On trial t the algorithms receives
a partition of the kt instances into rt sets. Let St1, . . . , S

t
rt denote a partition of [kt] into rt sets,

namely, ∪lStl = [kt] and ∀l 6= k : Stl ∩ Stk = ∅. A set Sl ties the instances in the sense that failing
to predict any instance in Sl amounts to the same error as failing to predict all of them. We thus
suffer a unit loss at trial t for each set Sl that was imperfectly predicted. The definition of the loss
is extended to

ˆ̀(ŷt,yt) =
1
rt

rt∑
l=1

max
j∈Stl

[
1− ytj ŷtj

]
+

. (23)

By construction, the setting suggested in Sec. 2 is a special case of the setting we consider in this
section. We show in the sequel though that our original analysis carries over this this more general
setting.

Thus, each iteration the algorithm receives kt instances and a partition of the labels into sets
St1, . . . , S

t
rt . The instantaneous primal Eq. (2) is thus extended to include a single slack variable

16

Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = (0, . . . , 0)

For t = 1, 2, . . . , T :
Receive instance matrix Xt ∈ Rkt×n

Predict ŷt = Xtωt

Receive correct labels yt

Receive partition of labels St1, . . . , S
t
rt

Suffer loss ˆ̀(ωt; (Xt,yt
))

If ˆ̀> 0:
Choose importance weights µt s.t. for each set Stl ,

∑
j∈Stl

µtj = 1
Choose individual dual solutions αtj
Update ωt+1 = ωt +

∑rt
l=1

∑
j∈Stl

µtj α
t
j y

t
j xtj

Figure 5: The extended simultaneous projections algorithm for decomposable losses.

for each set as follows:

min
ω∈Rn,ξ≥0

1
2

∥∥ω − ωt∥∥2 +
C

rt

rt∑
l=1

ξl

s.t. ∀l ∈ [rt], ∀j ∈ Stl : ytj
(
ω · xtj

)
≥ 1− ξl ∀l ∈ [rt] : ξl ≥ 0

. (24)

The dual of Eq. (24) is thus

max
αt1,..,α

t
kt

kt∑
j=1

αtj −
1
2

∥∥∥ωt +
kt∑
j=1

αtj y
t
j xtj
∥∥∥2

s.t. ∀l :
∑
j∈Stl

αtj ≤
C

rt
∀j : αtj ≥ 0

. (25)

Note that since ∀k 6= l : Stl ∩ Stk = ∅ then the induced constraint
∑

j∈Stl
αtj ≤ C

rt
corresponds to

a unique set of dual variables αtj . We can thus apply the same technique and select a non-negative
vector µ where the entries corresponding to each set Stl form a probability distribution, namely
∀l :

∑
j∈Stl

µtj = 1. To recap, we can employ any of the variants on each set separately and attain
a dual feasible solution. We denote these variants as the decomposition variants. In Fig. 5 we
provide the pseudo-code of the algorithm.

We next show that our mistake bound analysis can be extended to the decomposable loss. The
analysis follows closely to the analysis presented in Sec. 6, where the global primal and global
dual are modified so as to use the decomposition loss. We therefore focus only on highlighting the
necessary changes. Eq. (14) thus becomes

min
ω∈Rn,ξ∈RT

1
2
‖ω‖2 + C

T∑
t=1

rt∑
l=1

ξt,l
rt

s.t. ∀t ∈ [T], ∀l ∈ [rt],∀j ∈ Stl : ytj
(
ω · xtj

)
≥ 1− ξt,l ∀t∀l : ξt,l ≥ 0

. (26)

17

and its dual is

max
λ

T∑
t=1

kt∑
j=1

λt,j−
1
2

∥∥∥ T∑
t=0

kt∑
j=1

λt,j y
t
j xtj

∥∥∥2
s.t. ∀t∀l ∈ [rt] :

∑
j∈Stl

λt,j ≤
C

rt
∀t, j : λt,j ≥ 0 . (27)

Clearly, the instantaneous dual can still be seen as optimizing the global dual, while fixing the
dual variables λt′,j for all t′ 6= t.

To recap, we replace the loss of the instantaneous optimization problem defined in Eq. (1)
with the average over a decomposition of losses ˆ̀ as defined by Eq. (23). Next, in order to obtain
a mistake bound, we look at the global optimization task defined by Eq. (26). As previously
showed, the simultaneous projection scheme can be viewed as an incremental update to the dual
of Eq. (26). It is interesting to note that for every decomposition of the kt instances into sets,
the value of ˆ̀(ω; (Xt,yt)

)
is upper bounded by `

(
ω; (Xt,yt)

)
, as ˆ̀ is the average over the margin

violations while ` corresponds to the worst margin violation. Thus, the loss underpinning the
global optimization from Eq. (14) upper bounds the loss yielding Eq. (26). The following corollary
immediately holds.

Corollary 5 Under the same conditions of Thm. 2, the loss suffered along the run of either
decomposition variant is at most,

1
2‖ω

?‖2 + C
∑T

t=1
ˆ̀(ω?; (Xt,yt)

)
C − 1

2C
2R2

.

In conclusion, the simultaneous projection scheme allows us to easily obtain online algorithms
and update schemes for complex problems, such algorithms are obtained by decomposing a complex
problem into multiple binary problems. It is often the case where the maximal violation over all
binary problems correctly captures the inherent violation of the original complex problem. In
this section we explored cases where a more refined definition of error is required. Specifically, if
we define each binary instance in a separate set, we obtain an algorithmic framework where our
competitor is evaluated according to the average loss.

8. Simultaneous Multiplicative Updates

In this section we describe and analyze a multiplicative version of the simultaneous projection
scheme. Recall that our motivation was to introduce a solution to the instantaneous optimization
problem given in Eq. (2). The instantaneous objective captures the following trade-off. On one
hand we would like to set ω to be as close as possible to ωt. On the other hand, we would like to
minimize the loss incurred by the instances received on trial t. In previous sections we used the
squared Euclidean norm to define the measure of distance between ωt and ω. In this section we take
a different approach and use the relative entropy as the notion of closeness between two vectors.
By doing so we derive a multiplicative version of our online algorithmic framework. In this section
we confine ourselves to linear predictors that lie in the probability simplex, that is, we consider
non-negative vectors ω such that

∑n
i=1 ωi = 1. Previously, we used a fixed value of 1 for the margin

that is needed in order to suffer no loss, where it was understood that we may simultaneously scale
the prediction vector and the margin. Since we now prevent such scaling due to the choice of the
simplex domain, we need to slightly modify the definition of the loss and introduce the following
definition, `γ

(
ŷt,yt

)
= maxj

[
γ − ytj ŷtj

]
+

.

18

Recall that on trial t the algorithm receives kt instances arranged in a matrix Xt. After extend-
ing a prediction vector, ωtXt, the algorithm receives the vector of correct labels yt and suffers a
loss for any incorrect prediction. If no mistake is made the algorithm proceeds to the next round.
Otherwise we would like to set ωt to be the solution of the following optimization problem

min
ω∈∆n

DKL

(
ω‖ωt

)
+ C `γ

(
ω;
(
Xt,yt

))
, (28)

where C is a trade-off parameter. The term DKL is the relative entropy operator, also known as
the Kullback-Leibler divergence, and is defined as

DKL

(
ω‖ωt

)
=

n∑
i=1

ωi log
ωi
ωti
.

The dual problem of Eq. (28) is,

γ

kt∑
j=1

αtj − log

 n∑
i=1

ωti exp

 kt∑
j=1

τ ji

s.t.

kt∑
j=1

αtj ≤ C ∀j : αtj ≥ 0 ∀j : τ j = αtjy
t
jx
t
j

. (29)

The prediction vector ω is set as follows,

ωi = ωti

exp
(∑kt

j=1 τ
j
i

)
∑n

l=1 ω
t
l exp

(∑kt
j=1 τ

j
i

) . (30)

The complete derivation of the dual problem and the update of ω is given in Appendix A.
We follow the same technique suggested in Sec. 4 and decompose Eq. (29) into kt separate

problems, each concerning a single dual variable. The resulting j’th reduced dual problem is thus

γαtj − log

(
n∑
i=1

ωti exp
(
τ ji

))
s.t. 0 ≤ αtj ≤ C τ j = αtjy

t
jx
t
j

. (31)

We next obtain an exact or approximate solution for each reduced problem as if it were independent
of the rest. We follow by choosing a vector µ ∈ ∆kt , and multiply each αtj by a corresponding
value µtj . Our choice of µ assures us {µtjαtj} constitutes a feasible solution to the dual problem
defined in Eq. (29) for the following reason. Each µtjα

t
j ≥ 0 and the fact that αtj ≤ C implies that∑kt

j=1 µ
t
jα

t
j ≤ C. Finally, the algorithm uses the combined solution and sets ωt+1 according to Eq.

(30). The template of the multiplicative simultaneous projections algorithm is described in Fig. 6.
We may now apply the methods introduced in Sec. 5 and introduce the multiplicative schemes.

The SimPerc scheme can be trivially applied to the multiplicative setting. We next show a closed-
form solution to αtj for each reduced problem if the components of each instance are from {−1, 0, 1}n.

19

Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = (1

n , . . . ,
1
n)

For t = 1, 2, . . . , T :
Receive instance matrix Xt ∈ Rkt×n

Predict ŷt = Xtωt

Receive correct labels yt

Suffer loss `
(
ωt;
(
Xt,yt

))
If ` > 0:

Choose importance weights µt s.t.
∑kt

j=1 µ
t
j = 1

Choose individual dual solutions αtj
Compute τ j = αtjy

t
jx
t
j

Update ωt+1
i =

ωti exp
“Pkt

j=1 µ
t
jτ
j
i

”
P
l ω

t
l exp

“Pkt
j=1 µ

t
jτ
j
l

”
Figure 6: The multiplicative simultaneous projections algorithm.

To so we need to introduce the following notation.

W+
j =

∑
i:ytjx

t
ji=1

ωti

n∑
l=1

ωtl

, W−j =

∑
i:ytjx

t
ji=−1

ωti

n∑
l=1

ωtl

, and W 0
j = 1−W+

j −W
−
j .

The optimal value of αtj is thus log of the root of a quadric equation with W+
j , W−j , W 0

j as
coefficients. We also need to take into account the boundary constraints on αtj , namely, 0 ≤ αtj ≤ C.
Thus, αtj is the minimum between the following root and C,

log

γW 0
j +

√
γ2(W 0

j)2 + 4(1− γ2)W+
j W

−
j

2(1− γ)W+
j

 ,

The derivation can be found at Appendix C. Using the closed-form solution for αtj we can adapt
both the ConProj and SimProj scheme to the multiplicative setting.

We next turn our attention to the analysis of the multiplicative algorithm and focus on the
SimPerc scheme. The analysis here follows closely the analysis presented in Sec. 6. Hence, the
remainder of this section focuses on highlighting the key changes that are required. Formally, we
prove the following theorem.

Theorem 6 Let
(
X1,y1

)
, . . . ,

(
XT ,yT

)
be a sequence of examples where Xt is a matrix of kt

examples and yt are the associated labels. Assume that for all t and j the `∞ norm of an instance
xtj is at most R. Then, for any ω? ∈ ∆n the number of trials on which the prediction of SimPerc
is imperfect is at most, ∑n

i=1 ω
?
i log ω?i

1/n + C
∑T

t=1 `γ
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

.

20

Proof Following the technique introduced in Sec. 6, our goal is to upper bound the number of
imperfect trials compared to the performance of any fixed competitor, even one defined in hindsight.
Our competitor is thus evaluated using the global optimization problem given by,

min
ω∈∆n,ξ≥0

n∑
i=1

ωi log
ωi
ωti

+ C
T∑
t=1

ξt

s.t. ∀t ∈ [T], ∀j ∈ [kt] : ytj
(
ω · xtj

)
≥ γ − ξt ∀t : ξt ≥ 0

. (32)

The dual of Eq. (32) is

γ
T∑
t=1

kt∑
j=1

λtj − log

 n∑
i=1

exp

 T∑
t=1

kt∑
j=1

τ tji

s.t. ∀t ∈ [T] :

kt∑
j=1

λtj ≤ C ∀t,∀ : λtj ≥ 0 ∀t,∀j : τ tj = λtjy
t
jx
t
j

. (33)

We denote the objective of Eq. (33) by D (λ1, . . . ,λT). The instantaneous dual of Eq. (29) can
be seen as incrementally building an assignment for the dual: At trial t we fix λs for s < t to their
previous values, and fix λs for s > t to 0. Thus ωt is defined as follows

ωti =
exp

(∑t
s=1

∑ks
j=1 τ

sj
i

)
∑n

l=1 exp
(∑T

s=1

∑ks
j=1 τ

sj
l

) . (34)

The key difference between the multiplicative schemes and the previously analyzed scheme lies in
Lemma 3. We thus progress to derive a similar lemma for the multiplicative setting.

Lemma 7 Let θ =
∑t−1

l=1

∑kl
j=1 λ

t
jy
t
jx
t
j denote the dual variables assigned in trials prior to t by the

SimPerc scheme. Let j ∈ Mt denote an index of a mispredicted instance on trial t. Then, the
difference,

log

(
n∑
i=1

exp
(
θi + Cxtjiy

t
j

))
− log

(
n∑
i=1

exp (θi)

)
,

is upper bounded by 1
2C

2 ‖x‖2∞.

Proof Denote the vector Cxtjy
t
j by τ . Let F (θ) denote the value of log

(∑n
i=1 e

θi
)
. Hence, we

would like to upper bound the difference F (θ + τ) − F (θ). We prove the lemma based on the
following inequality

F (θ + τ)− F (θ) ≤
n∑
i=1

eθi∑
l e
θl
τi +

1
2

max
i
τ2
i . (35)

The above inequality was utilized and proved in numerous previous analyses of multiplicative update
methods. See for instance Examples 2 and 5 in Kivinen and Warmuth (2001). Consider the term∑n

i=1
eθiP
l e
θl
τi. Recall that the prediction in trial t is made by using the predictor defined by Eq.

(30). Thus, the above term is the following inner product between the vector τ and the predictor
used on round t,

n∑
i=1

eθi∑
l e
θl
τi =

n∑
i=1

ωtiτi = 〈ωt, τ 〉 = Cytj〈ωt,xtj〉 ≤ 0 ,

21

where the last inequality is due to the fact that we assume j ∈ Mt (the prediction was incorrect)
and the inner-product is non-positive. Therefore, we obtain the required upper bound

F (θ + τ)− F (θ) ≤ 1
2

max
i
τ2
i

1
2
‖τ‖2∞ =

1
2
C2
∥∥xtj∥∥2

∞ . (36)

To recap, we showed that the instantaneous dual can be seen as incrementally constructing an
assignment for a global dual function (given by Eq. (33). Furthermore, we showed that Lemma 3
can be adapted to the multiplicative settings. The rest of the proof follows the same lines of the
proof given in Sec. 6. Namely, trials in which a prediction mistake was made, the SimPerc scheme
is guaranteed a substantial increase in the incremental dual buildup. Finally, using weak-duality
we obtain that the evaluation measure for the competitor is the lower bounded by,∑n

i=1 ω
?
i log ω?i

1/n + C
∑T

t=1 `γ
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

.

The multiplicative ConProj scheme assigns αtj the value which maximizes the reduced instan-
taneous dual. The ConProj scheme thus maximizes the difference between the value of the global
dual in two consecutive rounds. We thus obtain an equivalent corollary of Corollary 4 for the
multiplicative setting.

Corollary 8 Under the same conditions of Thm. 6 and for any ω? ∈ Rn, the number of trials on
which the prediction of the ConProj scheme is imperfect is at most,∑n

i=1 ω
?
i log ω?i

1/n + C
∑T

t=1 `γ
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

.

We thus showed that the multiplicative SimPerc and ConProj schemes entertain a similar
mistake bound as the original formulation. Note, however, that in the multiplicative settings
we assume that the `∞ norm of all instances are bounded by R, while in the additive settings, we
have assumed that the `2 norm of the instances is bounded by R.

9. Experiments

In this section we describe experiments we performed with synthetic and real datasets. The goal of
the experiments is to underscore the properties of the simultaneous projection algorithms and to
demonstrate some of their merits. Specifically, we examine how the various simultaneous projec-
tions variants perform with respect to the size of each block, how does the performance deteriorate
with label noise, and the dependency of the algorithms on the number of relevant features. Our ex-
periments with synthetic data are followed with email categorization experiments. On the synthetic
data we compare our simultaneous projections algorithms with a commonly used technique whose
updates are based on the most violating constraint on each online round (see for instance Crammer
et al. (2006)). In the multiclass email categorization experiment, we also use the Sopopo algorithm

22

described in Shalev-Shwartz and Singer (2006b) and a numerical solver which finds the optimal
solution of the optimization problem on hand. To recap, we experimented with the following three
families of online algorithms.

Simultaneous Projections Algorithms We evaluated all the variants given in Fig. 3, in both
their additive and multiplicative forms. We denote the different variants using the nota-
tion name.A or name.M where name denotes the specific simultaneous projection scheme as
given in Fig. 3 and the .A or .M suffix designate whether the update took an additive or
multiplicative form. For example the additive SimProj algorithm is denoted by SimProj.A

MaxPA The algorithm extends the binary Passive-Aggressive family of algorithms Crammer et al.
(2006) to structured prediction problems. The algorithm uses a construction which is similar
to our instantaneous primal objective Eq. (2), and analogously attempts to obtain a feasible
solution to its dual. The difference lies in the fact that the MaxPA algorithm focuses on a
single instance whose margin constraint is mostly violated and updates only its corresponding
dual variable, while fixing all other dual variables to zero. The single dual variable is then
optimally computed. This update form constitutes a feasible solution to the instantaneous
dual and casts a simple update for the online algorithm.

Optimal Solver The optimal solver algorithm employs a numerical solver on each iteration, and
solves optimally the instantaneous primal given by Eq. (2). Specifically, we used the Pegasos
algorithm from Shalev-Shwartz et al. (2007) to perform the optimization task. We chose this
algorithm since it provides a simple solver which proved superior to second order methods in
various classification tasks Shalev-Shwartz et al. (2007).

Sopopo The Sopopo1 algorithm is a novel algorithm for label ranking and is thus used only in
our label ranking experiments with email data. The Sopopo algorithm computes the optimal
solution to an instantaneous optimization problem similar cast by Eq. (2) while using a
slightly different setting. We further elaborate on the different setting in Sec. 9.2.

9.1 Experiments with synthetic data

We tested the performance of the additive and the multiplicative variants of our algorithm in a
series of experiments using synthetic data. Our goal in this section is to underscore the merits
of our simultaneous projections approach in comparison with the commonly used max update
techniques (MaxPA). Since it is often computationally prohibitive to run a full numerical solver on
each iteration, we omitted the optimal solver from this set comparisons.

Before we describe the results of our experiments with synthetic data, let us first discuss the
procedures used to generate the data. In order to compare both the additive and the multiplicative
versions of our framework, we confined ourselves to the more restrictive setting of the multiplicative
schemes as described in Sec. 8. Specifically, the data was generated by randomly constructing
instances xt ∈ {−1, 0, 1}n and classification was performed by selecting a probability vector ω ∈ ∆n.
We used a sparse classifier where the number of relevant features in ω varied from 10% to 50%
active features. The non-zero components of ω were chosen uniformly at random from [0, 1]. We
then normalized the vector such that its L1 norm would be one. We generated linearly separable

1. The name Sopopo stands for SOft Projection Onto Polyhedra.

23

 1 2 5 10 20 30 50
0

20

40

60

80

100

120

BlockSize

M
is

ta
ke

s

SimProj.A
SimOpt.A
MaxPA.A
SimProj.M
MaxPA.M

Figure 7: The number of mistakes suffered by the various the additive and multiplicative simulta-
neous projections methods. The performance of the algorithms is compared as a function
of the block size.

data whose margin was calculated as follows. Each entry in x was set to 0 with probability p and
otherwise it was chosen from {−1, 1} with equal probability. We then computed the value of γ for
which 75% of all instances sampled from the process above would fall inside a margin of γ. We then
repeatedly generated and rejected instances, until we managed to construct sufficient number of
examples. We refer to a set examples grouped together into a single classification task as a block.

We ran each online experiment for 1000 trials and recorded the number of mistakes performed
by the online algorithms. Each experiment was repeated 10 times. The results we present are the
averages of these runs. For each experiment, we performed a search for a good value of C. We
checked 9 values for C, ranging from 2−5 to 23. For the multiplicative variants, we also performed
a search for a good value of γ by examining values in the range 0.5 to 2 times the margin used
during the data generation process. We compared all simultaneous projection variants presented
earlier, as well as the multiplicative and additive versions of the MaxPA update.

The first experiment with synthetic data assesses the performance of the various update schemes
as a function of the block sizes. We used instances in {−1, 0, 1}500 where ω contained 50 relevant
features. The results are described in Fig. 7. We clearly see that while both schemes entertain the
same mistake bound, in practice the SimProj algorithms always perform better than the maximal
update. The difference in practical performance can be attributed to the fact that the simultaneous
projections mechanism utilizes more information regarding the structure of the problem at hand.

Note that for both the MaxPA.A scheme and the multiplicative schemes the performance de-
teriorates as the block size increases. A converse trend is exhibited in the case of SimProj.A and
SimOpt.A. One possible explanation for the improvement with block size increase may be observed
by considering the geometrical structure of the instances. Recall that we generate uniformly se-
lected linearly separable data. Thus, the update form the additive variants apply can be seen as
performing the update using the average instance. For large blocks the average instance is equiv-

24

0.1 0.2 0.3 0.4 0.5
16

18

20

22

24

26

28

30

32

34

36

Percent Relevant Features

M
is

ta
ke

s

SimProj.A
SimOpt.A
SimProj.M
MaxPA.M

0.1 0.2 0.3 0.4 0.5
10

15

20

25

30

35

40

45

50

55

Percent Relevant Features

Figure 8: The performance of the additive and multiplicative simultaneous projections algorithms
as a function of the sparsity of the hypothesis generating the data. Results are shown
for block size of 5 instances (left) and of 20 instances (right).

alent to the vector used to describe the separating hyperplane. Such averaging does not occur in
the multiplicative case, or the MaxPA.A scheme.

Our second experiment examines the effect of the sparsity of ω on the performance of the
algorithms. As before, we used instances in {−1, 0, 1}500. We varied the number of non-zero
elements of ω from 50 to 250. The results of this experiments are plotted in Fig. 8. We ran this
experiment with a block size of 5 instances per trial (Fig. 8 left) and a block size of 20 (Fig. 8 right).
We omit the plot of MaxPA.A as its performance is much worse than any of the other algorithms.
It is apparent that the additive versions are rather insensitive to the sparsity of the prediction
matrix. The converse is true for the multiplicative variants. For both block sizes, we see that
the performance of the multiplicative versions deteriorate as we increase the percentage of relevant
features from 10% to 30%. This decrease in performance is then replaced with a gradual increase
in performance once the number of relevant features is over 30%. This increase in performance
may be attributed to the fact that there are more relevant features which are set approximately
uniformly. Thus, the optimal solution is rather close to the initial vector and the multiplicative
algorithm converges faster.

Our last experiment with synthetic data examines the effect of label noise on the performance
of the simultaneous projections algorithms. We employed the same settings as in the previous
experiment with instances of 500 dimensions and 50 non-zero entries in ω. After the data was
generated, we chose to contaminate with label noise each trial with a fixed probability. If the
block was selected for contamination, we flipped the label of each the instances in the block with
probability 0.4. We repeated the experiment with varying probabilities of picking a block for
contamination. We tested values from the set {0 (no label noise), 0.05,0.1,0.15, 0.2}. To avoid too
aggressive online updates, we increased the range of the search for C to be in [2−9, 23]. The results
of this experiment are plotted in Fig. 9. We ran this experiment with a block size of 5 instances
per trials (Fig. 9 left) and block size of 20 (Fig. 9 right) instances per trial.

25

0 0.05 0.1 0.15 0.2

50

100

150

200

250

300

350

400

450

Label Noise

M
is

ta
ke

s

SimProj.A
SimOpt.A
MaxPA.A
SimProj.M
MaxPA.M

0 0.05 0.1 0.15 0.2

100

200

300

400

500

600

Label Noise

Figure 9: The number of mistakes of the additive and multiplicative simultaneous projections algo-
rithms as a function of the label noise. Results are depicted for block sizes of 5 instances
(left) and 20 instances (right) per trial.

username k m Max-SP SimPerc ConProj SimProj SimOpt OptSolv
beck-s 101 1972 48.2 48.4 48.8 43.4 46.9 45.5

farmer-d 25 3398 25.8 28.8 28.4 25.0 24.2 27.5
kaminski-v 41 4478 48.0 47.2 47.6 46.0 44.4 44.0
kitchen-l 47 4016 42.5 45.1 43.8 41.4 42.4 40.3
lokay-m 11 2490 20.8 24.1 23.9 18.6 20.6 20.3
sanders-r 30 1189 18.6 20.9 22.2 17.7 19.3 18.2

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.8 2.6

Table 1: The percentage of online mistakes of the four additive variants compared to MaxPA and
the optimal solver of each instantaneous problem. Experiments were performed on seven
users of the Enron data set.

We can clearly see that the number of mistakes of all the SimProj variants scale linearly with
the noise rate. It is also apparent that the number of mistakes of the MaxPA.A algorithm scales
super linearly with the noise rate. The simultaneous projections variants (both additive and mul-
tiplicative) exhibit the best performance. We see that for the smaller block sizes (Fig. 9 left) the
best performing version is the SimProj.M variant. Note, however, that the variants of SimOpt per-
form worse than the variants of SimProj . This fact can possibly attributed to the more aggressive
update taken by the SimOpt variant when a mistake occurs. As the number of instances per trial
increases, the performance of all of simultaneous projections variants is comparable and they all
perform better than any of the MaxPA variants.

26

9.2 Email Classification Experiments

We next tested performance of the different additive and multiplicative simultaneous projection
methods described in Sec. 5 on multiclass email categorization tasks and compared them to previ-
ously studied algorithms for multiclass categorization. We compared our algorithms to the MaxPA
algorithms and to the optimal solver. The experiments were performed with the Enron email
dataset. The data set is available from http://www.cs.cmu.edu/∼enron/enron_mail_030204.tar.gz. The
learning goal is to correctly classify email messages into user defined folders. Thus, the instances
in this dataset are email messages, while the set of classes are the user defined folders denoted by
{1, . . . , k}. We ran the experiments on the sequence of email messages from 7 different users.

Since each user employs different criteria for email classification, we treated each person as a
separate online learning problem. We represented each email message as a vector with a component
for every word in the corpus. In order to apply our algorithms, we next describe the class-dependent
map we utilize for the additive algorithms. On each trial, and for each class r, we constructed class-
dependent vectors as follows. We set φj(xt, r) to 2 if the j’th word appeared in the message and it
also appeared in a fifth of the messages previously assigned to folder r. Similarly, we set φj(xt, r)
to −1 if the j’th word appeared in the message but appeared in less than 2 percent of previous
messages. In all other cases, we set φj(xt, r) to 0. This class-dependent construction is very similar
to the construction used in Fink et al. (2006), which yielded high classification accuracy. Next, we
employed the mapping described in Sec. 3, and defined a set of k − 1 instances for each message
as follows. Let the relevant class of an instance be denoted by y. Then, for every irrelevant class
s 6= y, we define an instance xts = φ(xt, y)− φ(xt, s) and set its label to 1. All these instances were
combined into a single matrix Xt and were provided to the algorithm in trial t.

For the multiplicative algorithms we took a slightly different approach. Recall that the multi-
plicative variants assume that the components of each instance are in {−1, 0, 1}. Hence, in order
to adhere to this requirement, φj(xt, r) was set to 1 if the j’th word appeared in the message and
it also appeared in a fifth of the messages previously assigned to folder r and to 0 in all other cases.
Note that this feature generation is performed without knowing the correct label of the instance xt

and is thus limited to the information available to the online algorithm.
We repeated all tests for 11 values of the trade-off parameter C, testing values from 2−5 to 25.

For each algorithm we present the results for the best choice of C. We first compare the results
of the various additive approaches. The results of this experiments are described in Fig. 1. It
is apparent that the SimProj and SimOpt variants consistently perform better than the MaxPA
variant, and their performance is on par with the performance of the optimal solver. It is interesting
to note that in 3 of the 7 users, the SimProj algorithm actually performs better than the optimal
solver. The superior performance of the SimProj algorithm may most likely attributed to to the
fact that the optimal solver is more aggressive in its update, and is thus more sensitive to noise. We
can also see that the SimOpt version, while guaranteeing a larger increase in the global dual, does
not necessarily assure better empirical performance. The performances of SimPerc and ConProj
are comparable with no obvious winner. Last, we would like to note that the computational cost
of the simultaneous projections algorithms is comparable to that of the MaxPA algorithm.

In Fig. 10 we plot the relative number of mistakes of each algorithm with respect to the number
of mistakes made by the optimal solver as a function of the number trials for 6 of the 7 users. (The
user williams-w3 was omitted as he classifies most his emails into a single folder.) In order to keep
the graphs intelligible, we use the optimal solver algorithm as the baseline and plot the difference
in performance of the other additive variants. The graphs clearly indicate the superiority of the

27

SimProj and SimOpt variants over the MaxPA algorithm, and show that SimProj often exhibits
the best accuracy.

0 500 1000 1500

−40

−20

0

20

40

Trials

∆
M

is
ta

ke
s

beck−s

SimProj
MaxPA
SimOpt
Optimal

0 500 1000 1500 2000 2500 3000
−10

0

10

20

30

40

50

farmer−d

Trials

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

kaminski−v

∆
M

is
ta

ke
s

Trials
0 500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

kitchen−l

Trials

0 500 1000 1500 2000

−40

−30

−20

−10

0

10

lokay−m

∆
M

is
ta

ke
s

Trials
0 200 400 600 800 1000

−10

−5

0

5

10

15
sanders−r

Trials

Figure 10: The cumulative number of mistakes of the simultaneous projection algorithms compared
with the performance of the Max-PA algorithm and the optimal solver as a function of
the number of trials. We plot the difference in the number of mistakes between each
algorithm and the optimal solver.

28

Additive Multiplicative
username k m Max-SP SimPerc ConProj SimProj Max-SP SimPerc ConProj SimProj

beck-s 101 1972 48.2 48.4 48.8 43.4 45.0 43.7 43.6 45.8
farmer-d 25 3398 25.8 28.8 28.4 25.0 33.1 35.1 34.8 33.0

kaminski-v 41 4478 48.0 47.2 47.6 46.0 50.0 49.8 49.8 49.8
kitchen-l 47 4016 42.5 45.1 43.8 41.4 46.8 47.3 47.2 46.5
lokay-m 11 2490 20.8 24.1 23.9 18.6 21.8 22.9 22.9 21.4
sanders-r 30 1189 18.6 20.9 22.2 17.7 17.8 17.9 17.9 19.3

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.6 2.7 2.6 2.7

Table 2: The percentage of online mistakes of three additive variants and the MaxPA algorithm
compared to their multiplicative counterparts. Experiments were performed on seven
users of the Enron data set.

We next compared the performance of the multiplicative and additive variants. The results
of this experiments are summarized in Table 2. Observe that the multiplicative versions usually
perform on par or slightly worse than the additive versions. This possibly surprising result may be
partially attributed to the slightly different feature selection process we used for the multiplicative
algorithms. The result also underscores the conjecture that we surfaced above when discussing the
synthetic experiments. Namely, the additive simultaneous projections algorithms seem to better
capture the structure of the data at hand. The multiplicative versions, however, seem to be less
sensitive to the trade-off parameter C taking a preference to the larger values in our test setting.

In our last experiment, we compared the results of our algorithms to the Sopopo algorithm
from Shalev-Shwartz and Singer (2006b). The results of this experiment are described in Table 3.
Before we discuss the results of this comparison, it is important to note the difference in the model
the algorithms use. The algorithms we compare can be roughly divided into two classes of learning
algorithms: single-prototype algorithms and multi -prototype algorithms. As the name imply, the
single prototype algorithms maintain a single hypothesis on each online trial. The prediction is
obtained by taking the inner-product of the hypothesis with some class dependent map of the
instance at hand. The class attaining the highest score is considered the predicted label. All the
simultaneous projections algorithms as well as the single prototype version of MaxPA fall into this
category. Multi-prototype algorithms take a different approach. On each trial, the online algorithm
maintains an hypothesis for each possible output class. In order to make a prediction, the algorithm
computes the inner product between each hypothesis and the instance at hand. The class attaining
the largest product is the predicted label. We can see that the various SimProj variants are
comparable to the Sopopo algorithm, while the former often performs better (4 of the 7 users we
have). It is worth nothing that the Sopopo algorithm exploits the specific settings present in multi-
prototype multiclass problems, and efficiently finds the optimum of a projection problem on each
trial while our algorithms only find an approximate solution. However, Sopopo is a multi prototype
algorithm and thus employs a larger hypothesis space which is more difficult to learn in an online
setting. In addition, by employing a single vector representation of the email message, Sopopo
cannot benefit from the on-the-fly feature selection which results in class-dependent features.

29

Single Prototype Multi Prototype
username k m MaxPA SimPerc ConProj SimProj SimOpt MaxPA Sopopo

beck-s 101 1972 48.2 48.4 48.8 43.4 46.9 56.0 53.2
farmer-d 25 3398 25.8 28.8 28.4 25.0 24.2 24.0 23.0

kaminski-v 41 4478 48.0 47.2 47.6 46.0 44.4 45.9 43.4
kitchen-l 47 4016 42.5 45.1 43.8 41.4 42.4 42.2 40.9
lokay-m 11 2490 20.8 24.1 23.9 18.6 20.6 20.0 19.0
sanders-r 30 1189 18.6 20.9 22.2 17.7 19.3 27.9 26.9

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.8 4.1 4.1

Table 3: The percentage of online mistakes of four additive simultaneous projection algorithms.
The simultaneous projection algorithms are compared with MaxPA (Single-prototype (SP)
and Multi-prototype (MP)) and the Sopopo algorithm. Experiments were performed on
seven users of the Enron data set.

10. Discussion

We presented a new approach for online categorization with complex output structure. Our algo-
rithms decouples the complex optimization task into multiple sub-tasks, each of which is simple
enough to be solved analytically. While the dual representation of the online problem imposes a
global constraint on all the dual variables, namely

∑
j α

t
j ≤ C, our framework of simultaneous pro-

jections which are followed by averaging the solutions automatically adheres with this constraint
and hence constitute a feasible solution. It is worthwhile noting that our approach can also cope
with multiple constraints of the more general form

∑
j νjαj ≤ C, where νj ≥ 0 for all j. The box

constraint implied for each individual projection problem distils to 0 ≤ αj ≤ C/νj and thus the
simultaneous projection algorithm can be used verbatim.

The main scope of this paper is prediction tasks for complex structured decision problems, such
as multiclass classification. We approach this problem by first describing the structured problem as
a complex optimization problem dealing with multiple binary problems simultaneously. We then
use our simultaneous projections scheme to propose a feasible solution to the optimization problem
which competes with any decomposition loss (see Sec. 7).

While such an approach is very natural for various structured problems, it is interesting to
consider settings in which multiple unrelated binary problems, should be served simultaneously.
This approach was the basis for our synthetic experiments, which showed us that the simultaneous
projections methods perform much better than the MaxPA approach even though their theoretical
bound is similar. One possible explanation of this phenomenon may be attributed to the structure
of the space spanned by the examples. In order to illustrate this point, consider for example, the
case where all instances on trial t are of similar norm and are orthogonal to each other. The
update performed by the simultaneous projections approach is thus optimal. If, on the other hand,
all instances received on trial t are exactly the same, then the simultaneous projections approach
cannot hope to attain anything better than the MaxPA algorithm. These two extreme cases suggests
that further analysis may show that the geometrical structure of the data may shed more light on
the progress attained by the simultaneous projections approach.

It is also interesting to explore settings in which the simultaneous projections approach is
not immediately applicable. The simultaneous projections approach easily captures the structural

30

requirements expressed by the box constraint
∑kt

j=1 α
t
j ≤ C. While there are many practical

problems where such constraints suffice to capture the structure of the problem, more complex
constraints are quite prevalent. A notable examples for such a complex setting is the framework
of the max-margin Markov (MMM) networks Taskar et al. (2003). While the original learning
setting of MMM networks was cast for the batch setting, an equivalent online formulation can be
easily obtained. In the MMM framework, the dual problems has dual variables whose number is
exponential in the original size of the problem. These variables are tied via a simple box constraint.
The dual is then transformed into an equivalent form with a much smaller number of variables
which are strongly tied with multiple constraints involving all these new variables. While the
simultaneous projections approach is well suited for the original formulation, the exponential size
of the problem renders such approach unsuitable. On the other hand, the simultaneous projections
approach cannot easily construct a feasible dual solution where multiple equality constraints are
required. It is thus interesting to explore alternative approaches in which the direct dual whose size
is infeasible is reduced to many reduced smaller problems, and only a polynomial subset of which
are considered and solved.

References

E. L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for
margin classifiers. In Machine Learning: Proceedings of the Seventeenth International Conference,
2000.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its appli-
cation to the solution of problems in convex programming. USSR Computational Mathematics
and Mathematical Physics, 7:200–217, 1967.

Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, New York, NY, USA, 1997.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems.
Machine Learning, 47, 2002.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, 2003.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, Mar 2006.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.

M. Fink, S. Shalev-Shwartz, Y. Singer, and S. Ullman. Online multiclass learning by interclass
hypothesis sharing. In Proceedings of the 23rd International Conference on Machine Learning,
2006.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of Statistics, 26(1):
451–471, 1998.

31

C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4:79–85,
1957. Erratum, ibidem, p.361.

J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Jour-
nal of Machine Learning, 45(3):301–329, July 2001.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

A.R. De Pierro and A.N. Iusem. A relaxed version of bregman’s method for convex programming.
Journal of Optimization Theory and Applications, 51:421–440, 1986.

J. C. Platt. Fast training of Support Vector Machines using sequential minimal optimization. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1998.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing (MIT Press,
1988).).

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):1–40, 1999.

R.E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine
Learning, 32(2/3), 2000.

S. Shalev-Shwartz and Y. Singer. Online learning meets optimization in the dual. In Proceedings
of the Nineteenth Annual Conference on Computational Learning Theory, 2006a.

S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto poly-
hedra. Journal of Machine Learning Research, 7 (July):1567–1599, 2006b.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Proceedings of the 24th International Conference on Machine Learning, 2007.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances in Neural
Information Processing Systems 17, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the Twenty-First International
Conference on Machine Learning, 2004.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In Pro-
ceedings of the Seventh European Symposium on Artificial Neural Networks, April 1999.

32

Appendix A. Derivation of the dual problems

In this section we derive the dual problems of the primal problems presented in the main sections.
We start with the derivation of the dual of the optimization problem given in Eq. (2). Using
Lagrange multipliers, we rewrite Eq. (2) as follows

min
ω∈Rn,ξ

max
αt≥0,β≥0

1
2

∥∥ω − ωt∥∥2 + Cξ +
kt∑
j=1

αtj
(
1− ξ − ytj

(
ω · xtj

))
− βξt .

We rearrange the terms in the above equation and rewrite it as follows,

min
ω∈Rn,ξ

max
αt≥0,β≥0

kt∑
j=1

αtj +
1
2

∥∥ω − ωt∥∥2 −
kt∑
j=1

αtjy
t
j

(
ω · xtj

)
+ ξ

C − kt∑
j=1

αtj − β

 . (37)

The dual of Eq. (37) is attained by changing the order of the min and max and is given by

max
αt≥0,β≥0

min
ω∈Rn

kt∑
j=1

αtj +
1
2

∥∥ω − ωt∥∥2 −
kt∑
j=1

αtjy
t
j

(
ω · xtj

)
+ min

ξ
ξ

C − kt∑
j=1

αtj − β

 . (38)

The equation above can be written equivalently as

max
αt≥0

min
ω∈Rn

kt∑
j=1

αtj +
1
2

∥∥ω − ωt∥∥2 −
kt∑
j=1

αtjy
t
j

(
ω · xtj

)
︸ ︷︷ ︸

L(α,ω)

s.t.
kt∑
j=1

αtj ≤ C . (39)

In order to see that Eq. (39) and Eq. (38) are equivalent, note that the expression

min
ξ
ξ

C − kt∑
j=1

−β

takes the value of −∞ when

∑kt
j=1 α

t
j +β 6= C. Such an assignment for αt and β cannot constitute

the optimal solution for the maximization problem. The constraint β ≥ 0 thus translates to the
constraint

∑kt
j=1 α

t
j ≤ C. Fixing αt, the derivative of L with respect to ω is given by

∂L
∂ω

= ω − ωt −
kt∑
j=1

αtjy
t
jx
t
j .

Comparing the derivative to 0, yields the following equation, ω = ωt +
∑kt

j=1 α
t
jy
t
jx
t
j . Plugging this

equality of ω Eq. (39) yields the following simplified constrained optimization problem,

max
αt≥0

kt∑
j=1

αtj +
1
2

∥∥∥∥∥∥
kt∑
j=1

αtjy
t
jx
t
j

∥∥∥∥∥∥
2

−
kt∑
j=1

αtjy
t
j

((
ωt +

kt∑
l=1

αtly
t
lx
t
l

)
· xtj

)

s.t.
kt∑
j=1

αtj ≤ C

. (40)

33

Rearranging the terms and adding constants which do not depend of αt, we obtain the following
dual problem,

max
αt

kt∑
j=1

αtj −
1
2

∥∥∥∥∥∥ωt +
kt∑
j=1

αtjy
t
jx
t
j

∥∥∥∥∥∥
2

s.t.
kt∑
j=1

αtj ≤ C ∀j ∈ [kt] : αtj ≥ 0

. (41)

We now turn our attention to the derivation of the dual of the optimization problem given by
Eq. (28). Eq. (28) can be rewritten as follows

min
ω∈∆n,ξ≥0

n∑
i=1

ωi log
ωi
ωti

+ Cξ

s.t. ∀j ∈ [kt] : ytj
(
ω · xtj

)
≥ γ − ξ ξl ≥ 0

. (42)

We again use Lagrange theory and rewrite the optimization task above as,

min
ω∈∆n,ξ≥0

max
αtj≥0

n∑
i=1

ωi log
ωi
ωti

+ Cξ +
kt∑
j=1

αtj
(
γ − ξ − ytj

(
ω · xtj

))
.

Rearranging the terms in the above expression we obtain

min
ω∈∆n,ξ≥0

max
αtj≥0

n∑
i=1

ωi log
ωi
ωti

+ ξ

C − kt∑
j=1

αtj

+
kt∑
j=1

αtj
(
γ − ytj

(
ω · xtj

))
. (43)

The dual of Eq. (43) is thus obtained by reversing the order of the min and max and is thus given
by

max
αtj≥0

min
ω∈∆n,ξ≥0

n∑
i=1

ωi log
ωi
ωti

+ ξ

C − kt∑
j=1

αtj

+
kt∑
j=1

αtj
(
γ − ytj

(
ω · xtj

))
. (44)

The equation above can be rewritten equivalently as follows

max
αtj ,β

t
min
ω∈Rn

n∑
i=1

ωi log
ωi
ωti

+
kt∑
j=1

αtj
(
γ − ytj

(
ω · xtj

))
+ βt(

n∑
i=1

ωi − 1)

s.t.
kt∑
j=1

αtj ≤ C ∀j : αtj ≥ 0

. (45)

In order to see Eq. (45) and Eq. (44) are equivalent, note that the expression minξ ξ
(
C −

∑kt
j=1 α

t
j

)
takes the value of −∞ when

∑kt
j=1 α

t
j > C. Since our goal is to maximize the dual, such solution

cannot constitute the optimal assignment for αt. Similarly, when
∑n

i=1 ωi 6= 1, the maximization
takes the value ∞, thus such a solution cannot constitute the optimal assignment of minimization

34

problem. Finally, we may ignore the constraint ωi ≥ 0 as the optimal solution to the above problem
always yields a solution that satisfies this constraint.

In order to further analyze the Eq. (45), let us first denote the vector
∑kt

j=1 α
t
jy
t
jx
t
j by τ . Taking

the derivative of Eq. (45) with respect to ω and comparing the result to 0 yields the following,

ωi = ωtie
τi−1+β

Recall that β is the Lagrange multiplier associated with the constraint
∑n

i=1 ωi = 1, thus e−1+β

serves as a normalization constant, and the optimal assignment for ωi takes the following form.

ωi =
ωtie

τi∑n
l=1 ω

t
le
τl
. (46)

Plugging the value for ω into Eq. (45) yields the following dual problem for Eq. (42)

max
αtj

γ

kt∑
j=1

αtj− log

(
n∑
i=1

ωtie
τi

)
s.t.

kt∑
j=1

αtj ≤ C ∀j : αtj ≥ 0 τ =
kt∑
j=1

αtjy
t
jx
t
j . (47)

Appendix B. Derivation of the SimPerc mistake bound

Thm. 2 assures us that the number of mistakes performed by the SimPerc algorithm is bound by
1
2‖ω

?‖2 + C
∑T

t=1 `
(
ω?; (Xt,yt)

)
C − 1

2C
2R2

. (48)

Observe that the prediction made by the SimPerc algorithm does not depend on the value of C. We
may thus choose C as to tighten the above bound. Assume R = 1 and denote

∑T
t=1 `

(
ω?; (Xt,yt)

)
by L and ‖ω?‖2 by B. It is easy to verify that if L = 0, the optimal assignment for C is attained
by setting C = 1. The bound in this case distills to B. Otherwise, assume L > 0. Then, Eq. (48)
can be written as

ϕ(C) =
1
2B + CL

C − 1
2C

2
. (49)

The above expression is convex with respect to the parameter C. Hence, in order to find the optimal
value of C, it suffices to take the derivative of Eq. (49) with respect to C and compare the result
to 0, which yields,

L(C − 1
2C

2)− (1
2B + CL)(1− C)(

C − 1
2C

2
)2 = 0 ,

which implies that,
LC2 +BC −B = 0 (50)

The largest root of Eq. (50) is given by

C =
−B +

√
B2 + 4BL
2L

=
−B +

√
B2 + 4BL
2L

· −B −
√
B2 + 4BL

−B −
√
B2 + 4BL

=
B2 −B2 − 4BL

2L
(
−B −

√
B2 + 4BL

)
=

2(
1 +

√
1 + 4LB

)
, (51)

35

It is easy to verify that for L > 0 this value of C lies in (0, 2) and thus constitutes the optimal
solution of Eq. (49). Plugging Eq. (50) into Eq. (48) yields the following

1
2B + CL

C − 1
2C

2
=

B
C + L

1− 1
2C

=

1
2B

(
1 +

√
1 + 4LB

)
+ 2L

2

1− 1
2

2„
1+
q

1+4 L
B

«

=

(
1 +

√
1 + 4LB

)(
1
2B

(
1 +

√
1 + 4LB

)
+ 2L

)
2
(√

1 + 4LB

)
=

1
2B + 2L

1
2

(√
1 + 4LB

) +
1
4
B +

1
4
B

(
1 +

√
1 + 4

L

B

)
+ L

=
1
2
B + L+

1
2

√
B2 + 4LB

. (52)

Using the definition of L and B to expand the above expression completes our proof.

Appendix C. An analytic solution for the multiplicative framework

Recall that throughout Sec. 8 section we assumed that the entries of each instance xtj lie in
{−1, 0, 1}. On trial t we would like to find the optimal solution to the reduced problem given by
Eq. (31). To do so we recall the notation used in Sec. 8,

W+
j =

∑
i:ytjx

t
ji=1

ωti

n∑
l=1

ωtl

, W−j =

∑
i:ytjx

t
ji=−1

ωti

n∑
l=1

ωtl

, and W 0
j = 1−W+

j −W
−
j .

The optimization problem defined by Eq. (31) can thus be rewritten as

γαtj − log
(
W+
j e

αtj +W−j e
−αtj +W 0

j

)
s.t. 0 ≤ αtj ≤ C

. (53)

Taking the derivative of the above equation with respect to αtj and comparing the result to zero
yields the following,

γ − W+eα
t
j −W−e−α

t
j

W+eα
t
j +W−e−α

t
j +W 0

= 0 . (54)

Rearranging terms, Eq. (54) reduces to

γ
(
W+eα

t
j +W−e−α

t
j +W 0

)
= W+eα

t
j−W−e−α

t
j ⇒ (1−γ)W+eα

t
j−(1+γ)W−e−α

t
j−γW 0 = 0 .

36

For brevity, we denote eα
t
j by β. The equation above is equivalent to the following equation in β,

(1− γ)W+β − (1 + γ)W−β−1 − γW 0 = 0 .

Multiplying both sides of the above equation by β, we obtain the following quadratic equation

(1− γ)W+β2 − γW 0β − (1 + γ)W− ,

whose largest root (the second root is negative) is

β =
γW 0 +

√
γ2(W 0)2 + 4(1− γ2)W+W−

2(1− γ)W+
. (55)

Since αtj must reside in [0, C] we set αtj to be the minimum between log(β) and C, yielding,

αtj = min

{
C, log

(
γW 0 +

√
γ2(W 0)2 + 4(1− γ2)W+W−

2(1− γ)W+

)}
.

37

	Introduction
	Problem Setting
	Derived Problems
	Simultaneous Projection Algorithms
	Solving the reduced problems
	Jointly Optimizing and

	Analysis
	Decomposable Losses
	Simultaneous Multiplicative Updates
	Experiments
	Experiments with synthetic data
	Email Classification Experiments

	Discussion
	Derivation of the dual problems
	Derivation of the SimPerc mistake bound
	An analytic solution for the multiplicative framework

