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Abstract

We study the framework of online learning, when individual examples are
corrupted by random noise, and both examples and noise type can be cho-
sen adversarially. Previous work has shown that without knowledge of the
noise distribution, it is possible to learn using a random, potentially un-
bounded number of independent noisy copies of each example. Moreover,
it is generally impossible to learn with just one noisy copy per example. In
this paper, we explore the consequences of being given some side informa-
tion on the noise distribution. We consider several settings, and show how
one can learn linear and kernel-based predictors using just one or two noisy
views of each example, depending on the side information provided.

1 Introduction

In a wide variety of machine learning applications, ranging from remote sensing through
bioinformatics to medical tests, one has to deal with data known to be noisy and distorted.
This is particularly common in physically measured data, due to factors such as sensor
quality, communication constraints, or various other physical limitations. In other cases,
factors such as privacy concerns may force us deal with intentionally distorted data. In all
such cases, the learner trains on a distorted version of the actual “target” data, which is
where the learner’s predictive ability is actually evaluated.

In [4], a general technique was introduced to deal with learning linear or kernel-based predic-
tors from noisy data, where virtually nothing is known about the noise, except possibly an
upper bound on its variance. Moreover, this was achieved in the challenging online frame-
work, where an all-powerful adversary is able to choose the noise distribution, and change it
on each and every round. This technique works assuming the learner is allowed to query for
independent noisy copies of each example more than once. Moreover, the number of queries
needed is a random quantity. Although the distribution of this random number does not
depend on the scale of the problem, and the number is bounded with high probability, this
is obviously a non-trivial requirement. Unfortunately, multiple queries cannot be avoided in
general: in [4], it was shown that without seeing more than one noisy copy of each instance,
learning becomes impossible, even in a stochastic, non-adversarial setting. However, this
was under the crucial assumption that the learner has no prior knowledge about the noise
distribution it needs to cope with.

While this is sometimes the case, in many applications the learner may actually know
something about the noise distribution, either a-priori or based on previous measurements.
In such cases, the impossibility result of [4] no longer holds. This leads to the central
question dealt with in this paper: can we learn with a smaller, fixed number of queries per
example, if we know something about the noise distribution?
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Focusing on the squared loss, we discuss three different settings, reflecting different levels of
knowledge about the noise distribution:

1. Known variance bound (this is the setting discussed in [4]). We show that one
can learn linear predictors with two independent noisy copies of each instance xt,
and one noisy copy of each target value yt.

2. Known covariance structure. We show that one can learn linear predictors with
only one noisy copy of xt and yt. This implies that the impossibility result [4] indeed
does not hold in general, once we know the covariance structure of the noise.

3. Gaussian distribution with known covariance matrix. We show that one
can even learn kernel-based predictors, using two independent noisy copies of each
xt, and one copy of yt. We focus on Gaussian kernels, but also show how the result
can be extended, in a certain sense, to general radial kernels.

Thus, the positive learning results get stronger the more we can assume about the noise
distribution. We emphasize that although all algorithms are based on a similar online
gradient descent approach, our results include techniques which are very different than
those of [4], and are not just an extension —see Section 3 for more details.

2 Framework and Notation

We consider a setting where the goal is to predict values y ∈ R based on instances x ∈ Rd.
We focus on predictors which are either linear (i.e. of the form x 7→ 〈w,x〉), or kernel-based
—i.e., of the form x 7→ 〈w,Ψ(x)〉 where Ψ is a feature mapping into some reproducing
kernel Hilbert space, with associated kernel k(·, ·).
We begin by recalling the standard online learning setting, which for linear predictors and
squared loss is defined as follows (with the obvious changes for kernel-based predictors):
at each round t, the learner picks a predictor wt. The adversary then picks an example
(xt, yt), the learner suffers a loss `(〈wt,xt〉 , yt) = (〈wt,xt〉 − yt)2, and the example (xt, yt)
is revealed to the learner. The goal of the learner is to minimize his regret with respect to
a fixed convex set of hypotheses W, namely

T∑
t=1

`(〈wt,xt〉 , yt)− min
w∈W

T∑
t=1

`(〈w,xt〉 , yt) .

Typically, one wishes to find a strategy for the learner, such that no matter what is the
adversary’s strategy for choosing examples, the expression above is sublinear in T (implying
that the average regret per round vanishes with T ).

Following [4], we now make the following twist, which limits the information available to
the learner: In each round, the adversary also picks a vector-valued random variable nxt and
random variable nyt . Instead of receiving (xt, yt), the learner is given access to one or two
independent copies of x̃t and ỹt, where x̃t = xt + nxt , and ỹt = yt + nyt . In other words,
the adversary forces the learner to see only a noisy version of the data, where the noise
distribution can change from round to round in a possibly adversarial manner. We will
assume throughout the paper that nxt and nyt are zero-mean and independent. If E[nxt ] and
E[nyt ] are not zero, and are known to the learner, we can always reduce to the zero-mean
case by deducting E[nxt ] and E[nyt ] from x̃t and ỹt. The independence can be relaxed to
uncorrelation or even disposed of entirely in some of the discussed settings, at the cost of
some added technical complexity in the algorithms and proofs.

In [4], it was assumed that nothing is known about nxt and nyt , other than an upper bound
on the variance. In this paper, we consider settings where some side information on the
distribution of nxt , n

y
t is provided to the learner.

In this framework, our goal is to minimize the expected regret in hindsight with respect to
the unperturbed data, namely

E

[
T∑
t=1

`(〈wt,xt〉 , yt)− min
w∈W

T∑
t=1

`(〈w,xt〉 , yt)

]
(1)
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where the expectation is with respect to the noise introduced into the data. Using online-
to-batch conversion techniques (e.g., [1]), one can easily convert an online algorithm with
a sublinear regret in Eq. (1), to a learning algorithm in the batch statistical setting, in
which the training set is corrupted by noise. Namely, the learner receives corrupted versions
of examples {xt, yt}Tt=1 sampled i.i.d. from some unknown distribution, and we wish to
find a predictor minimizing the expected loss Ex,y[`(〈w,x〉 , y)] over W, in spite of the
noise in the training data. Also, we note that under suitable conditions, using Azuma’s
inequality, one can obtain high-probability bounds on Eq. (1) without the expectation, and
with logarithmic dependence on the probability. However, this complicates the presentation
of the theorems and their proofs, without leading to any new insights, so we will ignore this
potential improvement.

For simplicity, we will focus on the finite-horizon setting, where the total number of rounds
T is assumed to be known beforehand. However, all our results can be easily extended to
the infinite-horizon setting, where the learner needs to achieve sub-linear regret for all T
simultaneously.

3 Overview of Techniques

We begin by presenting a high-level and informal overview of the techniques we use to get our
results. Formal statements and proofs appear later in the paper and in the supplementary.

A fundamental method we use in all our settings is the online gradient descent algorithm due
to Zinkevich [10]. At its heart is the following observation: for any set of vectors ∇1, . . . ,∇T ,
suppose we define w1 = 0 and wt+1 = P (wt − ηt∇t), where P (·) is a projection operator
on a convex set W, and ηt is a suitably chosen scalar value. Then for any u ∈ W, it holds
that

T∑
t=1

〈wt − u,∇t〉 = O(
√
T ) (2)

where the O(·) notation hides dependencies on the norm of u and the norms of ∇t. In par-
ticular, suppose that we let ∇t be the gradient of `(wt,xt, yt) w.r.t. wt. Then by convexity,

the left-hand side of Eq. (2) is lower bounded by
∑T
t=1 `(〈wt,xt〉 , yt)−

∑T
t=1 `(〈u,xt〉 , yt).

Thus, if we are provided with (xt, yt) after each round, we can compute ∇t, perform the
update as above, and get an algorithm with sublinear regret with respect to any predictor
u of bounded norm.

3.1 “Stochastic” Online Gradient Descent

In our setting of noisy data, the algorithm described above is irrelevant, because (xt, yt) is
unknown and we cannot compute ∇t. However, one can deal with it as follows. Suppose
that instead of ∇t, we pick random vectors ∇̃t. It turns out that based on Eq. (2), one can
still show that

E

[
T∑
t=1

〈
wt − u, ∇̃t

〉]
= O(

√
T ) (3)

where the O(·) notation hides dependencies on the norm of u and E[‖∇̃t‖2] for all t. In
particular, in our noisy data setting, we cannot compute ∇t, but suppose we can use the
noisy data that we do have, in order to construct a random vector ∇̃t, such that E[∇̃t] =

∇t. In that case, the left-hand side can be shown to equal E
[∑T

t=1 〈wt − u,∇t〉
]
. The

expectation here is again w.r.t. the noisy examples (note that wt is a random vector that
depends on the noisy examples). Applying the same convexity trick as before, we get an

O(
√
T ) upper bound on the expected regret E

[∑T
t=1 `(〈wt,xt〉 , yt) −

∑T
t=1 `(〈u,xt〉 , yt)

]
.

Thus, by doing updates using ∇̃t, we get an algorithm with a sublinear regret bound. The
only technical issue is how to construct unbiased estimates ∇̃t using the noisy data.

This is the basic learning mechanism in the first two settings we consider, in Sections 4
and 5. This technique already appears in [4] (as well as previous work in other settings, e.g.,
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[2]), and our main contribution for these two settings is the observation that it can be done
with one or two noisy copies of each example, under appropriate distributional assumptions.

The third setting we consider, for kernel-based predictors (Section 6), is where the main
technical novelty of this paper lies, as it requires a rather different approach than that of
[4]. This approach is discussed below.

3.2 “Parallel Worlds” Online Gradient Descent

With kernels, one assumes that the predictors lie in some reproducing kernel Hilbert space
(RKHS), in which inner products can be efficiently computed using a kernel function. In-
stances are mapped into that space using a feature mapping Ψ. In [4], learning was achieved

by constructing an unbiased estimate ∇̃t of ∇t in the RKHS, but that required a random
number of noisy copies of each example. Here, we take the following very different approach:
we construct a surrogate RKHS, with a surrogate feature mapping Ψ̂, such that for any noisy
copy x̃t of xt, and any fixed instance a, it holds that

E
[
〈Ψ̂(a), Ψ̂(x̃t)〉

]
= 〈Ψ(a),Ψ(xt)〉 (4)

where the expectation is with respect to the noise. Thus, “noisy” inner products in the
surrogate RKHS correspond (in expectation) to “clean” inner products in the original RKHS.

This allows us to use the noisy data in order to construct vectors ∇̂t in the surrogate RKHS
with the following interesting property: if we apply Zinkevich’s algorithm on ∇̂1, . . . , ∇̂T
(using kernels), to get predictors ŵ1, . . . , ŵT in the RKHS of Ψ̂, then for any û,

E

[
T∑
t=1

〈
ŵt − û, ∇̂t

〉]
= E

[
T∑
t=1

〈wt − u,∇t〉

]
where wt and u are certain mappings of each ŵt and û to the RKHS of Ψ, and ∇t are
the gradients w.r.t. the unperturbed examples (xt, yt). But the left-hand side is O(

√
T ) by

Eq. (3), since we applied Zinkevich’s algorithm in the surrogate RKHS. Thus, we get that

E
[∑T

t=1 〈wt − u,∇t〉
]

is O(
√
T ), which implies a sublinear regret bound for w1, . . . ,wT .

We emphasize that unlike the approach used for the other settings, E[∇̂t] is not equal to
∇t. Indeed, they live in different mathematical spaces! Thus, this is a different approach
rather than an extension of the technique discussed in Subsec. 3.1.

A technical issue which needs addressing is that the norm of û has to be related to the norm
of the actual predictor u we compare ourselves with. While this cannot be always done,
such a relation does hold if u is reasonably “nice”, in a sense which will be formalized later.

Constructing a surrogate RKHS as in Eq. (4) can be done when the original RKHS corre-
sponds to a Gaussian kernel. Nevertheless, we can extend our results, in a certain sense, to
more general radial kernels. The basic tool we use is Schoenberg’s theorem, which implies
that any radial kernel can be written as an integral of Gaussian kernels of differing width.
Using this result, we can show that one can still construct a surrogate RKHS, which has
the property of Eq. (4) w.r.t. an approximate version of our original radial kernel.

4 Setting 1: Upper bound on the Variance

We begin with the simplest setting, which is when we only know that E[‖x̃t‖2] ≤ B2
x̃ and

E[ỹt]
2 ≤ B2

ỹ for some parameters1 Bx̃, Bỹ. While this is a similar setting to that discussed

in [4], the results there focus on learning with general kernels and loss functions, using a
random number of independent noisy copies of each example. Here, we present an algorithm
for learning linear predictors, using exactly two independent noisy copies of the instance xt
and one noisy copy of the target value yt. As discussed in Section 3, the algorithm is based

1Strictly speaking, this is an upper bound on the raw second moment, not the variance. However,
it is easily implied by assuming a bound on the noise variance, and a bound on the norm of the
unperturbed data.
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on an adaptation of the online convex optimization algorithm due to [10], and the main
requirement is to construct an unbiased estimate of the gradient ∇t. This follows from the
following lemma, whose proof appears in the supplementary material.

Lemma 1 Let ∇t = 2(〈wt,xt〉 − yt)xt be the gradient of `(〈wt,xt〉 , yt) at wt. Let x̃′t be

an additional independent copy of x̃t, and denote ∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃
′
t. Then under

the assumptions above, if ‖wt‖ ≤ Bw, then E[∇̃t] = ∇t and E[‖∇̃t‖2] ≤ G, where G =
4(B2

wB
2
x̃ +B2

ỹ)B2
x̃.

Algorithm 1 Linear Regression with Noise.

Upper bound on variance Known covariance
Parameters: η,Bw.
Initialize: w1 = 0.
For t = 1, 2, . . . , T

Receive (x̃t, ỹt)
Receive another independent copy x̃′t
∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃′t
w′ = wt − η∇̃t
wt+1 = min{1, Bw/‖w′‖}w′

Parameters: η,Bw.
Initialize: w1 = 0.
For t = 1, 2, . . . , T

Receive (x̃t, ỹt)

∇̃t = 2(〈wt, x̃t〉 − ỹt)x̃t − Σtwt

w′ = wt − η∇̃t
wt+1 = min{1, Bw/‖w′‖}w′

The following theorem provides a regret bound for Algorithm 1 (left). The proof is provided
in the supplementary material.

Theorem 1 Assume that E[‖x̃t‖2] ≤ B2
x̃, E[ỹt]

2 ≤ B2
ỹ , and that x̃t, x̃

′
t, ỹt are mutually

independent. Then if we run Algorithm 1 (left) with parameters Bw, η = Bw/
√
GT (where

G is defined in Lemma 1), and compute ∇̃t as in Lemma 1, we have

E

[
T∑
t=1

`(〈wt,xt〉 , yt)− min
w:‖w‖≤Bw

T∑
t=1

`(〈w,xt〉 , yt)

]
≤ Bw

√
GT.

5 Setting 2: Known Covariance

We now turn to the case where rather than an upper bound on the variance, we actually
know the covariance matrix of the noise at each round, which we denote as Σt. We assume
that ‖Σt‖ ≤ BΣ for all t, where ‖·‖ denotes the spectral norm. As to ỹt, we can still assume
we only have an upper bound B2

ỹ on E[ỹ2
t ] (with our algorithmic approach, knowing E[ỹ2

t ]

does not help much).

In this setting, we show it is possible to learn linear predictors, using just a single noisy
copy (x̃t, ỹt). This is opposed to Section 4, where we needed an additional independent copy
of x̃t. The idea is that if we use just one noisy copy in our gradient estimate, we need to
deal with bias terms. When the covariance structure is known, we can calculate and remove
these bias terms, allowing an online gradient descent similar to Algorithm 1 (left) to work.
As in Algorithm 1 (left), the basic building block is a construction of an unbiased estimate
of the gradient ∇t at each iteration.

Lemma 2 Let ∇t = 2(〈wt,xt〉−yt)xt be the gradient of `(〈wt,xt〉 , yt) at wt. Denote ∇̃t =

2(〈wt, x̃t〉−ỹt)x̃t−Σtwt. Then under the assumptions above, if ‖wt‖ ≤ Bw, E[‖x̃t‖2] ≤ B2
x̃,

and E[‖x̃t‖4] ≤ B
′4
x̃ , then E[∇̃t] = ∇t and E[‖∇̃‖2t ] ≤ G, where G = 8B2

wB
′4
x̃ + 8B2

ỹB
2
x̃ +

4B2
wB

2
x̃BΣ +B2

ΣB
2
w.

The proof is a slightly more involved version of the proof of Lemma 1, and appears in the
supplementary material. See Algorithm 1 (right) for the pseudocode.
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Theorem 2 Assume that E[‖x̃t‖2] ≤ Bx̃, E[‖x̃t‖4] ≤ B
′4
x̃ , E[‖ỹt‖2] ≤ B2

ỹ . Suppose the
noise introduced into xt is independent of that introduced into yt, and has a known covari-
ance matrix Σt such that ‖Σt‖ ≤ BΣ for all t. Then if we run Algorithm 1 (right) with

parameters Bw and η = Bw/
√
T , where G is defined in Lemma 2, we have

E

[
T∑
t=1

`(〈wt,xt〉 , yt)− min
w:‖w‖≤Bw

T∑
t=1

`(〈w,xt〉 , yt)

]
≤ G+ 1

2
Bw

√
T .

The proof is similar to the proof of Theorem 1, with Lemma 2 replacing Lemma 1. We note
that if G is known, then by picking η = Bw/

√
GT , one can improve the bound to Bw

√
GT .

6 Setting 3: Gaussian Distribution

The final and most complex setting we consider is when the noise is assumed to have a
Gaussian distribution N (0,Σ). Clearly, if we know the distribution, then we can derive
upper bounds on the moments of x̃t (assuming bounds are known on the original instances
xt). Thus, the results of Section 5 carry through to our setting, and we can learn linear
predictors. However, when we also know the noise has a specific Gaussian distribution, we
can learn the much more powerful hypothesis class of kernel-based predictors.

The basic premise of kernel learning is that we map our data (originally in Rd) to some
reproducing kernel Hilbert space (RKHS), via a feature mapping Ψ(x), and learn a linear
predictor in that space. In our original space, this corresponds to learning a non-linear
function. Using the well-known kernel trick, inner products 〈Ψ(x),Ψ(x′)〉 in the RKHS
(which might be infinite-dimensional) can be easily computed via a kernel function k(x,x′).

While there are many possible kernel functions, perhaps the most popular one is the Gaus-

sian kernel, defined as k(x,x′) = exp(−‖x− x′‖2 /s2) for some s2 (the kernel width). This
corresponds to the inner product 〈Ψ(x),Ψ(x′)〉 in an appropriate RKHS. We we will show
below how to learn from noisy data with Gaussian kernels. In Subsection 6.1 and the sup-
plementary material, we show how this can be extended, in a certain sense, to general radial
kernels, i.e., kernels of the form k(x,x′) = f(‖x− x′‖) for an appropriate real function f .

In this section, we assume that the noise distribution is fixed for all t. Hence, we may assume
w.l.o.g. that Σ is a diagonal matrix, with element σ2

i at row/column i. To see why, notice
that there always exists a rotation matrix R, such that R x̃t has a Gaussian distribution
with diagonal covariance matrix. Therefore, instead of learning w.r.t. {(x̃t, yt)}Tt=1, we can

just learn w.r.t.
{

(R x̃t, yt)
}T
t=1

, and predict on any instance x by pre-rotating it using R.
Since a uniform rotation in the data space does not change norms and distances, all our
guarantees will hold. As to ỹt, similar to the previous settings, we will only need to assume
that E[ỹ2

t ] ≤ B2
ỹ for some parameter Bỹ.

The algorithm that we present (Algorithm 2) is based on being able to receive two indepen-
dent copies of each instance x̃t, as well as a single independent copy of ỹt. As in the linear
case, the learning algorithm that we use is based on the online gradient descent procedure
due to [10], with the main twist being that instead of using a Gaussian kernel of width s2,
we use a surrogate kernel, as discussed in Section 3.

To define the surrogate kernel that we use, consider the RKHS corresponding to the kernel

k̂(x,x′) = R2
Σ,s,d exp

(
−

d∑
i=1

(xi − x′i)2

s2 − 2σ2
i

)
, where RΣ,s,d =

(
d∏
i=1

s2

s2 − 2σ2
i

)1/4

. (5)

This can be shown to be a kernel by standard results (see for instance [8]). Note that we
generally assume that 2 ‖Σ‖ = 2 maxi σ

2
i < s2 for all i. Moreover, RΣ,s,d can be bounded

by a constant when σi = O(1) for all i (constant noise) and s2 = Θ(d) —plausible when the
feature values of instances x provided are of order Θ(1).

Denote Ψ̂ to be the feature mapping corresponding to this RKHS. The pseudocode of our
algorithm is presented below. Formally speaking, it is just applying Zinkevich’s algorithm,
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using kernels, in the surrogate RKHS that we constructed. However, it is crucial to note
that the actual output are elements w1,w2, . . . in the RKHS corresponding to Ψ.

Algorithm 2 Kernel Learning Algorithm with Gaussian Noise N (0,Σ)

Parameters: W, η
Initialize:
αi := 0 for all i = 1 . . . T

For t = 1, . . . , T :

Define ŵt =
∑t−1
i=1 αiΨ̂(x̃i)

Define wt =
∑t−1
i=1 αiΨ(x̃i)

Receive ỹt, x̃t, and independent copy x̃′t
Let g̃t := 2

(∑t−1
i=1 αik̂(x̃i, x̃

′
t)− ỹt

)
//g̃t is gradient length w.r.t. Ψ̂(x̃′t) at ŵt

Let αt := −ηg̃t
Let rt :=

∑t
i=1

∑t
j=1 αiαj k̂(x̃i, x̃j)

If rt > W 2 // If ‖ŵt‖2 > W 2, then project
Let αi := αi

W√
rt

for all i = 1, . . . , t

Before stating the bound for Algorithm 2 we need an auxiliary definitions. Suppose that

u is any element in the RKHS of Ψ, which can be written as
∑T
t=1 atΨ(xt) for some

a1, . . . , am ≥ 0 (for example, this includes argminw:‖w‖≤Bw

∑T
t=1 `(〈wt,Ψ(xt)〉 , yt) for any

Bw > 0 by the representer theorem). Define βu to be the angle between
∑
t:at>0 atΨ(xt)

and −
∑
t:at<0 atΨ(xt) (in other words, the angle between the component due to positive

support vectors, and the component due to the negative support vectors). If one of the
components is zero, define βu to be π/2. The main theorem, whose proof is presented in
the supplementary material, is the following.

Theorem 3 Assume that the noise introduced into xt has a known distribution N (0,Σ),
with Σ diagonal and 2 ‖Σ‖ ≤ s2 (where s2 is the kernel width), and that the noise introduced
into yt is independent with E[ỹ2

t ] ≤ B2
ỹ . Let Bw > 0, β ∈ (0, π/2] be fixed. Then if we run

Algorithm 2 with any W ≥
√

5BwRΣ,s,d

sin(β) , and η = W/2R
√

(W 2R2
Σ,s,d +B2

ỹ)T , then for all u

with ‖u‖ ≤ Bw, βu ≥ β, it holds that

E

[
T∑
t=1

`(〈wt,Ψ(xt)〉 , yt)− `(〈u,Ψ(xt)〉 , yt)

]
≤ 2WRΣ,s,d

√
(W 2R2

Σ,s,d +B2
ỹ)T

In particular, if s2 = Ω(d), ‖Σ‖ = O(1), and Bỹ = O(1), then the right-hand side is

O(W 2
√
T ).

The intuition for βu is that it measures how well separated are the training examples: if
the “positive” and “negative” example groups are not too close together, then the angle
between

∑
t:at>0 atΨ(xt) and −

∑
i:at<0 atΨ(xt) will be large, and the bound will be small.

Note that in the RKHS corresponding to a Gaussian kernel, βu is always between 0 and π/2,
since the inner product between any two elements Ψ(x) and Ψ(x′) is positive. In addition,
βu can be shown to be exactly zero if and only if the positive and negative examples exactly
coincide. Overall, on realistic datasets, assuming there exist some good predictor u with βu
not too small is a pretty mild assumption, if something interesting can be learned even on
the unperturbed data.

6.1 Extension to General Radial Kernels

The Gaussian kernel we discussed previously is a member of the family of radial kernels, that
is kernels on x,x′ which can be written as a function of ‖x− x′‖. Although the Gaussian
kernel is the most popular member of this family, there are many other radial kernels, such

as exp(−‖x− x′‖ /s) and (1 + ‖x− x′‖2 /m)−α for appropriate parameters s,m, α. Thus,
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a reasonable question is whether Algorithm 2 and its analysis can be extended to general
radial kernels. The extension we are able to show is in the following sense: for any radial
kernel g(x,x′), there exists another radial kernel k(x,x′), which approximates g(x,x′) well,
for which one can extend Algorithm 2 and its analysis. The approximation parameter is
user-defined, but the flip side is that the regret bound depends on this parameter and
deteriorates as the approximation gets better.

Recall from Subsec. 3.2 that the heart of our approach is constructing a surrogate RKHS,

with surrogate kernel k̂, such that E[k̂(a, x̃)] = k(a,x). In the Gaussian kernel case, the
required surrogate RKHS corresponds to the kernel defined in Eq. (5). To deal with other
kernels, constructing an appropriate surrogate kernel becomes trickier. Luckily, we can still
reduce the problem, in some sense, to the case of Gaussian kernels. The key technical
result is the following theorem due to Schoenberg ([7], see also [5]), slightly paraphrased
and adapted to our purposes2:

Theorem 4 (Schoenberg’s Theorem) A function g(·, ·) is a radial kernel corresponding
to a valid RKHS, if and only if there exists a finite nonnegative measure µ on [0,∞), such
that for any x,a ∈ Rd,

g(x,a) =

∫ ∞
u=0

exp
(
−u ‖x− a‖2

)
µ(u)du.

This result asserts that, up to normalization factors, radial kernels can be characterized as
Laplace transforms of probability measures on the positive reals. Schoenberg’s Theorem
has been used by Micchelli et al. [3] to prove universality of radial kernels and by Scovel
et al. [9] to establish approximation error bounds. A related result is Bochner’s theorem
(see, e.g., [6]), which characterizes the more general class of shift-invariant kernels as Fourier
transforms of multivariate distributions on Rd.

The above theorem implies that we can write inner products in our RKHS using the ap-
proximate kernel

k(x,a) =

∫ c

u=0

ku(x,a)µ(u)du (6)

where c > 0 is a parameter and ku is the Gaussian kernel ku(x,a) = exp(−u ‖x− a‖2) with
kernel width 1/u. Note that this is a valid kernel by the reverse direction of Theorem 4. If c
is chosen not too small, then k(x,a) is an excellent approximation to g(x,a) for all x,a. The
reason why we must settle for approximations of the radial kernel, rather than the kernel

itself, is the following: for each ku in the above integral, we construct a surrogate kernel k̂u
such that Ex̃[k̂u(x̃,a)] = ku(x,a). The surrogate kernel k̂u is based on subtracting certain
constants from the kernel width 1/u along each dimension, and this cannot be done if u is
larger than those constants.

By Fubini’s theorem, we can write Eq. (6) as

k(x,a) =

∫ c

u=0

E
[
k̂u(x̃,a)

]
µ(u)du = E

[∫ c

u=0

k̂u(x̃,a)du

]
.

It turns out that the integral inside the expectation corresponds to an inner product, in a
valid RKHS, between the noisy instance x̃ and a. This will be our surrogate kernel for k.

Of course, there are many details to fill in, and the analysis depends on the radial kernel
chosen. In the supplementary material, we present a full analysis of the regret for the
concrete radial kernel

k(x,x′) =

(
1 +

1

d
‖x− x′‖2

)−1

.

Note that the scaling factor 1/d is the reasonable one to take, when we assume that the
attribute values in the instances are on the order of Θ(1).

2To be precise, the theorem here is a corollary of Schoenberg’s theorem, which discusses necessary
and sufficient conditions for k(·, ·) to be positive definite, and Mercer’s theorem (see [8]), which
asserts that such a function is a kernel of a valid RKHS.
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A Proof of Lemma 1

Proof Because of the independence assumption, we have that

E[∇̃t] = 2E[〈wt, x̃t〉 − ỹt]E[x̃′t] = 2(〈wt,xt〉 − yt)xt = ∇t .
For the second claim, we have by the independence assumption that

E[‖∇̃t‖2] = 4E
[
(〈wt, x̃t〉 − ỹt)2

]
E[‖x̃′t‖]2

= 4
(
E
[
〈wt, x̃t〉2

]
+ E[ỹ2

t ]
)
E[‖x̃′t‖]2

≤ 4
(
B2

wB
2
x̃ +B2

ỹ

)
B2

x̃.

B Proof of Theorem 1

First, we use the following lemma that can be easily adapted from [10].

Lemma 3 Let v1, . . . ,vT be a sequence of vectors. Let w1 = 0 and for t ≥ 1 let wt =
P (wt − ηvt), where P (·) is the projection operator on an origin-centered ball of radius Bw.
Then, for all u s.t. ‖u‖ ≤ Bw we have

m∑
t=1

〈vt,wt − u〉 ≤ B2
w

2η
+
η
∑T
t=1 ‖vt‖2

2
.

Applying Lemma 3 with ∇̃t as defined in Lemma 1 we obtain:

T∑
t=1

〈
∇̃t,wt − u

〉
≤ B2

w

2η
+
η
∑T
t=1 ‖∇̃t‖2

2
.

Taking expectation of both sides and using again Lemma 1 we obtain that

E

[
T∑
t=1

〈∇t,wt − u〉

]
≤ B2

w

2η
+
ηTG

2
,

Now, using convexity we get that 〈∇t,wt − u〉 ≥ (〈wt,xt〉 − yt)2 − (〈wt,u〉 − yt)2, which
gives

E

[
T∑
t=1

(〈wt,xt〉 − yt)2

]
≤

T∑
t=1

(〈u,xt〉 − yt)2 +
B2

w

2η
+
ηTG

2
.

Picking η as in the theorem statement concludes our proof.

C Proof of Lemma 2

Using the zero-mean and independence assumptions on nxt , n
y
t , we have

E[∇̃t]+Σtwt = 2E[(〈wt,xt + nxt 〉−yt−n
y
t )(xt+nxt )] = 2(〈wt,xt〉−yt)xt+E[nxt 〈wt,n

x
t 〉],

which equals ∇t + Σtwt. So we have E[∇̃t] = ∇t. As to the second claim, using the

well-known inequality ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, we have

E[‖∇̃t‖2] = E[‖2(〈wt, x̃t − ỹt〉)x̃t − Σtwt‖2]

= E ‖2(〈wt, x̃t〉 − ỹt)x̃t‖2 − 4w>t Σt E[(〈wt, x̃t〉 − yt)x̃t] + ‖Σtwt‖2

≤ 8E[‖〈wt, x̃t〉 x̃t‖2] + 8E[‖ỹtx̃t‖2]− 4w>t Σt E[〈wt, x̃t〉xt] + ‖Σtwt‖2

≤ 8 ‖wt‖2 E[‖x̃t‖4] + 8E[ỹ2
t ]E[

∥∥x̃2
t

∥∥] + 4 ‖wt‖2 E[‖x̃t‖2] ‖Σt‖+ ‖Σt‖2 ‖wt‖2

≤ 8B2
wB

′4
x̃ + 8B2

ỹB
2
x̃ + 4B2

wB
2
x̃BΣ +B2

ΣB
2
w.
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D Proof of Theorem 3

D.1 Auxiliary Lemmas

To prove the theorem, we will need a few auxiliary lemmas. In particular, Lemma 4 is a key
technical lemma, which will prove crucial in connecting the RKHS w.r.t. Ψ(·), k(·, ·), and

the RKHS w.r.t. Ψ̂(·), k̂(·, ·). Lemma 6 connects between the norms of elements in the two
RKHS’s.

To state the lemmas and proofs conveniently, recall the shorthand

RΣ,s,d =

(
d∏
i=1

s2

s2 − 2σ2
i

)1/4

.

Lemma 4 For any a,x ∈ Rd, if we let x̃ = x+n where n ∼ N (0,Σ) is a Gaussian random
vector with covariance matrix Σ, then it holds that

E
n

〈
Ψ̂(a), Ψ̂(x̃)

〉
= 〈Ψ(a),Ψ(x)〉 .

Proof The expectation in the lemma can be written as

E
n

[
R2

Σ,s,d exp

(
−

d∑
i=1

(ai − xi − ni)2

s2 − 2σ2
i

)]

=

d∏
i=1

R
2/d
Σ,s,d

∫
zi

(2πs2)−1/2 exp

(
− z2

i

2σ2
i

− (ai − xi − zi)2

s2 − 2σ2
i

)
dzi (7)

A purely technical integration exercise reveals that each element i in this product equals
exp(−(ai − xi)2/s2). Therefore, Eq. (7) equals

d∏
i=1

exp

(
− (ai − xi)2

s2

)
= exp

(
−‖a− x‖2

s2

)
,

which is exactly 〈Ψ(x),Ψ(a)〉.

Lemma 5 Let Ψ(·) denote a feature mapping to an arbitrary RKHS. Let z1, z2, . . . , zT be

vectors in Rd, and a1, a2, . . . , aT scalars, such that ‖
∑
i aiΨ(zi)‖2 ≤ B2 for some B > 0.

Then it holds that ∥∥∥∥∥ ∑
i:ai>0

aiΨ(zi)

∥∥∥∥∥
2

+

∥∥∥∥∥ ∑
i:ai<0

aiΨ(zi)

∥∥∥∥∥
2

≤ 5B2

sin2(β)
,

where β is the angle between
∑
i:ai>0 aiΨ(zi) and

∑
i:ai<0 aiΨ(zi) in the RKHS (or β = π/2

if one of these elements is zero).

We remark that this bound is designed for readability - it is not the tightest upper bound
possible.

Proof The bound trivially holds if
∑
i:ai>0 aiΨ(zi) or

∑
i:ai<0 aiΨ(zi) are zero, so we will

assume w.l.o.g. that they are both non-zero.

To simplify notation, let

w =
∑
i

aiΨ(zi), w+ =
∑
i:ai>0

aiΨ(zi), w− =
∑
i:ai<0

−aiΨ(zi).

and notice that w = w+−w−. By the cosine theorem and the fact that w = w+−w−, we
have that

‖w‖2 = ‖w+‖2 + ‖w−‖2 − 2 ‖w+‖ ‖w−‖ cos(β).

11



Solving for ‖w−‖ and taking the larger root in the resulting quadratic equation, we have
that

‖w−‖ ≤ ‖w+‖ cos(β) +

√
‖w‖2 − ‖w+‖2 sin2(β) (8)

(it is easy to verify that the term in the square root is always non-negative). Therefore

‖w+‖2 + ‖w−‖2 ≤ ‖w+‖2 +

(
‖w+‖ cos(β) +

√
‖w‖2 − ‖w+‖2 sin2(β)

)2

≤ ‖w+‖2 + (‖w+‖ | cos(β)|+ ‖w‖)2
.

From straightforward geometric arguments, we must have ‖w+‖2 ≤ ‖w‖2 / sin2(β) (this is
the same reason the term in the square root in Eq. (8) is non-negative). Plugging this into
the right hand side of the inequality above, we get an upper bound of the form

‖w‖2

sin2(β)
+

(
‖w‖

∣∣∣∣cos(β)

sin(β)

∣∣∣∣+ ‖w‖
)2

≤ ‖w‖2
(

1 +
2

| sin(β)|
+

2

sin2(β)

)
,

where we used the fact that | cos(β)| ≤ 1. A straightforward upper bounding leads to the
lemma statement.

The following lemma is basically a corollary of Lemma 5.

Lemma 6 Let z1, z2, . . . , zT be vectors in Rd, and a1, a2, . . . , aT scalars, such that
‖
∑
i aiΨ(zi)‖2 ≤ B2. Then

∑
i aiΨ̂(zi) is an element in the RKHS w.r.t. Ψ̂(·), whose

norm squared is at most
5B2

sin2(β)
R2

Σ,s,d.

Here, β is the angle between
∑
i:ai>0 aiΨ(zi) and −

∑
i:ai<0 aiΨ(zi) in the RKHS (or β =

π/2 if one of the elements is zero).

Proof Picking some z1, z2, . . . and a1, a2, . . . as in the lemma statement, we have∥∥∥∥∥∑
i

aiΨ̂(zi)

∥∥∥∥∥
2

=
∑
i,j

aiaj k̂(zi, zj) ≤
∑

i,j:aiaj>0

aiaj k̂(zi, zj), (9)

where the last transition is by the fact that k̂ is always positive. Now, by definition of

k(·, ·), k̂(·, ·), it holds for any zi, zj that

k̂(zi, zj)

k(zi, zj)
= R2

Σ,s,d exp

(
d∑
l=1

(zi,l − zj,l)2

s2
− (zi,l − zj,l)2

s2 − 2σ2
l

)
≤ R2

Σ,s,d.

Therefore, we can upper bound Eq. (9) by∑
i,j:aiaj>0

aiaj k̂(zi, zj) ≤ R2
Σ,s,d

∑
i,j:aiaj>0

aiajk(zi, zj).

The lemma follows by noting that according to Lemma 5,

∑
i,j:aiaj>0

aiajk(zi, zj) =

∥∥∥∥∥ ∑
i:ai>0

aiΨ(zi)

∥∥∥∥∥
2

+

∥∥∥∥∥ ∑
i:ai<0

Ψ(zi)

∥∥∥∥∥
2

≤ 5B2

sin2(β)
.

With these lemmas in hand, we are now ready to prove the main theorem.
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D.2 Proof of Theorem 3

To make the proof clearer, let αt,i denote the value of αi in algorithm 2 at the beginning of
round t.

The first step of the proof consists of applying Lemma 3, since our algorithm follows the
protocol outlined in that lemma, using kernels. We therefore have that for any û in the
RKHS corresponding to Ψ̂(·), such that ‖û‖2 ≤W 2, it holds that

T∑
t=1

〈
ŵt, g̃tΨ̂(x̃t)

〉
−

T∑
t=1

〈
û, g̃tΨ̂(x̃t)

〉
≤ W 2

2η
+
η
∑T
t=1

∥∥∥g̃tΨ̂(x̃t)
∥∥∥2

2
. (10)

In particular, consider u =
∑T
i=1 atΨ(xt) from the theorem’s statement, and define

û∗ =

T∑
i=1

atΨ̂(xt).

This is an element in the RKHS corresponding to Ψ̂(·), but it shares the same set of weights

as u, which is an element in the RKHS corresponding to Ψ(·). Since ‖u‖2 ≤ B2
w, it follows

from Lemma 6 and the definition of W that ‖û∗‖2 ≤W 2. Therefore, Eq. (10) applies, and
we get

T∑
t=1

〈
ŵt, g̃tΨ̂(x̃t)

〉
−

T∑
t=1

〈
û∗, g̃tΨ̂(x̃t)

〉
≤ W 2

2η
+
η
∑T
t=1

∥∥∥g̃tΨ̂(x̃t)
∥∥∥2

2
.

This inequality holds for any {x̃t, x̃′t, ỹt}Tt=1. In particular, it will remain valid if we take
expectations of both sides with respect to the Gaussian noise injected into the unperturbed
data:

E

[
T∑
t=1

〈
ŵt, g̃tΨ̂(x̃t)

〉
−

T∑
t=1

〈
û∗, g̃tΨ̂(x̃t)

〉]
≤ W 2

2η
+

η
∑T
t=1 E

[∥∥∥g̃tΨ̂(x̃t)
∥∥∥2
]

2
. (11)

Starting with the right hand side, we note that by definition of g̃t from the algorithm’s

pseudocode, and the fact that
∥∥∥Ψ̂(x̃t)

∥∥∥2

= k̂(x̃, x̃) ≤ R2
Σ,s,d by definition of the kernel k̂ in

Eq. (5),

E
[∥∥∥g̃tΨ̂(x̃′t)

∥∥∥2
]

= 4E
[∥∥∥(〈ŵt, Ψ̂(x̃t)

〉
− ỹt

)
Ψ̂(x̃′t)

∥∥∥2
]

= 4E
[∥∥∥Ψ̂(x̃′t)

∥∥∥2
]
E
[(〈

ŵt, Ψ̂(x̃t)
〉
− ỹt

)2
]

= 4E
[∥∥∥Ψ̂(x̃′t)

∥∥∥2
]
E
[(〈

ŵt, Ψ̂(x̃t)
〉)2

+ ỹ2
t

]
≤ 4E

[∥∥∥Ψ̂(x̃′t)
∥∥∥2
](
‖ŵt‖2 E

[∥∥∥Ψ̂(x̃t)
∥∥∥2
]

+ E[ỹ2
t ]

)
= 4R2

Σ,s,d(W
2R2

Σ,s,d +B2
ỹ).

Plugging this back into Eq. (11), and choosing η = W/2R
√

(W 2R2
Σ,s,d +B2

ỹ)T as in the

theorem’s statement, we finally get

E

[
T∑
t=1

〈
ŵt, g̃tΨ̂(x̃t)

〉
−

T∑
t=1

〈
û∗, g̃tΨ̂(x̃t)

〉]
≤ 2WRΣ,s,d

√
(W 2R2

Σ,s,d +B2
ỹ)T . (12)

We now turn to analyze the more interesting left hand side of Eq. (12). Let Et[·] be a
shorthand for expectation over (x̃t, x̃

′
t, ỹt) conditioned on {(x̃i, x̃′i, ỹi)}

t−1
i=1. The l.h.s. of

Eq. (12) can be written as

E

[
T∑
t=1

E
t

[〈
ŵt, g̃tΨ̂(x̃t)

〉]
−

T∑
t=1

E
t

[〈
û∗, g̃tΨ̂(x̃t)

〉]]
. (13)
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To analyze the first sum inside the expectation, recall that ŵt can be written as∑t−1
i=1 αt,iΨ̂(x̃i). Therefore, we have that

E
t

[〈
ŵt, g̃tΨ̂(x̃t)

〉]
=

t−1∑
i=1

E
t

[
αt,i

〈
Ψ̂(x̃i), g̃tΨ̂(x̃t)

〉]
=

t−1∑
i=1

E
t
[g̃t]E

t

[
αt,i

〈
Ψ̂(x̃i), Ψ̂(x̃t)

〉]
,

where the last transition is by the fact that x̃t, x̃
′
t, ỹt are mutually independent, and therefore

g̃t is independent of Ψ̂(x̃t) conditioned on {(x̃i, x̃′i, ỹi)}
t−1
i=1.

We now make two crucial observations, which are really the heart of our proof: First, by
Lemma 4, we have that

t−1∑
i=1

E
t

[
αt,i

〈
Ψ̂(x̃i), Ψ̂(x̃t)

〉]
=

t−1∑
i=1

αt,i 〈Ψ(x̃i),Ψ(xt)〉 = 〈wt,Ψ(xt)〉 .

Secondly, using Lemma 4 in a similar manner, we also have

E
t
[g̃t] = 2

(
t−1∑
i=1

E
t

[
αt,i

〈
Ψ̂(x̃i), Ψ̂(xt)

〉
− ỹt

])
= 2(〈wt,Ψ(xt)〉 − yt).

Define this expression as gt. Notice that it is exactly the gradient of wt w.r.t.
`(〈wt,Ψ(xt)〉 , yt).
As a result of these two observations, we get overall that

E
t

[〈
ŵt, g̃tΨ̂(x̃t)

〉]
=

t−1∑
i=1

αt,i 〈Ψ(x̃i), gtΨ(xt)〉 = 〈wt, gtΨ(xt)〉 . (14)

Moving to the second sum in the l.h.s. of Eq. (13), recall that there exist some a1, . . . , aT
such that û∗ =

∑T
t=1 atΨ̂(xt). Therefore,

E
t

[〈
û∗, g̃tΨ̂(x̃t)

〉]
=

T∑
i=1

E
t

[
ai

〈
Ψ̂(xi), g̃tΨ̂(x̃t)

〉]
.

As before, we have by Lemma 4 that Et
[〈

Ψ̂(xi), Ψ̂(x̃t)
〉]

= 〈Ψ(xi),Ψ(xt)〉, and that g̃t is

conditionally independent with expected value gt = 2(
∑t−1
i=1 αt,ik(x̃i,xt)− yt). Substituting

this into the expression above, we get that it is equal to

T∑
i=1

ai 〈Ψ(xi), gtΨ(xt)〉 = 〈u, gtΨ(xt)〉 .

Combining this and Eq. (14), and summing over t, we get that

E

[
T∑
t=1

E
t

[〈
ŵt, g̃tΨ̂(x̃t)

〉]
−

T∑
t=1

E
t

[〈
û∗, g̃tΨ̂(x̃t)

〉]]
= E

[
T∑
t=1

〈wt, gtΨ(xt)〉 −
T∑
t=1

〈u, gtΨ(xt)〉

]
.

(15)
Remarkably, this equation links between classifiers ŵt in the RKHS corresponding to Ψ(·),
and the classifiers wt in another RKHS, corresponding to Ψ(·).
Plugging Eq. (15) into Eq. (12), we get that

E

[
T∑
t=1

〈wt, gtΨ(xt)〉 −
T∑
t=1

〈u, gtΨ(xt)〉

]
≤ 2WRΣ,s,d

√
(W 2R2

Σ,s,d +B2
ỹ)T .

Now, since `(〈wt,Ψ(xt)〉 , yt) = (〈wt,Ψ(xt)〉 − yt)2 is a convex function of wt, and since
gtΨ(xt) is the gradient at wt, we can lower bound the l.h.s. as

E

[
T∑
t=1

`(〈wt,Ψ(xt)〉 , yt)− `(〈u,Ψ(xt)〉 , yt)

]
,

from which the theorem follows.
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Figure 1: Comparison of g(x,x′) (solid line) and k(x,x′) (dashed line) as a function of ‖x− x′‖,
for c = 2 (left) and c = 4 (right).

E Extension to Radial Kernel Approximations: a Case Study

Recall that we assume a Gaussian distribution N (0,Σ) for the noise introduced into each
instance, where Σ is a known matrix. Just to make our case analysis simpler to present, we
assume here that Σ = σ2I for some parameter σ2, where σ2 = O(1) (this is a reasonable
assumption to make when the feature values of the original data is Θ(1)).

In this appendix, we adapt Algorithm 2 and Theorem 3 to an approximation of the radial
kernel

g(x,x′) =

(
1 +

1

d
‖x− x′‖2

)−1

= d

∫ ∞
0

exp
(
−u ‖x− x′‖2 − ud

)
du

As discussed in the main text, the analysis we perform here can be extended to other radial
kernels as well.

The approximate kernel we will consider is

k(x,x′) = d

∫ c/d

0

exp
(
−u ‖x− x′‖2 − ud

)
du = g(x,x′)

(
1− exp

(
− c

g(x,x′)

))
(16)

where c ∈ (0, d/4σ) is a user-defined parameter. This is a valid kernel by Eq. (20) and the

reverse direction of Theorem 4. Note that g(x,x′) is always between 0 and 1, so k(x,x′)
g(x,x′) ∈

[1− exp(−c), 1]. Therefore, k(x,x′) is an excellent approximation of g(x,x′) for values of c
not too small. As before, we let Ψ denote the feature mapping associated with the kernel k.

The surrogate kernel that we will pick is defined as follows (see the proof of Lemma 8 for
the construction, following the approach outlined in Subsection 6.1):

k̂(x,x′) = d

∫ c/d

u=0

(1− 2σu)−d/2 exp

(
−u ‖x− x′‖2

1− 2σu
− ud

)
du. (17)

As before, we let Ψ̂ denote the feature mapping associated with this kernel. This is a valid
kernel by the reverse direction of Theorem 4.

Our algorithm looks exactly like Algorithm 2, only that now we use the new definitions of
Ψ̂,Ψ above. To state the bound, recall that for any u =

∑t
i=1 atΨ(xt) for some a1, . . . , am ≥

0, we define βu to be the angle between
∑
t:at>0 atΨ(xt) and −

∑
t:at<0 atΨ(xt). The bound

takes the following form.

Theorem 5 Assume that the noise introduced into xt has a known distribution N (0, σ2I),
and that the noise introduced into yt is independent with E[ỹ2

t ] ≤ B2
ỹ . Suppose we use

the kernel defined in Eq. (16), with some c ∈ (0, d/4σ). Let Bw > 0, β ∈ (0, π/2] be

fixed. Then if we run Algorithm 2 with parameters Bw, any W ≥
√

5Bw exp(σc)
sin(β) , and η =
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W/2 exp(σc)
√

(W 2 exp(2σc) +B2
ỹ)T , then for all u with ‖u‖ ≤ Bw, βu ≥ β, it holds that

E

[
T∑
t=1

`(〈wt,Ψ(xt)〉 , yt)− `(〈u,Ψ(xt)〉 , yt)

]
≤ 2W exp(σc)

√
(W 2 exp(2σc) +B2

ỹ)T .

The proof follows the same lines as the proof of Theorem 3. The changes mostly have to
do with the auxiliary lemmas from Subsection D.1, which we present below. The proof of
the theorem itself is virtually identical to the one appearing in Subsection D.2, and is thus
skipped.

E.1 Auxiliary Lemmas

The auxiliary lemmas below modify the parallel lemmas in Subsection D.1, based on the new
definitions of the feature mapping Ψ and the surrogate feature mapping Ψ̂. But before that,
we begin with a lemma which explicitly upper bounds ‖Ψ̂(x)‖2 for any x. With Gaussian
kernels, this was trivial, but now we need to work a bit harder.

Lemma 7 For any vector x ∈ Rd, we have∥∥∥Ψ̂(x)
∥∥∥2

≤ exp(2σc).

Proof By Eq. (17),

∥∥∥Ψ̂(x)
∥∥∥2

= k̂(x,x) = d

∫ c/d

u=0

(1− 2σu)−d/2 exp(−ud)du

≤ (1− 2σc/d)−d/2
∫ c/d

u=0

d exp(−ud)du = (1− 2σc/d)−d/2(1− exp(−c)). (18)

Also, by a Taylor expansion of the log function, and using the fact that 2σc/d < 1/2 by the
assumption that c < d/4σ, we get(

1− 2σc

d

)d
= exp

(
d log

(
1− 2σc

d

))
≥ exp

(
d

(
−4 log(2)σc

d

))
= exp(−4 log(2)σc).

(19)
Plugging this into Eq. (18), we get the upper bound

exp(2 log(2)σc)(1− exp(−c)) ≤ exp(2σc).

Lemma 8 For any a,x ∈ Rd, if we let x̃ = x+n where n ∼ N (0,Σ) is a Gaussian random
vector with covariance matrix Σ, then it holds that

E
n

〈
Ψ̂(x̃), Ψ̂(a)

〉
= 〈Ψ(x),Ψ(a)〉 .

Proof On one hand, based on the definition of k in Eq. (16), it can be verified that

〈Ψ(x),Ψ(a)〉 = k(x,a) =

∫ c/d

u=0

d exp
(
−u ‖x− a‖2 − ud

)
du. (20)
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On the other hand, using the proof of Lemma 4 and Fubini’s theorem, the expectation in
the lemma can be written as

E
n

〈
Ψ̂(x̃), Ψ̂(a)

〉
= E

n

[
d

∫ c/d

u=0

(1− 2σu)−d/2 exp

(
−u ‖x̃− a‖2

1− 2σu
− ud

)
du

]

=

∫ c/d

u=0

d exp(−ud)E
n

[
(1− 2σu)−d/2 exp

(
−‖x̃− a‖2

1/u− 2σ

)]
du

=

∫ c/d

u=0

d exp(−ud) exp

(
−‖x− a‖2

1/u

)
du

=

∫ c/d

u=0

d exp
(
−u ‖x− a‖2 − ud

)
du.

Lemma 9 Let z1, z2, . . . , zT be vectors in Rd, and a1, a2, . . . , aT scalars, such that
‖
∑
i aiΨ(zi)‖2 ≤ B2. Then

∑
i aiΨ̂(zi) is an element in the RKHS w.r.t. Ψ̂(·), whose

norm squared is at most
5B2

sin2(β)
exp(2σc).

Here, β is the angle between
∑
i:ai>0 aiΨ(zi) and −

∑
i:ai<0 aiΨ(zi) in the RKHS (or β =

π/2 is one of the elements is zero).

Proof Picking some z1, z2, . . . and a1, a2, . . . as in the lemma statement, we have∥∥∥∥∥∑
i

aiΨ̂(zi)

∥∥∥∥∥
2

=
∑
i,j

aiaj k̂(zi, zj) ≤
∑

i,j:aiaj>0

aiaj k̂(zi, zj) (21)

Now, by definition of k̂(·, ·) in Eq. (17), and the representation of k(·, ·) as in Eq. (20), it
holds for any zi, zj that

k̂(zi, zj)

k(zi, zj)
=

d
∫ c/d
u=0

(1− 2σu)−d/2 exp
(
−u‖zi−zj‖2

1−2σu − ud
)
du

d
∫ c/d
u=0

exp
(
−u ‖zi − zj‖2 − ud

)
du

≤ (1− 2σc/d)−d/2

∫ c/d
u=0

exp
(
−u‖zi−zj‖2

1−2σu − ud
)
du∫ c/d

u=0
exp

(
−u ‖zi − zj‖2 − ud

)
du

≤ (1− 2σc/d)−d/2 ≤ exp(2σc),

where the last transition can be verified as in Eq. (19).

Therefore, we can upper bound Eq. (21) by∑
i,j:aiaj>0

aiaj k̂(zi, zj) ≤ exp(2σc)
∑

i,j:aiaj>0

aiajk(zi, zj).

The lemma follows by noting that according to Lemma 5,

∑
i,j:aiaj>0

aiajk(zi, zj) =

∥∥∥∥∥ ∑
i:ai>0

aiΨ(zi)

∥∥∥∥∥
2

+

∥∥∥∥∥ ∑
i:ai<0

Ψ(zi)

∥∥∥∥∥
2

≤ 5B2

sin2(β)
.
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