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The problem of characterizing learnability is the most basic question of learning theory. A fundamental
and long-standing answer, formally proven for supervised classification and regression, is that learnability
is equivalent to uniform convergence, and that if a problem is learnable, it is learnable via empirical risk
minimization. Furthermore, for the problem of binary classification, uniform convergence is equivalent to
finite VC dimension.

In this lecture we will talk about other methods for obtaining generalization bounds and establishing
learnability. We start with PAC-Bayes bounds which can be though of as an extension to Minimum Descrip-
tion Length (MDL) bounds and Occam’s razor. Next, we discuss a compression bound which states that if
a learning algorithm only uses a small fraction of the training set to form its hypothesis then it generalizes.
Finally, we turn to online-to-batch conversions. In the next lecture we will discuss the “General Learning
Setting” (introduced by Vapnik), which includes most statistical learning problems as special cases.

1 Setup
We now return to the familiar learning setup. We assume that the data is distributed over some input space X
and that the labels are in some space Y . Generically, we equip X × Y with a probability distribution D. We
let ` : Y × Y → R be some loss function. The hypothesis class is H, where h ∈ H is a function from X to
Y . We define

L(h) = EX×Y∼D`(h(x), y).

2 PAC-Bayes
There are several paradigms for preventing overfitting. One popular approach is to restrict the search space
to a hypothesis class with bounded VC dimension or a bounded Rademacher complexity. Another approach
is the Minimum Description Length (MDL) and Occam bounds in which we allow a potentially very large
hypothesis class but define a hierarchy over hypotheses and prefer to choose hypotheses that appear higher in
the hierarchy. The PAC-Bayesian approach further generalizes this idea.

As in the MDL paradigm, we define a hierarchy over hypotheses in our class H. Now, the hierarchy
takes the form of a prior distribution over H. That is, we assign a probability (or density if H is continuous)
P (h) ≥ 0 for each h ∈ H and refer to P (h) as the prior score of h. Following the Bayesian reasoning
approach, the output of the learning algorithm is not necessarily a single hypothesis. Instead, the learning
process defines a posterior probability over H, which we denote Q. One can think on Q as defining a
randomized prediction rule as follows. Whenever we get a new instance x, we randomly pick a hypothesis
h ∈ H according to Q and predict h(x). We analyze the expected performance of the probabilistic prediction
rule, namely, we are interested in bounding

E
h∼Q

L(h) .

The following theorem tells us that the difference between the generalization loss and the empirical loss
of a posteriorQ is bounded by an expression that depends on the Kullback-Leibler divergence betweenQ and
the prior distribution P . The Kullback-Leibler is a natural measure of the distance between two distributions
and it has various usage in statistics and information theory. The theorem suggests that if we would like
to minimize the generalization loss of Q we should jointly minimize both the empirical loss of Q and the
Kullback-Leibler distance between Q and the prior distribution.
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Theorem 1 Let D be an arbitrary distribution over X × Y . Let H be a hypothesis class and let ` be a loss
function such that for all h and z we have `(h, z) ∈ [0, 1]. Let P be a prior distribution over H and let
δ ∈ (0, 1). Then, with probability of at least 1− δ over the choice of an i.i.d. training set S = {z1, . . . , zm}
sampled according to D, for all distributions Q overH (even such that depend on S), we have

E
h∼Q

[L(h)] ≤ E
h∼Q

[LS(h)] +

√
D(Q||P ) + lnm/δ

2(m− 1)
,

where
D(Q||P ) = E

h∼Q
[ln(Q(h)/P (h))]

is the Kullback-Leibler divergence.

Proof For any function f(S), using Markov’s inequality:

P
S

[f(S) ≥ ε] = P
S

[ef(S) ≥ eε] ≤ ES [ef(S)]
eε

. (1)

Let ∆(h) = L(h)− LS(h). We will apply Eq. (1) with the function

f(S) = sup
Q

2(m− 1) E
h∼Q

(∆(h))2 −D(Q||P ) .

We now turn to bound ES [ef(S)]. The main trick is to upper bound f(S) by using an expression that does
not depend on Q but rather depend on the prior probability P . To do so, fix some S and note that from the
definition of D(Q||P ) we get that for all Q,

2(m− 1) E
h∼Q

(∆(h))2 −D(Q||P ) = E
h∼Q

[ln(e2(m−1)∆(h)2P (h)/Q(h))]

≤ ln E
h∼Q

[e2(m−1)∆(h)2P (h)/Q(h)]

= ln E
h∼P

[e2(m−1)∆(h)2 ] ,

(2)

where the inequality follows from Jensen’s inequality and the concavity of the log function. Therefore,

E
S

[ef(S)] ≤ E
S

E
h∼P

[e2(m−1)∆(h)2 ] (3)

The advantage of the expression on the right-hand side stems from the fact that we can switch orders of
expectation (because P is a prior that does not depend on S) and get that

E
S

[ef(S)] ≤ E
h∼P

E
S

[e2(m−1)∆(h)2 ] . (4)

Next, we show that for all h we have ES [e2(m−1)∆(h)2 ] ≤ m. To do so, recall that Hoeffding’s inequality
tells us that

P
S

[∆(h) ≥ ε] ≤ e−2mε2 .

In Exercise 1 we show that this implies that ES [e2(m−1)∆(h)2 ] ≤ m. Combining this with Eq. (4) and
plugging into Eq. (2) we get

P
S

[f(S) ≥ ε] ≤ m

eε
. (5)

Denote the right-hand side of the above δ, thus ε = ln(m/δ), and we therefore obtain that with probability of
at least 1− δ we have that for all Q

2(m− 1) E
h∼Q

(∆(h))2 −D(Q||P ) ≤ ε = ln(m/δ) .
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Rearranging the above and using Jensen’s inequality again (the function x2 is convex) we conclude that(
E
h∼Q

∆(h)
)2

≤ E
h∼Q

(∆(h))2 ≤ ln(m/δ) +D(Q||P )
2(m− 1)

. (6)

Exercise
1. Let X be a random variable that satisfies P[X ≥ ε] ≤ e−2mε2 . Prove that E[e2(m−1)X2

] ≤ m.

3 Compression Bounds
Consider an algorithm which receives a training set of m examples but whose output hypothesis can be
determined by only observing a subset of k examples. Informally, in this case we can use the error on the rest
m− k examples as an estimator of the generalization error. This is formalized in the following theorem that
is stated for classification loss but is valid for any bounded loss. We define LI(h) to be the empirical loss of
hypothesis h on a subset I of the samples.

Theorem 2 Let S = (x1, y1), . . . , (xm, ym) be a sequence of examples and let A(S) be a learning rule. Let
I = (i1, . . . , ik) be a sequence of indices from [m] such that k < m and let J be the rest of the indices in
[m]. Assume that there is a deterministic mapping from (xi1 , yi1), . . . , (xik , yik) to a hypothesis hI such that
for all j ∈ J we have A(S)(xj) = h(xj). Then, with probability of at least 1− δ we have

LD(A(S)) ≤ LSJ
(A(S)) +

√
(k + 1) log(m/δ)

m− k
.

Proof

P[LD(A(S))− LSJ
(A(S)) ≥ ε]

≤ P[∃I s.t. LD(hI)− LSJ
(hI) ≥ ε]

≤
m−1∑
k=1

∑
I:|I|=k

P[LD(hI)− LSJ
(hI) ≥ ε]

=
m−1∑
k=1

∑
I:|I|=k

P SI
P SJ |SI

[LD(hI)− LSJ
(hI) ≥ ε]

By Hoeffding we know that

P SJ |SI
[LD(hI)− LSJ

(hI) ≥ ε] ≤ e−|J|ε
2

Therefore, we obtain the bound∑
I:|I|=k

P SI
P SJ |SI

[LD(hI)− LSJ
(hI) ≥ ε] ≤ mke−|J|ε

2
.

The right-hand side of the above is bounded above by δ/m provided that

ε ≤

√
(k + 1) log(m/δ)

|J |
.
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For such ε we obtain

P[LD(A(S))− LSJ
(A(S)) ≥ ε] ≤

m−1∑
k=1

δ/m ≤ δ ,

which concludes our proof.

Exercises
1. Apply the compression bound given in Theorem 2 to derive a generalization bound for the Perceptron

algorithm.

2. A compression scheme of size k for a concept class C picks from any set of examples consistent
with some h ∈ C a subset of at most k examples that “represents” a hypothesis consistent with the
whole original training set. Theorem 2 tells us that the existence of a compression scheme guarantees
generalization and thus learnability. Prove that the VC dimension of C should be bounded (and in
fact, based on the bounds, it should equal k). The opposite question is an open problem proposed by
Manfred Warmuth: Does any concept class of VC dimension d has a compression scheme of size d?

4 Online to batch conversions
In this section we show that an online algorithm that attains low regret can be converted into a batch learning
algorithm that attains low risk. Such online-to-batch conversions are interesting both from the practical as
from the theoretical perspective.

Recall that we assume that the sequence of examples are independently and identically distributed ac-
cording to an unknown distribution D over X ×Y . To emphasize the above fact and to simplify our notation,
we denote by Zt the tth example in the sequence and use the shorthand

Zj1 = (Z1, . . . , Zj) = ((x1, y1), . . . , (xj , yj)) .

We denote the tth hypothesis that the online learning algorithm generates by ht. Note that ht is a function of
Zt−1

1 and thus it is a random variable (w.r.t. D but also randomization by the online algorithm). We denote
the average loss of the online algorithm by

MT (ZT1 ) =
1
T

T∑
t=1

`(ht, Zt) . (7)

We often omit the dependence of MT on ZT1 and use the shorthand MT for denoting MT (ZT1 ).
The rest of this section is organized as follows. In Section 4.1 we show that the expected value of MT

equals the expected value of 1
T

∑T
t=1 LD(ht). Thus, the online loss is an un-biased estimator for the average

risk of the ensemble (h1, . . . , hT ). Next, in Section 4.2 we underscore that regret bounds (i.e., bounds on
MT ) can yield bounds on the average risk of (h1, . . . , hT ). Therefore, there exists at least one hypothesis in
the ensemble (h1, . . . , hT ) whose risk is low. Since our goal in batch learning is typically to output a single
hypothesis (with low risk), we must find a way to choose a single good hypothesis from the ensemble. In
Section 4.3, we discuss several simple procedures for choosing a single good hypothesis from the ensemble.

4.1 Online loss and ensemble’s risk
Our first theorem shows that the expected value of MT equals the expected value of the risk of the ensemble
(h1, . . . , hT ).
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Theorem 3 Let Z1, . . . , ZT be a sequence of independent random variables, each of which is distributed
according to a distribution D over X × Y . Let h1, . . . , hT be the sequence of hypotheses generated by an
online algorithm when running on the sequence Z1, . . . , ZT , and let LD(h) = E Z∼D[`(h, Z)]. Then,

E Z1,...,ZT

[
1
T

T∑
t=1

LD(ht)

]
= E

Z1,...,ZT

[
1
T

T∑
t=1

`(ht, Zt)

]
.

Proof Using the linearity of expectation and the fact that ht only depends on Zt−1
1 we have,

E
ZT

1

[
1
T

T∑
t=1

`(ht, Zt)] =
1
T

T∑
t=1

E
ZT

1

[`(ht, Zt)] =
1
T

T∑
t=1

E
Zt

1

[`(ht, Zt)] . (8)

Recall that the law of total expectation implies that for any two random variables R1, R2, and a function f ,
ER1 [f(R1)] = ER2 ER1 [f(R1)|R2]. Setting R1 = Zt1 and R2 = Zt−1

1 we get that

E Zt
1
[`(ht, Zt)] = E Zt−1

1
[E Zt

1
[`(ht, Zt)|Zt−1

1 ]] = E Zt−1
1

[LD(ht)] = E ZT
1

[LD(ht)] .

Combining the above with Eq. (8) concludes our proof.

The above theorem tells us that in expectation, the online loss equals the average risk of the ensemble
of hypotheses generated by the online algorithm. The next step is to use our regret bounds from previous
lectures to derive bounds on the batch loss.

4.2 From Regret Bounds to Risk Bounds
In the previous section we analyzed the risks of the hypotheses generated by an online learning algorithm
based on the average online loss, MT . In previous lectures we analyzed the regret of online algorithms by
bounding the online loss, MT , in terms of the loss of any competing hypothesis inH. In particular, the bound
holds for the hypothesis in H whose risk is minimal. Formally, assume that the minimum risk is achievable
and denote by h? a hypothesis s.t. LD(h?) = minh∈H LD(h). In this section, we derive bounds on MT in
terms of LD(h?).

In the simplest form of regret bounds, there exists a deterministic function B : N→ R such that

∀h ∈ H, 1
T

T∑
t=1

`(ht, Zt) ≤
1
T

T∑
t=1

`(h, Zt) +
B(T )
T

. (9)

E.g., for online convex optimization we had B(T ) = O(
√
T ).

We start by deriving a bound on the average risk of the ensemble of hypotheses that the online algorithm
generates.

Theorem 4 Assume that the condition stated in Theorem 3 holds and that the online algorithm satisfies
Eq. (9). Then,

E ZT
1

[
1
T

T∑
t=1

LD(ht)

]
≤ LD(h?) +

B(T )
T

.

Proof Taking expectation of the inequality given in Eq. (9) we obtain

EZT
1

[
1
T

T∑
t=1

`(ht, Zt)

]
≤ E ZT

1

[
1
T

T∑
t=1

`(h?, Zt)

]
+
B(T )
T

. (10)
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Since h? does not depend on the choice of ZT1 , we have,

E ZT
1

[
1
T

T∑
t=1

`(h?, Zt)

]
=

1
T

T∑
t=1

E ZT
1

[`(h?, Zt)] =
1
T

T∑
t=1

E Zt [`(h
?, Zt)] = LD(h?) . (11)

Combining the above with Eq. (10) and Theorem 3 we conclude our proof.

4.3 Choosing a hypothesis from the ensemble
In the previous section we showed that regret bounds yield bounds on the average risk of (h1, . . . , hT ).
The goal of this section is two-fold. First, we need to output a single hypothesis and thus we must choose
a single good hypothesis from (h1, . . . , hT ). Second, the analysis in the previous section focuses on the
expected value of the risk whereas in practice we have a single training set. Therefore, we must analyze the
concentration properties of our online-to-batch conversion schemes.

4.3.1 Last (with random stopping time)

The simplest conversion scheme runs the online algorithm on a sequence of r examples and returns the last
hypothesis hr. To analyze the risk of hr we assume that r is chosen uniformly at random from {1, 2, . . . , T},
where T is a predefined integer. The following lemma shows that the bounds on E[ 1

T

∑
t LD(ht)] we derived

in the previous section can be transformed into a bound on LD(hr).

Lemma 1 Assume that the conditions stated in Theorem 3 hold. Let h? be a hypothesis in H whose risk is
minimal and let δ ∈ (0, 1). Assume that there exists a scalar α such that

E ZT
1

[
1
T

T∑
t=1

LD(ht)

]
≤ LD(h?) + α .

Let r ∈ [T ] and assume that r is uniformly chosen at random from [T ]. Then, with a probability of at least
1− δ over the choices of ZT1 and r we have

LD(hr) ≤ LD(h?) +
α

δ
.

Proof Let R be the random variable (LD(hr) − LD(h?)). From the definition of h? as the minimizer of
LD(h) we clearly have that R is a non-negative random variable. In addition, the assumption in the lemma
implies that E[R] ≤ α. Thus, from the Markov inequality

P[R ≥ a] ≤ E[R]
a
≤ α

a
.

Setting α
a = δ we conclude our proof.

Combining the above lemma with Theorem 4 we obtain the following:

Corollary 1 Assume that the conditions stated in Theorem 4 hold. Let h? be a hypothesis inH whose risk is
minimal and let δ ∈ (0, 1). Then, with a probability of at least 1 − δ over the choices of (Z1, . . . , ZT ) and
the index r we have that

LD(hr) ≤ LD(h?) +
B(T )
δ T

.

Corollary 1 implies that by running the online algorithm on the first r examples and outputting hr we
obtain a batch learning algorithm with a guaranteed risk bound. However, the concentration bound given in
Corollary 1 depends linearly on 1/δ, where δ is the confidence parameter. Our next conversion scheme is
preferable when we are aiming for very high confidence.
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4.3.2 Validation

In the validation conversion scheme, we first pick a subset of hypotheses from h1, . . . , hT and then use a
fresh validation set to decide which hypothesis to output. We start by using a simple amplification technique
(a.k.a. boosting the confidence), to construct a few candidate hypotheses such that with confidence 1− δ the
risk of at least one of the hypotheses is low.

Theorem 5 Assume that the conditions stated in Theorem 3 hold. Let s be a positive integer. Assume that
we reset the online algorithm after each block of T/s examples. Let h′1, . . . , h

′
s be a sequence of hypotheses

where for each i ∈ {1, 2, . . . , s}, the hypothesis h′i is picked uniformly at random from {hi s+1, . . . , hi s+s}.
Then with a probability of at least 1− e−s, there exists i ∈ {1, 2, . . . , s} such that

LD(h′i) ≤ LD(h?) +
e sB(T/s)

T
.

Proof Using Corollary 1 with a confidence value of 1/e, we know that for all i ∈ [s], with a probability of at
least 1− 1/e we have that

LD(h′i)− LD(h?) ≤ e α(T/s) (12)

where α(k) = B(k)/k. Therefore, the probability that for all blocks the above inequality does not hold is
at most e−s. Hence, with a probability of at least 1−e−s, at least one of the hypotheses h′i satisfies Eq. (12).

The above theorem tells us that there exists at least one hypothesis hg ∈ {h′1, . . . , h′s} such that LD(hg)
is small. To find such a good hypothesis we can use a validation set and choose the hypothesis whose loss
on the validation set is minimal. Formally, let Z ′1, . . . , Z

′
m be a sequence of random variables that represents

a fresh validation set and let ho be the hypothesis in {h′1, . . . , h′s} whose loss over Z ′1, . . . , Z
′
m is minimal.

Applying standard generalization bounds (e.g., Eq. (21) in Boucheron Bousquet and Lugosi, 2005) on the
finite hypothesis class {h′1, . . . , h′s} we obtain that there exists a constant C such that

LD(ho)− LD(hg) ≤ C

√LD(hg)
log(s) log(m) + ln

(
1
δ

)
m

+
log(s) log(m) + ln

(
1
δ

)
m

 .

4.3.3 Averaging

If the set of hypotheses is convex and the loss function, `, is convex with respect to h then the risk function is
also convex with respect to h. Therefore, Jensen’s inequality implies that

LD

(
1
T

T∑
t=1

ht

)
≤ 1

T

T∑
t=1

LD(ht) .

We can use the above inequality in conjunction with Theorem 4 to derive bounds on the expected risk
of the averaged hypothesis h̄ = 1

T

∑T
t=1 ht. In particular, the bounds we derived in Corollary 1 hold for h̄

as well. If we want to have very high confidence, we can use the amplification technique described in the
previous conversion scheme. Alternatively, we can use Azuma’s inequality to obtain a bound that holds with
high probability. This is left as an exercise.
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