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In the previous lecture we learned how to track the best expert in an online manner. In particular, we
analyzed the regret of the algorithm by comparing its performance to the performance of the best fixed experts.
In this lecture we allow the competing expert to change over time. We present two types of changes: shift
and drift.

1 Shifting experts
In the previous lecture we presented the Weighted Majority algorithm and showed that this algorithm guar-
antees:
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|ŷt − yt|

]
≤ min

i

T∑
t=1

|f ti − yt|+
√

2 log(d)T ,

where f ti is the prediction of expert i at round t, d is the number of experts, T is the number of rounds, ŷt is
the prediction of the learner at round t, and the expectation is w.r.t. the algorithm’s own randomization.

The above bound is meaningful if one of the experts makes a small number of mistakes. In many situa-
tions, one expert performs very well on part of the sequence while other experts perform better on other parts
of the sequence. In particular, consider the k-shifting regret:
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That is, we allow the competing expert to change k times. Can we have a vanishing regret for this setting?

1.1 A non-efficient solution
A simple way to achieve a bound on the k-shifting regret is by a straightforward reduction to the usual experts
setting. Formally, we will construct a meta expert for each sequence 0 = t1 < . . . < tk+1 and a sequence of
best expert for each sequence , i1, . . . , ik. The meta expert will predict f ti = f tij if t ∈ (tj + 1, . . . , tj+1).

The number of constructed experts is at most (dT )k. Therefore, using the bound for weighted majority
we have constructed in the previous lecture we obtain a regret bound of the from:
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The above regret bound tells us that we can have a vanishing regret as long as k = o(T/ log(T )). However,
the computational complexity of the resulting algorithm is exponential in k.

To derive a better approach we first present a variant of Weighted Majority in which we allow a prior
distribution over experts.

1.2 Experts with prior
The algorithm is identical to the Weighted Majority algorithm described in the previous lecture except that
the initial value of θ0 is now initialized to be a vector such that w0 is some prior distribution over the experts.
It is relatively easy to adapt the proof for Weighted Majority to this setting and to get the following.
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Theorem 1 Let w0 be a prior distribution over experts and let θ0 be a vector s.t. w0
i = exp(θ0i )/Z0. Then,

running the weighted majority algorithm with this initial value of θ0 gives the regret bound:

∀i, E

[
T∑
t=1

|ŷt − yt|

]
−
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t=1

|f ti − yt| ≤
− ln(w0

i )
η

+
η T

8
.

In particular, if we set η =
√
−8 ln(λ)/T for some λ, then for all i s.t. w0

i ≥ λ we have
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−

T∑
t=1

|f ti − yt| ≤ 4
√

2 ln(1/λ)T .

The proof is left as an exercise.1

1.3 An efficient algorithm
Using the Experts-with-prior algorithm, we are now ready to construct an efficient algorithm for shifting
experts. The main idea is to define a prior over meta-experts that will allow us to efficiently update wt and
calculate ŷt, using dynamic programming.

For any sequence of experts, z = (z1, . . . , zT ) ∈ [d]T , we will construct a meta expert, fz, such that
f tz = f tzt

. Obviously, the number of meta-experts is dT which makes the regret bound for Weighted Majority
meaningless. However, we will define a prior over meta-experts such that the regret bound of the Experts-
with-prior algorithm will be meaningful for any meta-expert that shifts the active expert a small number of
times.

The prior we define assumes the sequence of experts is a Markov chain. That is, the initial value of w0
z is

set according to:

P[z1 = i] = 1/d ; P[zt+1 = i|zt = j] =

{
1− α if i = j

α/d− 1 else

where α ∈ (0, 1) will be specified momentarily. This means that if there are k shifts in the sequence z
(namely, k times in which zt+1 6= zt) then

− log(w0
z) = − log

[
1
d

(
α

d− 1

)k
(1− α)T−k−1

]
.

Choosing α = k/(T − 1) (which is the minimum of the above over α) yields

− log(w0
z) = log(d) + k log

(d− 1)(T − 1)
k

− (T − k − 1) log
(
1− k

T−1

)
≤ log(d) + k log

(d− 1)(T − 1)
k

+ k ,

where the last inequality is because for any 0 < a < b we have

−(a− b) log(1− b
a ) = −(a− b) log a−b

a = (a− b) log a
a−b ≤ (a− b)

(
a
a−b − 1

)
= b .

Overall, by applying the regret bound of Experts-with-prior we obtain the regret bound

E

[
T∑
t=1

|ŷt − yt|

]
− min

0=t1<...<tk+1=T
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j=0

min
i

tj+1∑
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|f ti − yt| ≤ O
(√

k log(dT/k)T
)
, (3)

1Hint: Follow the proof of the regret bound for the Weighted Majority, but instead of the strongly convex function: f(w) =P
i wi log(wi) + log(n) use the strongly convex function: g(w) = f(w) + 〈w,w0〉. Show that g?(θ) = g?(θ − θ0).
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which is similar to the bound we have derived for the non-efficient solution.
It is left to show that it is possible to run the Experts-with-prior algorithm efficiently. To make the

prediction on round t it suffices to know the total weight of meta-experts for which zt = i. Denote this
quantity by Qt−1(i). Formally,

Qt−1(i) =
∑

z:zt=i

exp(θtz) .

Using Qt−1(i) we can efficiently calculate the prediction ŷt by simply choosing it according to the distribu-
tion Qt−1(i)/

∑
j Qt−1(j) and returning f tit . We will show how to update Q efficiently.

Initially, Q0(i) = 1/d because θ = log(w0) is set according to the Markov model and the initial state is
chosen uniformly at random. Also note that for any t we have that∑

z:zt+1=i∧zt=i

exp(θ0z) = P[zt+1 = zt = i] = P[zt = i] P[zt+1 = i|zt = i] = Qt−1(i) (1− α) .

Similarly, for j 6= i we have∑
z:zt+1=i∧zt=j

exp(θ0z) = P[zt = i] P[zt+1 = J |zt = i] = Qt−1(i)
α

d− 1
.

Recall that the update of θ is θtz = θt−1
z − η|f tzt

− yt|. Therefore, the above two equalities will hold for t > 0
as well. Now, suppose that at round t we have the correct value of Qt−1(i) and let us calculate Qt(i). We
have:

Qt(i) =
∑

z:zt+1=i

exp(θtz)

=
∑

z:zt+1=i∧zt=i

exp(θtz) +
∑
j 6=i

∑
z:zt+1=i∧zt=j

exp(θtz)

=
∑

z:zt+1=i∧zt=i

exp(θt−1
z − η|f ti − yt|) +

∑
j 6=i

∑
z:zt+1=i∧zt=j

exp(θt−1
z − η|f tj − yt|)

= exp(−η|f ti − yt|)
∑

z:zt+1=i∧zt=i

exp(θt−1
z ) +

∑
j 6=i

exp(−η|f tj − yt|)
∑

z:zt+1=i∧zt=j

exp(θt−1
z )

= exp(−η|f ti − yt|)(1− α)Qt−1(i) +
∑
j 6=i

exp(−η|f tj − yt|) α
d−1Qt−1(j) .

That is, Qt can be calculated based on Qt−1 in time O(d) by calculating once
∑
j exp(−η|f tj − yt|)Qt−1(j)

and then for each i subtracting from the above the i’th summand, and multiplying the two terms appropriately.

2 Drifting hypothesis
The regret again k-shifting experts makes sense in the experts setting, where changes are discrete. In the
general online convex optimization problem we studied in the previous section changes in wt are continuous.
In this case, it also makes sense to talk about a hypothesis drift. One way to define such a drift is by defining
the total change of a sequence of vectors:

T∑
t=1

‖ut − ut−1‖ ,

where for convenience define u0 to be the zero vector. Now, we can define a regret bound with respect to a
sequence of vectors:

T∑
t=1

gt(wt)− min
u1,...,uT :maxt ‖ut‖≤U,

PT
t=1 ‖ut−ut−1‖≤S

gt(ut) .
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Zinkevich derived a regret bound for the above that takes the form:

O((U +
√
US)
√
T ) .

The interesting reader is referred to Zinkevich’s paper: “Online convex programming and generalized in-
finitesimal gradient ascent” from ICML 2003.
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