
Advanced Course in Machine Learning Spring 2010

Online Convex Optimization

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

A convex repeated game is a two players game that is performed in a sequence of consecutive rounds.
On round t of the repeated game, the first player chooses a vector wt from a convex set A. Next, the second
player responds with a convex function gt : A → R. Finally, the first player suffers an instantaneous loss
gt(wt). We study the game from the viewpoint of the first player.

In offline convex optimization, the goal is to find a vector w within a convex set A that minimizes a
convex objective function, g : A→ R. In online convex optimization, the set A is known in advance, but the
objective function may change along the online process. The goal of the online optimizer, which we call the
learner, is to minimize the averaged objective value 1

T

∑T
t=1 gt(wt), where T is the total number of rounds.

Low regret: Naturally, an adversary can make the cumulative loss of our online learning algorithm arbi-
trarily large. For example, the second player can always set gt(w) = 1 and then no matter what the learner
will predict, the cumulative loss will be T . To overcome this deficiency, we restate the learner’s goal based
on the notion of regret. The learner’s regret is the difference between his cumulative loss and the cumulative
loss of the optimal offline minimizer. This is termed ’regret’ since it measures how ’sorry’ the learner is, in
retrospect, not to use the optimal offline minimizer. That is, the regret is

R(T) =
1
T

T∑
t=1

gt(wt)− min
w∈A

1
T

T∑
t=1

gt(w) .

We call an online algorithm a low regret algorithm if R(T) = o(1). In this lecture we will study low regret
algorithms for online convex optimization. We will also show how several familiar algorithms, like the
Perceptron and Weighted Majority, can be derived from an online convex optimizer.

We start with a brief overview of basic notions form convex analysis.

1 Convexity
A set A is convex if for any two vectors w1,w2 in A, all the line between w1 and w2 is also within A. That
is, for any α ∈ [0, 1] we have that αw1 + (1 − α)w2 ∈ A. A function f : A → R is convex if for all
u,v ∈ Rn and α ∈ [0, 1] we have

f(αu + (1− α)v) ≤ αf(u) + (1− α)f(v) .

It is easy to verify that f is convex iff its epigraph is a convex set, where epigraph(f) = {(x, α) : f(x) ≤ α}.
We allow f to output ∞ for some inputs x. This is a convenient way to restrict the domain of A to a

proper subset of X . So, in this section we use R to denote the reals number and the special symbol∞. The
domain of f : X → R is defined as dom(f) = {x : f(x) <∞}.

A set A is open if every point in A has a neighborhood lying in A. A set A is closed if its complement
is an open set. A function f is closed if for any finite scalar α, the level set {w : f(w) ≤ α} is closed.
Throughout, we focus on closed and convex functions.

1.1 Sub-gradients
A vector λ is a sub-gradient of a function f at w if for all u ∈ A we have that

f(u)− f(w) ≥ 〈u−w,λ〉 .

Online Convex Optimization-1

The differential set of f at w, denoted ∂f(w), is the set of all sub-gradients of f at w. For scalar functions, a
sub-gradient of a convex function f at x is a slope of a line that touches f at x and is not above f everywhere.

Two useful properties of subgradients are given below:

1. If f is differentiable at w then ∂f(w) consists of a single vector which amounts to the gradient of f
at w and is denoted by ∇f(w). In finite dimensional spaces, the gradient of f is the vector of partial
derivatives of f .

2. If g(w) = maxi∈[r] gi(w) for r differentiable functions g1, . . . , gr, and j = arg maxi gi(u), then the
gradient of gj at u is a subgradient of g at u.

Example 1 (Sub-gradients of the logistic-loss) Recall that the logistic-loss is defined as `(w; x, y) =
log(1 + exp(−y〈w,x〉)). Since this function is differentiable, a sub-gradient at w is the gradient at w,
which using the chain rule equals to

∇`(w; x, y) =
− exp(−y〈w,x〉)

1 + exp(−y〈w,x〉)
y x =

−1
1 + exp(y〈w,x〉)

y x .

Example 2 (Sub-gradients of the hinge-loss) Recall that the hinge-loss is defined as `(w; x, y) =
max{0, 1 − y〈w,x〉}. This is the maximum of two linear functions. Therefore, using the two propoerties
above we have that if 1−y〈w,x〉 > 0 then−y x ∈ ∂`(w; x, y) and if 1−y〈w,x〉 < 0 then 0 ∈ ∂`(w; x, y).
Furthermore, it is easy to verify that

∂`(w; x, y) =

{−yx} if 1− y〈w,x〉 > 0
{0} if 1− y〈w,x〉 < 0
{−αyx : α ∈ [0, 1]} if 1− y〈w,x〉 = 0

-1 1

1

Figure 1: An illustration of the hinge-loss function f(x) = max{0, 1 − x} and one of its sub-gradients at
x = 1.

1.2 Lipschitz functions
We say that f : A→ R is ρ-Lipschitz if for all u,v ∈ A

|f(u)− f(v)| ≤ ρ ‖u− v‖ .

An equivalent definition is that the `2 norm of all sub-gradients of f at points in A is bounded by ρ.
More generally, we say that a convex function is V -Lipschitz w.r.t. a norm ‖ · ‖ if for all x ∈ X exists

v ∈ ∂f(x) with ‖v‖? ≤ V . Of particular interest are p-norms, ‖x‖p = (
∑
i |xi|p)1/p.

Online Convex Optimization-2

1.3 Dual norms
Given a norm ‖ · ‖, its dual norm is defined by

‖y‖? = sup
x:‖x‖≤1

〈x, y〉 .

For example, the Euclidean norm is dual to itself. More generally, for any p, q ≥ 1 such that 1/p+ 1/q = 1,
the norms

‖x‖p =

(∑
i

|xi|p
)1/p

; ‖x‖q =

(∑
i

|xi|q
)1/q

are dual norms. The above also holds for ‖x‖1 and ‖y‖∞ = maxi |yi|.

1.4 Fenchel Conjugate
There are two equivalent representations of a convex function. Either as pairs (x, f(x)) or as the set of
tangents of f , namely pairs (slope,intersection-with-y-axis). The function that relates slopes of tangents to
their intersection with the y axis is called the Fenchel conjugate of f .

Set of points Set of tangents

w

f(w)
slope =

θ

−f?(θ)

Formally, the Fenchel conjugate of f is defined as

f?(θ) = max
x
〈x, θ〉 − f(x) .

Online Convex Optimization-3

Few remarks:

• The definition immediately implies Fenchel-Young inequality:

∀u, f?(θ) = max
x
〈x, θ〉 − f(x)

≥ 〈u, θ〉 − f(u)

• If f is closed and convex then f?? = f

• By the way, this implies Jensen’s inequality:

f(E[x]) = max
θ
〈θ,E[x]〉 − f?(θ)

= max
θ

E [〈θ, x〉 − f?(θ)]

≤ E[max
θ
〈θ, x〉 − f?(θ)] = E[f(x)]

Several examples of Fenchel conjugate functions are given below.

f(x) f?(θ)

1
2‖x‖

2 1
2‖θ‖

2
?

‖x‖ Indicator of unit ‖ · ‖? ball∑
i wi log(wi) log

(∑
i e
θi
)

Indicator of prob. simplex maxi θi

c g(x) for c > 0 c g?(θ/c)

infx g1(x) + g2(x− x) g?1(θ) + g?2(θ)

1.5 Strong Convexity–Strong Smoothness Duality
Recall that the domain of f : X → R is {x : f(x) <∞}. We first define strong convexity.

Definition 1 A function f : X → R is β-strongly convex w.r.t. a norm ‖ · ‖ if for all x, y in the relative
interior of the domain of f and α ∈ (0, 1) we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− 1
2βα(1− α)‖x− y‖2

We now define strong smoothness. Note that a strongly smooth function f is always finite.

Definition 2 A function f : X → R is β-strongly smooth w.r.t. a norm ‖ · ‖ if f is everywhere differentiable
and if for all x, y we have

f(x+ y) ≤ f(x) + 〈∇f(x), y〉+ 1
2β‖y‖

2

The following theorem states that strong convexity and strong smoothness are dual properties. Recall that
the biconjugate f?? equals f if and only if f is closed and convex.

Theorem 1 (Strong/Smooth Duality) Assume that f is a closed and convex function. Then f is β-strongly
convex w.r.t. a norm ‖ · ‖ if and only if f? is 1

β -strongly smooth w.r.t. the dual norm ‖ · ‖?.

Online Convex Optimization-4

f(u)

f(w)

u w

≥ β
2 ‖u−w‖2

f?(u)

f?(w)

u w

≤ 1
2β ‖u−w‖2?

Figure 2: Illustrations of strong convexity (left) and strong smoothness (right).

Subtly, note that while the domain of a strongly convex function f may be a proper subset ofX (important
for a number of settings), its conjugate f? always has a domain which is X (since if f? is strongly smooth
then it is finite and everywhere differentiable). The above theorem can be found, for instance, in Zalinescu
2002 (see Corollary 3.5.11 on p. 217 and Remark 3.5.3 on p. 218).

The following direct corollary of Theorem 1 is central in proving regret bounds. As we will show later, it
is also and generalization bounds.

Corollary 1 If f is β strongly convex w.r.t. ‖ · ‖ and f?(0) = 0, then, denoting the partial sum
∑
j≤i vj by

v1:i, we have, for any sequence v1, . . . , vn and for any u,
n∑
i=1

〈vi, u〉 − f(u) ≤ f?(v1:n) ≤
n∑
i=1

〈∇f?(v1:i−1), vi〉+
1

2β

n∑
i=1

‖vi‖2? .

Proof The 1st inequality is Fenchel-Young and the 2nd is from the definition of smoothness by induction.

Examples of strongly convex functions

Lemma 1 Let q ∈ [1, 2]. The function f : Rd → R defined as f(w) = 1
2‖w‖

2
q is (q − 1)-strongly convex

with respect to ‖ · ‖q over Rd.

A proof can be found in Shalev-Shwartz 2007.
We mainly use the above lemma to obtain results with respect to the norms ‖ · ‖2 and ‖ · ‖1. The case

q = 2 is straightforward. Obtaining results with respect to ‖ · ‖1 is slightly more tricky since for q = 1
the strong convexity parameter is 0 (meaning that the function is not strongly convex). To overcome this
problem, we shall set q to be slightly more than 1, e.g. q = ln(d)

ln(d)−1 . For this choice of q, the strong convexity
parameter becomes q − 1 = 1/(ln(d) − 1) ≥ 1/ ln(d) and the value of p corresponds to the dual norm is
p = (1− 1/q)−1 = ln(d). Note that for any x ∈ Rd we have

‖x‖∞ ≤ ‖x‖p ≤ (d‖x‖p∞)1/p = d1/p‖x‖∞ = e ‖x‖∞ ≤ 3 ‖x‖∞ .

Hence the dual norms are also equivalent up to a factor of 3: ‖w‖1 ≥ ‖w‖q ≥ ‖w‖1/3. The above lemma
therefore implies the following corollary.

Corollary 2 The function f : Rd → R defined as f(w) = 1
2‖w‖

2
q for q = ln(d)

ln(d)−1 is 1/(3 ln(d))-strongly
convex with respect to ‖ · ‖1 over Rd.

Another important example is given in the following lemma.

Lemma 2 The function f : Rd → R defined as f(x) =
∑
i xi log(xi) is 1-strongly convex with respect to

‖ · ‖1 over the domain {x : ‖x‖1 = 1, x ≥ 0}.
The proof can also be found in Shalev-Shwartz 2007.

Online Convex Optimization-5

2 An algorithmic framework for Online Convex Optimization
Algorithm 1 provides one common algorithm which achieves the following regret bound. It is one of a family
of algorithms that enjoy the same regret bound (see Shalev-Shwartz 2007).

Algorithm 1 Online Mirror Descent
Initialize: w1 ← ∇f?(0)
for t = 1 to T

Play wt ∈ A
Receive gt and pick vt ∈ ∂gt(wt)
Update wt+1 ← ∇f?

(
−η
∑t
s=1 vt

)
end for

Theorem 2 Suppose Algorithm 1 is used with a function f that is β-strongly convex w.r.t. a norm ‖ · ‖ on A
and has f?(0) = 0. Suppose the loss functions gt are convex and V -Lipschitz w.r.t. the norm ‖ · ‖. Then, the
algorithm run with any positive η enjoys the regret bound,

T∑
t=1

gt(wt)−min
u∈A

T∑
t=1

gt(u) ≤ maxu∈A f(u)
η

+
ηV 2T

2β
.

In particular, choosing η =
√

2βmaxu f(u)
V 2T we obtain the regret bound

T∑
t=1

gt(wt)−min
u∈A

T∑
t=1

gt(u) ≤ V

√
2 maxu∈A f(u)T

β
.

Proof Apply Corollary 1 to the sequence −ηv1, . . . ,−ηvT to get, for all u,

−η
T∑
t=1

〈vt, u〉 − f(u) ≤ −η
T∑
t=1

〈vt, wt〉+
1

2β

T∑
t=1

‖ηvt‖2? .

Using the fact that gt is V -Lipschitz, we get ‖vt‖? ≤ V . Plugging this into the inequality above and rear-
ranging gives,

T∑
t=1

〈vt, wt − u〉 ≤
f(u)
η

+
ηV 2T

2β
.

By convexity of gt, gt(wt)− gt(u) ≤ 〈vt, wt − u〉. Therefore,

T∑
t=1

gt(wt)−
T∑
t=1

gt(u) ≤ f(u)
η

+
ηV 2T

2β
.

Since the above holds for all u ∈ A the result follows.

3 Tightness of regret bounds
In the previous sections we presented algorithmic frameworks for online convex programming with regret
bounds that depend on

√
T and on the complexity of the competing vector as measured by f(u). In this

section we show that without imposing additional conditions our bounds are tight, in a sense that is articulated
below.

First, we study the dependence of the regret bounds on
√
T .

Online Convex Optimization-6

Theorem 3 For any online convex programming algorithm, there exists a sequence of 1-Lipschitz convex
functions of length T such that the regret of the algorithm on this sequence with respect to a vector u with
‖u‖2 ≤ 1 is Ω(

√
T).

Proof The proof is based on the probabilistic method. Let S = [−1, 1] and f(w) = 1
2w

2. We clearly
have that f(w) ≤ 1/2 for all w ∈ S. Consider a sequence of linear functions gt(w) = σt w where σt ∈
{+1,−1}. Note that gt is 1-Lipschitz for all t. Suppose that the sequence σ1, . . . , σT is chosen in advance,
independently with equal probability. Since wt only depends on σ1, . . . , σt−1 it is independent of σt. Thus,
Eσt [gt(wt) |σ1, . . . , σt−1] = 0. On the other hand, for any σ1, . . . , σT we have that

min
u∈S

T∑
t=1

gt(u) ≤ −

∣∣∣∣∣
T∑
t=1

σt

∣∣∣∣∣ .
Therefore,

E
σ1,...,σT

[Regret] = E
σ1,...,σT

[
∑
t

gt(wt)]− E
σ1,...,σT

[min
u

∑
t

gt(u)]

≥ 0 + E
σ1,...,σT

[
|
∑
t

σt|

]
.

The right-hand side above is the expected distance after T steps of a random walk and is thus equal
approximately to

√
2T/π = Ω(

√
T). Our proof is concluded by noting that if the expected value of the

regret is greater than Ω(
√
T), then there must exist at least one specific sequence for which the regret is

greater than Ω(
√
T).

Next, we study the dependence on the complexity function f(w).

Theorem 4 For any online convex programming algorithm, there exists a strongly convex function f with
respect to a norm ‖ · ‖, a sequence of 1-Lipschitz convex functions with respect to ‖ · ‖?, and a vector u, such
that the regret of the algorithm on this sequence is Ω(f(u)).

Proof Let S = RT and f(w) = 1
2‖w‖

2
2. Consider the sequence of functions in which

gt(w) = [1− yt〈w, et〉]+ where yt ∈ {+1,−1} and et is the tth vector of the standard base, namely,
et,i = 0 for all i 6= t and et,t = 1. Note that gt(w) is 1-Lipschitz with respect to the Euclidean norm.
Consider any online learning algorithm. If on round t we have wt,i ≥ 0 then we set yt = −1 and otherwise
we set yt = 1. Thus, gt(wt) ≥ 1. On the other hand, the vector u = (y1, . . . , yT) satisfies f(u) ≤ T/2 and
gt(u) = 0 for all t. Thus, Regret ≥ T = Ω(f(u)).

4 Convexification
The algorithms we derived previously are based on the assumption that for each round t, the loss function
gt(w) is convex with respect to w. A well known example in which this assumption does not hold is online
classification with the 0-1 loss function. In this section we discuss to what extent online convex optimization
can be used for online learning with the 0-1 loss. In particular, we will show how the Perceptron and Weighted
Majority algorithms can be derived from the general online mirror descent framework.

In online binary classification problems, at each round we receive an instance x ∈ X ⊂ Rn and we need
to predict a label ŷt ∈ Y = {+1,−1}. Then, we receive the correct label yt ∈ Y and suffer the 0-1 loss:
1[yt 6=ŷt].

We first show that no algorithm can obtain a sub-linear regret bound for the 0-1 loss function. To do so,
let X = {1} so our problem boils down to finding the bias of a coin in an online manner. An adversary can

Online Convex Optimization-7

make the number of mistakes of any online algorithm to be equal to T , by simply waiting for the learner’s
prediction and then providing the opposite answer as the true answer. In contrast, the number of mistakes of
the constant prediction u = sign(

∑
t yt) is at most T/2. Therefore, the regret of any online algorithm with

respect to the 0-1 loss function will be at least T/2. This impossibility result is attributed to Cover.
To overcome the above impossibility result, two solutions have been proposed.

4.1 Surrogate convex loss and the Perceptron
The first solution is to find a convex loss function that upper bounds the original non-convex loss function. We
describe this solution for the problem of online learning halfspaces. Recall that the set of linear hypotheses
is:

H = {x 7→ 〈w,x〉 : ‖w‖2 ≤ U} .

In the context of binary classification, the actual prediction is sign(〈w,x〉) and the 0 − 1 loss function of w
on an example (x, y) is `0-1(w, (x, y)) = 1[sign(〈w,x〉)6=y].

A popular surrogate convex loss function is the hinge-loss, defined as

`hinge(w, (x, y)) = [1− y〈w,x〉]+ ,

where [a]+ = max{0, a}. It is straightforward to verify that `hinge(w, (x, y)) is a convex function (w.r.t. w)
and that `hinge(w, (x, y)) ≥ `0-1(w, (x, y)). Therefore, for any u ∈ A we have

Regret(T) =
T∑
t=1

`hinge(wt, (xt, yt))−
T∑
t=1

`hinge(u, (xt, yt))

≥
T∑
t=1

`0-1(wt, (xt, yt))−
T∑
t=1

`hinge(u, (xt, yt)) .

As a direct corollary from the above inequality we get that a low regret algorithm for the (convex) hinge-loss
function can be utilized for deriving an online learning algorithm for the 0-1 loss with the bound

T∑
t=1

`0-1(wt, (xt, yt)) ≤
T∑
t=1

`hinge(u, (xt, yt)) + Regret(T) .

Furthermore, denote byM the set of rounds in which sign(〈wt,xt〉) 6= yt and note that the left-hand side
of the above is equal to |M|. We can remove the examples not inM from the sequence of examples, and
run an online convex optimization algorithm only on the sequence of examples inM. In particular, applying
Algorithm 1 with f(w) = 1

2‖w‖
2
2 we obtain the well known Perceptron algorithm:

Algorithm 2 Perceptron
Initialize: w1 ← 0
for t = 1 to T

Receive xt
Predict ŷt = sign(〈wt,xt〉)
Receive yt
If ŷt 6= yt

Update wt+1 ← wt + ytxt
Else

Update wt+1 ← wt

End if
end for

Online Convex Optimization-8

To analyze the Perceptron, we note that an update of the form wt+1 = wt + ηytxt will yield the same
algorithm, no matter what the value of η is. Therefore, we can use the regret bound given in Theorem 2 on
the sequence of round inM and the set A = {w : ‖w‖2 ≤ U} and get that for any u with ‖u‖2 ≤ U we
have

|M| ≤
∑
t∈M

`hinge(u, (xt, yt)) +X U
√
|M| , (1)

where X = (maxt∈M ‖xt‖2). It is easy to verify that this implies

|M| ≤
∑
t∈M

`hinge(u, (xt, yt)) +X U

√∑
t∈M

`hinge(u, (xt, yt)) +X2 ‖u‖2 .

Such a bound is called a relative mistake bound.

4.2 Randomization and Weighted Majority
Another way to circumvent Cover’s impossibility result is by relying on randomization. We demonstrate
this idea using the setting of prediction with expert advice. In this setting, at each round the online learning
algorithm receives the advice of d experts, denoted (f t1, . . . , f

t
d) ∈ {0, 1}d. Based on the predictions of the

experts, the algorithm should predict ŷt. To simplify notation, we assume in this subsection that Y = {0, 1}
and not {−1,+1}.

The following algorithm for prediction with expert advice is due to Littlestone and Warmuth.

Algorithm 3 Learning with Expert Advice (Weighted Majority)
input: Number of experts d ; Learning rate η > 0
initialize: θ0 = (0, . . . , 0) ∈ Rd ; Z0 = d
for t = 1, 2, . . . , T

receive expert advice (f t1, f
t
2, . . . , f

t
d) ∈ {0, 1}d

environment determines yt without revealing it to learner
Choose it at random according to the distribution defined by wt−1

i = exp(θt−1
i)/Zt−1

predict ŷt = f tit
receive label yt
update: ∀i, θti = θt−1

i − η|f ti − yt| ; Zt =
∑d
i=1 exp(θti)

To analyze the Weighted Majority algorithm we first note that the definition of ŷt clearly implies:

E[|ŷt − yt|] =
d∑
i=1

wt−1
i |f ti − yt| = 〈wt−1,vt〉 , (2)

where vt is the vector whose i’th element is |f ti −yt|. Based on this presentation, the update rule is equivalent
to the update of Algorithm 1 on the sequence of functions gt(w) = 〈w,vt〉 with the strongly convex function
f(w) =

∑
i wi log(wi) + log(d). Letting A be the probabilistic simplex and applying Theorem 2 we obtain

that
T∑
t=1

gt(wt)−min
u∈A

T∑
t=1

gt(u) ≤
√

2 log(d)T .

In particular, the above holds for any u = ei. Combining the above with Eq. (2) we obtain

E

[
T∑
t=1

|ŷt − yt|

]
≤ min

i

T∑
t=1

|f ti − yt|+
√

2 log(d)T .

Online Convex Optimization-9

Remark: Seemingly, we obtained a result w.r.t. the 0-1 loss function, which contradicts Cover’s impossibil-
ity result. There is not contradiction here because we force the environment to determine yt before observing
the random coins flipped by the learner. In contrast, in Cover’s impossibility result, the environment can
choose yt after observing ŷt.

Online Convex Optimization-10

