
Advanced Course in Machine Learning Spring 2010

Active Learning: Bandits

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

In supervised learning, the goal of the learning algorithm is to learn a predictor, h : X → Y , which
accurately predicts labels of future instances. In the traditional PAC learning model, the learner receives a
training set of examples which are sampled i.i.d. from an unknown distribution D over X × Y . The learner
has no control on which examples he receives.

In active learning the learner interactively chooses and affects the information he obtains from the data
source. There are many variants of how the learner can control the information. For example, the learner
can ask to label any instance in the instance space, or any specific instance in a given large unlabeled set of
examples.

The main motivation of using active learning is because in many practical problems, obtaining unlabeled
examples is cheap while labeling an instance is expensive (e.g. because it requires manual labeling by hu-
mans). For example, consider the problem of object recognition in vision. Nowadays, we can obtain an
enormous number of unlabeled images by simply placing a camera, but labeling these images might be very
expensive.

We first present simple examples in which active learning can provably help reducing the sample com-
plexity (or, here, it is in fact the “label complexity”). Next, we will describe a related problem, which is called
“the multi-armed bandit problem”, of independent interest, and will discuss its relatedness to active learning.
Finally, we will describe and analyze several active learning algorithms.

1 Active learning can help
In this section we show that in some cases active learning can significantly reduce the number of labels
required for learning.

Consider the problem of learning the class of thresholds on the real line, H = {x 7→ sign(x − w) :
w ∈ R}. As we have learned in the previous course, the VC dimension of H is 1 and therefore the sample
complexity of (passive) PAC learningH is Θ

(
log(1/δ)

ε

)
.

Now, lets describe an active learning algorithm for this problem. We will start with sampling mu =
Θ
(

log(1/δ)
ε

)
unlabeled points. Then, we will find a hypothesis that has zero training error using a binary

search.
Note that the number of labels we will ask isO(log(mu)). Additionally, since we found an ERM hypothe-

sis we have the same PAC learning guarantees. Therefore, we reduced the label complexity from Θ
(

log(1/δ)
ε

)
to Θ

(
log
(

log(1/δ)
ε

))
. This is an exponential improvement!

The above example shows how by efficiently searching through hypothesis class, active learning can
reduce the label complexity. Another idea is to exploit structure in the data. For example, one can first train
a clustering algorithm over the unlabeled data set. Then, if we are luck and the data is well clustered, we can
ask for the labels of a small number of instances in each class.

2 The Stochastic Multi-Armed Bandit Problem
The multi-armed bandit problem is defined as follows. We have d gambling machines (i.e. the “arm” of a
bandit) , each of which yields a random reward with distribution over [0, 1] and an expectation of µi. The
gambler can pull totally n arms and his goal is to maximize his total reward. Formally, on each round the

Active Learning: Bandits-1

gambler chooses one of the arms, pulls it, and receives a reward which is an instantiation of the random
variable associated with the chosen arm.

A policy A is an algorithm that chooses the next arm to pull based on the sequence of past plays and
rewards. Let (a1, r1), . . . , (an, rn) denote the sequence of arm-reward pairs after running the policy for n
rounds. The total reward of the algorithm is

∑n
t=1 rt. Note that the total reward is a random variable. A

good policy is one that has large expected reward. Of course, the best policy is to always pull the arm with
maximal expected reward. That is, if µ? = maxj µj and j? is an arm that achieves the maximum, then the
best policy always pulls j? and achieves an expected reward of nµ?. We define the regret of a policy, for not
choosing always the best arm, to be

nµ? − E

[
n∑
i=1

rt

]
.

We now describe several strategies for the multi-armed problem.

2.1 First learn then test
Our first approach is straightforward. We start with a learning phase in which we pull each arm exactly m
rounds and estimate µi using the obtained data according to the ERM rule, namely,

µ̂i =
1
m

im∑
t=(i−1)m+1

rt .

After the learning step, we shall simply pull the arm with the largest estimated reward for the rest of the n−m
rounds. That is, we will pull some î ∈ argmaxi µ̂i.

Lets analyze the regret of this approach. Using Hoeffding’s concentration bound we know that for each
individual arm:

P[|µ̂i − µi| > ε] ≤ 2e−mε
2
.

Applying the union bound, we get that

P[∃i, |µ̂i − µi| > ε] ≤ 2de−mε
2
.

This implies that with probability of at least 1 − 2de−mε
2
, we will have that µî ≥ µ? − 2ε. In particular,

if γ = µ? − maxj 6=j? µj , then for ε ≤ γ/2 we will choose the optimal arm with probability of at least
1− 2de−mε

2
.

Denote δ = 2de−mε
2
, then with probability of at least 1 − δ we have that the average regret of the

algorithm over the last n −m rounds is at most 2ε(n −m). And, with probability of at most δ the regret of
the algorithm over the last n −m rounds is at most (n −m)µ?. Additionally, it is clear that on the first m
rounds the regret of the algorithm is at most mµ?. Thus, the total expected regret of the algorithm is upper
bounded by:

mµ? + δ(n−m)µ? + (1− δ)2ε(n−m) = mµ? + δ(n−m)(µ? − 2ε) + 2ε(n−m)
≤ m+ (δ + 2ε)(n−m) .

Recall that δ = 2de−mε
2
. So, setting m = log(n −m)/ε2 we obtain that δ ≤ 2d(n −m)−1. Overall, we

obtain the regret bound

log(n−m)/ε2 + 2d+ 2ε(n−m) ≤ log(n)/ε2 + 2d+ 2εn .

Finally, minimizing the above with respect to ε we obtain that the best choice of ε is

2 log(n)µ?ε−3 = 2n ⇒ ε =
(

log(n)
n

)1/3

,

Active Learning: Bandits-2

and for this choice of ε we have a regret of

2d+ 3 log2/3(n)n2/3 .

This is indeed a sublinear regret. But is it optimal? In the next section we present an active algorithm that
achieves an exponentially better regret rate.

2.2 UCB1
We now present an active policy for the multi-armed bandit problem (taken from the paper “Finite-time
Analysis of the Multiarmed Bandit Problem” that can be found in the course website). The acronym stands
for Upper Confidence Bound.

Algorithm 1 UCB1
Initialization

for t = 1, . . . , d
Pull arm yt = t
Receive reward rt
Set Rt = rt and Tt = 1

end for
Loop

for t = d+ 1, d+ 2, . . .

Pull arm yt ∈ argmaxj
(
Rj

Tj
+
√

2 ln(n)
Tj

)
Receive reward rt
Set Ryt

= Ryt
+ rt and Tyt

= Tyt
+ 1

end for

The algorithm remembers the number of times each arm has been pulled and the cumulative reward
obtained for each arm. Based on this information, the algorithm calculates an upper bound on the true
expected reward of the arm and then it chooses the arm for which this upper bound is maximized.

To analyze UCB1, we first need a concentration measure for martingales.

Theorem 1 (Azuma) Let X1, . . . , Xn be a martingale (i.e. a sequence of random variables s.t.
E[Xi|Xi−1, . . . , X1] = Xi for all i > 1 and E[X1] = 0). Assume that |Xi −Xi−1| ≤ 1 with probability 1.
Then, for any ε > 0 we have

P[|Xn| ≥ nε] ≤ 2 exp
(
−nε2/2

)
.

The above theorem implies:

Lemma 1 LetX1, . . . , Xn be a sequence of random variables over [0, 1] such that E[Xi|Xi−1, . . . , Xi] = µ
for all i. Denote Sn = X1 + . . .+Xn. Then, for any ε > 0 we have

P[|Sn − nµ| ≥ nε] ≤ 2 exp
(
−nε2/2

)
.

Proof For all i let Yi = X1 + . . .+Xi − iµ. Then,

E[Yi−1|Yi, . . . , Y1] = Yi−1 + E[Xi|Xi−1, . . . , Xi]− µ = Yi−1 .

Also, |Yi − Yi−1| = |Xi − µ| ≤ 1. Applying Theorem 1 on the sequence Y1, . . . , Yn the proof follows.

The following theorem provides a regret bound for UCB1.

Active Learning: Bandits-3

Theorem 2 The regret of UCB1 is at most

8 ln(n)
∑
j 6=j?

1
∆j

+ 2
∑
j 6=j?

∆j .

Proof For any arm i 6= j? denote ∆i = µ? − µi. The expected regret of the algorithm can be rewritten as∑
j 6=j?

∆j E[Tj] . (1)

In the following we will upper bound E[Tj].
Suppose we are on round t. We have

1. P
[
Rj

Tj
−
√

2 ln(n)
Tj
≥ µj

]
≤ exp(− ln(n)) = 1/n (2)

2. P
[
Rj?

Tj?
+
√

2 ln(n)
Tj?

≤ µ?
]
≤ exp(− ln(n)) = 1/n (3)

Therefore, with probability of at least 1− 2/n we have that

Rj

Tj
−
√

2 ln(n)
Tj

< µj = µ? −∆j <
Rj?

Tj?
+
√

2 ln(n)
Tj?

−∆j ,

which yields
Rj

Tj
+
√

2 ln(n)
Tj

+
(

∆j − 2
√

2 ln(n)
Tj

)
<

Rj?

Tj?
+
√

2 ln(n)
Tj?

.

If Tj ≥ 8 ln(n)/∆2
j the above implies that

Rj

Tj
+
√

2 ln(n)
Tj

<
Rj?

Tj?
+
√

2 ln(n)
Tj?

and therefore we will not pull arm j on this round with probability of at least 1− 2/n.
The above means that

E[Tj] ≤ 8 ln(n)/∆2
j +

∑
t

2
n

= 8 ln(n)/∆2
j + 2 .

Combining with Eq. (1) we conclude our proof.

3 The exploratory multi-armed bandit problem
In the exploratory multi-armed bandit problem we seek an arm that is ε optimal with probability of at least
1 − δ (this is a PAC setup) but we do not care about the incurred regret. The question is how many samples
do we need?

It is not hard to show that if we sample each arm 4/ε2 ln(2d/δ) and choose the best arm we get and ε-
optimal arm with probability of at least 1−δ. See Theorem 6 in “Action Elimination and Stopping Conditions
for the Multi-Armed Bandit and Reinforcement Learning Problems” in the course site. It more interesting
that one can get rid of the d in the log. Specifically, Theorem 10 in the above paper shows an algorithm that
has a sample complexity of O(d/ε2 ln(1/δ). The idea of the proof there is to sample the arms, take the top
half, sample the remaining arms and iterate.

It is perhaps a bit surprising that the result above is tight. That is, there does not exist an algorithm with
PAC guarantees with sampling of less than O(d/ε2 ln(1/δ). The proof appears in “The Sample Complexity
of Exploration in the Multi-Armed Bandit Problem” that can be found in the course web site. It involves a
change of measure argument by showing that if the algorithm works for all arm assignments (i.e., it finds and
ε-optimal arm with high probability) it must fail (i.e., find a wrong arm) with sufficiently high probability.

Active Learning: Bandits-4

	Active learning can help
	The Stochastic Multi-Armed Bandit Problem
	First learn then test
	UCB1

	The exploratory multi-armed bandit problem

