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Abstract

We study the round complexity of various cryptographic protocols. Our main result is a tight
lower bound on the round complexity of any fully-black-box construction of a statistically-hiding
commitment scheme from one-way permutations, and even from trapdoor permutations. This
lower bound matches the round complexity of the statistically-hiding commitment scheme due
to Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). As a corollary, we derive similar tight
lower bounds for several other cryptographic protocols, such as single-server private information
retrieval, interactive hashing, and oblivious transfer that guarantees statistical security for one
of the parties.

Our techniques extend the collision-finding oracle due to Simon (EUROCRYPT ’98) to the
setting of interactive protocols (our extension also implies an alternative proof for the main
property of the original oracle). In addition, we substantially extend the reconstruction paradigm
of Gennaro and Trevisan (FOCS ’00). In both cases, our extensions are quite delicate and may
be found useful in proving additional black-box separation results.
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1 Introduction

Research in the foundations of cryptography is concerned with the construction of provably secure
cryptographic tools. The security of such constructions relies on a growing number of computational
assumptions, and in the last few decades much research has been devoted to demonstrating the fea-
sibility of particular cryptographic tasks based on the weakest possible assumptions. For example,
the existence of one-way functions has been shown to be equivalent to the existence of pseudoran-
dom functions and permutations [22, 44], pseudorandom generators [3, 32], universal one-way hash
functions and signature schemes [48, 53], different types of commitment schemes [31, 32, 45, 49],
private-key encryption [21] and other primitives.

Many constructions based on minimal assumptions, however, result in only a theoretical impact
due to their inefficiency, and in practice more efficient constructions based on seemingly stronger
assumptions are being used. Thus, identifying tradeoffs between the efficiency of cryptographic
constructions and the strength of the computational assumptions on which they rely is essential
in order to obtain a better understanding of the relationship between cryptographic tasks and
computational assumptions.

In this paper we follow this line of research, and study the tradeoffs between the round complexity
of cryptographic protocols and the strength of their underlying computational assumptions. We
provide a lower bound on the round complexity of black-box constructions of statistically-hiding and
computationally-binding commitment schemes (for short, statistical commitment schemes) based on
one-way permutations and on families of trapdoor permutations. Our lower bound matches known
upper bounds resulting from [46]. As a corollary of our main result, we derive similar tight lower
bounds for several other cryptographic protocols, such as single-server private information retrieval,
interactive hashing, and oblivious transfer that guarantees statistical security for one of the parties.

Although in the current paper our techniques are used to derive lower bounds for a particular
efficiency measure, namely that of the round complexity of cryptographic protocols, they may be
found useful in proving additional black-box separation results. In the following paragraphs, we
discuss the notion of statistically-hiding commitment schemes and describe the setting in which our
lower bounds are proved.

Statistically-hiding commitment schemes. A commitment scheme defines a two-stage inter-
active protocol between a sender S and a receiver R; informally, after the commit stage, S is bound
to (at most) one value, which stays hidden from R, and in the reveal stage R learns this value. The
two security properties hinted at in this informal description are known as binding (S is bound to at
most one value after the commit stage) and hiding (R does not learn the value to which S commits
before the reveal stage). In a statistical commitment scheme the hiding property holds even against
all-powerful receivers (i.e., the hiding holds information-theoretically), while the binding property
is required to hold only for polynomially-bounded senders.

Statistical commitments can be used as a building block in constructions of statistical zero-
knowledge arguments [5, 46] and of certain coin-tossing protocols [41]. When used within protocols in
which certain commitments are never revealed, statistical commitments have the following advantage
over computationally-hiding commitment schemes: in such a scenario, it should be infeasible to
violate the binding property only during the execution of the protocol, whereas the committed
values will remain hidden forever (i.e., regardless of how much time the receiver invests after the
completion of the protocol).

Statistical commitments schemes with a constant number of rounds were shown to exist based
on specific number-theoretic assumptions [4, 5] (or, more generally, based on any collection of
claw-free permutations [26] with an efficiently-recognizable index set [23]), and collision-resistant
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hash functions [10, 48]. Protocols with higher round complexity were shown to exist based on
different types of one way functions. Protocols with O

(
n

log n

)
rounds (where n is the input length

of the underlying function) were based on one-way permutations [46] and (known-) regular one-way
functions [29].1 Finally, a protocol with a polynomial number of rounds was based on any one-way
function [31, 49].

Black-box reductions. As already mentioned, we are interested in proving lower bounds on the
round complexity of various cryptographic constructions. In particular, we are interested in showing
that any construction of statistical commitments based on trapdoor permutations requires a fairly
large number of rounds. Nevertheless, under standard assumptions such as the existence of collision-
resistant hash functions, constant-round statistical commitments do exist. So if these assumptions
hold, then the existence of trapdoor permutations implies the existence of constant-round statistical
commitments in a trivial logical sense. Faced with similar difficulties, Impagliazzo and Rudich [34]
presented a paradigm for proving impossibility results under a restricted, yet important, subclass
of reductions called black-box reductions. Their method was extended to showing lower bounds on
the efficiency of reductions by Kim, Simon and Tetali [37].

Intuitively, a black-box reduction of a primitive P to a primitive Q is a construction of P out of
Q that ignores the internal structure of the implementation of Q and just uses it as a “subroutine”
(i.e., as a black-box). In addition, in the case of fully-black-box reductions, the proof of security
(showing that an adversary that breaks the implementation of P implies an adversary that breaks
the implementation of Q), is also black-box (i.e., the internal structure of the adversary that breaks
the implementation of P is ignored as well). For a more exact treatment of black-box reductions
see Section 2.3.

1.1 Related Work

Impagliazzo and Rudich [34] showed that there are no black-box reductions of key-agrement proto-
cols to one-way permutations and substantial additional work in this line followed (c.f. [18, 55, 57]).
Kim, Simon and Tetali [37] initiated a new line of impossibility results, by providing a lower bound
on the efficiency of black-box reductions (rather than on their feasibility). They proved a lower
bound on the efficiency, in terms of the number of calls to the underlying primitive, of any black-
box reduction of universal one-way hash functions to one-way permutations. This result was later
improved, to match the known upper bound, by Gennaro et al. [16], which also provided tight
lower bounds on the efficiency of several other black-box reductions [14, 15, 16]. Building upon the
technique developed by [16], Horvitz and Katz [33] gave lower bounds on the efficiency of black-box
reductions of statistically-binding commitments to one-way permutations. In all the above results
the measure of efficiency under consideration is the number of calls to the underlying primitives.

With respect to the round complexity of statistical commitments, Fischlin [13] showed that
every black-box reduction of statistical commitments to trapdoor permutations, has at least two
rounds. His result follows Simon’s oracle separation of collision-resistant hash functions from one-
way permutations [57]. Recently, Wee [58] considered a restricted class of black-box reductions of
statistical commitments to one-way permutations. Informally, Wee considered only constructions
in which the sender first queries the one-way permutation on several independent inputs. Once the
interaction with the receiver starts, the sender only access the outputs of these queries (and not the

1The original presentations of the above protocols have O(n) rounds. By a natural extension, however, the number

of rounds in these protocols can be reduced to O
(

n
log n

)
, see [30, 38].
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inputs) and does not perform any additional queries. Wee showed that every black-box reduction
of the above class has Ω

(
n

log n

)
communication rounds.

The question of deriving lower bounds on the round complexity of black-box reductions, was also
addressed in the context of zero-knowledge protocols [7, 11, 24, 27, 36, 54]. In this context, however,
the black-box access is to the, possibly cheating, verifier and not to any underlying primitive.

1.2 Our Results

We study the class of fully-black-box constructions of statistically-hiding commitment schemes from
trapdoor permutations, and prove a lower bound on the round complexity of any such construction.
Informally, our main theorem is as follows:

Main Theorem (Informal). Any fully-black-box construction of a statistically-hiding commitment
scheme from a family of trapdoor permutations over {0, 1}n has Ω

(
n

log n

)
communication rounds.

In fact, we consider a more general notion of hardness for trapdoor permutations, which extends
the standard polynomial hardness requirement. Informally, we say that a trapdoor permutation τ
over {0, 1}n is s(n)-hard if any probabilistic Turing-machine that runs in time s(n) inverts τ on a
uniformly chosen image with probability at most 1/s(n). Given this definition, we show that any
fully-black-box construction of a statistically-hiding commitment scheme from a family of s(n)-hard
trapdoor permutations over {0, 1}n requires Ω

(
n

log s(n)

)
communication rounds.

Our lower bound, for both notions of trapdoor permutations, matches the known upper bound
due to [46, 30, 38]. The scheme of Naor et al. relies on one-way permutations in a fully-black-
box manner, and thus we demonstrate that their scheme is essentially optimal with respect to the
number of communication rounds. Moreover, our lower bound implies that trapdoor permutations
are not superior to one-way permutations in this setting, whereas collision-resistant hash functions
and specific number-theoretic assumptions are superior and imply schemes with a constant number
of rounds.

Taking the security of the reduction into account. Note that the informal statement of our
main theorem considers constructions which invoke only trapdoor permutations over n bits. We
would like to extend the result to consider constructions which may invoke the trapdoor permu-
tations over more than a single domain. However, in this case, better upper bounds are known.
In particular, given security parameter 1n it is possible to apply the scheme of Naor et al. using a
one-way permutation over nε bits. This implies statistical commitments that run in O(nε) rounds.
This subtle issue is not unique to our setting, and in fact arises in any study of the efficiency of
cryptographic reductions (see, in particular, [16, 58]). The common approach for addressing this
issue is by restricting the class of constructions (as in the informal statement of our main theorem
above). In Section 6 we follow a less restrictive approach: we consider constructions which are given
access to trapdoor permutations over any domain size, but require that the proof of security will be
“somewhat security preserving”. More specifically, we consider an additional parameter, which we
refer to as the security-parameter-expansion of the construction. Informally, the proof of security
in a fully-black-box construction gives a way to translate (in a black-box manner) an adversary S∗

that breaks the binding of the commitment scheme into an adversary A that breaks the security of
the trapdoor permutation. Such a construction is `(n)-security-parameter-expanding if whenever
the machine A tries to invert a permutation over n bits, it invokes S∗ on security parameters which
are at most 1`(n). It should be noted that any construction in which `(n) is significantly larger than
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n, may only be weakly security preserving (for a taxonomy of security preserving reductions see [43,
Lecture 2]).

Our lower bound proof takes into consideration the security parameter expansion, and therefore
our statements apply for the most general form of fully-black-box reductions. In particular, in case
that `(n) = O(n), our theorem implies that the required number of rounds is Ω

(
n

log n

)
, and in

the general case (where `(n) may be any polynomial in n), our theorem implies that the required
number of rounds is nΩ(1) (which as argued above is tight as well).

Implications to other cryptographic protocols. Our main result can be extended to any
cryptographic protocol which implies statistically-hiding commitment schemes in a fully-black-box
manner, as long as the reduction essentially preserves the number of communication rounds. Specif-
ically, we derive similar Ω

(
n

log n

)
lower bounds on the round complexity of fully-black-box construc-

tions from trapdoor permutations of single-server private information retrieval, interactive hashing,
and oblivious transfer that guarantees statistical security for one of the parties.

1.3 Overview of the Technique

For the sake of simplicity, we concentrate in this overview on the round complexity lower bound for
statistical commitment which are based on one-way permutations (the lower bound for constructions
based on families of trapdoor permutations follows similar ideas). We also assume without loss of
generality that the sender’s secret in the commitment protocol is a single uniform bit. Let us start
by considering Simon’s oracle [57] for ruling out any black-box reduction of a family of collision
resistant hash functions to one-way permutation.

Simon’s oracle. Simon’s oracle ColFinder gets as an input a circuit C, possibly with π gates,2

where π is a random permutation. It then outputs two random elements w1 and w2 such that
C(w1) = C(w2). Clearly, in the presence of ColFinder no family of collision resistant hash functions
exists (the adversary simply queries ColFinder with the hash function circuit to find a collision). In
order to rule out the existence, in the presence of ColFinder, of any two-round statistical commitment
scheme, Fischlin [13] used the following adversary S∗ to break any such scheme: assume w.l.o.g.
that the first message, q1 is sent by R and consider the circuit Cq1 , naturally defined by q1 and
S. Namely, Cq1 gets as an input the random coins of S and outputs the answer that S replies on
receiving the message q1 from R. In the commit stage after receiving the message q1, the cheating
S∗ constructs Cq1 , queries ColFinder(Cq1) to get w1 and w2, and answers as S(w1) would (i.e., by
Cq1(w1)). In the reveal stage, S∗ uses both w1 and w2 to open the commitment (i.e. once using
the random coins w1 and then using w2). Since the protocol is statistically hiding, the set of the
sender’s random coins that are consistent with this commit stage transcript is divided to almost
equal size parts by the values of their secret bits. Therefore, with probability roughly half w1 and
w2 will differ on the value of S’s secret bit and the binding of the commitment will be violated.

In order to obtain the black-box impossibility results (both of [57] and of [13]), it is left to show
that π is one-way in the presence of ColFinder. Let A be a circuit trying to invert π on a random
y ∈ {0, 1}n using ColFinder, and lets assume for now that A makes only a single call to ColFinder.
Intuitively, the way we could hope this query to ColFinder with input C could help is by “hitting”
y in the following sense: we say that ColFinder hits y on input C, if the computations of C(w1) or
of C(w2) query π on π−1(y). Now we note that for every input circuit C each one of w1 and w2

2In fact, ColFinder also accepts circuits C with ColFinder gates. For the sake of this discussion, we ignore this
property.
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(the outputs of ColFinder on C) is individually uniform. Therefore, the probability that ColFinder
hits y on input C, may only be larger by a factor two than the probability that evaluating C on a
uniform w queries π on π−1(y). In other words, A does not gain much by querying ColFinder (as A
can evaluate C on a uniform w on its own). Formalizing the above intuition is far from easy, mainly
when we consider A that queries ColFinder more than once. The difficulty lies in formalizing the
claim that the only useful queries are the ones in which ColFinder hits y (after all, the reply to a
query may give us some useful global information on π). We give some intuition in Section 1.3.1
for why this claim is valid, following a different approach than the original proof due to [57] (our
version of the proof extends the reconstruction technique of Gennaro and Trevisan).

Finding collisions in interactive protocols. We would like to employ Simon’s oracle for break-
ing the binding of more interactive protocols (with more than two rounds). Unfortunately, the
“natural” attempts to do so seem to fail miserably. The first attempt that comes to mind might
be the following: In the commit stage S∗ follows the protocol and let q1, . . . , qk be the messages
that R sent in this stage. In the reveal stage, S∗ queries ColFinder to get a colliding pair (w1, w2)
in Cq1,...,qk

- the circuit naturally defined by the code of S and q1, . . . , qk (i.e., Cq1,...,qk
gets as an

input the random coins of S and outputs the messages sent by S when R’s messages are q1, . . . , qk).
The problem is that it is very unlikely that the outputs of Sam on Cq1,...,qk

will be consistent with
the answers that S∗ already gave in the commit stage (we did not encounter this problem when
breaking two-round protocols, since S∗ could query ColFinder on Cq1 before S∗ sends its first and
only message). Alternatively, we could change ColFinder such that it gets as an additional input
w1 and returns w2 for which Cq1,...,qk

(w1) = Cq1,...,qk
(w2) (that is, the new ColFinder finds second

preimages rather than collisions). Indeed, this new ColFinder does imply the breaking of any com-
mitment scheme, but it also implies the inversion of π.3 We should not be too surprised that both
the above attempts failed as they are both completely oblivious of the round complexity of (S,R).
Since one-way permutations do imply statistical commitments in a black-box manner any oracle that
breaks statistical commitments could also be used to break the underlying one-way permutations.4

For our oracle separation, we manage to extend Simon’s oracle to the setting of interactive
protocols. We will have to handle interaction with care so that our oracle is not too strong (so that
it does not break the one-way permutations), but still strong enough to be useful. In fact, the more
interactive our oracle will be the more powerful it will be, and eventually it will allow breaking the
one-way permutations. Quantifying this growth in power is how we get our tight bounds on the
round complexity of the reduction.

Our oracle. It will be useful for us to view Simon’s oracle as performing two sampling tasks:
First it samples w1 uniformly and then it samples a second preimage w2 such that C(w1) = C(w2).
As explained above, an oracle for sampling a second preimage allows inverting the one-way per-
mutations. The reason the sampling done by ColFinder is not too damaging is that w1 was chosen
by ColFinder after C is already given. Therefore, an adversary A is very limited in setting up the
second distribution from which ColFinder samples (i.e. the uniform distribution over the preimages
of C(w1) under C). In other words, this distribution is jointly defined by A and ColFinder itself.

3Consider a circuit C, whose input is composed of a bit σ and an n-bit string w. The circuit C is defined by
C(0, w) = π(w) and C(1, w) = w. Thus, in order to compute π−1(y) we can simply invoke the new ColFinder on input
C and w1 = (1, y). With probability half ColFinder will return w2 = (0, π−1(y)).

4In addition, in both these naive attempts the cheating sender S∗ follows the commit stage honestly (as S would).
It is not hard to come up with two-round protocol that works well for semi-honest commit stage senders (consider for
instance the two-round variant of [46] where the receiver’s queries are all sent in the first round).
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Extending the above interpretation of ColFinder (and ignoring various technical aspects), our
separation oracle Sam is defined as follows: Sam will be given as input a query Q = (Cnext, C, z),
and will output a pair (w′, z′) where w′ is a uniformly distributed preimage of z under the mapping
defined by the circuit C, and z′ = Cnext(w′). Following the intuition above we impose the restriction
that there was a previous query (C, ·, ·) that was answered by (w, z) (note that this imposes a forest-
like structure on the queries). In other words, C was announced before w was chosen by Sam in
answering the previous query.5 In addition, we only allow querying Sam up to depth d(n)+1 where
n is the security parameter (this depth function d(·) will depend on the particular lower bound we
will try to prove).

Sam allows breaking d(n)-round statistical commitments. The adversary S∗ operates as
follows: after getting the first message q1, it constructs Cq1 (the circuit that computes S’s first
message) and queries Sam for a random input w1 (i.e., it queries Sam without specifying C and
z), and sends R the message specified by z1 = Cq1(w1). On getting the i-th receiver message
qi, the adversary S∗ constructs Cq1,...,qi (the circuit that computes S’s first i messages), queries
Sam on (Cq1,...,qi , Cq1,...,qi−1 , zi−1) to get (wi, zi), and replies to R with the message specified by
zi = Cq1,...,qi(wi). Finally, after completing the commit stage (when answering the last receiver
message qd) it queries Sam on (⊥, Cq1,...,qd

, zd) to get wd+1, zd+1. Both wd and wd+1 are sender’s
random inputs that are consistent with the commit-stage transcript. Therefore, with probability
roughly half they can be used to break the binding of the protocol.

Sam cannot be used to invert random permutations. To complete our impossibility result,
it is left to prove that Sam cannot be used to invert the random permutation π. As in our intuition
for Simon’s oracle, we would like to claim that the only useful Sam-queries for an adversary A that
tries to invert π on y are queries that make Sam hit y. Assume Sam is given as input a query
(Cnext, C, z), and outputs a pair (w′, z′). We say that Sam hits y if evaluating C(w′) queries π
on π−1(y). Extending the reconstruction technique of Gennaro and Trevisan, we show that A is
unlikely to invert π on y if it does not make Sam hit y (see Section 1.3.1).

The most technical part of the paper is showing that a circuit A that inverts π on y while
making Sam hit y can be transformed into a circuit M that inverts π without Sam hitting y.
This aspect of the proof is somewhat influenced by the work of Wee [58]. Let us try to give
some intuition for this claim. Assume for simplicity of notation that A only makes the follow-
ing queries: (C1,⊥,⊥), (C2, C1, z1), . . . , (Cd+1, Cd, zd) and it receives the corresponding replies:
(w1, z1), . . . , (wd+1, zd+1). We know that for some i the probability that the computation Ci(wi+1)
queries π on π−1(y) (i.e., hits y) is non-negligible (as we know that Sam is likely to hit y). On the
other hand the probability that C1(w2) hits y (which is identical to the probability that C1(w1) hits
y) is exponentially small. Therefore, unless d = Ω

(
n

log n

)
we have that there exists a location i such

that the probability Ci(wi+1) hits y is larger than the probability that Ci−1(wi) hits y by a very
large polynomial. We are also able to show (under the various restrictions on Sam) that the proba-
bility that the computation Ci(wi) hits y is unlikely to be much smaller than the probability that
the computation Ci(wi+1) hits y. Combining the above understandings we design M that inverts π
on y with non-negligible probability without making Sam hit y (and this will constitute a contra-
diction). M simulates A but in addition, whenever A queries Sam for (Ci+1, Ci, zi) and receives a
reply (wi+1, zi+1) we let M also evaluate Ci+1(wi+1). If this computation queries π on π−1(y) then
M halts and outputs π−1(y). Otherwise, M continues with the simulation of A. We argue that

5An additional important restriction that we will not discuss here is that Cnext is a refinement of the circuit C,
where by refinement we mean that Cnext(w) = (C(w), C̃(w)) for some circuit C̃ and for every w.
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with sufficiently large probability, if the first query of A that makes Sam hit y is (Ci+1, Ci, zi), then
M ’s computation of Ci(wi) queries π on π−1(y). Therefore, M retrieves π−1(y) before making the
hitting query.

1.3.1 Extending Gennaro and Trevisan’s reconstruction lemma

Gennaro and Trevisan [16] presented a very elegant argument for proving that a random permutation
is hard to invert also for non-uniform adversaries (previous proofs, e.g. [34], only ruled out uniform
adversaries). Let A be a circuit and let π be a permutation that A inverts on a non-negligible
fraction of its outputs. What Gennaro and Trevisan showed is that relative to A the permutation π
has a relatively short description. Therefore, by a counting argument, there is only a tiny fraction
of permutations which A inverts well. Intuitively, A saves on the description of π as it allows us to
reconstruct π on (many of) the x’s for which Aπ(π(x)) = x. The formal proof strongly relies on a
bound on the number of π gates in A: when we use A to reconstruct π on x we need all the π-queries
made by Aπ(π(x)) (apart perhaps of the query for π(x) itself) to already be reconstructed.

In our setting, we would like to consider an adversary ASam(y) that (many times) inverts y
without making Sam produce a y-hit. Recall that the oracle Sam is given as an input a circuit C
with π-gates and has to produce a random inverse of some value z under the mapping defined by
C. We would like to apply the argument of [16] to claim that relative to A and Sam there is a
short description of π. However, we are faced with a substantial obstacle as the simulation of Sam
requires making a huge amount of π queries.6 Overcoming this obstacle requires much care both in
the definition and analysis of Sam. We defer more details to Section 5.3.

1.4 Paper Organization

In Section 2, we briefly present the notations and formal definitions used in this paper and in Section
3 we describe the oracle that is used to derive our results. In Section 4, we show that this oracle
can be used to break the security of statistical-hiding commitment schemes, and in Section 5 we
show that every circuit which tries to invert a random permutation using this oracle (under some
restrictions), fails with high probability. In Section 6, we combine the results of Sections 4 and 5,
and derive our lower bound result. Finally, Section 7 discusses the implications of the result to
other cryptographic protocols.

2 Preliminaries

We denote by Πn the set of all permutations over {0, 1}n. For a finite set X, we denote by x ← X
the experiment of choosing an element of X according to the uniform distribution. Similarly, for
a distribution D over a set X, we denote by x ← D the experiment of choosing an element of X
according to the distribution D. The statistical distance between two distributions X and Y over
Ω is denoted SD(X, Y ), and defined as

SD(X,Y ) =
1
2

∑

ω∈Ω

|PrX [ω]− PrY [ω]| .

The following standard fact (see, for example [56, Fact 2.6]) will be useful for us in analyzing
statistically-close distributions.

6Consider for example C such that on input w it truncates the last bit of π(w) and outputs the result. Finding
collisions in C requires knowledge of π almost entirely.
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Fact 2.1. If X and Y are two distributions such that SD(X, Y ) < ε, then with probability at least
1− 2

√
ε over x ← X it holds that

(
1−√ε

) · Pr [X = x] < Pr [Y = x] <
(
1 +

√
ε
) · Pr [X = x] .

2.1 One-Way Permutations and Trapdoor Permutations

We briefly present the notions of one-way permutations and trapdoor (one-way) permutations which
are used in this paper. For a more comprehensive discussion we refer the reader to [19].

Definition 2.2. A collection of permutations π = {πn}∞n=1, where πn ∈ Πn for every n, is s(n)-hard
if for every probabilistic Turing-machine A that runs in time s(n), and for all sufficiently large n,

Pr
[
A(1n, y) = π−1

n (y)
] ≤ 1

s(n)
,

where the probability is taken uniformly over all the possible choices of y ∈ {0, 1}n and over all the
possible outcomes of the internal coin tosses of A.

In our setting, whenever such a collection π is given as an oracle, we denote by Aπ a circuit or
a Turing-machine A with oracle access to π. In addition, when we consider the probability of an
event over the choice of π, we mean that for every integer n, a permutation πn is chosen uniformly
at random from Πn and independently of all other permutations.

A collection of trapdoor permutations is represented as a triplet τ =
(
G,F, F−1

)
. Informally, G

corresponds to a key generation procedure, which is queried on a string td (intended as the “trap-
door”) and produces a corresponding public key pk. The procedure F is the actual permutation,
which is queried on a public key pk and an input x. Finally, the procedure F−1 is the inverse of F :
If G(td) = pk and F (pk, x) = y, then F−1(td, y) = x. In this paper, since we are concerned with
providing a lower bound, we do not consider the most general definition of a collection of trapdoor
permutations. Instead, we denote by Tn the set of all triplets τn =

(
Gn, Fn, F−1

n

)
of the following

form:

1. Gn ∈ Πn.

2. Fn : {0, 1}n × {0, 1}n → {0, 1}n is a function such that Fn(pk, ·) ∈ Πn for every pk ∈ {0, 1}n.

3. F−1
n : {0, 1}n × {0, 1}n → {0, 1}n is a function such that F−1

n (td, y) returns the unique x ∈
{0, 1}n for which Fn(Gn(td), x) = y.

Our lower bound proof is based on analyzing random instances of such collections. A uniformly
distributed τn ∈ Tn can be chosen as follows: Gn is chosen uniformly at random from Πn, and for
each pk ∈ {0, 1}n a permutation Fn(pk, ·) is chosen uniformly and independently at random from
Πn. As above, we do not consider a single collection τn: we consider a family τ = {τn}∞n=1 of
collection of trapdoor permutations where τn ∈ Tn for every n. Whenever such a family τ is given
as an oracle, we denote by Aτ a circuit or a Turing-machine A with oracle access to τ . In addition,
when we consider the probability of an event over the choice of τ , we mean that for every integer n,
a collection of trapdoor permutation τn is chosen uniformly at random from Tn and independently
of all other collections.

Definition 2.3. A family of trapdoor permutations τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

is s(n)-hard if
for every probabilistic Turing-machine A that runs in time s(n), and for all sufficiently large n,

Pr
[
Aτ (1n, Gn(td), y) = F−1

n (td, y)
] ≤ 1

s(n)
,
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where the probability is taken uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n,
and over all the possible outcomes of the internal coin tosses of A.

Note that Definition 2.3 refers to the difficulty of inverting a random permutation F (pk, ·) on
a uniformly distributed image y, when given only pk = G(td) and y. Some applications, however,
require enhanced hardness conditions. For example, it may be required (cf. [20, Appendix C]) that
it is hard to invert F (pk, ·) on y even given the random coins used in the generation of y. Note
that our formulation captures such hardness condition as well and therefore the impossibility results
proved in this paper hold also for enhanced trapdoor permutations.7

2.2 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender and a receiver. Infor-
mally, after the first stage of the protocol, which is referred to as the commit stage, the sender is
bound to at most one value, not yet revealed to the receiver. In the second stage, which is referred
to as the reveal stage, the sender reveals its committed value to the receiver. In this paper, where
we are interested in proving an impossibility result for commitment schemes, it will be sufficient for
us to deal with bit-commitment schemes, i.e., commitment schemes in which the committed value
is only one bit. More formally, a bit-commitment scheme is defined via a triplet of probabilistic
polynomial-time Turing-machines (S,R,V) such that:

• S receives as input the security parameter 1n and a bit b. Following its interaction, it outputs
some information decom (the decommitment).

• R receives as input the security parameter 1n. Following its interaction, it outputs a state
information com (the commitment).

• V (acting as the receiver in the reveal stage8) receives as input the security parameter 1n, a
commitment com and a decommitment decom. It outputs either a bit b′ or ⊥.

Denote by (decom|com) ← 〈S(1n, b),R(1n)〉 the experiment in which S and R interact (using
the given inputs and uniformly chosen random coins), and then S outputs decom while R outputs
com. It is required that for all n, every bit b, and every pair (decom|com) that may be output by
〈S(1n, b),R(1n)〉, it holds that V(com, decom) = b.9

The security of a commitment scheme can be defined in two complementary ways, protecting
against either an all-powerful sender or an all-powerful receiver. In this paper, we deal with commit-
ment schemes of the latter type, which are referred to as statistically-hiding commitment schemes.
In order to define the security properties of such schemes, we first introduce the following notation.
Given a commitment scheme (S,R,V) and a Turing-machine R∗, we denote by view〈S(b),R∗〉(n) the
distribution on the view of R∗ when interacting with S(1n, b). This view consists of R∗’s random
coins and of the sequence of messages it receives from S. The distribution is taken over the random
coins of both S and R. Note that whenever no computational restrictions are assumed on R∗,
without loss of generality R∗ is deterministic.

7A different enhancement, used by [28], requires the permutations’ domain to be polynomially dense in {0, 1}n.
Clearly, our impossibility result holds w.r.t. this enhancement as well.

8Note that there is no loss of generality in assuming that the reveal stage is non-interactive. This is since any
such interactive stage can be replaced with a non-interactive one as follows: The sender sends its internal state to the
receiver, who then simulates the sender in the interactive stage.

9Although we assume perfect completeness, it is not essential for our results.
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Definition 2.4. A bit-commitment scheme (S,R,V) is ρ(n)-hiding if for every deterministic Turing-
machine R∗ the ensembles {view〈S(0),R∗〉(n)} and {view〈S(1),R∗〉(n)} have statistical difference at
most ρ(n) for all sufficiently large n. Such a scheme is statistically-hiding if it is ρ(n)-hiding for
some negligible function ρ(n).

In the paper, we consider a weaker hiding requirement than stated in the above definition. Our
lower bound holds even for commitment schemes that guarantee the security of the sender only
when interacting with the honest receiver. This is indeed a weaker requirement, and therefore it
only strengthens our lower bound result.

Definition 2.5. A bit-commitment scheme (S,R,V) is honest-receiver ρ(n)-hiding if the ensembles
{view〈S(0),R〉(n)} and {view〈S(1),R〉(n)} have statistical difference at most ρ(n) for all sufficiently
large n. Such a scheme is honest-receiver statistically-hiding if it is honest-receiver ρ(n)-hiding for
some negligible function ρ(n).

Definition 2.6. A bit-commitment scheme (S,R,V) is µ(n)-binding if for every probabilistic
polynomial-time Turing-machine S∗ it holds that

Pr
[
((decom, decom′)|com) ← 〈S∗(1n),R(1n)〉 :

V(com, decom) = 0
V(com, decom′) = 1

]
< µ(n)

for all sufficiently large n, where the probability is taken over the random coins of both S∗ and R.
Such a scheme is computationally-binding if it is µ(n)-binding for some negligible function µ(n), and
is weakly-binding if it is (1− 1/p(n))-binding for some polynomial p(n).

2.3 Black-Box Reductions

A reduction of a primitive P to a primitive Q is a construction of P out of Q. Such a construction
consists of showing that if there exists an implementation C of Q, then there exists an implementa-
tion MC of P . This is equivalent to showing that for every adversary that breaks MC , there exists
an adversary that breaks C. Such a reduction is semi-black-box if it ignores the internal structure
of Q’s implementation, and it is fully-black-box if the proof of correctness is black-box as well, i.e.,
the adversary for breaking Q ignores the internal structure of both Q’s implementation and of the
(alleged) adversary breaking P . Semi-black-box reductions are less restricted and thus more power-
ful than fully-black-box reductions. A taxonomy of black-box reductions was provided by Reingold,
Trevisan and Vadhan [52], and the reader is referred to their paper for a more complete and formal
view of these notions.

We now formally define the class of constructions considered in this paper. Our main result is
concerned with the particular setting of fully-black-box constructions of weakly-binding statistically-
hiding commitment schemes from trapdoor permutations. We focus here on a specific definition for
these particular primitives and we refer the reader to [52] for a more general definition.

Definition 2.7. A fully-black-box construction of a weakly-binding honest-receiver statistically-
hiding commitment scheme from an s(n)-hard family of trapdoor permutations is a quadruple of
probabilistic oracle Turing-machines (S,R,V, A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ ,Rτ ,Vτ ) is an honest-receiver
statistically-hiding commitment scheme.

2. Black-box proof of binding: For every family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor
permutations and for every probabilistic polynomial-time Turing-machine S∗, if S∗ with oracle
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access to τ breaks the weak binding of (Sτ ,Rτ ,Vτ ), then

Pr
[
Aτ,S∗(1n, Gn(td), y) = F−1

n (td, y)
]

>
1

s(n)
,

for infinitely many values of n, where A runs in time s(n), and the probability is taken
uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and over all the possible
outcomes of the internal coin tosses of A.

We remark that the above correctness requirement is very strict and is not essential for our
results. In fact, as will become clear later on (in Section 4), for every τ such that the protocol
(Sτ ,Rτ ,Vτ ) is a statistically-hiding commitment scheme, we construct a malicious sender S∗ which
breaks the binding property of the scheme. Therefore, we could have dealt with a weaker correctness
requirement as well, but stating such a weaker requirement in a meaningful way turns out to be
quite subtle.

In addition, it would be useful for us to consider the following property of fully-black-box con-
structions: Consider a malicious sender S∗ that breaks the binding of the commitment scheme and
consider the machine A that wishes to break the security of the trapdoor permutation. Then, A
receives a security parameter 1n and invokes S∗ in a black-box manner. Definition 2.7, however,
does not restrict the range of security parameters that A is allowed to invoke S∗ on. For example,
A may invoke S∗ on security parameter 1n2

, or even on security parameter 1Θ(s(n)), where s(n)
is the running time of A. The following definition will enable us to capture this property of the
construction, and again, we present a specific definition for our setting.

Definition 2.8. A fully-black-box construction (S,R,V, A) is `(n)-security-parameter-expanding,
if for every malicious sender S∗, the machine A on security parameter 1n invokes S∗ on security
parameters which are at most 1`(n).

3 The Oracle

In this section we describe the oracle that will imply our lower bound results. Our oracle O is of
the form (τ, Samτ ), where τ is a family of trapdoor permutations (i.e., τ = {τn}∞n=1, where τn ∈ Tn

for every n), and Samτ is an oracle that, very informally, receives as input a description of a circuit
C (which may contain τ -gates) and a string z, and outputs a uniformly distributed preimage of z
under the mapping defined by C. As discussed in the introduction, we will impose several essential
restrictions on the querying of Sam that will prevent it from assisting in inverting τ .

Description of Sam. The oracle Sam receives as input a query Q = (Cτ
next, C

τ , z), and outputs
a pair (w′, z′) where w′ is a uniformly distributed preimage of z under the mapping defined by the
circuit Cτ , and z′ = Cτ

next(w
′). We impose the following restrictions:

1. z was the result of a previous query with Cτ as the next-query circuit (note that this imposes
a forest-like structure on the queries).

2. The circuit Cτ
next is a refinement of the circuit Cτ , where by a refinement we mean that

Cτ
next(w) = (Cτ (w), C̃τ (w)) for some circuit C̃τ and for every w. In particular, this implies

that Cτ and Cτ
next have the same input length. Given a query Q, we denote this input length

by m(Q), and when the query Q is clear from the context we will write only m.

11



3. Each query contains a security parameter 1n, and Sam answers queries only up to depth
depth(n), for some “depth restriction” function depth : N→ N which is part of the description
of Sam. The security parameter is set such that a query with security parameter 1n is allowed
to contain circuits with queries to permutations on up to n bits. Note that although different
queries may have different security parameters, we ask that in the same “query-tree”, all
queries will have the same security parameter (hence the depth of the tree is already determined
by the root query).

In order to impose these restrictions, we equip Sam with a family sign = {signk}∞k=1 of (random)
functions signk : {0, 1}k → {0, 1}2k that will be used as “signatures” for identifying legal queries as
follows: in addition to outputting (w′, z′), Sam will also output the value sign(1n, Cτ

next, z
′, dep + 1),

where dep is the depth of the query, 1n is the security parameter of the query, and by applying
the “function” sign we actually mean that we apply the function signk for the correct input length.
Each query of the form Q = (1n, Cτ

next, C
τ , z, dep, sig) is answered by Sam if and only if Cτ

next is a
refinement of Cτ , dep ≤ depth(n) and sig = sign(1n, Cτ , z, dep).

Finally, we provide Sam with a family of (random) permutations F = {fQ}, where for every
possible query Q a permutation fQ is chosen uniformly at random from Πm(Q). Given a query
Q = (1n, Cτ

next, C
τ , z, dep, sig), the oracle Sam uses the permutation fQ ∈ F in order to sample w′ as

follows: it outputs w′ = fQ(t) for the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z.
Note that whenever the permutation fQ is chosen from Πm uniformly at random, and independently
of all other permutations in F , then w′ is indeed a uniformly distributed preimage of z. In this paper,
whenever we consider the probability of an event over the choice of the family F , we mean that for
each query Q a permutation fQ is chosen uniformly at random from Πm(Q) and independently of
all other permutations. A complete and formal description of the oracle is provided in Figure 1.

On input Q = (1n, Cτ
next, Cτ , z, dep, sig), the oracle Samτ,F,sign

depth acts as follows:

1. If Cτ = ⊥, then output (w′, z′, sig′) where w′ = fQ(0m), z′ = Cτ
next(w

′), and sig′ = sign(1n, Cτ
next, z

′, 1).

2. Else, if Cτ
next is a refinement of Cτ , dep ≤ depth(n) and sig = sign(1n, Cτ , z, dep), then

(a) Find the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z.

(b) Output (w′, z′, sig′) where w′ = fQ(t), z′ = Cτ
next(w′), and sig′ = sign(1n, Cτ

next, z
′, dep + 1).

3. Else, output ⊥.

Figure 1: The oracle Sam.

As mentioned above, the restrictions impose a forest-like structure on any sequence of queries:
each query of the form Q = (1n, Cτ

next,⊥,⊥,⊥,⊥) serves as a root of a tree. For any other “legal”
query Q = (1n, Cτ

next, C
τ , z, dep, sig), there exists a previous query Q′ which resulted in output z

and contained Cτ as its next-query circuit. The query Q′ is identified as the parent of Q in the
query forest and is denoted Q′ = p(Q). If there is more than one such Q′, then we choose the first
Q′ according to some fixed ordering of the queries. When dealing with Turing-machines, we can
identify the queries according to their chronological order.10

Notation 3.1. We say that a circuit A queries the oracle Samτ,F ,sign
depth up to depth d, if for every

Sam-query Q = (1n, Cπ
next, C

π, z, dep, sig) that A makes, it holds that dep ≤ d.
10However, when dealing with circuits we will have to identify the queries according to a some topological order

which is consistent with their forest structure. As Lemma 3.2 below indicates, such an ordering implies that for every
two queries Qi and Qj (with a sufficiently large security parameter) such that Qi = p(Qj), it holds that i < j.
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Simplifying the notation. In the remainder of this paper we often ignore both the depth re-
striction function depth and the security parameters, but we still keep in mind that the oracle Sam
is defined with a restriction on its query depth.

Imposing legal queries. Recall that we equip the oracle Sam with a family sign of functions
signk : {0, 1}k → {0, 1}2k that we claimed can be used for identifying legal queries. As indicated
by Figure 1, we say that a circuit A produces an illegal k-bit Sam-query if it queries Sam with
some Q = (1n, Cτ

next, C
τ , z, dep, sig) for which Cτ 6= ⊥ and sig = signk(1n, Cτ , z, dep), but the value

sig was not given to A as an answer to a previous Sam-query.11 Since access to the family sign is
only through Sam, in order to produce an illegal query, one must guess the value of signk(v) for
some v ∈ {0, 1}k before Sam queried signk on v. Lemma 3.2 below justifies our assumption that
no “illegal” Sam-queries are made. We denote by sign−k the family sign where the k-th function
signk is left undefined (and in this case we will consider the process of choosing the function signk

uniformly at random), and prove the following lemma:

Lemma 3.2. For every k, τ , F , depth, sign−k and circuit A of size s, the probability over the
random choice of the function signk : {0, 1}k → {0, 1}2k that the circuit A with oracle access to
O =

(
τ, Samτ,F ,sign

depth

)
produces an illegal k-bit Sam-query is at most s/2k.

Proof. Fix k, τ , F , depth, sign−k and a circuit A of size s. Denote by Γ the set of all functions

signk for which A with oracle access to O =
(
τ, Samτ,F ,sign

depth

)
produces an illegal Sam-query. Then,

there exists a set Γ′ ⊂ Γ of size at least |Γ|/s and an integer 1 ≤ i ≤ s, such that for all functions
signk ∈ Γ′ we have that that i-th Sam-query that A makes is illegal, while all the previous i − 1
queries are legal. We claim that every function signk ∈ Γ′ can be described using k · (2k+1 − 1)
bits, given i, τ , F , depth, sign−k and A. More specifically, given a function signk ∈ Γ′, denote by
v ∈ {0, 1}k the value on which A guesses the correct value of signk(v) for producing the illegal query.
We can describe the function signk by specifying its value on the set {0, 1}k \ {v} and by specifying
v. This results in 2k ·(2k−1)+k = k ·(2k+1−1) bits. Indeed, the value signk(v) can be reconstructed
by following the computation of AO, answering Sam’s sign-queries in the first i−1 queries of A, and
the i-th query will contain the value signk(v). Since we are guaranteed that the first i−1 queries are
legal, Sam does not query signk on v and the simulation is successful. Therefore, the value signk(v)
can be reconstructed.

This implies that the cardinality of the set Γ′ is at most 2k·(2k+1−1), and therefore the cardinality
of Γ is at most s · 2k·(2k+1−1). This means that the fraction of functions signk : {0, 1}k → {0, 1}2k

for which A produces an illegal query is at most

s · 2k·(2k+1−1)

22k·2k =
s

2k
.

4 Breaking Statistical Commitment Schemes With Sam

In this section we show that a random instance of the oracle Sam can be used to break the binding
of any statistically-hiding commitment scheme. More specifically, for every statistically-hiding com-
mitment scheme (S,R,V) with oracle access to a family of trapdoor permutations, we construct a

11Note that we denoted by k not the actual bit-length of the query Q, but only the bit-length of the part of Q on
which sign is applied. That is, k is the bit-length of the string (1n, Cτ , z, dep), and in particular k ≥ n.
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malicious sender S∗ which has oracle access to Samτ,F ,sign
depth , and breaks the binding of (Sτ ,Rτ ,Vτ )

with high probability over the choices of τ , F and sign. The key point is that if the commitment
scheme has d(n) communication rounds, then S∗ needs to query Sam only up to depth d(n) + 1.
Formally, the following theorem is proved.

Theorem 4.1. For every d(n)-round honest-receiver statistically-hiding bit-commitment scheme
(S,R,V) with oracle access to a family of trapdoor permutations, there exist a polynomial-time
malicious sender S∗ and a negligible function ν(n), such that

Prτ,F ,sign,rR


((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

d+1 (1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 > 1− ν(n) ,

for all sufficiently large n.

Note that in the above theorem, the depth restriction function depth(n) of the oracle Sam is set
to be the function d(n)+ 1, where d(n) is the number of communication rounds in the commitment
scheme (S,R,V) with security parameter 1n. This way, Sam will answer queries up to depth d(n)+1.
In what follows, we define the notation used in this section. Then, we describe the malicious sender
S∗ and turn to prove Theorem 4.1.

Notations. Let (S,R,V) be a statistically-hiding bit-commitment scheme with oracle access to
a collection of trapdoor permutations. We denote by b ∈ {0, 1} and rS , rR ∈ {0, 1}∗ the input
bit of the sender and the random coins of the sender and the receiver, respectively. We denote by
d(n) the number of communication rounds in the scheme with security parameter 1n (note that we
do not restrict the scheme to access only trapdoor permutations over n-bits), and without loss of
generality we assume that the receiver makes the first move. Each communication round consists
of a message sent from the receiver to the sender followed by a message sent from the sender to the
receiver. We denote by qi and ai the messages sent by the receiver and the sender in the i-th round,
respectively, and denote by ad+1 the message sent by the sender in the reveal stage. Finally, we let
āi = (a1, . . . , ai) and q̄i = (q1, . . . , qi). A d-round bit-commitment scheme is described in Figure 2.

1q

1a

Input: (b, r )

S R
S Input: rR

dq

da

d+1a

Figure 2: A d-round bit-commitment scheme.

Although the sender is a probabilistic polynomial-time Turing-machine, in order to interact with
the oracle Sam we need to identify the sender with a sequence of circuits S1, . . . , Sd+1 as follows.
In the first round, S sends a1 by computing a1 = S1(b, rS , q1). Similarly, in the following rounds, S
sends ai by computing ai = Si(b, rS , q̄i). We assume that each message ai contains all of the sender’s
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previous messages a1, . . . ai−1 as well (i.e., in the i-th round the S sends actually āi), and therefore
each circuit Si is a refinement of Si−1, as discussed in Section 3). We note that the descriptions of
the circuits S1, . . . , Sd+1 can be computed in polynomial-time given a description of S.

Finally, in order to simplify the notation regarding the input and output of the oracle Sam, in
this section we ignore parts of the input and output of Sam: we ignore the security parameter and
signature function sign, and note that Theorem 4.1 actually holds for every fixing of sign (since
the malicious sender S∗ asks only legal queries). In addition, we consider queries of the form
Q = (Cτ

next, C
τ , z), and answers that consist only of w′, i.e., an answer consists only of a uniformly

distributed preimage of z under the mapping defined by Cτ .

Description of S∗. On input 1n, the malicious sender S∗ with oracle access to Samτ,F
d+1 interacts

with the honest receiver R as follows.

1. In the first round, S∗ receives R’s message q1, and computes the description of the circuit
C1 = S1(·, ·, q1) obtained from the circuit S1 by fixing q1 as its third input. Then, S∗ queries
Samτ,F

d+1 with (C1,⊥,⊥), receives w1 = (b1, r1), and sends a1 = S1(b1, r1, q1) to R.

2. For every 2 ≤ i ≤ d(n), in the i-th round S∗ receives R’s message qi, and computes the
description of the circuit Ci = Si(·, ·, q̄i) obtained from Si by fixing the vector q̄i as its third
input. S∗ queries Samτ,F

d+1 with (Ci, Ci−1, āi−1), and receives wi = (bi, ri). Then, S∗ sends
ai = Si(bi, ri, q̄i) to R.

3. In the reveal stage, S∗ queries Samτ,F
d+1 with (⊥, Cd, ād) for n times, and receives n pairs{(

b
(j)
d+1, r

(j)
d+1

)}n

j=1
. If there exist j0, j1 ∈ [n] such that b

(j0)
d+1 = 0 and b

(j1)
d+1 = 1, then S∗

outputs decom = Sd+1

(
b
(j0)
d+1, r

(j0)
d+1, q̄d

)
and decom′ = Sd+1

(
b
(j1)
d+1, r

(j1)
d+1, q̄d

)
.

A minor technical detail in step 3 is that the first parameter in each of the n queries made in
the reveal stage should be a distinct circuit instead of ⊥. This guarantees that the answers returned
by Sam in the reveal stage are independent (otherwise, Sam will return the exact same answer n
times). Any fixed sequence of n distinct circuits may be used. In addition, notice that S∗ queries
Sam up to depth d(n) + 1, as allowed by the depth restriction function d(n) + 1.

The two main ideas underlying the proof are the following:

1. The distribution of the protocol’s transcript when executed with S∗ and an honest receiver is
identical to the distribution of the protocol’s transcript when both parties are honest.

2. The assumption that the commitment scheme is honest-receiver statistically-hiding implies
that a random transcript can be revealed both as a commitment to b = 0 and as a commitment
to b = 1, with almost equal probabilities.

More specifically, we define two distributions:

• D∗n = view〈S∗,R〉(n) is the distribution of the view of R in the commit stage when interacting
with the malicious sender S∗. This view consists of R’s random coins and of the sequence of
messages it receives from S∗. The distribution is taken over R’s random coins and over the
uniform choice of τ and F .

• Dn = view〈S,R〉(n) is the distribution of the view of R in the commit stage when interacting
with the honest sender S(1n, b, rS). This view consists ofR’s random coins and of the sequence
of messages it receives from S. The distribution is taken over the random coins of R and S,
and over the uniform choice of b ∈ {0, 1} and τ .

15



Lemma 4.2. The distributions Dn and D∗n are identical.

Proof. We show that the distributions Dn and D∗n assign equal probabilities to every triplet
(rR, q̄d, ād). More specifically, we prove by induction on 1 ≤ i ≤ d that PrDn [rR, q̄d, ād] =
PrD∗n [rR, q̄d, ād].

For i = 1, clearly we have that PrDn [rR, q1] = PrD∗n [rR, q1] since rR is distributed exactly the
same in the two cases, and q1 is a deterministic function of rR. Therefore we only have to show that
PrDn [a1|rR, q1] = PrD∗n [a1|rR, q1]. In the first round, the malicious sender S∗ queries Samτ,F

d+1 with
Q = (C1,⊥,⊥), and receives w1 = (b1, r1). Note that by the description of Samτ,F

d+1 and of F , there
is a random permutation fQ which corresponds to Q, and Samτ,F

d+1 outputs (b1, r1) = fQ(0m), which
is a uniformly distributed value. That is, S∗ sends a1 = S1(b1, r1, q1) for a uniformly distributed
pair (b1, r1) exactly as the honest sender S should do.

Assume now that the claim holds for some i, i.e., PrDn [rR, q̄i, āi] = PrD∗n [rR, q̄i, āi]. Again, we
have that PrDn [qi+1|rR, q̄i, āi] = PrD∗n [qi+1|rR, q̄i, āi], since in both cases qi+1 is a deterministic func-
tion of rR, q̄i and āi. It remains to show that PrDn [ai+1|rR, q̄i+1, āi] = PrD∗n [ai+1|rR, q̄i+1, āi]. In
round i+1, S∗ queries Samτ,F

d+1 with Q = (Ci+1, Ci, āi), and receives wi+1 = (bi+1, ri+1). Note that by
the description of Samτ,F and of F , the permutation fQ which corresponds to Q was chosen uniformly
at random from Πm and independently of all the other permutations in F . Therefore, (bi+1, ri+1)
is uniformly distributed among all inputs which are consistent with the protocol’s transcript until
this point, and therefore the distribution of the resulting ai+1 is exactly as if the honest sender S
had input (bi+1, ri+1) to begin with. Thus, PrDn [ai+1|rR, q̄i+1, āi] = PrD∗n [ai+1|rR, q̄i+1, āi], which
yields the correctness of the lemma.

Lemma 4.2 now enables us to derive the proof of Theorem 4.1.

Proof of Theorem 4.1. In the reveal stage, the malicious sender S∗ uses Samτ,F
d+1 in order to

sample uniformly and independently at random n input pairs
{(

b
(j)
d+1, r

(j)
d+1

)}n

j=1
from the set of

all input pairs which are consistent with the transcript of the commit stage. We prove that with
overwhelming probability these inputs enable S∗ to reveal both to b = 0 and to b = 1.

Denote by D0
n = view〈S(0),R〉(n) the distribution of the honest receiver’s view in the commit

stage when interacting with the honest sender S(1n, 0, rS). This view consists of its random coins
and of the sequence of messages it receives from S, and the distribution is taken over the random
coins of R and S and over the choice of τ . Similarly, let D1

n = view〈S(1),R〉(n).
We define a set of good transcripts. This set consists of all transcripts of the commit stage which

enable S∗ to reveal both to b = 0 and to b = 1 with overwhelming probability. We show that with
overwhelming probability the transcript is in this set. Denote by ρ(n) the hiding parameter of the
commitment scheme (see Definition 2.4, and recall that the commitment scheme is honest-receiver
statistically-hiding, and therefore ρ(n) is a negligible function). Formally, we define

GOOD =
{

trans :
(
1−

√
ρ(n)

)
· PrD0

n
[trans] < PrD1

n
[trans] <

(
1 +

√
ρ(n)

)
· PrD0

n
[trans]

}
.

Note that for every transcript trans of the commit stage and for every j ∈ [n], it holds that

Prτ,F ,rR

[
b
(j)
d+1 = 0

∣∣∣ trans
]

Prτ,F ,rR

[
b
(j)
d+1 = 1

∣∣∣ trans
] =

Prτ,F ,rR

[
b
(j)
d+1 = 0 ∧ trans

]

Prτ,F ,rR

[
b
(j)
d+1 = 1 ∧ trans

] =
PrD0

n
[trans]

PrD1
n

[trans]
,
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where the second equality follows from Lemma 4.2. The definition of the set GOOD implies that if
trans ∈ GOOD, then for all sufficiently large n it holds that

min
{

Prτ,F ,rR

[
b
(j)
d+1 = 0

∣∣∣ trans
]
,Prτ,F ,rR

[
b
(j)
d+1 = 1

∣∣∣ trans
]}

> 1/3 .

Therefore,

Prτ,F ,rR [S∗ fails | trans ∈ GOOD] < 2 ·
(

2
3

)n

,

since a failure occurs only in the case that all n input pairs sampled in the reveal stage have b
(j)
d+1 = 0,

or that they all have b
(j)
d+1 = 1. It remains to show that the transcript is in GOOD with overwhelming

probability. Lemma 4.2 and the fact that the statistical distance between the distributions D0
n and

D1
n is at most ρ(n) imply that

Prτ,F ,rR [trans ∈ GOOD] = PrDn [trans ∈ GOOD]

=
1
2
· (PrD0

n
[trans ∈ GOOD] + PrD1

n
[trans ∈ GOOD]

)

≥ 1
2
· (2 · PrD0

n
[trans ∈ GOOD]− ρ(n)

)

> 1− 2
√

ρ(n)− ρ(n)
2

,

where the last inequality follows from Fact 2.1. We conclude the proof by

Prτ,F ,rR [S∗fails] ≤ Prτ,F ,rR [trans /∈ GOOD] + Prτ,F ,rR [S∗ fails | trans ∈ GOOD]

≤ 2
√

ρ(n) +
ρ(n)

2
+ 2 ·

(
2
3

)n

.

Therefore,

Prτ,F ,rR


((decom, decom′)|com) ←

〈
S∗ Samτ,F

d+1(1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 > 1− ν(n) ,

for all sufficiently large n, where ν(n) = 2
√

ρ(n) + ρ(n)
2 + 2 · (2

3

)n.

5 Random Permutations are Hard to Invert Even With Sam

We now prove our main technical result regarding the oracle Sam. For simplicity, we first consider
the task of inverting a family of permutations, and then extend the result to the task of inverting a
family of trapdoor permutations. We consider the oracle Sam exactly as defined in Section 3 with
the only difference that the trapdoor permutation family τ is replaced with a permutation family
π.

Our goal is to upper bound the success probability of circuits having oracle access to Sam in the
task of inverting a uniformly chosen permutation πn ∈ Πn on a uniformly chosen image y ∈ {0, 1}n

(i.e., the task of retrieving the value π−1
n (y) given y and oracle access to both π and Sam). Our

contribution is in relating this success probability to the maximal depth of the Sam-queries made
by the circuit, and to the size of the circuit. The following theorem is proved.
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Theorem 5.1. For every circuit A of size s(n) that queries Sam up to depth d(n) such that
s(n)3d(n)+2 < 2n/8, for every depth restriction function depth and for all sufficiently large n, it
holds that

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y)

]
≤ 1

s(n)
.

Before turning to prove Theorem 5.1, we first provide a brief overview of the structure of the
proof. Consider a circuit A which is given an input y ∈ {0, 1}n, and its goal is to retrieve the value
π−1

n (y) while having oracle access to both π = {πi}∞i=1 and Sam. The idea underlying our proof is
to distinguish between two cases: one in which A obtains information on the value π−1

n (y) via one
of its Sam-queries and the other in which none of A’s Sam-queries provides sufficient information
for retrieving π−1

n (y). More specifically, we define:

Definition 5.2. A Sam-query (1`, Cπ
next, C

π, z, dep, sig) produces a y-hit if Sam outputs (w′, z′, sig′)
such that some πn-gate in the computation of Cπ(w′) has input π−1

n (y).

Given π, F , sign, depth, a circuit A and a challenge image y ∈ {0, 1}n, we denote by SamHITy the

event in which one of the Sam-queries made by A in the computation of Aπ,Samπ,F,sign
depth (y) produces a

y-hit. From this point on, the proof proceeds in two modular parts. In the first part of the proof,
we consider the case that the event SamHITy does not occur, and prove a “reconstruction lemma”
which extends an information-theoretic argument of Gennaro and Trevisan [16]. They showed that
if a circuit A manages to invert a permutation πn on a relatively large set of images, then this
permutation has a short representation given A. We generalize their argument to deal with circuits
having oracle access to Sam. In this part we do not restrict at all the depth of the Sam-queries and
their security parameters, and prove the following lemma.

Lemma 5.3. For every circuit A of size at most 2n/7, for every depth restriction function depth
and for all sufficiently large n, it holds that

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≤ 2−n/8 .

In the second part of the proof, we show that the case where the event SamHITy does occur can
be reduced to the case where the event SamHITy does not occur. In this proof, both the size of
the circuit and the depth of its Sam-queries play an instrumental role. Specifically, given a circuit
A that tries to invert a permutation π, we construct a circuit M that succeeds almost as well as
A, without M ’s Sam-queries producing any y-hits. By analyzing the probabilistic process of the
computation Aπ,Samπ,F,sign

depth (y) we prove the following lemma.

Lemma 5.4. For every circuit A of size s(n) that queries Sam up to depth d(n), and for every
depth restriction function depth, if

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y)

]
≥ 1

s(n)

for infinitely many values of n, then there exists a circuit M of size O(s(n)) such that

Pr π,F,sign
y←{0,1}n

[
Mπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

s(n)3d(n)+2

for infinitely many values of n.

In what follows we show that Theorem 5.1 is a straightforward corollary of Lemmata 5.3 and
5.4. In Subsection 5.1 we extend our statement to deal with trapdoor permutations, and this form
of the result will be used in the lower bound proof in Section 6. Then, in Subsections 5.2 and 5.3
we prove Lemmata 5.3 and 5.4, respectively.
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Proof of Theorem 5.1. Assume for a contradiction that there exist a family of circuits A = {An},
each of size at most s(n) that queries Sam up to depth d(n) such that s(n)3d(n)+2 < 2n/8, and a
depth restriction function depth, for which

Pr π,F,sign
y←{0,1}n

[
A

π,Samπ,F,sign
depth

n (y) = π−1
n (y)

]
>

1
s(n)

,

for infinitely many values of n. Lemma 5.4 implies that there exists a family M = {Mn} of circuits,
such that each Mn is of size O(s(n)) ≤ 2n/7, and

Pr π,F,sign
y←{0,1}n

[
M

π,Samπ,F,sign
depth

n (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

s(n)3d(n)+2
>

1
2n/8

,

for infinitely many values of n, which is a contradiction to Lemma 5.3.

5.1 Extension to Trapdoor Permutations

The basic idea in extending the result for trapdoor permutation is in applying Theorem 5.1 twice.
Consider a collection τn =

(
Gn, Fn, F−1

n

)
of trapdoor permutations over {0, 1}n and a circuit A

which successfully inverts a permutation Fn(pk, ·), for some pk = Gn(td), on some image y. If
during A’s computation the procedure F−1

n is queried with td, then the circuit A can be used to
invert a random permutation πn = Gn on pk. In addition, if the procedure F−1

n is not queried with
td, then essentially F−1

n does not help in inverting Fn(pk, ·) on y, and the circuit A can be used to
invert a random permutation πn = Fn(pk, ·) on y. Note that an important point in this argument
is that F−1

n may be queried by both A and Sam. We prove the following theorem:

Theorem 5.5. For every circuit A of size s(n) that queries Sam up to depth d(n) such that
s(n)3d(n)+2 < 2n/8, for every depth restriction function depth and for all sufficiently large n, it
holds that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

In order to prove Theorem 5.5 we need a slightly more general form of Theorem 5.1, in which
the circuit A has oracle access to an additional (fixed) oracle AUX. Access to this oracle is given also
to Sam, in order to enable Sam to sample from circuits with AUX-gates. The following statement is
obtained as a straightforward refinement of notations in the proof of Theorem 5.1.

Theorem 5.6. For every circuit A of size s(n) that queries Sam up to depth d(n) such that
s(n)3d(n)+2 < 2n/8, for every depth restriction function depth, for every oracle AUX and for all
sufficiently large n, it holds that

Pr π,F,sign
y←{0,1}n

[
Aπ,AUX,Samπ,AUX,F,sign

depth (y) = π−1
n (y)

]
≤ 1

s(n)
.

Proof of Theorem 5.5. Given τ =
{(

Gi, Fi, F
−1
i

)}∞
i=1

, F , sign, depth, y ∈ {0, 1}n and a

circuit A, denote by TDHITtd the event in which Aτ,Samτ,F,sign
depth (Gn(td), y) produces a Sam-query

(1`, Cτ
next, C

τ , z, dep, sig) that results in answer (w′, z′, sig′) such that one of the F−1
n gates in the

computations of Cτ (w′) or Cτ
next(w

′) has input (td, y′) for some y′. Note that without loss of gen-
erality, we can assume that A does not query τ directly, as any τ -query can be replaced by a single
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query to Samτ,F ,sign
depth . To simplify notation, we denote for the rest of the proof pk = Gn(td), i.e., pk

is the public key corresponding to the trapdoor td. For every n, it holds that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (pk, y) = F−1
n (td, y)

]

≤ Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (pk, y) = F−1
n (td, y) ∧ TDHITtd

]
(5.1)

+Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (pk, y) = F−1
n (td, y)

∣∣∣ TDHITtd

]
. (5.2)

We show that the expressions in Equations 5.1 and 5.2 can be bounded by the probability of inverting
Gn or inverting one of the Fn(pk, ·)’s respectively, using A as a subroutine.

We begin with Equation 5.1. In this case we can construct a circuit B, such that whenever
TDHITtd occurs, B outputs td. Therefore, if

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (pk, y) = F−1
n (td, y) ∧ TDHITtd

]
> ε(n) ,

then in particular there is a fixing of y ∈ {0, 1}n and of Fn(pk, ·) ∈ Πn for every pk ∈ {0, 1}n for
which this holds (i.e., we fix everything except for G = {Gn}∞n=1). Therefore, we have that

Pr G,F,sign
pk←{0,1}n

[
BG,AUX,SamG,AUX,F,sign

depth (pk) = G−1
n (pk)

]
> ε(n) ,

where AUX =
{(

Fn, F−1
n

)}∞
n=1

. Thus, Theorem 5.6 yields that ε(n) < 1/s(n) for all sufficiently
large n. Now we consider Equation 5.2 and assume that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (pk, y) = F−1
n (td, y)

∣∣∣ TDHITtd

]
> ε(n) .

In this case, for every n there exist a specific pkn = Gn(td) and a fixing of Gn and Fn(pk′n, ·) for all
pk′n 6= pkn such that

PrFpk,F,sign

y←{0,1}n

[
AFpk,AUX,Sam

Fpk,AUX,F,sign

depth (pkn, y) = F−1
n (tdn, y)

]
> ε(n) ,

where Fpk = {Fi(pki, ·)}∞i=1, AUX =
(
G,F6=pkn , F−1

6=pkn

)
, and F 6=pkn and F−1

6=pkn
denote that these

oracles do not answer queries on pkn or tdn = G−1
n (pkn), respectively. An important remark here

is that if the event TDHITtd does not occur, then from the description of the oracle Sam we know
that Sam does not query F−1

n on tdn. Therefore it is sufficient to provide Sam with access to F−1
6=pkn

.
Thus, Theorem 5.6 yields that ε(n) < 1/s(n) for all sufficiently large n. Hence, for all sufficiently
large n,

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

5.2 The Reconstruction Lemma

The following extends the reconstruction lemma of Gennaro and Trevisan [16]. The idea underlying
the claim is the following: if a circuit A manages to invert a permutation π on some set, then given
the circuit A, the permutation π can be described without specifying its value on a relatively large
fraction of this set. We denote by π−n a family of permutations π = {πi}∞i=1 where the permutation
πn is left undefined.
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Claim 5.7. For every π, F , sign, depth, circuit A of size s and integer n, if

Pry←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ ε ,

then, given π−n, F , sign, depth and A, the permutation πn can be described using 2 log
(
2n

a

)
+

log((2n − a)!) bits, where a ≥ ε2n/
(
2s2

)
.

Proof. Denote by I ⊆ {0, 1}n the set of points y ∈ {0, 1}n on which A successfully inverts πn with
no y-hits. We claim that there exists a relatively large set Y ⊆ I, such that the value of π−1

n on the
set Y is determined by π−n, F , sign, depth, A, the sets Y and X = π−1

n (Y ), and the value of π−1
n

on the set {0, 1}n \ Y .
We define the set Y via the following sequential process. Initially Y is empty, and we remove

the lexicographically smallest element y from I and insert it into Y . Then, we follow the compu-
tation Aπ,Samπ,F,sign

depth (y), denote by (1n1 , Cπ
next,1, C

π
1 , z1, dep1, sig1), . . . , (1nq , Cπ

next,q, C
π
q , zq, depq, sigq)

the queries made by A to Sam, and by (w′1, z
′
1, sig

′
1), . . . , (w

′
q, z

′
q, sig

′
q) their corresponding an-

swers. In addition, denote by y1, . . . , yt the outputs of all the πn-gates in the computations of
Cπ

1 (w′1), . . . , C
π
q (w′q) and the outputs of all A’s direct queries to πn. We now remove y1, . . . , yt from

the set I (note that these are not necessarily in the set I). Then, remove the lexicographically
smallest element from the remaining elements of I, insert it to Y and continue in the same manner
until the set I is emptied.

Note that at each iteration one element is inserted into the set Y , and at most s2 + s + 1 ≤ 2s2

elements are removed from the set I (the number q of Sam-queries made by A is at most s, and in
each circuit given by A as input to Sam the number of πn-gates is again at most s. In addition, A
may directly query πn on at most s inputs). Since the set I initially contains at least ε2n elements,
then when the process terminates we have that |Y | ≥ ε2n/(2s2).

We now claim that πn is completely determined given π−n, F , sign, depth, A, the descriptions
of the sets Y and X = π−1

n (Y ), and the value of π−1
n on the set {0, 1}n \ Y . More specifically,

we show that the values of π−1
n on the set Y can be reconstructed. For each y ∈ Y taken in

lexicographical increasing order, we reconstruct π−1
n (y) by simulating π and Samπ,F ,sign

depth in the com-

putation Aπ,Samπ,F,sign
depth (y). Note that if the simulation is correct, then A will output π−1

n (y). On
input Qi = (1ni , Cπ

next,i, C
π
i , zi, depi, sigi) with a corresponding permutation fQi ∈ F , the simulator

acts as follows.

1. If Cπ
i = ⊥ then output (w′i, z

′
i, sig

′
i), where w′i = fQi(0

m), z′i = Cπ
next,i(w

′
i) and sig′i =

sign(1ni , Cπ
next,i, z

′
i, 1). The simulation is clearly correct in this case.

2. Else, if Cπ
next,i is a refinement of Cπ

i , depi ≤ depth(ni) and sigi = sign(1ni , Cπ
i , zi, depi), then

enumerate all t ∈ {0, 1}m in lexicographically increasing order, and output w′i = fQi(t) for the
minimal t such that Cπ

i (fQi(t)) can be computed (i.e., all πn-queries can be answered) and its
resulting value is zi. In addition, output z′i = Cπ

next,i(w
′
i) and sig′i = sign(1ni , Cπ

next,i, z
′
i, depi +

1). We claim that the simulator indeed outputs w′i = fQi(t) for the lexicographically smallest
t such that Cπ

i (f(t)) = zi, and therefore the simulation is correct. Denote by t0 this minimal
t. It is sufficient to show that the simulator can compute Cπ

i (fQi(t0)). Clearly, it can compute
any πi-queries for every i 6= n. In addition, the computation may involve four possible πn-
queries:

• πn-query on x ∈ {0, 1}n \X. The value is explicitly given.
• πn-query on x ∈ X for which πn(x) <lex y. The required value was already reconstructed.
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• πn-query on x ∈ X for which πn(x) >lex y. This is impossible: otherwise, we have that
both y ∈ Y and πn(x) ∈ Y , but y was inserted to Y before πn(x) was inserted to Y , and
therefore πn(x) should have been removed from I, and in particular not inserted into Y .

• πn-query on x ∈ X for which πn(x) = y. Impossible, otherwise the Sam-query Qi

produces a y-hit.

3. Else, output ⊥.

We also have to show that the simulator can answer all of A’s direct π-queries. Again, it can clearly
answer any direct πi-queries for every i 6= n. Whenever A asks for the value of πn on some value x,
the simulator acts as follows: if this value is already known, then the simulator outputs πn(x) to A.
Otherwise, if the value is not known, we claim that it must be that x = π−1

n (y) and in this case the
simulator successfully reconstructed the desired value and can halt. Indeed, there are four possible
such queries:

• πn-query on x ∈ {0, 1}n \X. The value is explicitly given.
• πn-query on x ∈ X for which πn(x) <lex y. The required value was already reconstructed.
• πn-query on x ∈ X for which πn(x) >lex y. This is impossible (as above).
• πn-query on x ∈ X for which πn(x) = y. In this case the query itself gives the desired answer

π−1
n (y).

Thus, we can successfully reconstruct the values of π−1
n on the set Y . Finally, note that describing

the sets Y and X, and the values of π−1
n on the set {0, 1}n \ Y requires 2 log

(
2n

|Y |
)
+ log((2n − |Y |)!)

bits.

Now we are able to prove the following lemma, which is a stronger form of Lemma 5.3.

Lemma 5.8. For every π−n, F , sign, depth, circuit A of size at most 2n/7 and for all sufficiently
large n,

Pr πn←Πn
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≤ 2−n/8 .

Proof. Claim 5.7 implies that for every circuit A of size s ≤ 2n/7 and for every π−n, F , sign and
depth, the fraction of permutations πn for which

Pry←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 2−n/7

is at most (
N
a

)2
(N − a)!
N !

=

(
N
a

)

a!
,

where N = 2n, and a ≥ 2−n/7 · N/(2s2) ≥ N4/7/2. Using the inequalities a! ≥ (a/e)a and
(
N
a

) ≤
(Ne/a)a, the above expression is upper bounded by

(
Ne2

a2

)a

≤
(

4e2

N1/7

)a

≤ 2−a ≤ 2−N4/7/2 ,

for sufficiently large N . Therefore,

Pr πn←Πn
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≤ 2−N4/7/2 + 2−n/7 ≤ 2−n/8 .
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5.3 Avoiding y-Hits by Sam

Given a circuit A of size s(n) that queries Sam up to depth d(n) such that

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y)

]
≥ 1

s(n)
,

we would like to construct a circuit M which inverts a random permutation πn ∈ Πn on a random
image y ∈ {0, 1}n almost as well as A does, without M ’s Sam-queries producing any y-hits. Recall
(Definition 5.2), that we say that a Sam-query Q = (1`, Cπ

next, C
π, z, dep, sig) produces a y-hit if

Sam outputs (w′, z′, sig′) such that some πn-gate in the computation of Cπ(w′) has input π−1
n (y).

In addition, we denoted by SamHITy the event in which at least one Sam-query produces a y-hit.

Description of M . On input y ∈ {0, 1}n, M feeds A with y as its input, and delivers all of A’s
queries to Sam and to π with the following exception: for each Sam-query (1`, Cπ

next, C
π, z, dep, sig)

with answer (w′, z′, sig′) from Sam, M computes Cπ
next(w

′). If some πn-gate in the computation of
Cπ

next(w
′) has input π−1

n (y), then M outputs π−1
n (y) and halts. Otherwise, it provides A with the

answer (w′, z′, sig′) to the query, which enables A to proceed with its computation. If M did not
halt before the termination of A’s computation, then it outputs the output of A and halts.

Proof of Lemma 5.4. The circuit M does not make any additional Sam-queries other than those
made by A. Therefore, if A inverts πn on y without producing any y-hits in its Sam-queries, then
so does M . Formally, if

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

2s(n)
,

then
Pr π,F,sign

y←{0,1}n

[
Mπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

2s(n)
.

Thus, for the rest of the proof we focus on the more interesting case, in which A does produce a
y-hit in one of its Sam-queries with noticeable probability. That is, we assume that

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

2s(n)
. (5.3)

Let us assume for now (only for this paragraph) that all the Sam-queries made by A are legal
(as discussed in Section 3), and suppose that Qi = (1`i , Cπ

next,i, C
π
i , zi, depi, sigi) is a query that

produces a y-hit. Recall that the restrictions on Sam impose a forest-like structure on the legal
queries, and therefore there exists a parent-query Qp(i) = (1`p(i) , Cπ

next,p(i), C
π
p(i), zp(i), depp(i), sigp(i))

of Qi, for which it holds that Cπ
next,p(i) = Cπ

i . Our main observation is the following: if Qi results
in output w′i such that one of the πn-gates in the computation of Cπ

i (w′i) has input π−1
n (y), then

with high probability the parent query Qp(i) results in output w′p(i) such that one of the πn-gates
in the computation of Cπ

next,p(i)(w
′
p(i)) has input π−1

n (y). Therefore, already after query Qp(i), the
circuit M will retrieve the value π−1

n (y) and halt. In particular, M will not query Sam with Qi, and
therefore no y-hits will occur.

It may be that some of the Sam-queries made by A are illegal, and then the above observation
does not necessarily hold. Indeed, it is not particulary hard to guess a valid signature on a short
query. However, when A tries to invert a permutation πn over n bits, we need only consider queries
with security parameter at least 1n: any other query does not contain circuits with πn gates (and
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therefore cannot produce any y-hits) and also cannot be a parent of queries with πn gates. Formally,
we denote by Legaln the event in which all the Sam-queries that A makes which include security
parameter at least 1n are legal. Lemma 3.2 enables us to claim that if Equation 5.3 holds, then

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy ∧ Legaln

]

≥ 1
2s(n)

−
∞∑

i≥n

s(n)
2i

=
1

2s(n)
− s(n)

2n−1

≥ 1
4s(n)

,

where the last inequality holds for every s(n) ≤ 2(n−3)/2. Therefore, we can assume for the rest of the
proof that all the Sam-queries with security parameter at least 1n are legal. Denote by Q1, . . . , Qq

the random variables corresponding to A’s queries that have security parameter at least 1n. Then,
assuming that all these queries are legal, we have that every query Qi is either a root-query (i.e., Qi

is of the form (1`i , Cnext,i,⊥,⊥,⊥,⊥)), or there exists a query Qj such that j = p(i) as discussed in
Section 3 (i.e., Qj is the parent of Qi).

In order to provide a clear exposition of the proof and its main ideas, we choose to focus here
on a simplified case which captures the main difficulties: we assume that A queries Sam along a
single path up to depth d = d(n). That is, we assume that A’s Sam-queries Q1, . . . , Qd satisfy
p(Qi) = Qi−1 for every 2 ≤ i ≤ d. In Subsection 5.3.1 we describe in detail the extension to the
more general case. Under this simplifying assumption, we prove the following lemma:

Lemma 5.9. For every π, sign and y ∈ {0, 1}n, if

PrF
[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy ∧ Legaln

]
≥ 1

8s(n)
, (5.4)

then
PrF

[
Mπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

s(n)3d(n)
.

Proof of Lemma 5.9. Fix π, sign, y ∈ {0, 1}n, and let s = s(n). We introduce the following
conventions and notations:

• Without loss of generality, the circuit A does not query π directly, as any π-query can be
replaced by a single Sam-query. In order to query πm on some t ∈ {0, 1}m, A computes the
description of a circuit C which contains a single πm-gate with fixed input t. Then, A queries
Sam on (1m, C,⊥,⊥,⊥,⊥) that returns (w′, z′, sig′) where z′ = C(w′) = πm(t).

• For every 1 ≤ i ≤ d, we let Qi = (Cnext,i, Ci, zi) (for simplicity, since we assume that these
queries are legal, we can ignore parts of the input and output of Sam). In addition, denote
by (w′1, z

′
1), . . . , (w

′
d, z

′
d) the random variables corresponding to Sam’s answers on the queries

Q1, . . . , Qd, respectively. Our simplifying assumption implies that for every 1 ≤ i ≤ d − 1, it
holds that Ci+1 = Cnext,i and zi+1 = z′i.

• For every query Qi, denote by Di the distribution from which Sam samples w′i. Specifically,
D1 is the uniform distribution over {0, 1}m, and for every 2 ≤ i ≤ d the distribution Di is
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the uniform distribution over the set C−1
i (zi) (i.e., over the set of all preimages of zi under

the mapping defined by the circuit Ci). Note that each Di is in fact random variable, that
depends on the previous queries Q1, . . . , Qi−1 and on the answer w′i−1 to the query Qi−1.

• Given a circuit C and an input w, we say that w produces a (C, y)-hit if some πn-gate in the
computation of C(w) has input π−1

n (y).

Throughout the proof, we provide intuitions by considering the interaction between A and Sam as
a “game”. This game has d rounds, where in the i-th round A chooses a query Qi = (Cnext,i, Ci, zi),
and the oracle Sam samples w′i from the distribution Di. The goal of the circuit A in this game is
to come up with a query Qi that will produce a y-hit (i.e., to cause the event SamHITy). Formally,

• For every 2 ≤ i ≤ d, we denote by αi the probability that query Qi produces a y-hit, i.e.,

αi = Prw′i←Di

[
w′i produces a (Ci, y)-hit

]
,

and we also let α1 = 0 (since C1 = ⊥). Note that these αi’s are random variables that depend
on the queries Q1, . . . , Qi−1 and on the answer w′i−1 to the query Qi−1.

• For every 2 ≤ i ≤ d, we denote by JUMPi the event that αi > max
{
64s2αi−1, 1/(64s2)d+1

}
,

and let JUMP =
⋃

i JUMPi.

Equation 5.4 states that A has a noticeable probability in producing a y-hit, and therefore in
winning the game. Our first observation is that in this case, the event JUMP occurs with noticeable
probability. If JUMP does not occur, then the αi’s are too small in order to produce a y-hit with
noticeable probability.

Claim 5.10. PrF
[
SamHITy

∣∣ JUMP
] ≤ 1/(16s).

Proof. Assuming that the event JUMP does not occur, we prove by induction that for every 2 ≤
i ≤ d it holds that αi ≤ 1/(64s2)d−i+3. The event JUMP implies that for every 2 ≤ i ≤ d it holds
that αi ≤ max

{
64s2αi−1, 1/(64s2)d+1

}
, and therefore

α2 ≤ max
{

64s2α1,
1

(64s2)d+1

}
= max

{
0,

1
(64s2)d+1

}
=

1
(64s2)d+1

.

Suppose now that the claim holds for αi−1, then

αi ≤ max
{

64s2αi−1,
1

(64s2)d+1

}
≤ max

{
64s2 · 1

(64s2)d−(i−1)+3
,

1
(64s2)d+1

}
≤ 1

(64s2)d−i+3
.

In particular, each αi is at most 1/(64s2)3, thus

PrF
[
SamHITy

∣∣ JUMP
] ≤ d · 1

(64s2)3
≤ s · 1

(64s2)3
≤ 1

16s
.

As a result of the previous claim, we can now easily derive that the event JUMP has noticeable
probability.

Claim 5.11. PrF [JUMP] ≥ 1/(16s).
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Proof. On one hand, Equation 5.4 implies in particular that

PrF [SamHITy] ≥ 1
8s

.

However, on the other hand, Claim 5.10 implies that

PrF [SamHITy] ≤ PrF [JUMP] + PrF
[
SamHITy

∣∣ JUMP
]

≤ PrF [JUMP] +
1

16s
.

Therefore,

PrF [JUMP] ≥ 1
8s
− 1

16s
≥ 1

16s
.

At this point, we begin considering the point of view of M in the game. For each query Qi =
(Cnext,i, Ci, zi) with answer (w′i, z

′
i), the circuit M computes Cnext,i(w′i). If some πn-gate in this

computation has input π−1
n (y), then M outputs π−1

n (y) and halts. We say that M wins the game,
if it manages to retrieve π−1

n (y) before A produces any y-hits. Formally,

• For every 1 ≤ i ≤ d, we denote by βi the probability that M outputs π−1
n (y) and halts after

query Qi, i.e.,
βi = Prw′i←Di

[
w′i produces a (Cnext,i, y)-hit

]
.

Note that these βi’s are random variables as well, that depend on Q1, . . . , Qi.

The game can be now described as follows: in the i-th round, A chooses a query Qi which
determines βi, and Sam samples w′i which determines αi+1. If Qi chose a high βi, then M has high
probability in winning the game: given w′i from Sam, it will compute Cnext,i(w′i) and halt if it finds
π−1

n (y). In this case, A looses the game. Therefore, A should not choose a high βi. However, we
claim that if βi is low, then with high probability αi+1 will be low as well. However, if αi+1 is low,
then A has a low probability of producing a y-hit in the next query Qi+1. This means that in order
for A to win the game, at some point it must “take a risk” and determine a high βi.

Formally, the following claim shows that given the queries Q1, . . . , Qi, the expectation of αi+1

over the choice of w′i ← Di is βi. Therefore, if βi is low, then αi+1 will be low as well with high
probability. Note that by the definitions of βi and αi+1, given Q1, . . . , Qi the probability βi is
already determined, while αi+1 is still a random variable that depends on the answer w′i to Qi.

Claim 5.12. For every 1 ≤ i ≤ d− 1, given histi = (Q1, . . . , Qi), it holds that Ew′i←Di
[αi+1] = βi.

Proof. Given histi, it holds that

Ew′i←Di
[αi+1] =

∑

z′i

Prw′i←Di

[
z′i

] · Prw′i+1←C−1
i+1(z

′
i)

[
w′i+1 produces a (Ci+1, y)-hit

]
.

Note that although Qi+1 is not yet defined, the circuit Ci+1 is defined by the restriction Ci+1 =
Cnext,i. Now, since z′i = Cnext,i(w′i) = Ci+1(w′i), and Cnext,i is a refinement of Ci, then we have that

Prw′i←Di

[
z′i

]
=

∣∣C−1
i+1(z

′
i)

∣∣
∣∣C−1

i (zi)
∣∣ ,
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and that

Prw′i+1←C−1
i+1(z

′
i)

[
w′i+1 produces a (Ci+1, y)-hit

]
=

∣∣{w ∈ C−1
i+1(z

′
i) : w produces a (Ci+1, y)-hit

}∣∣
∣∣C−1

i+1(z
′
i)

∣∣ .

Therefore,

Ew′i←Di
[αi+1] =

∑

z′i

∣∣C−1
i+1(z

′
i)

∣∣
∣∣C−1

i (zi)
∣∣ ·

∣∣{w ∈ C−1
i+1(z

′
i) : w produces a (Ci+1, y)-hit

}∣∣
∣∣C−1

i+1(z
′
i)

∣∣

=
∑

z′i

∣∣{w ∈ C−1
i+1(z

′
i) : w produces a (Ci+1, y)-hit

}∣∣
∣∣C−1

i (zi)
∣∣ .

Finally, the restrictions that Ci+1 = Cnext,i and that Cnext,i is a refinement of Ci imply that

C−1
i (zi) =

⊎

z′i

C−1
next,i(z

′
i) =

⊎

z′i

C−1
i+1(z

′
i) ,

where
⊎

denotes the union of disjoint sets. Thus,

Ew′i←Di
[αi+1] =

∣∣∣
{

w ∈ ⊎
z′i

C−1
i+1(z

′
i) : w produces a (Ci+1, y)-hit

}∣∣∣
∣∣C−1

i (zi)
∣∣

=

∣∣{w ∈ C−1
i (zi) : w produces a (Cnext,i, y)-hit

}∣∣
∣∣C−1

i (zi)
∣∣

= Prw←C−1
i (zi)

[w produces a (Cnext,i, y)-hit]

= Prw′i←Di

[
w′i produces a (Cnext,i, y)-hit

]

= βi .

Up to this point, we have reached the conclusion that in order for A to win the game, it must
be that at least one of the αi+1’s is high (i.e., the event JUMPi+1 occurs). We have also seen that
the latter requires A to choose a query Qi that determines a high βi. We would like to claim that
in this case, it holds that βi is significantly larger than αi. Formally,

• For every 1 ≤ i ≤ d, denote by GAPi the event that βi > max
{
2αi, 1/(64s2)d+2

}
.

The following claim captures the idea that if βi is not significantly larger than αi, then αi+1 is
not significantly larger than αi as well.

Claim 5.13. For every 1 ≤ i ≤ d− 1, given histi = (Q1, . . . , Qi), it holds that

Prw′i←Di

[
JUMPi+1

∣∣ GAPi

] ≤ 1/(32s2) .

Proof. Given histi = (Q1, . . . , Qi), it holds that

Prw′i←Di

[
JUMPi+1

∣∣ GAPi

]

≤ Prw′i←Di

[
αi+1 > 32s2βi

]
+ Prw′i←Di

[
JUMPi+1

∣∣ GAPi ∧
{
αi+1 ≤ 32s2βi

}]
.
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Claim 5.12 and Markov’s inequality imply that

Prw′i←Di

[
αi+1 > 32s2βi

] ≤ 1
32s2

.

In addition, note that the events JUMPi+1 and GAPi were defined such that

Prw′i←Di

[
JUMPi+1

∣∣ GAPi ∧
{
αi+1 ≤ 32s2βi

}]
= 0 .

Therefore,

Prw′i←Di

[
JUMPi+1

∣∣ GAPi

] ≤ 1
32s2

.

The following claim combines the above observations, and shows that with noticeable probability
there must be an i such that JUMPi+1 occurs and for every such i it holds that GAPi occurs as well.
In other words, if A wins the game with noticeable probability, then there must be some i for which
αi+1 is high, and for every such i it is the case that A chooses Qi such that βi is significantly larger
than αi. These high βi’s will enable M to retrieve π−1

n (y) and win the game, before A produces any
y-hits.

Claim 5.14. PrF
[
JUMP ∧

(⋂d−1
i=1

{
GAPi ∨ JUMPi+1

})]
≥ 1/(32s).

Proof. Claims 5.11 and 5.13 imply that

PrF

[
JUMP ∧

(
d−1⋂

i=1

{
GAPi ∨ JUMPi+1

}
)]

≥ PrF [JUMP]− PrF

[
d−1⋃

i=1

{
GAPi ∧ JUMPi+1

}
]

≥ PrF [JUMP]−
d−1∑

i=1

PrF
[
GAPi ∧ JUMPi+1

]

≥ PrF [JUMP]−
d−1∑

i=1

PrF
[
JUMPi+1

∣∣ GAPi

]

≥ 1
16s

− s · 1
32s2

=
1

32s
.

Denote by GOOD the event that JUMP occurs, and for every JUMPi+1 that occurs it holds that
GAPi occurs as well (this is the event considered in Claim 5.14). Assume now that GOOD occurs,
and denote by i∗ the minimal 1 ≤ i ≤ d − 1 for which JUMPi+1 occurs. The probability that the
query Qi∗ does not produce a y-hit, but M still retrieves π−1

n (y) using the answer to this query is
at least βi∗ − αi∗ . Since GAPi∗ occurs, we know that βi∗ − αi∗ is noticeable, and therefore M has
a noticeable probability in winning the game at this point. Yet, it might be the case that some
previous query produces a y-hit. This event has low probability, since i∗ is minimal such JUMPi∗+1

occurs, and therefore all the previous αi’s are not sufficiently high in order to produce a y-hit. The
following claim concludes the proof of Lemma 5.9.
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Claim 5.15. PrF
[
Mπ,Samπ,F

depth(y) = π−1
n (y) ∧ SamHITy

]
≥ 1/

(
s3d

)
.

Proof. Given that the event GOOD occurs, denote by i∗ the minimal 1 ≤ i ≤ d − 1 for which
JUMPi+1 occurs (as discussed above). For this i∗, the event GAPi∗ occurs as well and for every
query Qi that precedes Qi∗ the event JUMPi+1 does not occur. Therefore, whenever the event
GOOD occurs, we can hope that the following (independent) events will take place:

• None of the queries Q1, . . . , Qi∗−1 will produce a y-hit. Since for every such query Qi the
event JUMPi does not occur, then, exactly as in the proof of Claim 5.10, the probability of
this event is at least 1− 1/(16s).

• Given Qi∗ , Sam samples w′i∗ which does not produce a (Ci∗ , y)-hit, but does produce a
(Cnext,i∗ , y)-hit. In other words, the query Qi∗ does not produce a y-hit, but still M retrieves
the value π−1

n (y). The probability of this event is at least

βi∗ − αi∗ ≥ βi∗

2
≥ 1

2 (64s2)d+2
.

Putting these together, we obtain

PrF
[
Mπ,Samπ,F

depth(y) = π−1(y) ∧ SamHITy

]
≥ PrF [GOOD] ·

(
1− 1

16s

)
· 1

2 (64s2)d+2

≥ 1
32s

·
(

1− 1
16s

)
· 1

2 (64s2)d+2

≥ 1
s3d

.

This concludes the proof of Lemma 5.9. We now turn to complete the proof of Lemma 5.4.
Recall that we were left to deal with the case that

Pr π,F,sign
y←{0,1}n

[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy ∧ Legaln

]
≥ 1

4s(n)
.

Let

T =
{

(y, π, sign) : PrF
[
Aπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy ∧ Legaln

]
≥ 1

8s(n)

}
.

Then
Pry←{0,1}n,π,sign [(y, π, sign) ∈ T ] ≥ 1/8s(n) ,

and Lemma 5.9 implies that for every (y, π, sign) ∈ T we have

PrF
[
Mπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]
≥ 1

s(n)3d(n)
.

Therefore,

Pr π,F,sign
y←{0,1}n

[
Mπ,Samπ,F,sign

depth (y) = π−1
n (y) ∧ SamHITy

]

≥ Pr π,sign
y←{0,1}n

[(y, π, sign) ∈ T ] · Pr π,F,sign
y←{0,1}n

[
Mπ,Samπ,F

depth(y) = π−1
n (y) ∧ SamHITy

∣∣∣ (y, π, sign) ∈ T
]

≥ 1
8s(n)

· 1
s(n)3d(n)

≥ 1
s(n)3d(n)+2

.
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5.3.1 Dealing with a general query structure

We describe the extension of the above proof of Lemma 5.9 to the case where A’s queries with
security parameter at least 1n are not necessarily along a single path. In general, these queries
may form a forest structure, as discussed above and in Section 3 (i.e., each query Qj is either a
root-query, or there exists a query Qi such that i = p(j)). This extension is mainly technical, and
essentially does not require anything more than refining some events and notations.

Consider the random variables Q1, . . . , Qq corresponding to A’s Sam-queries with security pa-
rameter at least 1n. As in the above proof, we can assume that these are all legal queries, and ignore
all the queries with security parameters less than 1n – this part of the proof does not change at
all. However, whereas in the simplified version of the proof, the parent query of each Qi was Qi−1

(i.e., p(i) = i− 1), when considering an arbitrary forest structure of the queries, the values p(i) are
random variables as well.

We deal with this issue by utilizing the following observation: Assume that Qi and Qj are two
queries such that p(j) = i. Then, the probability αj that Qj produces a y-hit is already determined
given the query Qi = (Cnext,i, Ci, zi) and its answer (w′i, z

′
i). Indeed, the forest structure guarantees

that any such Qj is of the form (Cnext,j , Cj , zj) where Cj = Cnext,i and zj = z′i. Therefore, by the
definition of the distribution Dj we have that the probability that Qj produces a y-hit is

αj = Prw′j←Dj

[
w′j produces a (Cj , y)-hit

]

= Prw′j←C−1
j (zj)

[
w′j produces a (Cj , y)-hit

]

= Prw′j←C−1
next,i(z

′
i)

[
w′j produces a (Cnext,i, y)-hit

]
.

It is now clear that αj can be defined even before the query Qj is determined (assuming of course
that p(j) = i). We formally capture this property as follows:

• For every 1 ≤ i ≤ q, we denote by γi the probability that a potential child of Qi =
(Cnext,i, Ci, zi) produces a y-hit, i.e.,

γi = Prw′j←C−1
next,i(z

′
i)

[
w′j produces a (Cnext,i, y)-hit

]
,

Note that these γi’s are random variables which are determined given the query Qi and its
answer (w′i, z

′
i). Then, for every two queries Qi and Qj such that p(j) = i, we have that

αj = γi.

• For every 1 ≤ i ≤ q, we denote by PJUMPi (for “Potential JUMP”) the event in which the
probability that a potential child of Qi hits y is significantly larger than the probability that
Qi hits y. Specifically, it is the event that γi > max

{
64s2αi, 1/(64s2)d+1

}
. Then, for every

two queries Qi and Qj such that p(j) = i, we have that the events JUMPj and PJUMPi are
equivalent.

We now describe in detail the required technical changes to the proof of Lemma 5.9. The new
proof begins as before by proving that PrF

[
SamHITy

∣∣ JUMP
] ≤ 1/(16s) and that PrF [JUMP] ≥

1/(16s). In these two proofs the new definitions are not yet relevant and the only change is the
usage of the notation p(i) instead of i − 1. Then, Claims 5.12 and 5.13 are replaced with showing
that Ew′i←Di

[γi] = βi, and that Prw′i←Di

[
PJUMPi

∣∣ GAPi

] ≤ 1/(32s2). Again, these are the exact
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same proofs, where γi replaces αi+1. The final change is in Claim 5.14, which is replaced by showing
that PrF

[
JUMP ∧

(⋂
j

{
GAPp(j) ∨ JUMPj

})]
≥ 1/(32s), as follows:

PrF


JUMP ∧


⋂

j

{
GAPp(j) ∨ JUMPj

}






≥ PrF [JUMP]− PrF


⋃

j

{
GAPp(j) ∧ JUMPj

}



≥ PrF [JUMP]− PrF

[⋃

i

{
GAPi ∧ PJUMPi

}
]

≥ PrF [JUMP]−
∑

i

PrF
[
GAPi ∧ PJUMPi

]

≥ PrF [JUMP]−
∑

i

PrF
[
PJUMPi

∣∣ GAPi

]

≥ 1
16s

− s · 1
32s2

=
1

32s
.

6 The Round Complexity Lower Bound

In this section we combine the results presented in Sections 4 and 5 and derive our main theorem. As
described in Subsection 1.2, given a fully-black-box construction of a statistically-hiding commitment
scheme from a family of trapdoor permutations, we consider three parameters:

1. d(n) – the number of communication rounds in the commitment scheme with security param-
eter 1n.

2. s(n) – the hardness of the trapdoor permutation family (see Definition 2.3).

3. `(n) – the security parameter expansion of the construction (see Definition 2.8).

We first state our result for the more standard hardness notion of trapdoor permutations, in
which we consider a family of trapdoor permutations which is s(n)-hard for any polynomial s(n).
As discussed in Subsection 1.2, we consider both constructions which are security-preserving (i.e.,
`(n) = O(n)), and constructions which are not necessarily security-preserving (i.e., `(n) is any
polynomial in n). We begin by formally stating our results for these two cases.

Theorem 6.1. Any O(n)-security-parameter-expanding fully-black-box construction of a weakly-
binding and honest-receiver statistically-hiding commitment scheme from a family of trapdoor per-
mutations has Ω

(
n

log n

)
communication rounds.

Theorem 6.2. Any fully-black-box construction of a weakly-binding and honest-receiver statistically-
hiding commitment scheme from a family of trapdoor permutations has nΩ(1) communication rounds.
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The above two theorems are in fact obtained as corollaries of a more general statement. In
this statement we specifically consider the notion of s(n)-hard trapdoor permutations, and do not
consider a particular range for the security parameter expansion `(n). The main theorem of the
paper is formally stated as follows:

Theorem 6.3 (Main Theorem). For every `(n)-security-parameter-expanding fully-black-box con-
struction of a d(n)-round weakly-binding and honest-receiver statistically-hiding commitment scheme
from an s(n)-hard family of trapdoor permutations, it holds that d(`(n)) = Ω

(
n

log s(n)

)
.

Before turning to the formal proof of Theorem 6.3, we first provide a very brief overview.
Given an `(n)-security-parameter-expanding fully-black-box construction (S,R,V, A) of a d(n)-
round weakly-binding and honest-receiver statistically-hiding commitment scheme from an s(n)-
hard family of trapdoor permutations, we show that there exists a oracle O =

(
τ, Samτ,F ,sign

depth

)

relative to which the following holds: there exists a malicious sender S∗ that breaks the binding
of the scheme (Sτ ,Rτ ,Vτ ), but if d(`(n)) < c·n

log s(n) for some particular constant c > 0, then the
machine A fails to break the security of τ . A technical difficulty is that the results proved in
Sections 4 and 5 hold with respect to a distribution of oracles and not for a single oracle (they hold
over the random choices of τ , F and sign). An application of the Borel-Cantelli lemma will enable
us to overcome this difficulty. In order to apply the Borel-Cantelli lemma, we need the following
statement, which is an immediate corollary of Theorem 4.1 via a standard averaging argument:

Corollary 6.4. For every d(n)-round honest-receiver statistically-hiding bit-commitment scheme
(S,R,V) with oracle access to a family of trapdoor permutations, there exist a polynomial-time ma-
licious sender S∗ and a negligible function ν(n), such that for all sufficiently large n with probability
at least 1− 1/n2 over the choices of τ , F and sign, it holds that

PrrR


((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

d+1 (1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 > 1− ν(n) .

We now turn to formally prove Theorem 6.3.

Proof of Theorem 6.3. Let (S,R,V, A) be an `(n)-security-parameter-expanding fully-black-box
construction of a d(n)-round weakly-binding and honest-receiver statistically-hiding commitment
scheme from an s(n)-hard family of trapdoor permutations. From this point on, we fix the depth
restriction function depth : N → N of the oracle Sam to be the function d(n) + 1. For every τ , F
and sign, we denote by Eτ,F ,sign

n the event in which

PrrR


((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

d+1 (1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 ≤ 1− ν(n) ,

where S∗ and ν(n) are given by Corollary 6.4. Then, Corollary 6.4 states that for all sufficiently
large n, it holds that Prτ,F ,sign

[
Eτ,F ,sign

n

]
≤ 1/n2, and thus

∞∑

n=1

Prτ,F ,sign

[
Eτ,F ,sign

n

]
< ∞ .
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Therefore, the Borel-Cantelli lemma implies that the probability over the choices of τ , F and sign
that the event Eτ,F ,sign

n occurs for infinitely many n’s is zero. That is, for measure 1 of the oracles
Samτ,F ,sign

d+1 it holds that

PrrR


((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

d+1 (1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 > 1− ν(n) ,

for all sufficiently large n. In other words, relative to measure 1 of the oracles Samτ,F ,sign
d+1 , the

malicious sender S∗ breaks the weak binding of the commitment scheme. Thus, the fully-black-box
construction guarantees that relative to these oracles, we have that

Pr
[
Aτ,S∗ Sam

τ,F,sign
d+1 (1n, Gn(td), y) = F−1

n (td, y)
]

>
1

s(n)
, (6.1)

for infinitely many values of n, where A runs in time s(n), and the probability is taken uniformly
over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and over all the possible outcomes
of the internal coin tosses of A. Note that since Equation 6.1 holds with respect to measure 1 of
the oracles Samτ,F ,sign

d+1 (i.e., with probability 1 over the choice of τ,F and sign), then Equation 6.1
still holds when the probability is taken over the choices of τ , F and sign as well. In addition, by
converting the Turing-machine A to a circuit family, and by incorporating the description of S∗ into
this family, we obtain that there exists a circuit A∗ of size at most, say, s∗(n) = (s(n))2 such that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
A∗ τ,Samτ,F,sign

d+1 (Gn(td), y) = F−1
n (td, y)

]
>

1
s(n)

>
2

s∗(n)
,

for infinitely many values of n.
The assumption that the construction is `(n)-security-parameter-expanding (i.e., that A when

given security parameter 1n invokes S∗ on security parameters which are at most 1`(n)), guarantees
that A uses S∗ in a way such that Sam is queried up to depth at most d(`(n))+ 1. This means that
also the circuit A∗ queries Sam up to depth at most d(`(n)) + 1.

We conclude the proof by observing that if s∗(n)3d(`(n))+2 < 2n/8, then the existence of the
circuit A∗ contradicts Theorem 5.5, and therefore s∗(n)3d(`(n))+2 ≥ 2n/8, i.e., d(`(n)) = Ω

(
n

log s(n)

)
.

7 Implications to Other Cryptographic Protocols

Our lower bound on the round complexity of statistical commitment schemes implies similar lower
bounds for several other cryptographic protocols. Our result can be extended to any cryptographic
protocol which can be used to construct a weakly-binding honest-receiver statistically-hiding com-
mitment scheme in a fully-black-box manner. Specifically, in this section we derive new lower bounds
on the round complexity of single-server private information retrieval, interactive hashing, and obliv-
ious transfer that guarantees statistical security for one of the parties. We state the corollaries in
this section for construction that are security preserving (i.e., O(n)-security-parameter-expanding)
and note that more general statements, as in Theorem 6.3, could be easily derived as well.

7.1 Single-Server Private Information Retrieval

A single-server private information retrieval (PIR) scheme [9] is a protocol between a server and a
user. The server holds a database x ∈ {0, 1}n, and the user holds an index i ∈ [n] to an entry of the
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database. Informally, the user wishes to retrieve the i-th entry of the database, without revealing
to the server the value i. A naive solution is to have the user download the entire database,
however, the total communication complexity of this solution is n bits. Based on specific number-
theoretic assumptions, several schemes with sublinear communication complexity were developed
(see [6, 8, 17, 42, 39], and a recent survey by Ostrovsky and Skeith [50]). The only non-trivial
construction based on general computational assumptions is due to Kushilevitz and Ostrovsky [40].
Assuming the existence of trapdoor permutations, they constructed an interactive protocol whose
communication complexity is n− o(n) bits.

Beimel, Ishai, Kushilevitz and Malkin [2] showed that any single-server PIR protocol with com-
munication complexity of at most n/2 bits, can be used to construct a weakly-binding statistically-
hiding commitment scheme. Their construction is both fully-black-box and preserves the number
of rounds. Thus, by combining this with our result, we obtain the following corollary:

Corollary 7.1. Any O(n)-security-parameter-expanding fully-black-box construction of a single-
server PIR protocol for an n-bit database from a family of trapdoor permutations, in which the
server communicates less than n/2 bits, has Ω

(
n

log n

)
communication rounds.

Corollary 7.1 yields in particular a lower bound on the communication complexity: any such
construction requires the server to communicate Ω

(
n

log n

)
bits.

7.2 Interactive Hashing

Interactive hashing was introduced by Naor, Ostrovsky, Venkatesan and Yung [46] and is a protocol
that allows a sender S to commit to a value y while only revealing to the receiver R the value
(h, z = h(y)), where h is a 2-to-1 hash function chosen interactively during the protocol.12 The two
security properties of interactive hashing are binding (S is bounded by the protocol to producing
at most one value of y which is consistent with the transcript) and hiding (R does not obtain any
information about y, except for h(y)). Naor et al. constructed an interactive hashing protocol from
any one-way permutation with O

(
n

log n

)
communication rounds, and showed that it implies in a

fully-black-box manner a statistical commitment scheme with the same number of rounds.13 Wee
[58] has recently showed that a restricted class of fully-black-box constructions of interactive hashing
from one-way permutations has Ω

(
n

log n

)
rounds. Our result extends Wee’s lower bound both to

include the most general form of such constructions, and to trapdoor permutations.

Corollary 7.2. Any O(n)-security-parameter-expanding fully-black-box construction of an interac-
tive hashing protocol from a family of trapdoor permutations has Ω

(
n

log n

)
communication rounds.

7.3 Oblivious Transfer

Oblivious transfer (OT), introduced by Rabin [51], is a fundamental primitive in cryptography.
In particular, it was shown to imply secure multiparty computation [25, 35, 60]. OT has several
equivalent formulations, and we consider the formulation of

(
2
1

)
-OT, defined by Even, Goldreich and

Lempel [12].
(
2
1

)
-OT is a protocol between two parties, a sender and a receiver. The sender’s input

consists of two secret bits (b0, b1), and the receiver’s input consists of a value i ∈ {0, 1}. At the end
12Several extensions to this definition were suggested, see [30, 49].
13Although the original proof in [46] showed the result for O(n) rounds, this was recently reduced to O

(
n

log n

)

rounds [30, 38].
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of the protocol, the receiver should learn the bit bi while the sender does not learn the value i. The
security of the protocol guarantees that even a cheating receiver should not be able to learn the bit
b1−i, and a cheating sender should not be able to learn i.

Given any
(
2
1

)
-OT protocol that guarantees statistical security for one of the parties (sender or

receiver), one can construct a weakly-binding statistically-hiding commitment scheme in a fully-
black-box manner while preserving the number of rounds. For the explicit reduction from a sta-
tistically protected sender see [13], and the reduction from a statistically protected receiver follows
similar lines.14 Thus, by combining this with our result, we obtain the following corollary:

Corollary 7.3. Any O(n)-security-parameter-expanding fully-black-box construction of a
(
2
1

)
-OT

protocol that guarantees statistical security for one of the parties from a family of trapdoor permu-
tations has Ω

(
n

log n

)
communication rounds.

We stress that there exist constructions of semi-honest receiver
(
2
1

)
-OT protocols, relying on

specific number-theoretic assumptions, where the sender enjoys statistical security with a constant
number of rounds (e.g., Aiello et al. [1] and Naor and Pinkas [47]). Hence, as for statistical com-
mitments, we demonstrate a large gap between the round complexity of OT constructions based on
general assumptions and OT constructions based on specific number-theoretic assumptions.
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