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ABSTRACT

We propose a novel method for detecting and enhancing spec-
ular highlights from a video sequence, thereby obtaining a
better visual perception of the specularity. To this end, we
first generate a specularity map, defined over the space-time
domain, by leveraging information provided by the tempo-
ral acquisition. We then amplify the highlights in each video
frame to create the visual sensation of high dynamic range
data. Results are illustrated on several videos taken under dif-
ferent acquisition scenarios.

Index Terms— Image and video processing and enhance-
ment, Feature extraction, Image and video representation and
rendering.

1. INTRODUCTION

Specular highlights in images or videos result from the
mirror-like reflection of incident light on a surface. Because
highlights often appear as saturated areas (or areas where
the object intrinsic spectral reflectance properties disappear
under the specularity), they can cause vision algorithms for
segmentation, shape from shading, or motion estimation, to
produce erroneous results. For this reason, highlight removal
approaches have been introduced since the early years of
image processing and computer vision [1]. More recently,
it has been shown that the presence of highlights or direct
light sources can be exploited advantageously to enhance the
visual quality of the images/videos, or to produce High Dy-
namic Range data from single-exposure Low Dynamic Range
inputs [2, 3, 4, 5].

The contribution of this paper is twofold: (i) we propose
to estimate the specularity amplitude (‘degree’ of highlight)
at each pixel of the video, without hard thresholding ; this
differs from previous approaches that mostly detect the high-
lights/light sources as the brightest points/regions in the im-
age/video [6, 4]; (ii) we magnify the resulting specularity
map using a simple sigmoid function. Though this choice is
a priori heuristic, it enables the enhancement of local contrast
around strong highlights, conveying a better visual perception
of the specularity.

2. RELATED WORK

Specular highlight detection from multiple images.
Multi-illuminants (multi-polarisation, multi-flash, multi-

frequency), static camera. Nayar et al. [7] proposed a tech-
nique for separating the specular and the diffuse component
of reflection from images, using color and polarisation infor-
mation simultaneously. In [8], Feris et al. use a multi-flash
camera to take multiple pictures of the scene, each with a dif-
ferently positioned light source (flash).

Multi-views (stereo-like), single illuminant. Lee et al. [1]
developed an algorithm based on the observation that the dif-
fuse component of colour image irradiance does not change
depending on viewing directions, while the specular reflection
does change. The spectral differencing detects specularities
by pixelwise colour differences. Extending this work, Lin
et al. [9] proposed a form of ‘color histogram differencing’
that utilizes the epipolar constraint from multi-baseline stereo
images. Recently, Yang [10], introduced a framework for si-
multaneous estimation of point correspondence and specular
reflection from pairs of stereo images. A general survey on
specularity removal techniques can be found in [11].

Inverse Tone Mapping Operators.
Rempel et al. [2] introduced a LDR to HDR algorithm

for real-time processing of images and video streams. The
approach is based on a brightness enhancement function, that
enables to expand the range of bright/saturated areas (detected
by thresholding), locally and in a non-linear way. Similarly,
Banterle et al. [4] propose combining a global inverse tone
mapping algorithm with a local expansion map. It makes it
possible to boost bright regions in the image without affecting
darker regions. The processing can be performed in spatial
and temporal domains to avoid possible temporal flickering
in videos. The system proposed by Didyk et al. [12] consists
of classifying clipped (saturated) regions as lights, reflection
or diffuse surfaces, using a semi-automatic classifier; it then
enhances each class of objects differently. Application is to
video sequences.

The assumptions underlying to most algorithms cited
above pose limitations on the applicable domains of the ob-
jects and illumination. One of the main motivations of the
present research is to develop a model applicable to more
general conditions, leveraging temporal information.



3. IMAGE FORMATION MODEL AND BASIC
ASSUMPTIONS

3.1. Shafer’s reflection model

The dichromatic model for dielectric objects (such as plastic,
acrylics, hairs, etc.) models the light reflected from an object
as a linear combination of diffuse and specular reflectance as
follows [13]:

J(p) = D(p) + S(p) ∀p ∈ Ω. (1)

J = {Jc}, D = {Dc}, S = {Sc} ∈ R+,∀c ∈ {r, g, b}, are
respectively the observed irradiance function, the diffuse re-
flectance function and the specular reflectance function; p =
(x, y) ⊂ Ω is a pixel in the image.

• The diffuse term (or body component) follows Lambert’s
law and characterizes the object’s spectral properties. It is
usually modelled as a product between the object albedo
(or intrinsic image), R, and the incident illuminant L =
{Lc}: Dc(p) = md(p)Rc(p)Lc(p),∀c ∈ {r, g, b}. The
weighting scalar md(p) is function of the incident light di-
rection and the surface normal at p [14].

• The specular term (or interface reflectance) is associated
with the directional reflection of the incident light beam
hitting the object’s surface. It is commonly assumed that
its spectral distribution is identical to the spectral distri-
bution of the incident light [13], hence can be expressed:
Sc(p, t) = ms(p, t)Lc,∀c ∈ {r, g, b}, where ms(p)
varies as an exponential law with the angle formed be-
tween the surface normal and the view angle [15].

If the global incident light source is white and uniform in
time and space, L(p, t) = L = (1, 1, 1), Shafer’s model, for
a time series, becomes:

J(p, t) = D(p, t) +m(p, t) I3×1 ∀p ∈ Ω(t), (2)

∀t ∈ V, where V = {t1, ..tn} denotes the time sequence,
and I3×1 is a unit vector of length three; m(p, t) = ms(p, t)
is the amplitude of the specularity at point (p, t). Equation (2)
is the image formation model under a white illuminant.

3.2. Assumptions

White global illuminant. For input images or videos that
exhibit a certain color cast, white balance correction can be
applied using existing techniques [16]. Most diffuse-specular
separation algorithms from single images based on Shafer’s
model make a similar assumption [17].

Uniform body refectance over time. For a fixed physical
point P of the 3D world projected to p in frame Ω(t), and to
p + ∆p in frame Ω(t+∆t), where ∆t is a small increment of

time, its diffuse component D does not change under constant
illumination:

D(p, t) = D(p + ∆p, t+ ∆t). (3)

This assumption was used by Lee et al. [1] and related work.
It is likely to hold in any situations where the camera/viewer
is in motion, while the light source and objects in the scene
are static (since D(p) is camera position independent). We
will show that, experimentally, it is also a reasonable assump-
tion in scenes where light sources are moving.

Known displacement ∆p. We compute the motion field
from frame to frame, ∆p(p, t), using optical flow tech-
nique [18] ; we use this flow as a ‘true displacement’. Frame
to frame motion is assumed to be reasonably small. Alterna-
tively, in [9], the authors estimate point correspondance from
stereo.

4. SPECULARITY MAP

The first step is to estimate a specularity map, defined over
the entire video domain.

4.1. Formulation

From equations (2) and (3), the total derivative of the irradi-
ance, for each channel c, may be expressed as:

Jc(p + ∆p, t+ ∆t)− Jc(p, t) (4)
= m(p + ∆p, t+ ∆t)−m(p, t).

The diffuse term has cancelled out due to property (3). This
equation expresses that changes in the observed irradiance
of a given object tracked over time, originate from the vari-
ation in amplitude of the specular component reflected by
this object. Note that m is achromatic, i.e. independent of
channels c. We will show how to estimate the scalar field
m : Ω×V→ [0, 1], m ⊂ C1.

4.2. Integration

We first derive a solution when objects in the scene and
camera are static (∆p = 0), while the light source(s)
change [19, 7, 8]. We then generalise to ∆p 6= 0 [9, 10].

Case 1 (static camera/object): ∆p = 0
We can treat p = const as a parameter of J() and m(),
now functions of a single variable t. If we approximate lo-
cal derivatives by finite differences, then equation (4) writes:

dm(t)

dt
=
dJc(t)

dt
∀t ∈ V , (5)

with ∆t = 1. The analytical solution of this first order ODE
is trivially given by : m(p, t) = J(p, t) + C(p). From initial



conditions at t = t0, the constant term writes: C(p) =
m(p, t0) − J(p, t0) = −D(p). The time-independent
term D(p) can be approximated as the image with small-
est specularity amplitude over the time sequence: because
mint J(p, t) = D(p) + mintm(p, t) with 0 ≤ m(p, t) ≤ 1,
we can define D̃(p) , mint J(p, t) (which is not necessarily
the ‘true’ diffuse image). Hence :

m(p, t) = Jc(p, t)−min
t
Jc(p, t) ∀c ∈ {r, g, b}. (6)

Case 2 (objects/camera motion) : ∆p = ∆p(p, t)
In a general situation, we can reduce the problem to a 1D case.
Applying change of variable X = (p, t), and again, approxi-
mating finite difference by derivative, equation (4) becomes:

dm(X)

dX
∆X =

dJc(X)

dX
∆X. (7)

Here df
dX is the directional derivative of f along ∆X =

(∆p,∆t) for ∆X→ 0.
The integration, from X0 = (p(t0), t0) to X, on both

sides of equation (7), again leads to:

m(X) = m(X−∆X) + ∆Jc(X−∆X)

= Jc(X)−D0,c ∀c ∈ {r, g, b}, (8)

with D0,c = Jc(X0)−m(X0).
To estimate m0 = m(X0), we proceed in two steps:

(i) forward integration is first performed from t0 to tn by set-
ting m0 = 0; at each time frame t, the estimated specularity
is clipped so that 0 ≤ m(p, t) ≤ 1; this process ensures that
mintm(p(t), t) ≥ 0; (ii) backward integration, from tn to t0,
is then applied, using for initialisation m(p, tn),∀p ∈ Ω(tn).
The values m(p, tn) are likely to be a correct estimation of
the true specularity amplitude at tn, enabling the computation
of the correct offset Dn,c; hence, integration from tn to t0
will furnish the final specularity map.

5. AMPLIFICATION

We amplify the highlights in each video frame to create the
visual sensation of high dynamic range data.

Video amplification. We blend an enhanced specular map
with the original input video, frame by frame. Our image
composition rule applies as follows:

J̃(p, t) = D(p, t) + m(p, t) (k + α gβ,θ(mp,t)) I3×1

with gβ,θ(x) = 1/(1 + exp−β(x−θ)),

where J̃ is the output enhanced video. Parameter α controls
the magnitude of amplification, β is related to the relative rate
of growth of g(), θ is a threshold above which the signal x is
amplified, under which it is attenuated; and k ∈ {0, 1}.

Spatial and Temporal filtering. For sequences with cam-
era or object motion (case 2), we apply bilateral filtering to
the specular map computed from equation (8). The filtering
is applied, in space domain, at each time step t, using the
input frame as a guiding image. This process enables the re-
moval/reduction of spurious detections due to possible noise
or incorrect displacement estimation from optical flow. In
‘static’ videos (case 1), we instead remove specularity com-
ponents of high temporal frequency, by applying a low pass
filter in the Fourier space. In both cases, the filtering is ap-
plied prior to highlight amplification.

6. EXPERIMENTAL RESULTS

We applied our approach on several data sequences acquired
under three different conditions: static scene and dynamic
light source (case 1), camera motion and static light source
(case 2), camera motion and object motion with uncontrolled
illumination conditions. The video sequences were captured
with a high definition video camera (Panasonic HD-TM 700),
at 60 frames per second and 1920×1080 pixels resolution.

The input video frames are first linearised by applying
gamma correction, with γ = 2.2, then white balance is per-
formed. For display, the enhanced videos after amplification
J̃, are clipped to one.

We illustrate here three results. Illustrations are best
viewed in full resolution (zoom). In Figure 1, top left and
right, are respectively one representative frame of the input
sequence (total of 60 frames), and the reconstructed frame
with enhanced highlights (with α = 4, β = 10, θ = 0.1).
The time-cumulative specularity map is shown on bottom
row. Note in particular the enhanced reflection of the light
in the window. Figure 2 illustrates, on left side, a frame of
an input sequence (60 frames), taken under fixed point light
source, while the camera is moving (translation motion).
The coffee bag and tea box have localised highlights which
appear more shiny on the enhanced frames (right image ;
α = 8, β = 30, θ = 0.1). Figure 3 illustrates five temporal
frames extracted from a video sequence (total 30 frames) at
regular interval, where people and camera are in motion. The
bottom row show the result of specular highlight amplifica-
tion (α = 5, β = 20, θ = 0.2) used in conjunction with
content-aware video enhancement technique [20]. Highlight
are particularly noticeable on the ground.

7. CONCLUSION

In this work, we proposed a novel method to estimate and
enhance specular highlights from temporal sequences. We
illustrated results on several video sequences.
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Fig. 1. Top row left: One frame of a input video sequence (total length of 60 frames). Top row right: Enhanced video frame.
Bottom row: Time cumulative specular map.

Fig. 2. Left: One frame of a input video sequence (total length of 60 frames). Right: Enhanced video frame.

Fig. 3. Time frames extracted from a video (1,5,10,15,20). Top row: Input data. Bottom row: Specular highlight enhanced.



8. REFERENCES

[1] A. W. Lee and R. Bajcsy, “Detection of specularity us-
ing colour and multiple views,” Image and Vision Com-
puting, 1992.

[2] A. Rempel, M. Trentacoste, H Seetzen, H. D. Young,
W. Heidrich, L. Whitehead, and G. Ward, “Ldr2hdr:
On-the-fly reverse tone mapping of legacy video and
photograph,” in ACM Siggraph, 2007.

[3] L. Wang, L.Y. Wei, K. Zhou, B.N. Guo, and H.Y. Shum,
“High dynamic range image hallucination,” in Euro-
graphic Symposium on Rendering, 2007.

[4] F. Banterle, P. Ledda, and A. Chalmers, “Expanding low
dynamic range videos for hdr applications,” in SCCG,
2008.

[5] A. Yoshida, R. Mantiuk, K. Myszkowski, and H.P. Sei-
del, “Analysis of reproducing real-world appearance on
displays of varying range,” in Eurographics, 2006.

[6] L. Meylan, S. Daly, and S. Susstrunk, “Tone mapping
for hdr range display,” in Electronic Imaging, 2007.

[7] S.K. Nayar, X.S. Fang, and R. Boult, “Separation of
reflection components using color and polarization,” Int.
J. Comp. Vision, 1997.

[8] R. Feris, R. Raskar, K. Tan, and M. Turk, “Specular re-
flection reduction with multi-flash imaging,” Tech. Rep.,
Mitsubishi Electric Research Lab., 2004.

[9] S. Lin, Y.Z. Li, S.B. Kang, X. Tong, and H.Y. Shum,
“Diffuse-specular separation and depth recovery from
image sequences,” in ECCV, 2002.

[10] Q.X. Yang, S.N. Wang, and R.G. Yang, “A uniform
framework for estimating chromaticity, correspondence
and specular reflection,” IEEE TIP, 2011.

[11] A. Artusi, F. Banterle, and D. Chetverikov, “A survey
of specularity removal methods,” Computer Graphics
Forum, 2011.

[12] P. Didyk, R. Mantiuk, M. Hein, and H.P. Seidel, “En-
hancement of bright video features for hdr displays,” in
Eurographic Symposium on Rendering, 2008.

[13] S. Shafer, “Using color to separate reflection compo-
nents,” Color Research Applications, 1985.

[14] Y. Weiss, “Deriving intrinsic images from image se-
quences,” in ICCV, 2001.

[15] K.E. Torrance and E.M. Sparrow, “Theory for off-
specular reflection from roughened surfaces,” J. Opt.
Soc. Am, 1967.

[16] A. Gijsenij, T. Gevers, and J. van de Weijer, “Computa-
tional color constancy: survey and experiments,” IEEE
TIP, 2011.

[17] R. Tan and K. Ikeuchi, “Separating reflection compo-
nents of textured surfaces using a single image,” IEEE
PAMI, 2005.

[18] C. Liu, W.T. Freeman, E.H. Adelson, and Y. Weiss,
“Human-assisted motion annotation,” in CVPR, 2008.

[19] S.K. Nayar, G. Krishnan, M. D. Grossberg, and
R. Raskar, “Fast Separation of Direct and Global Com-
ponents of a Scene using High Frequency Illumination,”
ACM TOG, 2006.

[20] L. Kaufman, D. Lischinski, and M. Werman, “Content-
aware automatic photo enhancement,” Computer
Graphics Forum, 2012.


