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ABSTRACT

The communication cost of algorithms (also known as I/0O-
complexity) is shown to be closely related to the expansion
properties of the corresponding computation graphs. We
demonstrate this on Strassen’s and other fast matrix mul-
tiplication algorithms, and obtain the first lower bounds on
their communication costs. For sequential algorithms these
bounds are attainable and so optimal.

1. INTRODUCTION

The communication of an algorithm (e.g., transferring
data between the CPU and memory devices, or between
parallel processors, a.k.a. I/O-complexity) often costs sig-
nificantly more time than its arithmeti(Ef It is therefore
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of interest to obtain lower bounds for the communication
needed on the one hand, and to design and implement al-
gorithms minimizing communicatiorﬁ and attaining these
lower bounds on the other hand.

While Moore’s Law predicts an exponential speedup of
hardware in general, the annual improvement rate of time-
per-arithmetic-operation has, over the years, consistently
exceeded that of time-per-word read/write [GSP04]. The
fraction of running time spent on communication is thus ex-
pected to increase further.

Communication model.

We model communication costs of sequential and parallel
architecture as follows. In the sequential case, with two
levels of memory hierarchy (fast and slow), communication
means reading data items (words) from slow memory (of
unbounded size), to fast memory (of size M) and writing
data from fast memory to slow memory[ﬂ Words that are
stored contiguously in slow memory can be read or written
in a bundle which we will call a message. We assume that a
message of n words can be communicated between fast and
slow memory in time a4 Bn where « is the latency (seconds
per message) and [ is the inverse bandwidth (seconds per
word). We define the bandwidth cost of an algorithm to be
the total number of words communicated and the latency
cost of an algorithm to be the total number of messages
communicated. We assume that the input matrices initially
resides in slow memory, and is too large to fit in the smaller
fast memory. Our goal then is to minimize bandwidth and
latency costsE]

In the parallel case, we assume p processors, each with
memory of size M. We are interested in the communica-
tion among the processors. As in the sequential case, we
assume that a message of n consecutively stored words can

2Communication requires much more energy than arith-
metic, and saving energy may be even more important than
saving time.

3See |BDHS10a] for definition of a model with memory hi-
erarchy, and a reduction from the two levels model. All
bounds in this paper thus apply to the model with memory
hierarchy as well.

4The sequential communication model used here is some-
times called the two-level 1/O model or disk access machine

(DAM) model (see |AV88, [BBF07, [CR06]). Our band-
width cost model follows that of [HK81[ and [ITT04| in that
it assumes the block-transfer size is one word of data (B =1
in the common notation). However, our model allows mes-
sage sizes to vary from one word up to the maximum number
of words that can fit in fast memory.



be communicated in time « + Bn. This cost includes the
time required to “pack” non-contiguous words into a sin-
gle message, if necessary. We assume that the input is ini-
tially evenly distributed among all processors, so M - p is
at least as large as the input. Again, the bandwidth cost
and latency cost are the words and messages counts respec-
tively. However, we count the number of words and messages
communicated along the critical path as defined in [YMS§]
(i.e., two words that are communicated simultaneously are
counted only once), as this metric is closely related to the
total running time of the algorithm. As before, our goal is to
minimize the number of words and messages communicated.

We assume that (1) the cost per flop is the same on each
processor and the communication costs (« and () are the
same between each pair of processors, (2) all communication
is “blocking”: a processor can send/receive a single message
at a time, and cannot communicate and compute a flop si-
multaneously (the latter assumption can be dropped, affect-
ing the running time by a factor of two at most), and (3)
there is no communication resource contention among pro-
cessors. For example, if processor 0 sends a message of size
n to processor 1 at time 0, and processor 2 sends a message
of size n to processor 3 also at time 0, the cost along the
critical path is a + On. However, if both processor 0 and
processor 1 try to send a message to processor 2 at the same
time, the cost along the critical path will be the sum of the
costs of each message.

The Computation Graph and Implementations of an Al-
gorithm.

The computation performed by an algorithm on a given
input can be modeled as a computation directed acyclic
graph (CDAG) : We have a vertex for each input / in-
termediate / output argument, and edges according to di-
rect dependencies (e.g., for the binary arithmetic operation
x := y+2z we have a directed edge from v, to v, and from v,
to vy, where the vertices v,, vy, v. stand for the arguments
z,y, z, respectively).

An implementation of an algorithm determines, in the
parallel model, which arithmetic operations are performed
by which of the p processors. This corresponds to partition-
ing the corresponding CDAG into p parts. Edges crossing
between the various parts correspond to arguments that are
in the possession of one processor, but are needed by an-
other processor, therefore relate to communication. In the
sequential model, an implementation determines the order
of the arithmetic operations, in a way that respects the par-
tial ordering of the CDAG (see Section [3| relating this to
communication cost).

Implementations of an algorithm may greatly vary in their
communication costs. The I/O-complezity of an algorithm is
the minimum bandwidth cost of the algorithm, over all pos-
sible implementations. The I/O-complexity of a problem is
defined to be the minimum I/O-complexity of all algorithms
for this problem.

There are quite a few I/O-complexity lower and upper
bounds of specific algorithms (see below). These are results
of the form: any implementation of algorithm Alg requires
at least X communication (or: there is an implementation
for algorithm Alg that requires at most X communication).
However, we are not aware of 1/O-complexity lower bounds
for a problem, i.e., of the form: any algorithm for a problem
P requires at least X communication. The lower bounds

in this paper are for all the implementations for a family of
algorithms: Strassen—likeﬂ fast matrix multiplication.

Previous Work.

Consider the classical ©(n®) algorithm for matrix multi-
plication. While naive implementations are communication
inefficient, communication-minimizing sequential and paral-
lel variants of this algorithm were constructed, and proved
optimal, by matching lower bounds |[Can69} HK81, [FLPR99,
ITT04).

In [BDHS10a, BDHS10b| we generalize the results of [HK81),
ITT04] regarding matrix multiplication, to obtain new I/O-
complexity lower bounds for a much wider variety of algo-
rithms. Most of our bounds are shown to be tight. This
includes algorithms for LU factorization, Cholesky factor-
ization, LDLT factorization, QR factorization, as well as al-
gorithms for eigenvalues and singular values. Thus we essen-
tially cover all direct methods of linear algebra. The results
hold for dense matrix algorithms (most of them have O(n?)
complexity), as well as sparse matrix algorithms (whose run-
ning time depends on the number of non-zero elements, and
their locations). They apply to sequential and parallel al-
gorithms, to compositions of linear algebra operations (like
computing the powers of a matrix), and to certain graph
theoretic problem

In [BDHS10a, [BDHS10b| we use the approach of [ITT04],
based on the Loomis-Whitney geometric theorem [LW49|
BZ88|, by embedding segments of the computation process
into a three dimensional cube. This approach, however, is
not suitable when distributivity is used, as is the case in
Strassen [Str69] and other fast matrix multiplication algo-
rithms (e.g., [CW90, |CKSU05]).

While the I/O-complexity of classic matrix multiplication
and algorithms with similar structure is quite well under-
stood, this is not the case for algorithms of more complex
structure. Avoiding the communication of parallel classi-
cal matrix multiplication was addressed [Can69] almost si-
multaneously with the publication of Strassen’s fast matrix
multiplication [Str69]. Moreover, an I/O-complexity lower
bound for the classical matrix multiplication algorithm is
known for almost three decades [HK81]|. Nevertheless, the
I/O-complexity of Strassen’s fast matrix multiplication and
similar algorithms has not yet been resolved.

In this paper we obtain the first communication cost lower
bound for Strassen’s and other fast matrix multiplication al-
gorithm, in the sequential and parallel models. For sequen-
tial algorithms these bounds are attainable and so optimal.

Communication Costs of Fast
Matrix Multiplication

Upper bound.

The I/O-complexity IO(n) of Strassen’s algorithm (see Al-
gorithm[I]} Appendix[B]), applied to n-by-n matrices on a ma-
chine with fast memory of size M, can be bounded above as
follows (for actual uses of Strassen’s algorithm, see [DHSS94}
HLJJ" 96, [DS04]): Run the recursion until the matrices are
sufficiently small. Then, read the two input sub-matrices

®See Section ’3r| for definition.

5See [MPPO2[ for bounds on graph-related problems, and
our |BDHSI0b] for a detailed list of previously known and
recently designed sequential and parallel algorithms that at-
tain the above mentioned lower bounds.




into the fast memory, perform the matrix multiplication in-
side the fast memory, and write the result into the slow
memor We thus have IO(n) < 7-10 (%) + O(n®) and

10 (Y1) = O(M). Thus

10(n) = O ((\;‘M)lg? : M) . (1)

Lower bound.
In this paper, we obtain a tight lower bound:

THEOREM 1. (MAIN THEOREM) The I/O-complezity IO(n)
of Strassen’s algorithm on a machine with fast memory of
size M, assuming that no arithmetic operation is computed

twicd, is
10(n) = Q ((\/’;‘\7)@7 : M> . (2)

It holds for any implementation and any known variant of
Strassen’s algorith E This includes Winograd’s O(n'8 ")
variant that uses 15 additions instead of 18, which is the
most used fast matrix multiplication algorithm in practice
[DHSS94, [HLJJ ™96, [DS04].

For parallel algorithms, using a reduction from the sequen-
tial to the parallel model (see e.g., [[TT04] or our [BDHS10b])
this yields:

COROLLARY 2. Let I0(n) be the I/O-complexity of Strassen’s

algorithm, run on a machine with p processors, each with a
local memory of size M. Assume that no arithmetic opera-
tion is computed twice. Then

10(n) = Q((jj%)lg?-f).

Note that although recomputation is forbidden here, repli-
cation of the input is allowed. Specifically, for multiplying

matrices of maximum possible size (i.e., M = © ("Tf), a“2D

algorithm”) we have 10(n) = Q (712/p2_g

We can extend the bounds to a wider class of all Strassen-
like fast matrix multiplication algorithms. Let Alg be any
Strassen-like matrix multiplication algorithm that runs in
time O(n“?) for some 2 < wp < 3. Then, using the same
arguments that lead to , the I/O-complexity of Alg can

be shown to be IO(n) = O ((\/LM) ’ M) We obtain a

matching lower bound:

THEOREM 3. The I/O-complexity IO(n) of a recursive
Strassen-like fast matriz multiplication algorithm with O(n®°)

"Here we assume that the recursion tree is traversed in the
usual depth-first order.

8We assume no recomputation throughout the paper.
9This lower bound for the sequential case seems to contra-
dict the upper bound from FOCS’99 [FLPR99, BCG™08]),
due to a miscalculation [LeiO§].

1076 obtain the lower bounds for latency costs we divide the
bandwidth costs by the maximal message length, M. This
holds for all the lower bounds here, both in the sequential
and parallel models.

arithmetic operations, on a machine with fast memory of

size M is
10(n) = Q ((\/LM)WO -M) . (3)

COROLLARY 4. Let I0(n) be the I1/O-complezity of a
Strassen-like algorithm (with arithmetic performed as in The-
orem @), run on a machine with p processors, each with a
local memory of size M. Assume that no arithmetic opera-
tion is computed twice. Then

oo = () %)

For the “2D” case M = © (’;—2) we have I0O(n) = Q (1)2%)
Corollaries[2] and [f] can be generalized to other models, such
as the heterogenous model (where processors have different
memory sizes and communication and computation speeds),
and shared memory model. The reduction is achieved by ob-
serving the communication of a single processor.

The Expansion Approach

The proof of the main theorem is based on estimating the
edge expansion of the computation directed acyclic graph
(CDAG) of an algorithm. The I/O-complexity is shown to
be closely connected to the edge expansion properties of this
graph. As the graph has a recursive structure, the expansion
can be analyzed directly (combinatorially, similarly to what
is done in |[Mih89, |ASS08, KKK10|) or by spectral analysis
(in the spirit of what was done for the Zig-Zag expanders
|[RVWO02]). There is, however, a new technical challenge.
The replacement product and the Zig-Zag product act sim-
ilarly on all vertices. This is not what happens in our case:
multiplication and addition vertices behave differently.

The expansion approach is similar to the one taken by
Hong and Kung |[HK81]. They use the red-blue pebble
game to obtain tight lower-bounds on the I/O-complexity of
many algorithms, including ordinary matrix multiplication,
matrix-vector multiplication, and FFT. The proof is ob-
tained by showing that the size of any subset of the vertices
of the CDAG is bounded by a function of the size of its
dominator set.

On the one hand, their dominator set technique has the
advantage of allowing recomputation of any intermediate
value. We were not able to allow recomputation using our
edge expansion approach. On the other hand, the dominator
set requires large input or output. Such an assumption is
not needed by the edge expansion approach, as the bounds
are guaranteed by edge expansion of many (internal) parts
of the CDAG. In that regard, one can view the approach of
[ITT04] (also in [BDHS10a, BDHS10b|) as an edge expan-
sion assertion on the CDAGs of the corresponding classical
algorithms.

The study of expansion properties of a CDAG was also
suggested as one of the main motivations of Lev and Valiant
|LV83] in their work on superconcentrators. They point out
many papers proving that classes of algorithms computing
DFT, matrix inversion and other problems all have to have
good expansion properties, thus providing lower-bounds on
the number of the arithmetic operations required.

Other papers study connections between bounded-space
computation, and combinatorial expansion-related proper-



ties of the corresponding CDAG (see e.g., [Sav94, BP99,
BPDO00] and their references).

Paper organization.

Section [2] contains preliminaries on the notions of graph
expansion. In Section [3| we state and prove the connection
between I/O-complexity and the expansion properties of the
computation graph. In Section [d] we analyze the expansion
of the CDAG of Strassen’s algorithm. We present the gen-
eralization of the bounds to other fast matrix multiplication
algorithms, conclusions and open problems in Section

2. PRELIMINARIES

Edge expansion.

The edge expansion h(G) of a d-regular undirected graph
G=(V,E) is:

. |[EU, V\U)|
h(G) = —_ 4
@ veviuivis d- U] )

where E(A, B) = Eg(A, B) is the set of edges connecting
the vertex sets A and B. We omit the subscript G when the
context makes it clear.

Expansion of small sets.

For many graphs, small sets of vertices have better ex-
pansion guarantee. Let hs(G) denote the edge expansion
guarantee for sets of size at most s in G:

. EWU VAU
hs(G) = —_— . 5
RS i B 7 ©)
In many cases, hs(G) does not depend on |V (G)|, although
it may decrease when s increases. One way of bounding
hs(G) is by decomposing G into small subgraphs of large
edge expansion.

CLam 5. Let G = (V, E) be a d-regular graph that can
be decomposed into edge-disjoint (but not necessarily vertex
disjoint) copies of a d'-regular graph G' = (V',E’). Then
the edge expansion guarantee of G for sets of size at most
[V'|/2 is h(G") - %, namely

|EG(U7 |4 \ U

hivi (G) = PRI > o

= mi
2 UCV,|U|<IV!|/2

See proof in Appendix [A]

When G is not regular.

If G = (V, E) is not regular but has a bounded maximal
degree d, then we can add (< d) loops to vertices of degree
< d, obtaining a regular graph GE Note that for any
S €V, we have |Eg(S,V\S)| = |Eg/(S,V\S)|, as none of
the added edges (loops) contributes to the edge expansion
of G'.

3. I/O0-COMPLEXITY AND EDGE EXPAN-
SION

In this section we recall the computation graph of an al-
gorithm, then show how a partition argument connects the

"Here we use the convention that a loop adds 1 to the degree
of a vertex.

expansion properties of the graph and the I/O-complexity of
the algorithm. A similar partition argument already ap-
peared in [[TT04], and then in our [BDHS10b|. In both cases
it is used to relate I/O-complexity to the Loomis-Whitney
geometric bound [LW49], which can be viewed, in this con-
text, as an expansion guarantee for the corresponding graphs.

The computation graph.

For a given algorithm, we consider the computation (di-
rected) graph G = (V, E), where there is a vertex for each
arithmetic operation (AO) performed, and for every input
element. G contains a directed edge (u,v), if the output
operand of the AO corresponding to u (or the input element
corresponding to u), is an input operand to the AO corre-
sponding to v. The in-degree of any vertex of G is, there-
fore, at most 2 (as the arithmetic operations are binary).
The out-degree is, in general, unboundeﬂ i.e., it may be a
function of |V|. We next show how an expansion analysis of
this graph can be used to obtain the I/O-complexity lower
bound for the corresponding algorithm.

The partition argument.

Let M be the size of the fast memory. Let O be any total
ordering of the vertices that respects the partial ordering
of the CDAG G, i.e., all the edges are going from left to
right. This ordering can be thought of as the actual order
in which the computations are performed. Let P be any
partition of V into segments Si,S2, ..., so that a segment
S; € P is a subset of the vertices that are contiguous in the
total ordering O.

Let Rs and Wg be the set of read and write operands,
respectively (see Figure. Namely, Rs is the set of vertices
outside S that have an edge going into S, and Wy is the set
of vertices in S that have an edge going outside of S. Then
the total 1/O-complexity due to reads of AOs in S is at least
|Rs| — M, as at most M of the needed |Rs| operands are
already in fast memory when the execution of the segment’s
AOs starts. Similarly, S causes at least |Ws| — M actual
write operations, as at most M of the operands needed by
other segments are left in the fast memory when the exe-
cution of the segment’s AOs ends. The I/O-complexity is
therefore bounded below byE

0 > mgxsz;(|Rs|+\Ws\—2M). (6)
(S

Edge expansion and I/O-complexity .

Consider a segment S and its read and write operands Rg
and Wy (see Figure [1)). If the graph G containing S has
h(G) edge expansion*| maximum degree d and at least 2|S|

12 A5 the lower bounds are derived for the bounded out-degree
case, we will show how to convert the corresponding CDAG
to obtain constant out-degree, without affecting the I/0O-
complexity too much.

130ne can think of this as a game: the first player orders
the vertices. The second player partitions them into con-
tiguous segments. The objective of the first player (e.g., a
good programmer) is to order the vertices so that any con-
secutive partitioning by the second player leads to a small
communication count.

14The direction of the edges does not matter much for the
expansion-bandwidth argument: treating all edges as undi-



Figure 1: A subset (segment) S and its correspond-
ing read operands Rs, and write operands Ws.

vertices, then (using the definition of h(G)), we have
CLAIM 6. |Rs|+ [Ws| > 1. h(G)-|S] .

PRrROOF. We have |E(S,V \ S)| > h(G) - d - |S|. Either
(at least) half of the edges E(S,V \ S) touch Rs or half of
them touch Ws. As every vertex is of degree d, we have
|Rs| + [Ws| > max{|Rs|, [Ws|} > & -5 - |E(S,V\S)| >
h(G)-|S]/2. O

Combining this with @ and choosing to partition V into
V1

(@ — 2M) = Q(|V|-h(G)). In many cases h(G) is
too small to attain the desired I/O-complexity lower bound.
Typically, h(G) is a decreasing function in |V (G)|, namely
the edge expansion deteriorates with the increase of the in-
put size and with the running time of the corresponding
algorithm. This is the case with matrix multiplication algo-
rithms: the cubic, as well as the Strassen and Strassen-like
algorithms. In such cases, it is better to consider the expan-

|V'|/s segments of equal size s, we obtain: 10 > max,

s 2

sion of G on small sets only: 1O > maxg i, (M — 2M) .

Choosinﬂ the minimal s so that

@ > 3M (7)
we obtain

10 > % -M . (8)

In some cases, the computation graph G does not fit this

analysis: it may not be regular (with vertices of unbounded

degree), or its edge expansion may be hard to analyze. In

such cases, we may consider some subgraph G’ of G instead
to obtain a lower bound on the I/O-complexity :

CLAaM 7. Let G = (V, E) be a computation graph of an
algorithm Alg. Let G' = (V',E') be a subgraph of G, i.e.,
V' CVand E' CE. If G’ is d regular and oo = %, then
the I/O-complezity of Alg is

rected, changes the I/O-complexity estimate by a factor of 2
at most. For simplicity, we will treat G as undirected.
15The existence of an s that satisfies the condition is not
always guaranteed. In the next section we confirm this for
Strassen, for sufficiently large |V (G)| (in particular, |V (G)|
has to be larger than M). Indeed this is the interesting case,
as otherwise all computations can be performed inside the
fast memory, with no communication, except for reading the
input once.

« | |

where s is chosen so that %/)as >3M .

The correctness of this claim follows from Equations and
(8), and from the fact that at least an a/2 fraction of the
segments have at least § - s of their vertices in G’ (otherwise
V<% V/is-s+(1—-%)-V/s-%s < aV). We therefore
have:

LEMMA 8. Let Alg be an algorithm with AO(N) arith-
metic operations (N being the total input size, N = ©(n?)
for matriz multiplication) and computation graph G(N) =
(V,E). Let G'(N) = (V',E') be a regular constant degree

subgraph of G, with ‘VTl‘l = O(1). Then the I/O-complezxity of

Alﬂ on a machine with fast memory of size M is
IO:Q(\V'|~hS(G'(N))) for s =AO(M) . (10)

As AO(N) = O(|V']) and hs(G'(N)) for s = AO(M) is
O(h(G'(M))) (recall C’laim@ we obtain, equivalently,

10 = Q (AO(N) - h(G'(M))) . (11)

4. EXPANSION PROPERTIES OF
STRASSEN’S ALGORITHM

Recall Strassen’s algorithm for matrix multiplication (see
Algorithm (1] in Appendix and consider its computation
graph (see Figure. Let Hig » be the computation graph of
Strassen’s algorithm on input matrices of size n X n. Hign
has the following structure: encode A: generate weighted
sums of elements of A. Similarly encode B. Then multiply
the encodings of A and B element-wise. Finally, decode C,
by taking weighted sums of the products. This is the struc-
ture of all the fast matrix multiplication algorithms that
were obtained since Strassen’

Assume w.l.o.g. that n is an integer power of 2. Denote by
Encign A the part of Hig, that corresponds to the encoding
of matrix A. Similarly, Enciz» B, and Decig,C correspond
to the parts of His, that compute the encoding of B and
the decoding of C|, respectively.

Duplicate Dec,C 7% times. Duplicate Dec;C four times.
We next identify the 4 - 7% output vertices of the copies of
DeciC with the 4 - 7% input vertices of the copies of Dec;C.
Recall that each DeciC has four output vertices. The first
output vertex of the 7% Dec;C graphs are identified with
the 7" input vertices of the first copy of Dec;C. The second
output vertex of the 7% Dec;C graphs are identified with the
7% input vertices of the second copy of Dec;C. And so on.
We make sure that the jth input vertex of a copy of Dec;C
is identified with an output vertex of the jth copy of DeciC.

We similarly obtain Enc;+1A from Enc;A and Enci A
(and Enci+1B from Enc; B and EnciB). For every ¢, H; is
obtained by connecting edges from the jth output vertices
of Enc; A and Enc; B to the jth input vertex of Dec;C.

16Tn Strassen’s algorithm, N = 2n? is the number of input
matrices elements and T(N) = © (n*?) = © (NWO/Q). G
is the graph Dec;C for k = lgM, see Section [4 for the
definition of DeciC.

"Indeed, any fast matrix multiplication algorithm can be
converted into one of this form [Raz03].
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Figure 2: The computation graph of Strassen’s al-
gorithm (See Algorithm (1| in Appendix). Top left:
Dec,C. Top right: H;. Bottom left: Decj;,C. Bot-
tom right: Hyg,. Vertices drawn with in-degrees
larger than 2 indicate a (weighted) summation. A
vertex v with | incoming edges represents a full bi-
nary tree (not necessarily balanced) with root v and
[ leaves.

The graph DeciC has no vertices which are both input
and output, therefore:

FACT 9. DecignC is of mazimal degree 6.

However, Enci A and Enci B have vertices which are both
input and output (e.g., A11), therefore EncignA and Encig»B
have vertices of out-degree O(lgn). All in-degrees are at
most 2, as an arithmetic operation has at most two inputs.

As Hyg, contains vertices of large degrees, it is easier
to consider Deciz,,C: it contains only vertices of constant
bounded degree, yet at least one third of the vertices of Higp,
are in it.

LEMMA 10. (MAIN LEMMA) The edge expansion of DecyC

h(DeenC) = Q ((‘;) k)

See proof in Section [
Assume w.l.o.g. that n is an integer power of \/M Then
Decig C can be split into edge-disjoint copies of Dec% 1 O

8

Using Claim we thus deduce the expansion of Decig,C
on small sets:

COROLLARY 11. s-hs(DecignC) > 3M for s = 9.0M87/2,

As Decig ,C contains o = % of the vertices of Hig,, Lemma

now yields Main Theorem Note that Decig,,C has no in-
put vertices, so no restriction on input replication is needed.

Deci1C' is presented, for simplicity, with vertices of in-
degree larger than two (but constant). A vertex of de-
gree larger than two, in fact, represents a full binary tree.
Note that replacing these high in-degree vertices with trees
changes the edge expansion of the graph by a constant factor

18We may assume this, as we are dealing with a lower bound
here, so it suffices to prove the assertion for an infinite num-
ber of n’s. Alternatively, in the following decomposition
argument, we leave out a few of the top or bottom levels of

vertices of DecignC, so that n is an integer power of v M
and so that at most |S|/2 vertices of S are cut off.

at most (as this graph is of constant size, and connected).
Moreover, as there is no change in the number of input
and output vertices, the arguments in the following proof
of Lemma [I0] still hold.

Combinatorial Estimation of the Expansion.

ProoF ofF LEMMA Ol Let Gy, = (V, E) be Dec,C, and
let S CV,|S| < |V|/2. We next show that |[E(S,V \ S)| >

c-d-|S|- (%)k, where ¢ is some universal constant, and d is
the constant degree of DecyC' (after adding loops to make
it regular).

The proof works as follows. Recall that Gy is a layered
graph, so all edges (excluding loops) connect between con-
secutive levels of vertices. We argue (in Claim that each
level of G contains about the same fraction of S vertices,
or else we have many edges leaving S. We also observe (in
Fact that such homogeneity (of a fraction of S vertices)
does not hold between distinct parts of the lowest level, or,
again, we have many edges leaving S. We then show that
the homogeneity between levels combined with the hetero-
geneity of the lowest level, guarantees that there are many
edges leaving S.

Let I; be the ith level of vertices of G, so 4¥ = |I1| < |l2] <
< L] = AT < <l | = TR Let S; = SN
Let 0 = % be the fractional size of S and o; = ‘|‘ZSZ\| be the
fractional size of S in level ¢. Due to averaging, we observe
the following;:

FACT 12. There exist i and i’ such that o; < o < oy.

From the geometric sum, we now have:

Facrt 13.
k41 k41 4\
V= =3kl (7)
i=1 =1
4\ 7
T 1= 2 L
[T41] < (7) > 3
4\ * 4\F2\ 7
= (2) ‘- (1-(= L
7 7 3
I k 1 k
sod <l <2, 1,(;)“2’ and 2-(3)" <l <2-(3)"-

CLAIM 14. There exists ¢ = ¢/ (G1) so that |[E(S,V\S)N
E(ls, L) 2 ¢ - d - [6i] - L]

ProOOF. Let G’ be a G1 component connecting I; with
l;+1 (so it has four vertices in I; and seven in l;+1). G’ has
no edges in E(S,V \ S) if all or none of its vertices are in
S. Otherwise, as G’ is connected, it contributes at least one
edge to E(S,V \ S). The number of such Gi components
with all their vertices in S is at most min{c;, 41} - %.
Therefore, there are at least |o; — oiy1] - “4—” (G1 components
with at least one vertex in .S and one vertex that is not. [J

CrLAamM 15 (HOMOGENEITY BETWEEN LEVELS). If there
exists i so that ‘U%‘U” > L then

|B(S,V\S)|>c-d-|S|- (3)k

where ¢ > 0 is some constant depending on G1 only.



PRrROOF. Assume that there exists j so that lo Uajl > 1

Let 6; = o441 — 0s. By Claim [[4] we have

IE(S,VAS) = Y |ES,V\S)N Bl lis)]
i€ (k]

> Yo d 6]

i€ (k]

> ded- ] Y |
i€[k)

> c/-d-|l1|~ max o; — min o; | .
i€[k+1] i€[k+1]

lo—ojl - 1
By the initial assumption, there exists j so that —— > 5,

therefore max; o; —min; oy > 5, then |E(S, V\S)| > cd-d-

<. ByF?ctzc'.d.g (D V]2 > eed-|S|- (4)F,
foranycgf—o-%. 1

o

Let Tk be a tree corresponding to the recursive construc-
tion of Gy, in the following way (see Figure |3). T% is a tree
of height k + 1, where each internal node has four children.
The root r of T) corresponds to lry1 (the largest level of
Gr). The four children of r correspond to the largest levels
of the four graphs that one can obtain by removing the level
of vertices lx4+1 from Gk. And so on. For every node u of Tk,
denote by V., the set of vertices in G corresponding to wu.
We thus have |V,.| = 7% where 7 is the root of Ty, |V,,| = 7%7!
for each node u that is a child of r; and in general we have
4" tree nodes u corresponding to a set of size |V, | = 777+,
Each leaf I correspond to a set of size 1.

ll tl..O.......Q..
A b
lk+1 tk+l

Figure 3: The graph Gj; and its corresponding tree

Tk.

For a tree node u, let us define p, = ‘Slr‘}:/r‘ to be the
fraction of S nodes in V., and du = |pu — pp(u)|, Where p(u)
is the parent of u (for the root r we let p(r) =r). We let ¢;

be the ith level of T}, counting from the bottom, so ty4+1 is
the root and t; are the leaves.

Fact 16. As V, = lx41 we have pr = ory1. For a tree
leaf u € t1, we have |V,| = 1. Therefore p, € {0,1}. The
number of vertices u in t1 with p, =1 is o1 - |l1].

CLAIM 17. Let ug be an internal tree node, and let w1, uz, us, uq

be its four children. Then

ZlESV\S)mE(vu”vum > d- Z\pu, Puol - Vi |

where ¢’ = " (Gy).

ProOOF. The proof follows that of Claim Let G’ be
a G1 component, connecting Vi, with (J;cy Va, (so it has
seven vertices in V4, and one in each of Vi, ,Vi,, Vg, Viy)-
G’ has no edges in E(S, V'\ S) if all or none of its vertices are
in S. Otherwise, as G’ is connected, it contributes at least
one edge to E(S, V\S). The number of G; components with
all their vertices in S is at most min{pug, Pu; ;s Pus s Pusz» Pus } *

[Vauy |
—=. Therefore, there are at least max;ca){|puy — Pu;|} -

\Vzl\ > L.y ‘Puq puol + [Vu;]  G1 components with

at least one vertex in S and one vertex that is not. [

We have |E(S,V\S)| = ZuGTk |E(S, V\S)ﬂE(VmVp(u))L
By Claim (17} this is at least -, ¢” dt 1pu = Pp(w)| -
|VU| = d Ez‘e[k] ZuEt_i |pu - pp(u)‘ ST > -d-
Doick] e, [Pu = Pp(w)] 4! As cach internal node has
four children, this is ¢”-d-37, ., 3, c, o [Pu = o |, where
v ~ r is the path from v to the root r. This is at least
¢’ d-3 ;. |pu— prl, by the triangle inequality for |-|. B
Fact [16} it is > " -d - |l1]- ((1 — 01) pr+o1-(1—p.)). By
Claim [15} w.l.o.g., |ok41 — 0]/0 < & and |01 — 0|/0 < &
As pr = Opt1, |[E(S,V\S)| > 3. -d-|li| -0, and by Fact

2C'd'|5|'ﬁ%’g,foraunycg%c”

proof of Lemma

. This completes the

S.  CONCLUSIONS AND OPEN PROBLEMS

We obtained a tight lower bound for the I/O-complexity of
Strassen’s and Strassen-like fast matrix multiplication algo-
rithms. These bounds are optimal for the sequential model
with two memory levels and with memory hierarchy. The
lower bounds extend to the parallel model and other models.
We are not aware of matching upper bounds for the paral-
lel cases. However recently these bounds were attained by
2.5D parallel implementations for Strassen’s algorithm and
for Strassen-like algorithms [BDH™ 11].

Strassen-like Algorithms.

A Strassen-like algorithm has a recursive structure that
utilizes a base case: multiplying two no-by-no matrices using
m(no) multiplications. Given two matrices of size n-by-n, it
splits them into no-by-no blocks (each of size ——by——) and
works blockwise, according to the base case afgorlthm Ad-
ditions (and subtractlons) in the base case are interpreted
as additions (and subtractions) of blocks. These are per-
formed element-wise. Multiplications in the base case are in-
terpreted as multiplications of blocks. These are performed
by recursively calling the algorithm. The arithmetic count
of the algorithm is then T(n) = m(no) - T (%) + 0(n?),
so T'(n) = ©(n*°) where wo = log,, m(no). We further
demand that the DeciC is a connected graph.

This class includes Winograd’s variant of Strassen’s al-
gorithm [Win71], which uses 15 additions rather than 18,
but not the cubic algorithm, where Dec;C' is composed of
four disconnected graphs (corresponding to the four out-
puts). We conjecture that Dec;C is connected for all the
following fast matrix-multiplication algorithms

and they are all Strassen-like: [Pan80,[Bin80, |Sch81} [Rom82]
CW82| |Str87, (CW8T7], (see |[BCS97| for discussion of these
algorithms), as well as [CKSUO05|, where the base case uti-
lizes a novel group-theoretic approach.

To prove Theorem which generalizes the I/O-complexity



lower bound of Strassen’s algorithm (Theoreml[I]) to all Strassen-

like algorithms, we note the following:

The entire proof of Theorem[l} and in particular, the com-
putations in the proof of Lemma [10] hold for any Strassen-
like algorithm, where we plug in ng, m(ng), and m?gw in-
stead of 4,7, and %. For bounding the asymptotic I/O-
complexity , we do not care about the number of internal
vertices of Dec;C'; we need only to know that it is connected,
and to know the sizes ng and m(no). The only nontrivial
adjustment is to show the equivalent of Fact @ that the
Deciog nC graph is of bounded degree.

CrLAIM 18. The DeciognC graph of any Strassen-like al-
gorithm is of degree bounded by a constant.

ProoF. If the set of input vertices of Deci1C, and the set
of its output vertices are disjoint, then Deciog»C is of con-
stant bounded degree (its maximal degree is at most twice
the largest degree of DeciC).

Assume (towards contradiction) that the base graph Dec;C
has an input vertex which is also an output vertex. An out-
put vertex represents the inner product of two no-long vec-
tors. The corresponding bilinear polynomial is irreducible.
This is a contradiction, since an input vertex represents the
multiplication of a (weighted) sum of elements of A with a
(weighted) sum of elements of B. [J

Other Fast Matrix Multiplication Algorithms.

Another class of matrix multiplication algorithms, the uni-
form, non-stationary algorithms, allows mixing of schemes
of the previous (Strassen-like) class. In each recursive level,
a different scheme may be used. The CDAG has a repeat-
ing structure inside one level, but the structure may differ
between two distinct levels. This class includes, for exam-
ple, algorithms that optimize for input sizes, (for size that
is not an integer power of a constant integer). The class
also includes algorithms that cut the recursion off at some
point, and then switch to the classical algorithm. For these
and other implementation issues, see [DHSS94, HLJJ'96]
(sequential model) and |[DS04| (parallel model). The I/O-
complexity lower-bound generalizes to this class, and will ap-
pear in a separate note [BDHS11c].

A third class, the non-uniform, non-stationary algorithms,
allows recursive calls to have different structure, even when
they refer to multiplication of matrices in the same recur-
sive level. It is not clear how to analyze the expansion of
the CDAG of an algorithm in the third class, although we
are not aware of any algorithm in this class. Such an analy-
sis, applied to the base case of [CKSUO5|, may improve the
I/O-complexity lower bound by a (large) constant.

Multiplication of rectangular matrices have seen a series
of increasingly fast algorithms culminating in Coppersmith’s
algorithm [Cop97|. We suggest the first lower bounds of the
communication costs for these algorithms, and show that
in some cases they are attainable, and therefore optimal
[BDHS11b).

As fast matrix multiplication is a basic building block
in many fast algorithms in linear-algebra (e.g., LU, QR,
Sylvester equation) their I/O-complexity can in many cases
be determined using our approach [BDHS11a].

Other Algorithms, Other Hardware.

Our lower bounds, as well as most of the previous lower

bounds deal with linear algebra and numerical analysis algo-
rithmﬂ Our new approach, however, seems general enough
to address I/O-complexity lower bounds of other algorithms
(recall Lemma[g).

In many cases, the simplest recursive implementation of
an algorithm turns out to be communication optimal (e.g.,
in the cases of matrix multiplication [FLPR99] and Cholesky
decomposition |[AP00, BDHS10a], but not in the case of LU
decomposition |Tol97]). This leads to the question: when is
the communication optimality of an algorithm determined
by the expansion properties of the corresponding computa-
tion graphs? In this work we showed that such is the case
for Strassen-like fast matrix multiplication algorithms.

It is of great interest to construct new models general
enough to capture the rich and evolving design space of cur-
rent and predicted future computers. Such models can be
homogeneous, consisting of many layers, where the compo-
nents of each layer are the same (e.g., a supercomputer with
many identical multi-core chips on a board, many identical
boards in a rack, many identical racks, and many identical
levels of associated memory hierarchy); or heterogeneous,
with components with different properties residing on the
same level (e.g., CPUs alongside GPUs, where the latter can
do some computations very quickly, but are much slower to
communicate with).

Some experience has been acquired with such systems
(e.g., using GPU assisted linear algebra computation [VDO0S]).
A first step in analyzing such systems has been recently
introduced by Ballard, Demmel, and Gearhart [BDG11],
where they modeled heterogenous shared memory architec-
tures, such as mixed GPU/CPU architecture, and obtained
tight lower and upper bounds for O(n3) matrix multiplica-
tion.

However, there is currently no systematic theoretic way
of obtaining upper and lower bounds for arbitrary hardware
models. Expanding such results to other architectures and
algorithmic techniques is a challenging goal. For example,
recursive algorithms tend to be cache oblivious and commu-
nication optimal for the sequential hierarchy model. Finding
an equivalent technique that would work for an arbitrary ar-
chitecture is a fundamental open problem.
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APPENDIX

A. EXPANSION ESTIMATION BY GRAPH
DECOMPOSITION

DEFINITION 1 (GRAPH DECOMPOSITION). We say that
the set of graphs {G; = (Vi, Ei)}icpy s an edge-disjoint de-
composition of G = (V, E) if V=, Vi and E =4, E;.

PROOF. (of Claim [5) Let U C V be of size U < |V'|/2.
Let {Gi = (Vi, Ei)}iepy be an edge-disjoint decomposition
of G, where every G; is isomorphic to G’. Then
[Ec(U,VA\U)| = > |Ba (Ui, Vi\U:)| 2 Y h(Gi)-d - Uil
i€[l] i€[l]
WG -d Y U > h(G')-d - U]

i€l]

Therefore 7‘EG%’[‘J/|\U>‘ > (@) - %/ . O



B. STRASSEN’S FAST MATRIX

MULTIPLICATION ALGORITHM

Strassen’s original algorithm follows [Str69]. See [Win71] for
Winograd’s variant, which reduces the number of additions.

Algorithm 1 Matrix Multiplication: Strassen’s Algorithm

Input: Two n X n matrices, A and B.
1: if n =1 then

2:  Ch1=A4A11-Bnia
3: else
4: {Decompose A into four equal square blocks A =
A Ar
Az1 Az
and the same for B.}
5 My = (A1 + A22) - (Bi1 + Ba2)
6: My = (A2 + A2) - B
7 Mz = Ai1 - (Biz2 — Ba2)
8: My = Ay (B2 — Bn1)
9:  Ms = (A11+ Ai2) - B2
10: Mg = (A21 — A1) - (B11 + Bi2)
11: M7 = (A12 — Ag2) - (B21 + Ba2)
12:  Cy1 = My + My — Ms + M~
13:  Cia = M3z + Ms
14: Co1 = Ma + My
15: Caoa = My — Ma + Ms + Mg
16: end if

17: return C

See [DHSS94, |[HLJJ ' 96| [Bai88] for implementation issues of
Strassen’s algorithm.
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