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Abstract—A fundamental task in wireless communication is
channel estimation: Compute the channel parameters a signal
undergoes while traveling from a transmitter to a receiver. In
the case of delay-Doppler channel, i.e., a signal undergoes only
delay and Doppler shifts, a widely used method to compute
the delay-Doppler parameters is the matched filter algorithm.
It uses a pseudo-random sequence of length N, and, in case
of non-trivial relative velocity between transmitter and receiver,
its computational complexity is O(N2 logN). In this paper we
introduce a novel approach of designing sequences that allow
faster channel estimation. Using group representation techniques
we construct sequences, which enable us to introduce a new
algorithm, called the flag method, that significantly improves the
matched filter algorithm. The flag method finds m delay-Doppler
parameters in O(mN logN) operations. We discuss applications
of the flag method to GPS, and radar systems.

Index Terms—Channel estimation, time-frequency shift prob-
lem, fast matched filter, flag method, sequence design,
Heisenberg–Weil sequences, fast moving users, high-frequency
communication, radar, GPS.

I. INTRODUCTION

A
FUNDAMENTAL building block in many wireless

communication protocols is channel estimation: learning

the channel parameters a signal undergoes while traveling

from a transmitter to a receiver [17]. In this paper we de-

velop an efficient algorithm1 for delay-Doppler (also called

time-frequency) channel estimation. Our algorithm provides a

striking improvement over current methods in the presence of

high relative velocity between a transmitter and a receiver.

The latter scenario occurs in GPS, radar systems, mobile

communication of fast moving users, and very high frequency

(GHz) communication.

Throughout this paper we denote by H the vector space

of complex valued functions on the set of integers ZN =
{0, 1, ..., N − 1} equipped with addition and multiplication

modulo N. We assume that N is an odd prime number. The
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Fig. 1. Three paths scenario.

vector space H is endowed with the inner product

〈f1, f2〉 =
∑

n∈ZN
f1[n]f2[n],

for f1, f2 ∈ H, and referred to as the Hilbert space of (digital)

sequences. Finally, we define e(t) = e
2πi
N t, where i =

√
−1.

A. Channel Model

Let us start with the derivation of the discrete channel model

that we will consider throughout this paper. We follow closely

the works [13], [14], [15], [16]. The transmitter sends—see

Figure 1 for ilustration—an analog signal SA(t), t ∈ R, of

(two-sided) bandwidth W . While the actual signal is modu-

lated onto a carrier frequency fc �W, we consider a widely

used complex baseband model for the multipath channel. In

addition, we make the sparsity assumption on the finiteness of

the number of signal propagation paths. The complex baseband

analog received signal is (see Equation (14) in [14]) given by

RA(t) =

m∑
k=1

βk · exp(2πifkt) · SA(t− tk) +W(t), (I-A.1)

where m denotes the number of propagation paths, βk ∈ C
is the path coefficient, fk ∈ R is the Doppler shift, and tk ∈
R+ is the path delay associated with the k-th path, and W
denotes a random white noise. We assume the normalization∑m
k=1 |βk|

2 ≤ 1. The Doppler shift depends on the relative

speed between the transmitter and the receiver along the path,

and the delay encodes the distance between the transmitter and

receiver along the path. The parameter m will be called also

the sparsity of the channel. We will call

(βk, tk, fk), k = 1, ...,m, (I-A.2)
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Fig. 2. Illustration of the process allowing the discrete channel model.

the channel parameters, and the main objective of channel

estimation is to obtain them. We describe now a process—

see Figure 2 for illustration—allowing to reduce this task to

a problem for sequences. We start with a sequence S ∈ H,
and transmit the analog signal

SA(t) =

M−1∑
n=0

S[n mod(N)] · sinc(Wt− n),

where M ≥ N, and sinc(t) = sin(πt)/πt. To specify

the transmission interval, we denote by Ts the time spread

of the channel, i.e., Ts = max{tk}, and we define K =
dWTse ,where dxe is the ceiling function. We assume K ≤ N,
and we take M = N + K. Then the transmission time

of SA(t) is from t = 0 to t = M/W. At the receiver,

the discrete system representation is obtained by sampling

RA(t), satisfying (I-A.1), with sampling interval ∆t = 1/W
starting from time2 K/W. As a result, we obtain the following

sequence R ∈ H:

R[n] = RA ((K + n)/W ) , (I-A.3)

for n = 0, ..., N − 1. By a direct calculation we obtain the

following:

Proposition I-A.1: Assume that tk ∈ 1
W Z, and fk ∈ W

N Z,
k = 1, ...,m. Then the sequence R given by (I-A.3) satisfies

R[n] =

m∑
k=1

αk · e(ωkn) · S[K + n− τk] +W[n], n ∈ ZN ,

where αk = βk exp(−2πifkK/W ), τk = tkW , and ωk =
Nfk/W.

Remark I-A.2: Even if an actual delay tk or Doppler shift

fk do not exactly lie on the lattice, they can be well approx-

imated by a few discrete delay-Doppler shifts on the lattice

(see [16], Section II-A).

In the next section we formulate the mathematical problem

that we will solve in this paper, suggesting, according to

Proposition I-A.1, a method to compute the channel parame-

ters (I-A.2).

2We start to sample at time K/W in order to sense all the terms in Equation

(I-A.1) at the receiver.

B. Channel Estimation Problem

Consider sequences S,R ∈ H, where R is given by the

following formula:

R[n] =

m∑
k=1

αk ·e(ωkn)·S[n−τk]+W[n], n ∈ ZN , (I-B.1)

with αk ∈ C,
∑m
k=1 |αk|

2 ≤ 1, τk, ωk ∈ ZN , and W ∈ H
denotes a random white noise. For the rest of the paper we

assume that all the coordinates of the sequenceW are indepen-

dent, identically distributed random variables of expectation

zero. In analogy with the physical channel model described by

Equation (I-A.1), we will call αk, τk, ωk, k = 1, ...,m, path

coefficients, path delays, and Doppler shifts, respectively. The

objective is:

Problem I-B.1 (Channel Estimation): Design S ∈ H, and

an effective method of extracting the channel parameters

(αk, τk, ωk), k = 1, ...,m, from S and R satisfying (I-B.1).

Granting the solution of Problem I-B.1, we can compute the

channel parameters (I-A.2) using Proposition I-A.1.

Remark I-B.2 (Frequency Resolution): From Proposition

I-A.1, follows that the resolution of the frequency shifts

recognized by our digital method equals to W/N.

C. The GPS Problem

We would like to discuss an important example of channel

estimation. A client on the earth surface wants to know his/her

geographical location. The Global Positioning System (GPS) is

built to fulfill this task. Satellites send to earth their location—

see Figure 3 for illustration. For simplicity, the location of

Fig. 3. Satellites communicate location in GPS.

a satellite is modeled by a bit b ∈ {±1}. The satellite

transmits—for example using the scheme proposed in Section

I-A—to the earth its sequence S ∈ H of norm one multiplied

by its location b. We assume, for simplicity, that the sequence

travels through only one path (see Equation (1) in [1]). Hence,
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by the sampling procedure described in Section I-A, the client

receives the sequence R ∈ H of the form

R[n] = b ·α0 ·e(ω0n) ·S[n−τ0] +W[n], n ∈ ZN , (I-C.1)

where α0 ∈ C, |α0| ≤ 1, τ0, ω0 ∈ ZN , and W ∈ H is a

random white noise. Using τ0 we can compute the distance

from the satellite to the client3, assuming a line of sight

between them. The problem of GPS can be formulated as

follows:

Problem I-C.1 (GPS): Design S ∈ H, and an effective

method of extracting (b, τ0) from S and R satisfying (I-C.1).

In practice, the satellite transmits S = S1 + bS2, where

S1, S2 are almost orthogonal in some appropriate sense. Then

(α0, τ0, ω0), and (bα0, τ0, ω0) are computed using S1, and

S2, respectively, concluding with the derivation of the bit b.

D. The Time-Frequency Shift Problem

To suggest a solution to Problem I-C.1, and subsequently

to Problem I-B.1, we consider a simpler variant. Suppose the

transmitter and the receiver sequences S,R ∈ H are related

by

R[n] = e(ω0n) · S[n− τ0] +W[n], n ∈ ZN , (I-D.1)

where (τ0, ω0) ∈ ZN × ZN , and W ∈ H denotes a random

white noise. The pair (τ0, ω0) is called the time-frequency

shift, and the vector space V = ZN × ZN is called the time-

frequency plane. We would like to solve the following:

Problem I-D.1 (Time-Frequency Shift (TFS)): Design

S ∈ H, and an effective method of extracting the time-

frequency shift (τ0, ω0) from S and R satisfying (I-D.1).

E. The Matched Filter Algorithm

A classical solution to Problem I-D.1, is the matched filter

algorithm [5], [7], [8], [10], [17], [18], [19]. We define the

following matched filter matrix4 of R and S:

M(R,S)[τ , ω] = 〈R[n], e(ωn) · S[n− τ ]〉 , (τ , ω) ∈ V.

For R and S satisfying (I-D.1), the law of the iterated

logarithm implies that, with probability going to one, as N
goes to infinity, we have

M(R,S)[τ , ω] (I-E.1)

= ζ0 · M(S, S)[τ − τ0, ω − ω0] + εN ,

where ζ0 = e(ωτ0−τω0), |εN | ≤
√

2 log logN/
√
N · SNR,

with SNR denotes the signal-to-noise ratio5.

Remark I-E.1 (Noise Assumption): For the rest of the pa-

per we assume, for simplicity, that SNR ≥ 2 log logN, i.e.,

|εN | ≤ 1/
√
N in (I-E.1).

3Since we work modulo N , the distance can be found modulo N
W
c, where

W is the bandwidth, and c is the speed of light.
4The matched filter matrix is called ambiguity function in radar theory.
5We define SNR = 〈S, S〉 /V ar(W).

In order to extract the time-frequency shift (τ0, ω0), it is

“standard"6 (see [5], [7], [8], [10], [17], [18], [19]) to use

pseudo-random sequence S ∈ H of norm one. In this case

M(S, S)[τ − τ0, ω − ω0] = 1 for (τ , ω) = (τ0, ω0), and

bounded by C/
√
N, C > 0, if (τ , ω) 6= (τ0, ω0). Hence, with

probability going to one, as N goes to infinity, we have

M(R,S)[τ , ω] =

{
1 + εN , if (τ , ω) = (τ0, ω0);
εN , if (τ , ω) 6= (τ0, ω0),

(I-E.2)

where |εN | ≤ 1/
√
N , and |εN | ≤ (C + 1)/

√
N.

Fig. 4. |M(R,S)| with pseudo-random S, and (τ0, ω0) = (50, 50).

Identity (I-E.2)—see Figure 4 for a demonstration—

suggests the following “entry-by-entry" solution to TFS prob-

lem: Compute the matrix M(R,S), and choose (τ0, ω0)
for which M(R,S)[τ0, ω0] ≈ 1. However, this solution of

TFS problem is expensive in terms of arithmetic complexity,

i.e., the number of multiplication and addition operations is

O(N3). One can do better using a “line-by-line" computation.

This is due to the following observation:

Remark I-E.2 (FFT): The restriction of the matrix

M(R,S) to any line7 (not necessarily through the origin)

in the time-frequency plane V, is a certain convolution—for

details see Section V—that can be computed, using the fast

Fourier transform8 (FFT), in O(N logN) operations.

As a consequence of Remark I-E.2, one can solve TFS

problem in O(N2 logN) operations.

F. The Fast Matched Filter Problem

To the best of our knowledge, the “line-by-line" computa-

tion is also the fastest known method [11]. If N is large this

may not suffice. For example, in applications to GPS [1], as

in Problem I-C.1 above, we have N ≥ 1000. This leads to the

following:

6For example in spread-spectrum communication systems.
7In this paper, by a line through the origin we mean all scalar multiples

L = {au; a ∈ ZN} of a fixed non-zero vector u ∈ V. In addition, by a line

we mean a subset of V of the form L+ v, where L is a fixed line through

the origin, and v ∈ V is a fixed vector.
8The Rader algorithm [12] provides implementation of the FFT for se-

quences of prime length.
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Fig. 5. |M(R,SL)| for a flag SL with L = {(0, ω)}, and (τ0, ω0) =
(50, 50).

Problem I-F.1 (Fast Matched Filter): Solve the TFS prob-

lem in almost linear complexity.

Note that computing one entry in M(R,S) already takes

O(N) operations.

G. The Flag Method

We introduce the flag method to propose a solution to

solve the TFS problem with algorithm which reduces the

computational complexity from O(N2 logN) to O(N logN)
operations. The idea is to use a new set of sequences, which

enable, first, to find a line on which the time-frequency shift

is located, and, then, to search on the line to find the time-

frequency shift. With each line L through the origin in V, we

associate sequence SL ∈ H of norm one, that we call flag.

Since there are N+1 lines through the origin in V , we obtain

N + 1 different flag sequences. Each flag sequence satisfies—

see Figure 5 for illustration—the following “flag property"9:

For a sequence R given by (I-D.1) with S = SL, we have

with probability going to one, as N goes to infinity,

M(R,SL)[τ , ω] (I-G.1)

=

 1 + εN , if (τ , ω) = (τ0, ω0);
1
2 + εN , in |·| if (τ , ω) ∈ L′ r (τ0, ω0);
εN , if (τ , ω) ∈ V r L′,

where |εN | ≤ 1/
√
N, |εN | ≤ 5/

√
N, |·| denotes absolute

value, and L′ is the shifted line L + (τ0, ω0). In addi-

tion10, the flag sequences will satisfy the following “almost

orthogonality" property: If L,M are two different lines, then

|M(SL, SM )[τ , ω]| ≤ 3/
√
N, for every (τ , ω) ∈ V. \

As a consequence of Equation (I-G.1), we can apply the

Flag Algorithm, as described below, to solve the matched

filter problem, with probability going to one as N goes to

infinity. The complexity of the flag algorithm—see Figure 6

for a demonstration—is O(N logN), using FFT. This com-

pletes our solution of Problem I-F.1—The Fast Matched Filter

Problem.

9In linear algebra, a pair (`0, L) consisting of a line L ⊂ V, and a point

`0 ∈ L, is called a flag.
10This is important in various real-world applications, e.g., in GPS, radar,

and CDMA communication.

The Flag Algorithm

Input. The line L ⊂ V , and SL, R as in (I-D.1).

Output. The time-frequency shift (τ0, ω0).

Step 1. Choose a line L⊥ transversal to L.

Step 2. Compute M(R,SL) on L⊥, and find (τ , ω)
such that ||M(R,SL)[τ , ω]| − 1/2| ≤ 5/

√
N , i.e., (τ , ω) on

the shifted line L+ (τ0, ω0).

Step 3. Compute M(R,SL) on L + (τ0, ω0), and find

(τ , ω) such that |M(R,SL)[τ , ω] − 1| ≤ 1/
√
N , i.e.,

(τ0, ω0) = (τ , ω).

Fig. 6. Diagram of flag algorithm.

H. Solution to the GPS and Channel Estimation Problems

Let L ⊂ V be a line through the origin.

Definition I-H.1 (Genericity): We say that the points

(τk, ωk) ∈ V, k = 1, ...,m, are L-generic if no two of them

lie on a shift of L, i.e., on L+ v, for some v ∈ V.
Looking back to Problem I-B.1, we see that, under generic-

ity assumption, the flag method provides a fast computation,

in O(mN logN) operations, of the channel parameters of

channel with sparsity m. In particular, it calculates the GPS

parameters—see Problem I-C.1—in O(N logN) operations.

Indeed, Identity (I-G.1), together with bilinearity of inner

product, implies that

αk ≈M(R,SL)[τk, ωk], k = 1, ...,m,

where R is the sequence (I-B.1), with S = SL, assuming that

(τk, ωk)’s are L-generic. So we can adjust the flag algorithm

as follows:

• Compute M(R,SL) on L⊥. Find all (τ , ω)’s such that

|M(R,SL)[τ , ω]| is sufficiently large, i.e., find all the

shifted lines L+ (τk, ωk)’s.

• Compute M(R,SL) on each line L+ (τk, ωk), and find

(τ , ω) such that |M(R,SL)[τ , ω]| is maximal on that line,

i.e., (τ , ω) = (τk, ωk) and αk ≈M(R,SL)[τk, ωk].

Figure 7 provides a visual illustration for the matched filter

matrix in three paths scenario. This completes our solutions
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Fig. 7. |M(R,SL)| , for L = {(0, ω)}, and (αk, τk, ωk) =
( 1√

3
, 50k, 50k), k = 1, 2, 3.

of Problem I-B.1—The Channel Estimation Problem, and of

Problem I-C.1—The GPS Problem.

I. Applications to Radar

The model of radar works as follows [10]. A radar

transmits—see Figure 8 for illustration—a sequence S ∈ H
which bounces back from m targets. Using the sampling

procedure described in Section I-A, the radar receives as an

echo the following sequence R ∈ H:

R[n] =

m∑
k=1

αk · e(ωkn) · S[n− τk] +W[n], n ∈ ZN ,

where αk ∈ C,
∑m
k=1 |αk|

2 ≤ 1, ωk ∈ ZN encodes the radial

velocity of target k with respect to the radar, τk ∈ ZN encodes

the distance between target k and the radar, andW is a random

white noise.

In order to determine the distances to the targets, and their

relative radial velocities with respect to the radar, we need to

solve the following:

Problem I-I.1 (Radar): Having R and S, compute the pa-

rameters (τk, ωk), k = 1, ...,m.

This is a particular case of the channel estimation problem.

Under the genericity assumption, the flag method solves it in

O(mN logN) operations.

Remark I-I.2 (Velocity Resolution): From Remark I-B.2,

follows that larger N used by the radar implies better res-

olution of recognized radial velocities of the targets.

J. What you can find in this paper

• In the Section I: You can read about the derivation

of the discrete delay-Doppler channel model, and the

flag method for effective channel estimation. In addition,

concrete applications to GPS, and radar are discussed.

• In Section II: You can find the definition and explicit

formulas for the Heisenberg and Weil operators. These

operators are our basic tool in the development of the flag

method, in general, and the flag sequences, in particular.

Fig. 8. Radar transmits wave and recieves echo.

• In Section III: You can see the design of the Heisenberg–

Weil flag sequences, using the Heisenberg–Weil opera-

tors, and diagonalization techniques of commuting op-

erators. In addition, the investigation of the correlation

properties of the flag sequences is done in this section.

These properties are formulated in Theorem III-C.1,

which guarantees applicability of the Heisenberg-Weil

sequences to the flag method.

• In Section IV: You can get explicit formulas for large

collection of the Heisenberg–Weil flag sequences. In par-

ticular, these formulas enable to generate the sequences

using low complexity algorithm.

• In Section V: You can find the formulas that suggest fast

computation of the matched filter matrix on any line in

the time-frequency plane. These formulas are of crucial

importance for the effectiveness of the flag method.

• In Section VI: You can find needed proofs and justifica-

tions for all the claims and formulas that appear in the

body of the paper.

II. THE HEISENBERG AND WEIL OPERATORS

The flag sequences (see Section I-G) are defined, con-

structed and analyzed using two special classes of operators

that act on the Hilbert space of sequences. The first class

consists of the Heisenberg operators and is a generalization

of the time-shift and frequency-shift operators. The second

class consists of the Weil operators and is a generalization of

the discrete Fourier transform. In this section we recall the

definitions and explicit formulas of these operators.

A. The Heisenberg Operators

The Heisenberg operators are the unitary transformations

that act on the Hilbert space of sequences by{
π(τ , ω) : H → H, τ , ω ∈ ZN ;

[π(τ , ω)f ][n] = e(−2−1τω) · e(ωn) · f [n− τ ],
(II-A.1)

where f ∈ H, n ∈ ZN , and for the rest of this paper we use

2−1 to denote N+1
2 which is the inverse of 2 modulo N.
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B. The Weil Operators

Consider the discrete Fourier transform
DFT : H → H,

[DFT (f)][n] = 1√
N

N−1∑
k=0

e(−nk) · f [k],

for every f ∈ H, n ∈ ZN . It is easy to check that the DFT
satisfies the following N2 identities:

DFT ◦ π(τ , ω) = π(ω,−τ) ◦DFT, τ , ω ∈ ZN , (II-B.1)

where π(τ , ω) are the Heisenberg operators, and ◦ denotes

composition of transformations. In [20] Weil found a large

family of operators, which includes the DFT. His operators

satisfy identities analogous to (II-B.1). In more details, con-

sider the collection of matrices

SL2(ZN ) =

{(
a b
c d

)
; a, b, c, d ∈ ZN , and ad− bc = 1

}
.

Note that G = SL2(ZN ) is a group with respect to the

operation of matrix multiplication (see [2] for the notion of a

group). It is called the special linear group of order two over

ZN . Each element

g =

(
a b
c d

)
∈ G,

acts on the time-frequency plane V = ZN×ZN via the change

of coordinates

(τ , ω) 7→ g(τ , ω) = (aτ + bω, cτ + dω).

For g ∈ G, let ρ(g) be a linear operator on H which is a

solution of the following system of N2 linear equations:

Σg : ρ(g) ◦ π(τ , ω) = π(g(τ , ω)) ◦ ρ(g), τ , ω ∈ ZN ,
(II-B.2)

Denote by Sol(Σg) the space of all solutions to System

(II-B.2). For example for

w =

(
0 1
−1 0

)
,

which is called the Weyl element, we have by (II-B.1) that

DFT ∈ Sol(Σw). Using results, from group representation

theory, known as Stone–von Neumann (S-vN) theorem and

Schur’s lemma, one can show (see Section 2.3 in [6]) that

dim Sol(Σg) = 1, for every g ∈ G. In fact there exists a

special set of solutions. This is the content of the following

result [20]:

Theorem II-B.1 (Weil operators): There exists a unique

collection of solutions {ρ(g) ∈ Sol(Σg); g ∈ G}, which

are unitary operators, and satisfy the homomorphism condition

ρ(gh) = ρ(g) ◦ ρ(h), for every g, h ∈ G.

Denote by U(H) the collection of all unitary operators on

the Hilbert space H of sequences. Theorem II-B.1 establishes

the map

ρ : G→ U(H), (II-B.3)

which is called the Weil representation [20]. We will call each

ρ(g), g ∈ G, a Weil operator.

1) Formulas for Weil Operators: It is important for our

study to have the following explicit formulas [4], [6] for the

Weil operators:

• Fourier. We have[
ρ

(
0 1
−1 0

)
f

]
[n] = i

N−1
2 DFT (f)[n]; (II-B.4)

• Chirp. We have[
ρ

(
1 0
c 1

)
f

]
[n] = e(2−1cn2)f [n]; (II-B.5)

• Scaling. We have[
ρ

(
a 0
0 a−1

)
f

]
[n] =

(
a

N

)
f [a−1n], (II-B.6)

for every f ∈ H, 0 6= a, c, n ∈ ZN , where
(
a
N

)
is the Legendre

symbol which is equal to 1 if a is a square modulo N, and

−1 otherwise.

The group G admits the Bruhat decomposition

G = UA ∪ UwUA,

where U ⊂ G denotes the unipotent subgroup

U =

{(
1 0
c 1

)
; c ∈ ZN

}
,

and A ⊂ G denotes the diagonal subgroup

A =

{(
a 0
0 a−1

)
; 0 6= a ∈ ZN

}
, (II-B.7)

and w is the Weyl element. This means that every element

g ∈ G can be written in the form

g = us or g = u′wu′′s′

where u, u′, u′′ ∈ U, s, s′ ∈ A, and w is the Weyl element.

Hence, because ρ is homomorphism, i.e., ρ(gh) = ρ(g)◦ρ(h)
for every g, h ∈ G, we deduce that formulas (II-B.4), (II-B.5),

and (II-B.6), extend to describe all the Weil operators.

III. SEQUENCE DESIGN: HEISENBERG–WEIL FLAGS

The flag sequences, that play the main role in the flag

method, are of a special type. We define them as a sum

of a pseudorandom sequence and a structural sequence. The

design of these sequences is done using group representation

theory. The pseudorandom sequences are designed [7], [8],

[19] using the Weil representation operators (II-B.3), and will

be called Weil (spike) sequences11. The structural sequences

are designed [9], [10] using the Heisenberg representation

operators (II-A.1), and will be called Heisenberg (line) se-

quences. Finally, the flag sequences are defined as a sum of

Heisenberg sequence, and a Weil sequence, and will be called

Heisenberg–Weil flag sequences.

11For the purpose of the Flag method, other pseudorandom signals may

work.
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A. The Heisenberg (Lines) Sequences

The operators (II-A.1) obey the Heisenberg commutation

relations

π(τ , ω) ◦ π(τ ′, ω′) = e(ωτ ′ − τω′) · π(τ ′, ω′) ◦ π(τ , ω).
(III-A.1)

The expression ωτ ′−τω′ vanishes if (τ , ω), (τ ′, ω′) are on the

same line through the origin. Hence, for a given line through

the origin L ⊂ V = ZN × ZN , we have a commutative

collection of unitary operators

π(l) : H → H, l ∈ L. (III-A.2)

The simultaneous diagonalization theorem from linear algebra

implies the existence of orthonormal basis BL for H, consist-

ing of common eigensequences for all the operators (III-A.2).

Moreover, in our specific case there exists an explicit basis

(see IV-A for explicit formulas) BL = {fL,ψ}, parametrized

by characters12 ψ of L. We will call the sequences fL,ψ
Heisenberg sequences, and they satisfy

π(l)fL,ψ = ψ(l)fL,ψ, for every l ∈ L.

The following theorem—see Figure 9 for a demonstration of

Property 1—describes their correlations properties:

Theorem III-A.1: The Heisenberg sequences satisfy the fol-

lowing properties:

1) Line. For every line L ⊂ V , and every fL ∈ BL, we

have

|M(fL, fL)[τ , ω]| =
{

1, if (τ , ω) ∈ L;
0, if (τ , ω) /∈ L,

and moreover, M(fL, fL)[0, 0] = 1.
2) Almost-orthogonality. For every two lines L1 6= L2 ⊂

V , and every fL1 ∈ BL1 , fL2 ∈ BL2 , we have

|M(fL1 , fL2)[τ , ω]| = 1/
√
N,

for every (τ , ω) ∈ V.

Theorem III-A.1 can be deduced from general results ob-

tained in [9], [10]. However, for the sake of completeness we

supply a direct proof in Section VI-A.

Fig. 9. |M(fL, fL)| for L = {(τ , τ)}.

12A functions ψ : L → C∗ = C − 0, is called character if it satisfies

ψ(l + l′) = ψ(l)ψ(l′), for every l, l′ ∈ L.

B. The Weil (Spikes) Sequences

We follow closely the works [7], [8]. The group G =
SL2(ZN ) is non-commutative, but contains a special class of

maximal commutative subgroups called tori [7]. There are two

types of tori in G, split and non-split. A subgroup T ⊂ G is

called split torus if there exists g ∈ G such that

T = gAg−1 = {gsg−1; s ∈ A},

where A is the subgroup (II-B.7) of diagonal matrices in G. A

subgroup T ⊂ G is called non-split torus if there exists g ∈ G
such that

T = gKg−1,

where

K =
{
g ∈ G; gtgεg = gε

}
, gε =

(
1 0
0 −ε

)
,

with ε ∈ ZN a fixed non-square13.

Example III-B.1: If N − 3 is divisible by 4, then ε = −1
is a non-square in ZN . In this case, an example of a non-split

torus is the group

K = {g ∈ SL2(ZN ); gtg = I} = SO2(ZN ),

of orthogonal matrices with determinant equal to one. This

group is also called the special orthogonal group.

Claim III-B.2: There are (N + 1)N/2 split tori, and (N −
1)N/2 non-split tori in G.

For a proof of Claim III-B.2 see Section VI-B.

For a given torus T ⊂ G, we have by II-B.3 a commutative

collection of diagonalizable Weil operators

ρ(g) : H → H, g ∈ T. (III-B.1)

The simultaneous diagonalization theorem from linear algebra

implies the existence of orthonormal basis BT for H, consist-

ing of common eigensequences for all the operators (III-B.1).

Moreover, in our specific case there exists [7], [8] an explicit

basis (see Section IV-B for explicit formulas in the case T is

a split torus) BT = {ϕT,χ}, parametrized by characters14 χ
of T . The sequences ϕT,χ satisfy

ρ(g)ϕT,χ = χ(g)ϕT,χ, for every g ∈ T. (III-B.2)

Remark III-B.3: There is a small abuse of notation in

(III-B.2). The torus T admits a unique non-trivial character

χq—called the quadratic character—which takes the values

χq(g) ∈ {±1}, g ∈ T. The dimension of the space Hχq of

sequences ϕT,χq , which satisfy ρ(g)ϕT,χq = χq(g)ϕT,χq is

equal to 2 or 0, if T is a split or non-split torus, respectively

[7], [8].

Let us denote by

ST = BT rHχq ,

13An element y ∈ ZN is called square (non-square) if there exists (does

not exist) x ∈ ZN such that y = x2.
14A functions χ : T → C∗, is called character if it satisfies χ(gg′) =

χ(g)χ(g′), for every g, g′ ∈ T.
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the set of sequences in BT , which are not associated with the

quadratic character. We will call them Weil sequences. The

following theorem [7], [8]—see Figure 10 for illustration of

Property 1—describes their correlations properties:

Theorem III-B.4: The Weil sequences satisfy the following

properties:

1) Spike. For every torus T ⊂ G, and every ϕT ∈ ST , we

have

|M(ϕT , ϕT )[τ , ω]| =
{

1, if (τ , ω) = (0, 0);

≤ 2/
√
N, if (τ , ω) 6= (0, 0),

and moreover, M(ϕT , ϕT )[0, 0] = 1.
2) Almost-orthogonality. For every two tori T1, T2 ⊂ G,

and every ϕT1 ∈ ST1 , ϕT2 ∈ ST2 , with ϕT1 6= ϕT2 , we

have∣∣M(ϕT1 , ϕT2)[τ , ω]
∣∣ ≤ { 4/

√
N, if T1 6= T2;

2/
√
N, if T1 = T2,

for every (τ , ω) ∈ V.

Fig. 10. M(ϕT , ϕT ) for T = {
(
a 0
0 a−1

)
; 0 6= a ∈ ZN}.

C. The Heisenberg–Weil Sequences

We define the Heisenberg–Weil sequences. These are se-

quences in H, which are of the form SL = (fL + ϕT ) /
√

2,

where fL and ϕT are Heisenberg and Weil sequences, respec-

tively. The following theorem—see Figure 11 for illustration

of Property 1—is the main technical result of this paper, and

it describes their correlations properties:

Theorem III-C.1: The Heisenberg–Weil sequences satisfy

the properties

1) Flag. For every line through the origin L ⊂ V , torus

T ⊂ G, and every flag SL = (fL + ϕT ) /
√

2, with

fL ∈ BL, ϕT ∈ ST , we have

|M(SL, SL)[τ , ω]| =

 1 + εN , if (τ , ω) = (0, 0);
1/2 + εN , if (τ , ω) ∈ Lr (0, 0);
εN , if (τ , ω) ∈ V r L,

where |εN | ≤ 2/
√
N, and |εN | ≤ 3/

√
N, and moreover,

M(SL, SL)[0, 0] = 1 + εN .

Fig. 11. |M(SL, SL)| for Heisenberg–Weil flag with L = {(τ , τ)}.

2) Almost-orthogonality. For every two lines L1 6= L2 ⊂
V , tori T1, T2 ⊂ G, and every two flags SLj =(
fLj + ϕTj

)
/
√

2, with fLj ∈ BLj , ϕTj ∈ STj , j =

1, 2, ϕT1 6= ϕT2 , we have for every (τ , ω) ∈ V

|M(SL1 , SL2)[τ , ω]| ≤
{

9/(2
√
N), if T1 6= T2;

7/(2
√
N), if T1 = T2.

For a proof of Theorem III-C.1 see Section VI-C.

Remark III-C.2: As a consequence of Theorem III-C.1 we

obtain families of N + 1 almost-orthogonal flag sequences

which can be used for solving the TFS and GPS problems

in O(N logN) operations, and channel estimation, and radar

problems in O(mN logN) operations for channel of sparsity

m (see details in Section I).

This completes our design of the Heisenberg–Weil flag

sequences.

IV. FORMULAS FOR HEISENBERG–WEIL SEQUENCES

In order to implement the flag method it is important to

have explicit formulas for the Heisenberg and Weil sequences,

which in particular enable one to generate them with an

efficient algorithm. In this section we supply such effective de-

scription for all Heisenberg sequences, and for Weil sequences

associated with split tori.

A. Formulas for Heisenberg Sequences

First we parametrize the lines in the time-frequency plane,

and then we provide explicit formulas for the orthonormal

bases of sequences associated with the lines.

1) Parametrization of Lines: The N + 1 lines in the time-

frequency plane V = ZN × ZN can be described in terms of

their slopes. We have

• Lines with finite slope. These are the lines of the form

Lc =span{(1, c)}, c ∈ ZN .

• Line with infinite slope. This is the line

L∞ =span{(0, 1)}.
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2) Formulas: Using the above parametrization, we obtain

• Formulas for Heisenberg sequences associated with lines

of finite slope. For c ∈ ZN we have the orthonormal basis

BLc = {fc,b[n] =
1√
N
e(2−1cn2 + bn) ; b ∈ ZN},

(IV-A.1)

of Heisenberg sequences associated with the line Lc.

• Formulas for Heisenberg sequences associated with the

line of infinite slope. We have the orthonormal basis

BL∞ = {δb; b ∈ ZN}, (IV-A.2)

of Heisenberg sequences associated with the line L∞,
where the δb’s denote the Dirac delta functions, δb[n] = 1
if n = b, and = 0 otherwise.

The validity of Formula (IV-A.2) is immediate from De-

finition (II-A.1). For a derivation of Formulas (IV-A.1), see

Section VI-D.

B. Formulas for the Weil Sequences

We describe explicit formulas for the Weil sequences as-

sociated with split tori [5], [7], [8]. First we parametrize the

split tori in G = SL2(ZN ), and then we write the explicit

expressions for the orthonormal bases of sequences associated

with these tori.

1) Parametrization of Split Tori: Recall (see Section III-B)

that a split torus T ⊂ G is a subgroup of the form T = Tg,
g ∈ G, with

Tg = gAg−1,

where A ⊂ G is the subgroup of all diagonal matrices (II-B.7).

We denote by T = {Tg; g ∈ G} the set of all split tori in

G. A direct computation shows that the collection of all Tg’s

with

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , (IV-B.1)

exhausts the set T . Moreover, in (IV-B.1) the torus Tg can be

written also as Tg′ , for g 6= g′, only if b 6= 0 and

g′ =

(
1 b
c 1 + bc

)(
0 −b
b−1 0

)
.

2) Formulas: In order to provide the explicit formulas we

need to develop some basic facts and notations from the theory

of multiplicative characters. Consider the group Z∗N of all non-

zero elements in ZN , with multiplication modulo N. A basic

fact about this group is that it is cyclic, i.e., there exists an

element—called generator (sometime called primitive root)—

r ∈ Z∗N such that

Z∗N = {1, r, r2, ..., rN−2}.

We fix, for the rest of this section, a generator r ∈ Z∗N , and

we define the discrete logarithm map logr : Z∗N → ZN−1 by

logr(n) = d, if n = rd.

A function χ : Z∗N → C∗ is called multiplicative character

if χ(xy) = χ(x)χ(y) for every x, y ∈ Z∗N . A way to write

formulas for such functions is the following. Choose ζ ∈ C
which satisfies ζN−1 = 1, i.e., ζ ∈ µN−1 = {

(
exp 2πi

N−1k
)

;

k = 0, ..., N − 2}, and define a multiplicative character by

χζ(n) = ζ logr(n), n ∈ Z∗N . (IV-B.2)

Running over all the N − 1 possible such ζ’s, we obtain

all the multiplicative characters of Z∗N . We are ready to

write, in terms of the parametrization (IV-B.1), the concrete

eigensequences associated with each of the tori. We obtain

• Formulas for Weil sequences associated with the diagonal

torus. For the diagonal torus A we have the set of Weil

sequences

SA =
{
ϕχζ ; 1 6= ζ ∈ µN−1

}
,

where ϕχζ ∈ H is the sequence defined by

ϕχζ [n] =

{ 1√
N−1χζ(n) if n 6= 0;

0 if n = 0,
(IV-B.3)

where χζ is the character defined by (IV-B.2).

• Formulas for Weil sequences associated with the torus

Tuc , for unipotent uc ∈ G. For the torus Tuc associated

with the unipotent element

uc =

(
1 0
c 1

)
, c ∈ ZN ,

we have the set of Weil sequences

STuc =
{
ϕχucζ ; 1 6= ζ ∈ µN−1

}
,

where ϕχucζ ∈ H is the sequence defined by

ϕχucζ [n] = e(2−1cn2)ϕχζ [n], (IV-B.4)

for every n ∈ ZN , and ϕχζ is the sequence given by

(IV-B.3).

• Formulas for Weil sequences associated with other tori

Tg, g ∈ G. For k ∈ ZN , and f ∈ H, we define

(hkf) [n] = f [kn], and (mkf) [n] = e(2−1kn2)f [n]. In

addition, for 0 6= y ∈ ZN we denote by
(
y
N

)
the Legendre

symbol of y, which is equal 1, or −1, if x is a square, or

not, respectively. Then, for the torus Tg associated with

the element

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , b 6= 0, (IV-B.5)

we have the set of Weil sequences

STg =
{
ϕχgζ ; 1 6= ζ ∈ µN−1

}
,

where ϕχgζ ∈ H denotes the sequence

ϕχgζ [n] = Cb ·m 1+bc
b
DFT

(
mbhbϕχζ

)
[n], (IV-B.6)

with ϕχζ the sequence given by (IV-B.3), and Cb =

i
N−1
2

(
b
N

)
.
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The fact that Formula (IV-B.3) defines a set of Weil se-

quences is immediate from Identity (II-B.6). For a derivation

of Weil sequences with Formulas (IV-B.4) and (IV-B.6), see

Section VI-E.

C. Examples of Explicit Flag Sequences

We fix N = 37, and note that r = 2 is a generator for

Z∗37, i.e., Z∗37 = {2d mod(37); d = 0, 1, ..., 35}. We give two

examples.

1) Flag associated with the time line and the diagonal

torus : We show how to use Formulas (IV-A.1), and (IV-B.3),

to obtain explicit flag sequence

SL0 [n] =
(
f0,1[n] + ϕχ−1 [n]

)
/
√

2, n ∈ Z37,

associated with the line L0, and the diagonal torus A.

• Heisenberg sequence associated with the time line. We

take in (IV-A.1), c = 0, b = 1, and obtain the Heisenberg

sequence

f0,1[n] =
1√
37

exp(2πin/37), n ∈ Z37.

• Weil sequence associated with the diagonal torus. We

choose µ36 3 ζ = exp( 2πi36 18) = −1. We have then

the character χ−1 of Z∗37, given by χ−1(2
d mod(37)) =

(−1)d, d = 0, 1, ..., 35. Hence, using formula (IV-B.3)

we obtain the Weil sequence ϕχ−1 [n], n ∈ Z37, given by

ϕχ−1 [n] =

{ 1√
36

(−1)log2(n) if n 6= 0;

0 if n = 0.

2) Flag associated with the diagonal line and a non-

diagonal torus: We show how to use Formulas (IV-A.1), and

(IV-B.6), to obtain explicit flag sequence

SL1 [n] =
(
f1,0[n] + ϕgχi [n]

)
/
√

2, n ∈ Z37,

associated with the line L1, and the torus Tg = gAg−1, with

g given by (IV-B.5), with c = 0 and b = 1.

• Heisenberg sequence associated with the diagonal line.

We take in (IV-A.1), c = 1, b = 0, and obtain the

Heisenberg sequence

f1,0[n] =
1√
37

exp(πin2/37), n ∈ Z37.

• Weil sequence associated with the torus Tg . We choose

µ36 3 ζ = exp( 2πi36 9) = i. We have then the character χi
of Z∗37, given by χi(2

d mod(37)) = id, d = 0, 1, ..., 35.
Hence, using formula (IV-B.6) we obtain the Weil se-

quence

ϕχgi [n] = −m1DFT
(
m1ϕχi

)
[n],

where ϕχi [n] = 1√
36
ilog2(n) if n 6= 0, and ϕχi [0] = 0.

V. COMPUTING THE MATCHED FILTER ON A LINE

Implementing the flag method, we need to compute in

O(N logN) operations the restriction of the matched filter

matrix to any given line in the time-frequency plane (see

Remark I-E.2). In this section we provide an algorithm for this

task. The upshot is—see Figure 12 for illustration of the case

of the diagonal line—that the restriction of the matched filter

matrix to a line is a certain convolution that can be computed

fast using FFT. For a, b ∈ ZN , ϕ ∈ H, we define

ma,b(ϕ)[n] = e(2−1an2 + bn)ϕ[n], and ϕ−[n] = ϕ[−n].
(V-.1)

In addition, for sequences ϕ, φ ∈ H, we denote by ϕ ∗φ ∈ H
their convolution

(ϕ ∗ φ) [τ ] =
∑
n∈ZN

ϕ[n]φ[τ − n], τ ∈ ZN . (V-.2)

We consider two cases:

1) Formula on lines with finite slope and their shifts. For

c ∈ ZN consider the line Lc = {τ(1, c) ; τ ∈ ZN}, and

for a fixed ω ∈ ZN the shifted line L′c = Lc + (0, ω).
On L′c we have

M(ϕ, φ)[τ(1, c) + (0, ω)] (V-.3)

=
[
m−c,−ω(ϕ) ∗mc,0(φ)_

]
[τ ],

where φ denotes the complex conjugate of the sequence

φ.

2) Formula on the line with infinite slope and its shifts.

Consider the line L∞ = {ω(0, 1) ; ω ∈ ZN}, and for a

fixed τ ∈ ZN the shifted line L′∞ = L∞ + (τ , 0). On

L′∞ we have

M(ϕ, φ)[ω(0, 1) + (τ , 0)] =
√
NDFT (ϕ · φ−τ )[ω],

(V-.4)

where φ−τ [n] = φ[n− τ ]..

The validity of Formula (V-.4) is immediate from the

definition of the matched filter. For a verification of Formula

(V-.3) see Section VI-F.

Fig. 12. M(ϕ, φ)[τ , τ ] =
[
m−1,0(ϕ) ∗m1,0(φ)_

]
[τ ] on L1.
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VI. PROOFS

A. Proof of Theorem III-A.1

We will use two lemmas. First, let L ⊂ V be a line, and for a

character ψ : L→ C∗, and vector v ∈ V , define the character

ψv : L → C∗, by ψv(l) = e(Ω(v, l))ψ(l), l ∈ L, where

Ω : V ×V → ZN is the symplectic form Ω[(τ , ω), (τ ′, ω′)] =
τω′ − ωτ ′. We have

Lemma VI-A.1: Suppose fL ∈ H is a ψ-eigensequence for

L, i.e., π(l)fL = ψ(l)fL, for every l ∈ L. Then the sequence

π(v)fL is ψv-eigensequence for L.

For the second Lemma, let L,M ⊂ V be two lines, and

g ∈ G = SL2(ZN ) such that M = gL = {gl ; l ∈ L}. For a

character ψ : L→ C∗, define the character ψg : M → C∗, by

ψg(m) = ψ(g−1m), for every m ∈M. We have

Lemma VI-A.2: Suppose fL is a ψ-eigensequence for L,
i.e., π(l)fL = ψ(l)fL, for every l ∈ L. Then the sequence

fM = ρ(g)fL is ψg-eigensequence for M.

We verify Lemmas VI-A.1, and VI-A.2, after the proof of

the line, and almost-orthogonality properties.

1) Proof of Line Property: Let fL ∈ BL be a ψ-

eigensequence. For v ∈ V we have

|M(fL, fL)[v]| = |〈fL, π(v)fL〉|

=

{
1, if v ∈ L;
0, if v /∈ L,

where in the first equality we use the definition of M, and in

the second we use Lemma VI-A.1. This completes the proof

of the line property.

2) Proof of Almost-Orthogonality Property: Consider the

time and frequency lines, L0 = {(τ , 0)}, and L∞ = {(0, ω)},
respectively. Recall that (see Section IV-A2) BL0 = {fa; a ∈
ZN}, where fa[n] = 1√

N
e(an), n ∈ ZN , and BL∞ = {hb, b ∈

ZN}, where hb = δb. Hence, for every a, b ∈ ZN we have

|M(fa, hb)[v]| = 1/
√
N, v ∈ V.

This implies

Step 1. The almost-orthogonality holds for every fL0 ∈
BL0 , and fL∞ ∈ BL∞ .

Next, let L,M ⊂ V be any two distinct lines in V , and let

fL ∈ BL, fM ∈ BM .
Step 2. The almost-orthogonality holds for fL and fM .

Indeed, it is easy to see that there exists g ∈ G = SL2(ZN )
such that gL = L0, and gM = L∞. From Lemma VI-A.2

and the unitarity of ρ(g) we have that up to unitary scalars

fL0 = ρ(g)fL ∈ BL0 , and fL∞ = ρ(g)fM ∈ BL∞ . Hence,

we obtain for every v ∈ V

|M(fL, fM )[v]| = |〈fL, π(v)fM 〉|
= |〈ρ(g)fL, ρ(g)π(v)fM 〉|
= |〈ρ(g)fL, π(gv)ρ(g)fM 〉|
= |M(fL0 , fL∞)[gv]|
= 1/

√
N,

where in the second equality we use the unitarity of ρ(g), in

the third equality we use Identity (II-B.2), and finally in the

last equality we use Step 1. This completes the proof of the

almost orthogonality property, and of Theorem III-A.1.

3) Proof of Lemma VI-A.1 : For l ∈ L we have

π(l)[π(v)fL] = e(Ω(v, l))π(v)π(l)fL

= e(Ω(v, l))ψ(l)[π(v)fL],

where in the first equality we use Identity (III-A.1). This

completes the Proof of Lemma VI-A.1.

4) Proof of Lemma VI-A.2 : For l ∈ L we have

π(gl)fM = π(gl)ρ(g)fL

= ρ(g)π(l)fL

= ψ(l)ρ(g)fL

= ψg(gl)fM ,

where the second equality is by Identity (II-B.2). This com-

pletes the proof of Lemma VI-A.2.

B. Proof of Claim III-B.2

We use standard facts on G = SL2(ZN ) and its toral

subgroups. Denote by Ts and Tns, the collection of all

split, and non-split tori, respectively. The group G acts, by

conjugation, transitively, on both Ts and Tns. For a torus

T ⊂ G its stabilizer with respect to this action is its normalizer

subgroup N(T ) = {g ∈ G; gTg−1 = T ). Hence, we

have #Ts = #G/#N(A), and #Tns = #G/#N(K).
A direct calculation shows that #G = (N2 − 1)N , and

#N(A) = 2(N − 1), #N(K) = 2(N + 1). Hence,

#Ts = (N + 1)N/2, and #Tns = (N − 1)N/2.

This completes the proof of Claim III-B.2.

C. Proof of Theorem III-C.1

1) Flag Property: Let SL = (fL + ϕT ) /
√

2. We have

M(SL, SL) = [M(fL, fL) +M(fL, ϕT )

+M(ϕT , fL) +M(ϕT , ϕT )]/2.

We will show that

|M(ϕT , fL)[τ , ω]| ≤ 2/
√
N, τ, ω ∈ ZN . (VI-C.1)

Noting that M(fL, ϕT )[τ , ω] = M(ϕT , fL)[−τ ,−ω] we

obtain from (VI-C.1) also the same bound for M(fL, ϕT ).
Having this, using Theorems III-A.1 and III-B.4 we can

deduce the Flag Property. So assume π(l)fL = ψ(l)fL for

l ∈ L. By Lemma VI-A.1, it is enough to bound the inner

product

|〈ϕT , fL〉| ≤ 2/
√
N. (VI-C.2)

We proceed in two steps.

Step 1. The bound (VI-C.1) holds for L∞. Indeed, then

fL∞ = δb for some b ∈ ZN , hence

|〈ϕT , fL∞〉| = |ϕT [b]| ≤ sup
n∈ZN

|ϕT [n]|.
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In [8] it was shown that for every Weil sequence ϕT we have

sup
n∈ZN

|ϕT [n]| ≤ 2/
√
N.

Step 2. The bound (VI-C.1) holds for every line L. We

will use the following lemma. Consider a torus T ⊂ G, and

an element g ∈ G. Then we can define a new torus Tg =
gTg−1 = {ghg−1; h ∈ T}. For a character χ : T → C∗,
we can associate a character χg : Tg → C∗, by χg(ghg−1) =
χ(h), for every h ∈ T. We have

Lemma VI-C.1: Suppose ϕT is a χ-eigensequence for T,
i.e., ρ(h)ϕT = χ(h)ϕT , for every h ∈ T. Then the sequence

ϕTg = ρ(g)ϕT is χg-eigensequence for Tg.

For a proof of Lemma VI-C.1, see Section VI-C2.

Now we can verify Step 2. Indeed, given a line through the

origin L ⊂ V, there exists g ∈ G such that gL = L∞. In

particular, by Lemma VI-A.2 we obtain that fL∞ = ρ(g)fL is

up to a unitary scalar in BL∞ . In addition, by Lemma VI-C.1

we know that ϕTg = ρ(g)ϕT is up to a unitary scalar in BTg .
Finally, we have

〈ϕT , fL〉 = 〈ρ(g)ϕT , ρ(g)fL〉
=

〈
ϕTg, fL∞

〉
,

where the first equality is by the unitarity of ρ(g). Hence, by

Step 1, we obtain the desired bound also in this case.

2) Proof of Lemma VI-C.1 : For h ∈ T we have

ρ(ghg−1)ϕTg = ρ(ghg−1)ρ(g)ϕT

= ρ(g)ρ(h)ϕT

= χ(h)ρ(g)ϕT

= χg(ghg−1)ϕTg ,

where the second equality is because ρ is homomorphism (see

Theorem II-B.1). This completes our proof of Lemma VI-C.1,

and of the Flag Property.

3) Almost Orthogonality : Let SLj =
(
fLj + ϕTj

)
/
√

2,
j = 1, 2, as in the assumptions. We have

M(SL1 , SL2) = [M(fL1 , fL2) +M(fL1 , ϕT2)

+M(ϕT1 , fL2) +M(ϕT1 , ϕT2)]/2.

The result now follows from Theorem III-A.1, Theorem

III-B.4, and the bound (VI-C.1). This completes our proof of

the Almost Orthogonality Property, and of Theorem III-C.1.

D. Derivation of Formula IV-A.1

We have for the line L0, i.e., for the operators π(τ , 0), τ ∈
ZN , the following orthonormal basis of eigensequences:

BL0 = {f0,b[n] =
1√
N
e(bn) ; b ∈ ZN}.

Let us derive formulas for basis parametrized by a line with

finite slope. From Lemma VI-A.2, we know that the Weil

operator ρ(uc) associated with the unipotent element

uc =

(
1 0
c 1

)
, c ∈ ZN ,

maps BL0 to the orthonormal basis BLc = {fc,b = ρ(uc)f0,b;
b ∈ ZN} of common eigensequences for the operators

π(τ(1, c)), τ ∈ ZN . Hence, using Formula (II-B.5) we derive

our desired basis

BLc = {fc,b[n] =
1√
N
e(2−1cn2 + bn); b ∈ ZN}.

E. Derivation of Formulas (IV-B.4), and (IV-B.6)

For a character χ : A→ C∗ and an element g ∈ G, define

the character χg : Tg → C∗, by χg(ghg−1) = χ(h), for every

h ∈ A. Using Lemma VI-C.1, we deduce that for g ∈ G the

set

STg = {ϕχg = ρ(g)ϕχ ; χ is character of A, χ 6= χq},

is a set of Weil sequences associated with Tg. Specializing

to the characters χ = χζ , 1 6= ζ ∈ µN−1, of A, and the

associated sequence ϕχζ ∈ SA given by (IV-B.3), we can

proceed to derive the formulas.

1) Derivation of Formula (IV-B.4): For the unipotent

element

uc =

(
1 0
c 1

)
, c ∈ ZN ,

we have

ϕχucζ [n] =
[
ρ(uc)ϕχζ

]
[n]

= e(2−1cn2)ϕχζ [n] ,

for every n ∈ ZN , where the second equality is by Formula

(II-B.5). This completes our verification of Formula (IV-B.4).

2) Derivation of Formula (IV-B.6): For the element

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , b 6= 0,

its Bruhat decomposition is(
1 b
c 1 + bc

)
=

(
1 0

1+bc
b 1

)(
0 1
−1 0

)(
1 0
b 1

)(
b−1 0
0 b

)
.

(VI-E.1)

This implies that for n ∈ ZN , we have

ϕχgζ [n] =
[
ρ(g)ϕχζ

]
[n]

= Cb ·m 1+bc
b
DFT

(
mbhbϕχζ

)
[n],

where, in the second equality we use identity (VI-E.1), the fact

that ρ is homomorphism, and the Formulas (II-B.4), (II-B.5),

(II-B.6). This completes our verification of Formula (IV-B.6).
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F. Verification of Formula (V-.3)

We verify Formula (V-.3) for the matched filter M(ϕ, φ),
ϕ, φ ∈ H, restricted to a line with finite slope. We define

Mπ(ϕ, φ)[τ , ω] = 〈ϕ, π(τ , ω)φ〉, where π(τ , ω) are the

Heisenberg operators (II-A.1). We note that

Mπ(ϕ, φ)[τ , ω] = e(2−1τω)M(ϕ, φ)[τ , ω]. (VI-F.1)

The element

u−c =

(
1 0
−c 1

)
∈ G,

satisfies {
u−c(1, c) = (1, 0),
u−c(0, ω) = (0, ω).

(VI-F.2)

For a fixed ω ∈ ZN we compute the matched filter on L′c =
Lc + (0, ω) = {τ(1, c) + (0, ω); τ ∈ ZN}. We obtain

Mπ(ϕ, φ)[τ(1, c) + (0, ω)]

= 〈ϕ, π[τ(1, c) + (0, ω)]φ〉
= 〈ρ(u−c)ϕ, ρ(u−c)π[τ(1, c) + (0, ω)]φ〉
= 〈ρ(u−c)ϕ, π(τ , ω)ρ(u−c)φ〉
=

〈
m−c,0(ϕ), e(−2−1τω + ωn)m−c,0(φ)[n− τ ]

〉
= e(2−1τω)

[
m−c,−ω(ϕ) ∗mc,0(φ)_

]
[τ ],

where, the second equality is by the unitarity of ρ, the third

equality is by Identities (II-B.2), (VI-F.2), the forth equality

is by Formula (II-B.5) and the definition (V-.1), and the last

equality is by definition (V-.2) of ∗. Using Identity (VI-F.1),

we obtain Formula (V-.3).
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