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Abstract

In this paper we study the learnability of classes of choice functions
that arise in theoretical economics using the basic concept of PAC-
learnability from statistical learning theory. We prove that the class of
rationalizable choice functions on N alternatives is statistically learn-
able from O(N) examples. We prove that the class of rationalizable
choice functions is optimal in terms of PAC-learnability among classes
which are invariant under permutations of the elements and examine
statistical learnability for more complex classes of choice functions.

1 Introduction

The purpose of this paper is to study the extent to which the concepts of
choice used in economic theory imply “learnable” behavior.

In order to analyze learnability we will use a basic model of statistical
learning theory introduced by Valiant called the model of PAC-learnability
(PAC stands for “probably approximately correct”, see Vidyasagar (1997)).
Consider a family F' of functions from a ground set U to another set Y. We
assume that F' is known and we want to learn a specific function f € F from
examples. Let € be a small positive real number and let v be a probability
distribution on U.

We say that F' is learnable from ¢ examples with probability of at least
1 — € with respect to the probability distribution v if the following assertion
holds: For every f € F if uj,uo,...,u; and u are chosen at random and
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independently according to the probability distribution v and if f' € F
satisfies f'(u;) = f(u;),2 =1,2,...,t, then f'(u) = f(u) with probability of
at least 1 —e. We say that F' is learnable from ¢ examples with probability of
at least 1 — e if this is the case with respect to every probability distribution
vonU.!

Statistical learnability of classes of functions that arise in an economic
model is directly related to the ability to test the model empirically and
to “calibrate” the model’s parameters based on a small set of test cases.
Learnability is related to the testable implications of choice models which
have been studied primarily from the point of view of revealed preferences
(see, e.g., Brown and Matzkin (1996) and Sprumont (2000)). The number
of random examples needed for statistical learnability is closely related to
the number of examples needed for testing a model from a small random
sample of examples. We will explain this connection in Section 4.

Our analysis of statistical learnability is based on the fundamental com-
binatorial notion of the P-dimension which is defined in the next section.

Individual choice will be described using choice functions. Given a set
X of N alternatives, a choice function c¢ is a mapping which assigns to a
nonempty subset S of X an element ¢(S) of S. In decision theory we are
primarily concerned with choice functions that are consistent with maximiz-
ing behavior. In other words, there is a linear ordering on the alternatives
in X and ¢(S) is the maximum among the elements of S with respect to
this ordering. We will refer to such choice functions as “rationalizable”.
Rationalizable choice functions are characterized by the Independence of Ir-
relevant Alternatives condition (ITA): the chosen element from a set is also
chosen from every subset which contains it.

In Section 3 we prove the following theorem:

Theorem 1.1. A rationalizable choice function can be statistically learned
with high probability from a number of examples which is linear in the number
of alternatives.

In Section 5 we prove that the class of rationalizable choice functions has
optimal learnability properties. A class of choice functions is symmetric if
it is invariant under permutations of the alternatives.

Theorem 1.2. FEvery symmetric class of choice functions requires at least a
number of examples which is linear in the number of alternatives for learn-
ability in the PAC-model.

'Our definition of the probability e that learning fails is less sensitive than the usual

description in the literature (where the failure of learning is given in terms of two proba-
bilities € and §).




Theorem 1.2 continues to hold even if we consider choice functions de-
fined only on pairs of elements, i.e., asymmetric binary relations. Seeking
optimal properties of the class of rationalizable choice functions and the
class of order relations continues a line of research initiated by Rubinstein
(1996, 2000) who presented similar results for a different notion of learn-
ability. Rubinstein was seeking an explanation from theoretical economics
for the more common appearance of order relations (compared to other re-
lations) in natural languages. One of his proposed answers is: “There are
forces (evolution or planner) which will favor optimal structures”. Statistical
learnability carries Rubinstein’s argument one step further since it suggests
ways to move from “optimality” to “commonly observed”. We will discuss
this matter in Section 5.

In Section 6 we study learnability of more complex classes of choice
functions which arise in economics. Non-rationalizable choice functions may
arise in models of bounded rationality, in various cases of strategic choice
and when the choice reflects a complicated optimization procedure. They
also arise in psychological models of individual choice and in social choice.
Our hypothesis is that the choices of individuals as modeled in economic
theory are statistically learnable from “a few” examples, namely a number
of examples which is at most a polynomial in the number of alternatives. For
such classes of choice functions learnability appears to reflect (in a concrete
and quantitative way) the structural nature of individual choice as modeled
in theoretical economics. We will use an example drawn from sports and
gambling to demonstrate a general method for analyzing learnability in such
a case and show how the argument applies in the analysis of outcomes of
the Borda voting procedure.

2 The P-dimension

Our analysis of PAC-learnability will rely on the following fundamental com-
binatorial concept:? Let F be a family of functions from a ground set U to
another set Y. The P-dimension of F', denoted by dimp F, is the maximal
number of elements u1,us,...,us of U and values y1,¥s,.-.,ys of Y such
that for every subset B of {1,2,...,s} there is a function fp € F so that
fB(ui) = y; if 1 € B and fp(u;) #yi if i ¢ B.

Note that it follows from the definition that u1,...,us must be distinct.

2We only consider the model of PAC-learnability in this paper. We will not use any
probabilistic computations because our analysis is based on the connection with the P-
dimension.



For example, the class F' of linear functions of the form f(z) = az + b has
P-dimension of two. Consider the two elements u; = 0 and uo = 1 and the
two values y; = 0, y2 = 0. The four functions 0, z, 1 — z and 1 + z show
that the P-dimension is at least two. On the other hand, since the values of
a linear function at two points determine its value at any other point, the
P-dimension is not larger than two.

Remark: When Y contains precisely two elements, the P-dimension
reduces to the more basic notion of the Vapnik-Chervonenkis (VC ) dimen-
sion. In this case the P-dimension is simply the size of the largest subset Z
of X with the property that every function from Z to Y is the restriction of
a function f € F to Z.

A fundamental result from statistical learning theory states that PAC-
learnability is asymptotically determined by the P-dimension.

Theorem 2.1. For a fized value of € > 0, the number of examples t needed
to learn a class of functions with probability of at least 1 — € is bounded above
and below by a linear function of the P-dimension.

For further details and a description of the (mild) dependence of the
required number of examples on ¢, see Vidyasagar (1997) and Kearns and
Vazirani (1994). In view of this theorem, we will henceforth consider the
P-dimension to be our principal measure of learnability.

In order to relate the P-dimension to the number of functions in a class
of choice functions we also require the following proposition:

Proposition 2.2. Let F' be a family of functions from U to Y. Then,
dimp (F') < logy |F|-

Proof: The proof is obvious since in order for the P-dimension of F' to
be s we need at least 2° distinct functions. 03
Remark: Let F be a family of functions from U to Y and let U’ C
U. Let F' be the family of all the functions from U’ to Y which are the
restrictions of functions f € F to U'. It follows immediately from the
definitions that
dimp (F') < dimp(F).

Also, if F' can be learned from ¢ examples with probability of at least 1 — €
then so can F’ (since we can choose v to be supported only on U’).

3 A reverse relation of a similar form which is less trivial is also known. dimp(F) >
Klog|F|/n for some constant K.



3 Learnability of the class of rationalizable choice
functions

We will consider now the class C of rationalizable choice functions defined
on nonempty subsets of a set X of alternatives where |X| = N. Since
the number of functions in C is N! it follows from Proposition 2.2 that
the P-dimension of this class is at most logy(N!) < N logy N. Therefore, by
Theorem 2.1 the number of examples required to learn a rationalizable choice
function in the PAC-model is O(N log N). This bound can be improved by
the following precise result concerning the P-dimension:

Theorem 3.1. The P-dimension of the class of rationalizable choice func-
tions is N — 1.

Proof: We will first show that the P-dimension of the class of ratio-
nalizable choice functions is at least N — 1. To see this, consider the
pairs (a1,a2),(a1,a3), ..., (a1,an), and consider the set R of conditions
c(ar,a) = a1,k = 2,...,N. It is clear that for every subset S of these
conditions, there is a choice function which satisfies the conditions in S and
violates the conditions in R\S. To see this, simply order the elements so
that a; is above those a;’s appearing in the pairs in S and below the others.

We will next show that the P-dimension is at most N — 1. Suppose that
the P-dimension of the class of rationalizable choice functions is N or more.
Then there are N sets A1, Ao,...,Ax and elements a1 € A1, ao € A, ...,
any € Ap such that for every S C {1,2,..., N} there exists a rationalizable
choice function ¢ such that ¢(A4;) = a; if i € S and ¢(4;) # a; ifi ¢ S.
In other words, there exists an order relation < on X such that a; is the
maximal element in A; with respect to the order if and only if § € S.

In order to show that the P-dimension is smaller than N we need to show
that for every N sets A1,..., Ay and N elements a; € A;, 1 =1,2,...,N
there is a subset S of {1,2,..., N} such that there is no linear order < on
the ground set X for which a; is the maximal element of A; if and only if
i€ S. Let X = {z1,29,...,zx}. Finding the set S requires the following
argument from linear algebra (the remark following the proof may help the
reader to visualize it): Let s = |Ag|. Clearly we can assume that s, > 1

for every k. For every 7 =1,2,..., N consider the following vector:
vj = (v{',vg,...,vg\,) e RV,
The coefficients 'U{, e ,’U?V are defined as follows:

[ ] U%=01f$k¢Aj,



o v =s; — 1if 2 = a; and
. Uiz—lif:z;keAjandxk;éaj.

Note that all the vectors v; belong to an N — 1 dimensional space V
of RN of vectors whose sum of coordinates is 0. Therefore, the vectors
v1,V2,...,UN are linearly dependent.

Suppose now that

T1v1 + T2V + - + Ty =0 (3.1)

and that not all the r;’s equal zero. Let S be the set of j’s such that r; is
positive. We will show that there is no rationalizable choice function ¢ such
that c¢(Ag) = ax when k € S and c¢(Ag) # ax when k£ ¢ S. Assume to the
contrary that there is such a rationalizable choice function ¢ described by a
linear ordering < on the set of alternatives. Let B = U{A; : r; # 0} and let
m be the largest element in B with respect to the ordering <. Denote by ¥
the mth coordinate in the linear combination Z;VZI rjvj. We will show that
1y is positive.

First note that if r; = 0 or if m ¢ A; then the contribution of r; - v;
to y is zero. Assume now that r; # 0 and m € A;. Note that m must be
the largest element in A; with respect to the ordering < or, in other words,
¢(A;) = m. There are two cases to consider:

e If r; > 0 then by the definition of S, j € S. By the requirement on
¢, ¢(A;) = a;. However, c(4;) = m and therefore m = a; and the
contribution of the mth coordinate of rjv; to y is ;- (s; — 1) which is
positive.

e If r; < 0 then by the definition of S, j ¢ S. By the requirement on c
we have m = ¢(A;) # a; and the contribution of the mth coordinate
of rjv; to y is rj - (—1) which is again positive.

Therefore, y, the m-th coordinate in Zjvzl Tjvj, is positive. This is a con-
tradiction. O

Theorem 1.1 follows from Theorems 3.1 and Theorem 2.1.

Remark: A convenient way to visualize the proof is as follows: Regard
the elements of X as people. The group of people A; has a; as their “leader”.
The vector v; stands for the following transaction: each member of A; pays
one dollar to aj. (Thus, —2v; represents a payment of two dollars from the
leader to each of the others.) The relation ) r;v; = 0 implies that after the
money has changed hands no one has gained or lost. However, m must gain.



In the linear ordering <, a; = max A; if and only if 7; > 0. Therefore, for
every set A; that m belongs to, if 7; > 0 then m is the leader (m = a;) and
hence collects money from the others and if r; < 0, m is not the leader and
again he collects money.

There is a special case of Theorem 3.1 that deserves special attention.
Consider the class of rationalizable choice functions restricted to subsets of
X of cardinality two or, in other words, the class of order relations on X.

Corollary 3.2. The P-dimension of the class of order relations on N al-
ternatives is N — 1.

Proof: The example which showed that the P-dimension of the class of
rationalizable choice functions is at least IV — 1 consists of pairs of elements
and it therefore applies in our case as well. In this case, there is a much
simpler proof to show that the P-dimension is at most N — 1. Consider N
sets Ay, Ay, ..., AN, where now |A;| = 2 for every i = 1,2,..., N. Consider
a graph G whose vertices are the elements of X and whose edges correspond
to the sets A1, As,..., Ay. We must prove that we cannot realize by order
relations all possible 2V choice functions on Aj, As, ..., Ay. Every such
choice function ¢ corresponds to orienting the edges of G such that A; is
oriented towards c¢(4;). Since G has N vertices and N edges, G contains
a cycle and therefore not all the orientations of G are realized by order
relations. [

Theorem 1.1 can be described as follows: Assume that a consumer has a
rationalizable choice function on subsets of a set X of possible alternatives
and an observer can watch as the consumer makes choices from random
subsets S of alternatives. After having observed the consumer’s choices in
K - N random examples the observer is able to predict with high probability
the consumer’s behavior for a large proportion of decision problems. The
value of K depends on the probability and the proportion we wish to achieve.

For example, if the examples are drawn uniformly from among the pairs
of elements of X then after having observed the order relations among K - N
random pairs of elements the order relation is determined with high proba-
bility for a large proportion of all pairs. This particular case can be proved
directly and it is also easy to prove that o(IN) examples will not suffice in
this case. The strength of the PAC-learnability model (and the notion of
the P-dimension) is that the conclusion reached holds for every probability
distribution according to which the examples are drawn. Direct probabilistic
arguments for arbitrary distributions appear to be difficult.

The ability to statistically learn rationalizable choice functions (and or-
der relations) from a relatively small number of examples depends on an



appropriate notion of statistical learnability. Rubinstein (1996, 2000) briefly
considered a naive statistical concept of learnability: The expected number
of examples needed to determine the function precisely when the examples
are drawn uniformly and independently at random. When we adopt this
concept, rationalizable choice functions and order relations are especially
difficult to learn: The choice between the two last elements in order cannot
be determined before an example consisting only of those two elements is
observed. Therefore, the expected number of examples required to learn a
rationalizable choice function in Rubinstein’s sense is at least 2/V.

We will now discuss the question whether learning rationalizable choice
functions can be achieved efficiently. The the fact that a function can be sta-
tistically learned from a few examples does not generally imply that there is
a polynomial-time algorithm for learning (see Kearns and Vazirani (1994)).*
However, statistically learning a rationalizable function from O (V) examples
can be done by a simple polynomial-time algorithm. The reason is that from
an example “c(A) = z” we learn that z is larger in order than every other
element of A. We can find the transitive closure of all the order relations we
obtained from certain examples in polynomial-time and any relation which
cannot be derived is still undetermined from the examples.

The bounds for the P-dimension of the class of rationalizable choice
functions provide an answer to the following question: ”Given that the choice
is rationalizable how many examples are needed for it to be (statistically)
learned?” The results quoted in the next section will show the relation to
another natural question: "How many examples are needed to statistically
learn that an observed choice behavior is rationalizable?”

4 Learnability and testability

Statistical learnability and the P-dimension are closely related to the ques-
tion of finding testable implications of economic models and are directly re-
lated to the question of “how much data is needed to test a model”. There

“Using the notation from the Introduction, we can explain what we mean by effi-
cient learning as follows: We are given the random examples u1,us,...us, the values of
f(u1),..., f(u:) and another random element u. We wish to determine the value of f(u).
The value f(u) is uniquely determined with high probability. Therefore, an algorithm
for finding this value is to examine the functions in F' one by one until a function with
the required values for w1, ..., u; is found. This algorithm can be very inefficient: The
number of steps can be as large as the number of functions in F. We say that the family
is efficiently learnable if there exists an algorithm which requires a number of steps which
is polynomial in ¢.



are several papers (e.g. Brown and Matzkin (1996)) which deal with the
testable implications of various concrete models of choice involving prices,
utilities, etc. and it would be interesting to examine the statistical learnabil-
ity of functions that arise in such models. The results presented in this paper
are closer to the more abstract models of choice, such as those considered
in Sprumont (2000).

Indeed, the P-dimension of a class of functions is related to the number
of examples needed to determine with high accuracy how “far” an arbitrary
function is from the class. Let F' be a family of functions from a ground set
U to another set Y. Let ¢, be small positive real numbers and let v be a
probability distribution on U. Finally, let g be an arbitrary function from
U to Y. Define the distance from g to F, dist(g, F'), to be the minimum
probability over all f € F that f(z) # g(x), with respect to v.

Given ¢ random elements w1, us, ..., u; (drawn independently according
to v), define the empirical distance of g from F, distemp(g, F'), as the mini-
mum over all f € F of the quantity {7 : f(u;) # g(ui)}|/t.

Theorem 4.1. There exists K(e,0) such that for every probability distri-
bution v on U and every function g : U — Y, the number of independent
random examples t needed such that

|dlSt(g7F) - diStemP(gaF” < 5a
with probability of at least 1 — ¢, is at most
K(e,6) - dimP(F).

Corollary 4.2. For every probability distribution v on U and every function
g : U =Y, if g agrees with a function in F on t independent random
examples and

t> K(G, (5) . dimp(F),

then
dist(g, F) < ¢

with probability of at least 1 — e.

Theorem 4.1 and Corollary 4.2 are fundamental results in statistical
learning theory which demonstrate the relation between the P-dimension
and the testability of a class of functions. A class F' of functions from
U to Y, has a “testable implication” in the sense used in the literature,
if there are functions from U to Y that are not in that class. We are
interested in cases where the domain U is very large (for choice functions on



N alternatives, |U| = 2V —1) and would like to know if testable implications
arise from a small random sample. The size of the required sample is at most
proportional to the P-dimension. For statistical testability (unlike statistical
learnability), the P-dimension only provides an upper bound. It is possible
for a class to be “statistically testable” from a few examples while having a
large P-dimension.

Returning to the consumer and the observer from the previous section,
if after having observed the consumer’s choices in K - N random examples
the observed choices are rationalizable ( or even if only a large proportion
of them are) then the observer is able to conclude with high probability
that the consumer’s behavior agrees with a rationalizable choice for a large
proportion of all decision problems. (Again, the value of K depends on the
probability and the proportion we wish to achieve.)

5 Optimality of rationality and order

The class of rationalizable choice functions is symmetric under relabel-
ing of the alternatives. Mathematically speaking, every permutation 7
on X induces a symmetry among all choice functions given by 7(c)(S) =
7 le(w(S)). A class of choice functions will be called symmetric if it is closed
under all permutations of the ground set of alternatives X. All the classes
of choice functions considered in this paper are symmetric. We can expect
that a model will lead to a symmetric class of choice functions if there is no
a priori structure on the set of alternatives.

Our aim in this section is to derive a lower bound for the P-dimension of
symmetric families of choice functions. From this point on we will consider
choice functions defined on pairs of elements or in other words asymmetric
preference relations. Every choice function describes an asymmetric prefer-
ence relation by restricting it to pairs of elements. Therefore, lower bounds
on the P-dimension (or on the number of examples needed for learning in
the PAC-model) for symmetric classes of preference relations immediately
extend to symmetric classes of choice functions (see the remark at the end
of Section 2). Every choice function defined on pairs of elements of X de-
scribes a tournament whose vertices are the elements of X, such that for
two elements z and y in X, if ¢({z,y}) = x then there is an edge oriented
from z to y. (A tournament is a graph which has precisely one oriented edge
between every two vertices.)

The following theorem shows that order relations are optimal among
symmetric classes of preference relations in terms of the P-dimension:

10



Theorem 5.1. (1) The P-dimension of every symmetric class C of prefer-
ence relations (considered as choice functions on pairs) on N alternatives is
at least [N/2].

(2) When N > 8 the P-dimension is at least N — 1.

(3) When N > 68, if the P-dimension is precisely N — 1, then the class
is the class of order relations.

Proof: We will give a simple self-contained proof for part (1) which
already implies Theorem 1.2 and will use recent results from graph theory
to deduce parts (2) and (3).

(1) Let X = {z1,22,...,zn} and m = [N/2]. Let Ay = {z1,22}, A2 =
{z3,24}, ..., A = {Zom—1,Tam }. Let ¢ be a choice function in C and assume
without loss of generality that ¢(A;) = z1, ¢(A2) = z3, ..., c(Am) = Tam—1-
Let R C {1,2,...,m}. We wish to find a permutation 7 such that for the
choice function ¢ = wg(c) we have c(Ag) = zo_1 if k € Rand c(Ag) # ok_1
if k ¢ R. Define wg as follows: If k& € R then wgr(zox—1) = Zoxr—1 and
wr(Zok) = To, and if k ¢ R then wr(zor_1) = Tok and wr(zox) = xop—1 (if
N is odd define mr(zy) = zn). ® = 7R is the required permutation. To see
that this is indeed the case first note that w(Ay) = Ay for every k. If k € R,
then

m(c)(Ap) = 7 (e(n(Ar))) = 77 (e(Ar)) = 7 (2h-1) = Ban—1 = c(Ap).
If £ ¢ R, then

m(c)(Ap) = 1 (e(n(AR))) = 7 (c(Ag)) = 7 H(@2r-1) = T2k # c(A).

(2) Havet and Thomasse (2000) proved a conjecture made by Rosenfeld
in 1972 which asserts that, when N > 8, for every path P on N vertices
with an arbitrary orientation of the edges, every tournament on N vertices
contains a copy of P. This result implies part (2) of our theorem as follows:
Let ¢ be a choice function in the class and consider the tournament 7' de-
scribed by ¢. Let Ay = {z1,22}, Ao = {x2, 23}, ..., An—1 = {ZNn_1,2ZN}.
Every choice function ¢’ on Aj, As,...,Ay_1 describes a directed path P.
Suppose that a copy of P can be found in our tournament and that the ver-
tices of this copy (in the order they appear on the path) are z;,, Zi,, ..., iy -
Define a permutation 7 by 7(z;) = z;; The choice function 7(c) will agree
with CI on Al, AQ, P ANfl.

Remark: Thomason(1986) proved Rosenfeld’s conjecture when N >
10%® and gave a relatively simple argument that every directed path of order
N is contained in every tournament of order N + 1. (This implies that the
P-dimension in our theorem is at least N — 2.)

11



(3) This part follows from a stronger conjecture by Rosenfeld that every
non-transitive tournament on N > 8 vertices contains every orientation of
a cycle with N vertices. Havet (2000) proved this conjecture for N > 68. O

The optimality of the class of rationalizable choice functions and order
relations in terms of the P-dimension is deeper than what simply follows
from the fact that there are “few” order relations. Let ¢ be an arbitrary
choice function. Consider the class of choice functions which are obtained
from ¢ by permutations of the elements of X. The P-dimension of this
class is at most logy(N!) < Nlogy, N. It turns out that for “most” choice
functions the P-dimension indeed behaves like NV log N. This is the case even
for preference relations and (as pointed out by Andrew Thomason) can be
derived using the arguments above combined with the combinatorial results
of Linial, Saks and Sos (1983).

At this point T would like to discuss the connections between the results
of this section and those of Rubinstein (1996, 2000, Ch. 1). Rubinstein’s
intuitively appealing notion of “describability” is defined (in our setting) as
follows: Let F' be a family of functions from U to Y. F can be described by
t examples if for every function f in F' there are ¢ values u1, uo, ..., u; such
that if f' € F and f(u;) = f'(u;),4 = 1,...,t then f = f'. In words, every
function in the family is uniquely determined by t examples or less. The
order relation z1 > z9 > --- > zx can be described by the N — 1 relations
1 > To, T > X3, -.-,LN_1 > TN, and it is easy to see that the class of
order relations and the class of rationalizable choice functions need precisely
N — 1 examples to be described.’

Rubinstein conjectured that apart from a few small examples every sym-
metric class of preference relations requires at least N — 1 examples to be
described. He presented a proof that N — O(n/log N) examples suffice.

Rubinstein proposed the following explanation why order relations are
more common in natural languages:

“There are forces (evolution or planner) which make it more likely that
structures which are “optimal” with regard to the function of binary rela-
tions will be observed in natural languages.”

SRubinstein’s notion of describability is more intuitive and simple but is less robust
than the P-dimension which governs statistical learnability. For example, for the class of
all binary relations that disagree with the relation 1 < 2 < 3 < ... < N in at most one
place, N(N — 1)/2 examples are needed for describability. But when you consider those
relations which disagree in exactly one place you need just one example (and when you
consider those that disagree in exactly five places you need five examples). In contrast,
the value of the P-dimension can change by at most one when a single function is added
to a family.

12



This is a far-reaching hypothesis. It provides an interpretation of Ru-
binstein’s conjecture mentioned above concerning the optimality of order
relations in terms of the number of examples needed for their description
and a motivation for studying other similar results.

Using statistical learnability rather than a notion of describability® may
hint at possible mechanisms for moving from optimality to “commonly ob-
served” since the learning of relations from random examples seems closer to
the way language is learned: When a child learn the relation “to be bigger”
among N words (representing physical objects), it is not that the N —1 pairs
of elements a and b where a is just barely bigger than b are described to the
child and the entire order relation is deduced by transitivity. Learning the
words themselves and the relations of the form “a is bigger than 5” in some
random manner seems more realistic.

It is worth noting that a very simple algorithm is sufficient to obtain
good results for statistical learning with respect to the uniform distribution
on pairs. The algorithm is as follows: In choosing between two alternatives
a and b consider the last K examples in which either a or b was chosen
and choose the one that was picked more often. (Take K to be odd.) The
algorithm will produce mistakes; however, the probability of a mistake di-
minishes as K is increased. For K = 1 this algorithm is a naive form of
mimicking and it already yields a substantial gain over random guesses.
The ability to mimic appears to be relevant in the process of learning a
language.

Statistical learnability (especially Corollary 4.2) suggests another “force”
that may explain why optimal structures are more commonly observed.
More commonly observed relations may represent not only an objective fact
about the language but also their greater capacity for being recognized by
an observer.

Finally, let us briefly return to choice functions in general. Theorem 5.1
implies the following Corollary:

Corollary 5.2. The P-dimension of every symmeitric class of choice func-
tions on N alternatives, N > 8, is at least N — 1.

We can expect that there will be a simpler proof in this case (for every
N > 2)) but I was unable to find it. When we consider statistical learnabil-
ity as measured by the P-dimension, the class of choice functions is optimal
compared to other classes. It is worth noting that this is not the case for

5The question whether natural languages are better learned by “rules” or by statistical
methods is a central issue in machine learning.
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describability in Rubinstein’s sense. Consider the class of choice functions
which represent choosing the median element according to some fixed order
relation: In other words, let ¢(S) be the median element among S accord-
ing to some fixed ordering of the elements in X. (For simplicity assume
that |S| is odd.) This class of choice functions was considered in Kalai,
Rubinstein and Spiegler (2001). Yuval Salant pointed out that the median
choice requires at most 2n/3 examples (but not less than n/2 examples) to
be described. Moreover, there are symmetric classes of choice functions on
N alternatives that can be described by log, N +1 examples, much less than
the N — 1 examples required for the class of rationalizable choice functions.

We can also seek an interpretation of the optimality of the class of ra-
tionalizable choice functions. Are there forces which will lead to optimality
when it comes to individual choice? The discussion in Borgers (1996) ap-
pears relevant. Again, it is important to remember that we are considering
classes of choice functions which are symmetric, namely we assume that the
alternatives are a priori indistinguishable.

Compare, for example, the following two types of behaviors: The choice
of one agent is rationalizable while for another agent, ¢(S) is the median
element among S according to some fixed ordering of the elements in X.
We can ask the following: Given that we know the choice pattern but not
the specific ordering, is it the case that it will be easier to learn the choices
of the first agent based on a small number of random examples? Will it
be easier for an economist or a psychologist by observing a small number of
random examples to support or refute that an agent’s choice is rationalizable
than to support or refute a "median” behavior? Suppose that the type of
behavior is "wired in” but the ordering is unknown and the choices of a
novice agent are based on mimicking the behavior of experienced agents.
Does rationalizable choice have an advantage over “median” choice?

Our objective is not to offer definitive answers. Such answers would
depend on specific models. For the last (and perhaps most interesting)
question we must take into account how “successful” each type of behavior
is to start with and not only the learning factor. The ability of novice agents
to quickly learn the choice may occasionally give an advantage to a rival...
Our purpose is rather to propose PAC-learnability and the P-dimension as
appropriate mathematical concepts for studying such questions.
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6 Analyzing the learnability of more complex choice

6.1 Examples and motivation

There are various cases in which individual choices are modeled by choice

functions which are not rationalizable. See Kalai, Rubinstein and Spiegler

(2001) for several examples and for a more general notion of rationalization.
Consider the following three examples:

1. The decision maker chooses the alternative from a set S of alternatives
which is ’second best’ according to her utility function. (This example
is discussed in Sen (1993).)

2. In order to choose one person to hire from a group of candidates, an
exam is given and the decision is made between the two candidates
with the highest scores. (Formally, there are two order relations, <;
and <9, on the alternatives. c(A4) is the maximal element according
to <1 between the two largest elements according to <s.)

3. A committee of three people chooses between pairs of alternatives by
majority vote.

In these examples upper bounds on the P-dimension can easily be de-
rived by elementary counting. A choice functions described by the first
example is determined by an order relation on the alternatives. The class of
choice functions is of cardinality N! and therefore (by Proposition 2.2) the
P-dimension is at most N logy N and by Theorem 2.1 the number of exam-
ples needed for learning in the PAC-model is O(N log N). Choice functions
in the second and third examples are determined by two- and three- order re-
lations, respectively. The cardinalities of the classes of choice functions that
arise are at most N!? and N'!? and again the number of examples needed for
learning in the PAC-model is at most proportional to N log N.

Note that learnability reflects the structural nature of these examples
and may fail miserably for simple unstructured extensions. The first two
examples might suggest that we consider the class Us of all choice functions
with the property that there exists a linear ordering for which ¢(A) is either
the first or the second element of A. It is easy to see from the freedom of
choice for subsets of cardinality larger than one that the P-dimension of s
is already 2V — N — 1 and therefore an exponential number of examples is
needed to learn a choice function in Us according to the PAC-model.

Remark: Sprumont (2000) considered abstract choice functions repre-
senting the choices of several interacting agents and, in particular, choices
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that can be rationalized by the notion of Nash equilibrium. A simple count-
ing argument (combined, of course, with Theorem 2.1) implies statistical
learnability from a “few” examples for the class of choice functions which
are Nash-rationalizable in Sprumont’s sense. The method described below
allows us to analyze learnability of “mixed Nash-rationalizable” choices as
also defined by Sprumont.

Equipped with the examples above we are ready to discuss in some de-
tail the original motivation behind the results of this section. The notion of
a rationalizable choice function consists of a substantial abstraction which
allows various choice procedures and models to be grouped together. For
many economic applications, once we know the choice is rationalizable the
specific model for deriving the utility functions, as complex as it may be,
becomes irrelevant. Can a similar level of abstraction be reached for classes
of choice functions that are not rationalizable? or for choices of two inter-
acting agents? A natural extension would be to find more general forms of
rationalization or to consider weaker forms of the ITA axiom which allow the
inclusion of additional choice functions.

The first approach was adopted in Kalai, Rubinstein and Spiegler (2001)
where choice functions that can be rationalized by multiple rationales were
considered. For example, there are various interesting classes of choice func-
tions that can be rationalized by two order relations, i.e., there are two
order relations <; and <2 such that for every S, ¢(S) is either the maximal
element of S according to <; or according to <. Note that the class of
choice functions that can be rationalized by two order relations is already
highly non-learnable. This means that along with interesting examples, a
vast number of additional choice functions is introduced. Finding axiomatic
descriptions for classes of choice functions which are not rationalizable also
appears to be difficult (for example, I am not aware of any satisfactory ax-
iomatic description for any of the classes of choice functions considered in
this section,) and simple weakening of the ITA condition often lead to highly
non-learnable classes of choice functions.

We examine this issue from a different angle. We propose that the struc-
tural nature of individual choice as modeled in theoretical economics implies
statistical learnability from “a few” examples, i.e., a number of examples
which is at most a polynomial in the number of alternatives. The notions
of PAC-learnability and the P-dimension can serve as concrete ways to de-
fine a class of functions as structural and to measure “how structural” the
class is. In the rest of this section we describe a method to analyze sta-
tistical learnability when the choice is based on a complicated optimization
procedure.
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6.2 Who is the most likely winner?

The following example will be used to present a general method for analyzing
learnability. Consider a situation with N tennis players such that for each
two players ¢ and j there is a probability p;; that ¢ beats j in a match
between the two (and therefore, pj; = (1 — p;;)). Among a set A of players,
let ¢(A) be the player who is most likely to win in a tournament involving
the players in A. In this tournament, there will be a match between every
pair of players and the player with the largest number of victories is the
winner.” In the case of a tie no winner is declared.

Consider the class W of choice functions that arise in this model where
the probabilities p;; vary over all real numbers in the interval [0,1]. The
first thing to notice is that non-rationalizable choice functions can result in
this situation. In fact, the choices for pairs of players can be prescribed
in an arbitrary manner. In this example, the choice from a set A depends
on a complicated computation based on N(N — 1)/2 real parameters. Is
this description sufficiently “structured” to imply learnability from a few
examples? Does the model have any testable implications or perhaps the
choice of every set can be prescribed in advance?

Theorem 6.1. The class of choice functions W requires O(N3) ezamples
for learning in the PAC-model.

The proof relies on results from real algebraic geometry which were first
applied in the context of learnability by Goldberg and Jerrum (1995). Note
that to obtain crude upper bounds for learnability all that is needed is to
assert that the restrictions on the class of choice functions in question are
strong enough so that only a few choice functions are left and therefore it is
easy to learn the implied class. Moving from the mathematical model to the
conclusion that “a few choice functions are left” can be far from obvious.

6.3 Sign patterns of real polynomials

When the model for the choice functions is based on optimization involving
certain real parameters, simple counting arguments may not apply. There
are various methods that can be used for proving that the number of choice
functions will nevertheless be small if the real functions involved in their
definition are not overly complex. Perhaps the most general one is the

"The (smaller) class of choice functions that represent the special case in which all p;;
are either zero or one is considered in psychology, see Tversky and Shafir (1992).
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application of results from real algebraic geometry. See Alon (1995) for a
survey of this approach and references.
We will rely on the following theorem by Warren which is tailor-made

for combinatorial applications. Consider m polynomials Q1(z1,...,z,),
Q2(x1,---y2r), ooy Qu(z1, ..., 1), in r variables z1, zo, . .., z,. For a point
¢ in R" the sign pattern (s1,s2,...,8y,) is a vector in {—1,0,1}™ where

s; = signQj(c), namely s; = 1, if Q;(c) > 0, s; = -1 if Q;(c) < 0 and
s; =0if Q;(c) = 0.

Theorem 6.2. If the degree of every Q) is at most D and if 2m > r then

the number of sign patterns given by the polynomials Q1,...,Qm s at most
(8eDm/r)".

We now show how Warren’s theorem applies to the example considered
above. The argument extends to various classes of choice functions (and
other types of functions found in economics) which may be based on com-
plicated optimization procedures.

First we show the precise computation for determining the most likely
winner. Given a set A of s players, the probability that the k-th player will
be the winner in a tournament between the players of A is described by a
polynomial Q(A, k) in the variables p;; as follows:

First, we represent the outcome of all matches between the players of A
using an s by s matrix M = (ms;) such that m;; = 1 if player i won the
match against player j and m;; = 0 otherwise. We put m;; = 0 for every
1. The number of such matrices is the number of possible outcomes which
equals 256=1/2_ The probability pps that such a matrix M will represent
the results of matches in a tournament is

pM = H{pij ti,j € A, mg; =1}

Define Q(A, k) as the sum of all the expressions pj; for which player & is
the winner. (Player k is the winner in A if when we restrict the matrix M
to rows and columns that correspond to A, the row that corresponds to k
has more ’ones’ than any other row.) Q(A,k) is the probability that player
k will be the winner in a tournament involving the players in A. ¢(A) is the
player in A for which Q(4, k) is maximal.®

8We can characterize choice functions in W by a sentence of the form: “There exist
real probabilities p;; such that ¢(A) is the element k of A for which Q(A, k) is maximal”.
In a sense, we would like to eliminate the quantifier “there exist p;;”. The issue and
the mathematical tool we apply are to some extent close in spirit to those considered by
Brown and Matzkin (1996).
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Proof of Theorem 6.1: Given a set A of s players we described above
the probability Q(A, k) that the k-th player will be the winner in a tourna-
ment between the players of A. Q(A, k) is a polynomial of degree s in the
variables p;;, 4,7 € A.

Now consider all the polynomials of the form Q(A,%,j7) = Q(A,k) —
Q(A, 7) for all nonempty subsets A of players and all pairs of distinct players
k and j in A. We have altogether less than 2. N? polynomials in N(N —1)/2
variables p;;. (Note that p;; = 1 —pj;.) The degree of these polynomials is
at most N(N —1)/2.

The crucial observation is that the choice function given by a vector of
probabilities p;; is determined by the sign pattern of all the polynomials
Q(A,k,7). Indeed, ¢(A) = k (that is, k is the most likely winner in a
tournament between the players in A) if and only if Q(A, &, j) is positive for
every j € A, j £k.

We can now invoke Warren’s theorem with r = D = (gf ) and m <
N2.2¥_ According to Warren’s theorem the number of different sign patterns
of the polynomials Q(A4, k, j) is at most (e2V N2)N(N=1/2_ The logarithm of
the number of choice functions described in this fashion is therefore smaller
than N3. O

6.4 The Borda rule

Let X be a set of politicians and consider a society in which each individual
has an order relation over X. Consider a subset A C X of candidates that
are running for office. According to the plurality rule c(A) is the candidate
who placed first among the elements of A for the largest number of voters.
According to the Borda rule ¢(A) is chosen as follows: For each individual,
rank the elements of A by the numbers0,1,...,|A|—1 (the candidate ranked
'0” is the least favorable) and let ¢(A) be the element for which the sum of
the individual ranks is maximal.

Both rules lead to non-rationalizable classes of choice functions but the
learnability of these classes differs sharply. Saari (1989) proved that the
plurality rule for large societies gives rise to all choice functions. In contrast
we present the following theorem:

Theorem 6.3. The class B is learnable in the PAC-model from O(N3)
examples.

Proof of Theorem 6.3: For two alternatives 4,7 € X let b;; be the

number of voters that prefer ¢ to j. For a subset A of X and for ¢ € A
define Q(A,3) = > {b;; : j € A}. Q(A,1) is precisely the sum of rankings
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of candidate 7 in an election in which the members of A are the candidates.
Therefore, ¢(A) is the element i of A for which Q(A4,:) is maximal. The
Borda choice for A is therefore expressed by the sign patterns of the (lin-
ear) polynomials Q(A,i) — Q(A,j) in the variables b;;. From this point the
proof proceeds as in Theorem 6.1. (The number of sign patterns of n linear
expressions in m variables is the number of regions determined by n hyper-
planes in R™. Therefore, in this case, simpler tools than Warren’s theorem
are available.) O

Theorem 6.3 adds to a large literature concerning the advantage of the
Borda rule (see Saari (1995) and references cited there). It is well-known
(and perhaps was already known to Borda himself) that the choices for the
Borda rule cannot be prescribed in an arbitrary manner: For example, if
z = ¢(A) then z cannot lose in a two-candidate election against every other
element of A (see, Saari (1995)). Theorem 6.3 gives a quantitative upper
bound to the amount of freedom in the outcomes of the Borda rule.

What accounts for the difference in learnability between the Borda rule
and the plurality rule? According to the plurality rule the society’s choice
for a set A depends only on the individual choices for A. According to the
Borda rule the society’s choice for a set A also depends on the individual
preferences for the elements of A. We say that a social choice function
satisfies the “Irrelevance of Rejected Alternatives” (IRA) condition if the
choice of the society depends only on the choices of the individuals.

In a subsequent paper we prove that under fairly general conditions
and when the society is large, if (IRA) is assumed then the class of choice
functions that arises includes all choice functions and hence requires 2V
examples for statistical learning with high probability.

7 Conclusion

This paper is centered around the mathematical concept of statistical learn-
ability and especially around the P-dimension, a combinatorial concept used
to analyze statistical learnability. We have chosen to study this concept in
the context of abstract choice theory. A similar study for economic models
of prices, demands and utilities would be an interesting direction for further
research.

The main economic justification for this study is that statistical learn-
ability is related to the ability to make predictions based on empirical data
and to empirically test economic models.

Our main result determines the P-dimension of the class of rationalizable
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choice functions. A complementary result demonstrates the optimality of the
class of rationalizable choice functions in terms of the P-dimension under

the assumption of symmetry. This result is analogous to a conjecture of
Rubinstein (1996, 2000) in a context which arguably is more suitable to
Rubinstein’s interpretation. Finally, we describe a mathematical method
for analyzing the statistical learnability of complicated choice models and
demonstrate this method for the outcomes of the Borda voting rule and for
an example in which the choice is based on involved optimization.
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