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Abstract

There is an underlying tension between allocative efficiency and information
aggregation in markets. We explore this in the context of an auction in which
k identical objects of unknown quality are auctioned off to n bidders. Bidders
receive a signal that gives some information about the quality of the objects,
and in addition, differ in their taste for an object of any given quality. The k
highest bidders get an object and pay a price equal to the k -+ 1st highest bid.
We find conditions under which in the limit, objects are allocated efficiently to
those with the highest tastes, and price converges in probability to the value

of an object to the marginal taste type.



1. Introduction

In many market settings, there is both a private and a common component to valua-
tions. In this paper, we consider situations where market participants with idiosyn-
cratic tastes have private information about the quality of the goods for sale. As an
example, consider the market for new cars. Potential buyers may have private infor-
mation about the reliability of a particular model and also differ in their valuations
of the styling and the features of the car. An example in an auction setting is the
sale of timber harvesting contracts on public forests: firms differ in their harvesting
costs and, in addition, are asymmetrically informed about the quality of the tracts
from a particular forest.!

To capture this, we consider a setting with a fixed supply of identical objects of
unknown quality q. Each agent has an idiosyncratic taste parameter ¢; and places
value u;(q,t;) on winning a single object (and no value on further objects). An

example that satisfies our assumptions is

ui(q,t;) = q + ;.

Each agent knows his own taste parameter, t;, and receives a noisy signal about
quality. In the simplest example, the agent receives one of two signals where the
probability of receiving signal 1 is strictly decreasing in ¢, conditionally independent
across players given ¢, and independent of the ¢,’s.

A common intuition in the economics literature is that if there are many “small”
market participants then the market outcome will be efficient, and the market price
will aggregate the information dispersed in the economy. However, this intuition is
not complete.

Assume in the context of our example that there is a continuum of buyers with
mass 1 and that the various ¢,;’s are uniformly distributed on [0, 1] and independent
of all other variables. Assume further, there is a continuum of objects with mass 1/2.
Since there is a continuum of buyers with independent signals about ¢, knowledge of

the fraction of agents with signal 1 reveals q. So, dispersed among market participants

1See Haile (1996) for a description of timber auctions.



is full information about q. And, the market has a fully revealing rational expectations
equilibrium (REE) given by p = ¢+1/2. Demand is equal to the fraction of consumers
for whom E[q|p] + t; > p. With p = ¢+ 1/2 this inequality holds for all consumers
with ¢; > 1/2 and hence demand (and supply) is 1/2. Since buyers can infer the true
quality of the object from the price, their demands are independent of their private
information. Price thus aggregates private information by assumption, and allocative
efficiency follows automatically since demands then depend only on tastes.

However, as in all competitive models, there is no explanation given in the REE
model of how this price came about. Since agents’ demands depend only on ¢;, how did
the price come to incorporate knowledge of quality?? To fully understand this market,
we must consider a model where price is a function of individual buyer behavior, and
where this behavior in turn depends only on individuals’ private information (and
not on the information contained in the equilibrium price). For example, consider an
auction implementation of this market. Each bidder chooses a bid b(¢;,1) or b(t;,2)
depending on his taste parameter and the signal he observes. Players whose bid is
above the median receive an object at price equal to the median bid.

Suppose that bidders use their private information about quality and hence that
b(t;,2) > b(t;,1). Since the fraction of bidders who receive a good signal is increasing
in ¢ this implies that the median bid is a strictly increasing function of ¢q. Now observe
that a small change in a bid only affects the payoff of the bidder if it is on the margin
between winning and losing the object, i.e., if the bid is equal to the median bid.
But since the median bid is strictly increasing in ¢, the bidder can infer the precise
quality of the objects conditional on this event. This implies that the optimal bid
only depends on the bidder’s private valuation ¢; and is independent of his signal
about quality.

Thus, it appears that the REE described above cannot be implemented by a
straightforward non-cooperative bidding model. The reason is that agents would like
to bid the same amount, independent of their private information, when other agents
bid informatively.

On the other hand, if all other bidders ignore their private information, i.e.,

b(t;,2) = b(t;, 1), then price will be uninformative about quality. But then each

2See Milgrom (1981) on this point.



bidder has an incentive to use his private information. Hence we can also exclude the
existence of equilibria where information is not aggregated.

These arguments have a flavor similar to the Grossman-Stiglitz paradox (Gross-
man and Stiglitz, 1976). They point out the following problem in rational expec-
tations models with a small cost of acquiring information: if the equilibrium price
reveals information, then there is no value to acquiring information. But, if no in-
formation is acquired, then price is uninformative, and then there is an individual
incentive to acquire information. In our setting, the paradox remains even if there is
no cost to acquiring information: if the price is very informative about quality, then
individuals have no incentive to use their information. But, then price cannot be in-
formative. Conversely, if the price is uninformative then individuals have an incentive
to use their private information which implies that the price must be informative.

Instead of a continuum population, consider a finite auction with n bidders and
k objects. The k highest bidders receive an object and pay the k + 1st highest
bid, with ties broken by symmetric randomizations. For any finite k£ and n, market
participants have some incentive to use their private information even if other market
participants do the same. Hence the Grossman-Stiglitz style problem just described
does not occur in the finite setting. However, for fixed k£ and n there is a tension
between information aggregation and allocative efficiency: the more sensitive bids are
to private information, the more information is aggregated in the price but also the
greater is the allocative inefficiency.

The contribution of this paper is to show how as k and n grow, the tension between
information aggregation and allocative efficiency can disappear. Our main result can

be summarized as follows:

Consider a sequence of auctions of the type described. If both k and n
go to infinity (and k/n remains bounded away from 0 and 1), then in
the limit of any sequence of symmetric equilibria there is both allocative
efficiency and full information aggregation. That is, in the limit, objects
are allocated to the players with the highest ¢;’s, and price reflects the
true value of an object to the marginal taste type.

To provide an intuition, note first that efficiency and information aggregation are

both possible in the limit of the finite game: as the market grows each participant’s



bidding behavior can become less and less sensitive to his private information while
aggregate behavior still reveals quality with increasing precision, so that in the limit
both information aggregation and efficiency hold. Thus, the limit of the finite game
allows for an outcome that the continuum example above misses.

Of course, this is only the statement that there need not be a conflict between
information aggregation and efficiency. It says nothing about equilibrium behavior.
However, the forces which generate a paradox in the continuum model are precisely
those which imply that in the limit of our finite model there is both allocative effi-
ciency and full information aggregation. If for large n and k the equilibrium price
does not essentially reveal the quality of the objects, then there is a strong incentive
for bidders to use their private information about quality. But then price will reveal
the quality of the objects, a contradiction. Conversely, because the equilibrium price
reveals the quality of the objects with great precision, optimal behavior is almost in-
dependent of private information. Therefore, in the limit, the misallocation of goods
is negligible.

To analyze the robustness of our results to the information structure, we consider
a model with a finite number of signals, where the probability of getting information
may depend both on the valuation of the bidder and on the number of market partic-
ipants. In this way our model can capture situations where for example information
is costly and only some players choose to acquire information. We demonstrate that
asymptotic efficiency holds irrespective of the information structure. The idea behind
this result is that efficiency can obtain either because bidders largely ignore their in-
formation (as they will if asymptotically price reveals quality) or because most bidders
simply have no private information.

On the other hand, the conditions under which information aggregation occurs are
more stringent: our proof holds only if a non-vanishing fraction of bidders is informed
and if information is independent of the bidder’s type. Not surprisingly, this rules
out situations where information is costly.

In a companion paper (Pesendorfer and Swinkels (1997)), we analyze information
aggregation in a setting similar to this but in which tastes are homogeneous. There
we show that information aggregation holds if and only if k&, — oo and n, — k, — oo.

The result for the more general setting of this paper is weaker in two ways. First,



we require that k,/n, remains bounded away from 0 and 1 along the sequence. The
result for the case when k,./n, heads to a boundary in the pure common value setting
depends on a fuller characterization of the equilibrium than we can achieve in this
setting. The second weakness is more serious: in the pure common value case, we
are able to show that there exists a unique symmetric equilibrium, fully characterize
it, and then show that it has the properties needed for information aggregation. In
this setting, we are unable to show existence of a symmetric equilibrium, or provide a
full description of the equilibrium. Rather, we show that if symmetric and increasing
equilibria exist, then they must have the properties necessary for our results. In the
final section of the paper we show that e—equilibria satisfying these conditions exist.

The present paper is also related to work by Feddersen and Pesendorfer (1996).
They analyze two candidate elections in which voters have different preferences and
have private information about the quality of the candidates. Feddersen and Pe-
sendorfer give conditions under which the election fully aggregates the private infor-
mation of voters.

The major impetus for our work is to understand the general conflict between
information aggregation and allocative efficiency, rather than the limiting behavior of
large auctions themselves. Auction models are convenient for this task because they
are a tractable non-cooperative model of price setting. However, even for auctions,
our results are of some relevance: many real auctions do have a large supply and set
of potential buyers. And, as we argue below, auctions which combine a private and
common component of values probably should be viewed as more the norm than the
exception. The model seems to fit the timber example reasonably well. For general
markets it would be desirable to consider strategic sellers as well as strategic buyers.
Such a generalization is left for future research.

In the next section, we lay out the model, and describe the key properties of
the equilibrium for fixed £ and n that we will need for our asymptotic results. We
also briefly discuss the role of our two dimensional type space. Section 3 is the
heart of the paper. It examines the behavior of the equilibrium as k& and n grow
large. Finally, our asymptotic efficiency and information aggregation results allow us
to characterize asymptotic bidding behavior precisely. This is despite the fact that

equilibria are extremely difficult to solve for in the finite setting. Section 4 provides



this characterization. Section 5 discusses e—equilibria, while Section 6 concludes.

Proofs of all results are contained in Section 7.

2. The Model and Equilibrium for Fixed Market Size

There are n buyers and k identical objects for sale. The quality of the objects, g, is
drawn from the interval [0, 1] according to a distribution F. We assume that F' has
a continuous and strictly positive density f. Buyer ¢’s taste parameter ¢; is drawn
independently from the interval [0, ¢] according to the probability distribution W; W
has the continuous and strictly positive density w.

Buyer i’s utility from a single object is u(q,t;). Further objects give utility 0.
We assume that wu is continuously differentiable with both partial derivatives strictly
greater than zero. Thus, the valuation is increasing in ¢; and q.

Buyer ¢ knows his own taste parameter, ¢;, and receives a signal s;,1 < s; < §
about quality. We assume that for a given quality, the signals s; are independent
across players. Therefore we can define 7(s|q,t) as the probability that type t receives
signal s when the quality is q.

We allow the probability of receiving signals to depend on the taste parameter.
This captures situations where some taste types have access to better information
than others. This may come about because information is costly and different taste
types have different incentives to acquire information. For example, suppose there
are two signals but not all bidders have access to (or purchase) these signals. Our
model can incorporate this by defining an information structure with three signals
where one of the three signals represents “no information”. Types who do not have
access to information receive the uninformative signal with probability one.

We assume that the effects of ¢ and of ¢ on the signals received are independent.
Thus for example, ¢ can affect whether or not particular information is purchased, but
does not affect the outcome of the signal if information is purchased. Formally, this

is described by the assumption that 7 can be written as a product of two functions

m(slg, t) = mi(slg)ma(slt).



In addition, we require that higher signals are associated with higher levels of
q. Formally, this is expressed by the monotone likelihood ratio property. Below we

summarize our assumptions on .
Assumption 1. 7(s|q,t) satisfies:

1. Independence: There are functions m (s|q), m(s|t) such that

m(slg, t) = mi(slg)ma(slt).

Moreover, m(s|q) is continuously differentiable in q and 7o(s|t) is a measurable

function of t.

2. Limited Information: There is 1) > 0 such that m(s|q) > n > 0 for all s and all
q.

3. Monotone Likelihood Ratio Property: For all s' > s, the ratio m(s'|q)/m1(s|q)

is strictly increasing in q.
4. Y ,m(s|q) = 1for all ¢ and [ ma(s|t)w(t)dt > 0 for all s.

Part 2 of Assumption 1 implies that signals provide only noisy information about
q: A player who begins with full support beliefs will retain them after seeing a
signal. Part 4 of Assumption 1 says that 7; can be interpreted as a probability
distribution (this is a normalization) and that each signal is received with strictly
positive probability (this is a convenience).

Example 1 gives an information structure that satisfies our assumptions.

Example 1 There are two informative signals: a “good” and a “bad” signal. The
higher the quality the more likely it is that the good signal is received. Specifically,
the good signal is received with probability ¢ and the bad signal with probability 1—gq.
Depending on their taste type some bidders have access to the signals and some do
not. We capture this situation by defining the following information structure: there

are three signals s € {1,2,3} where signals 1 and 3 play the role of the original pair



of signals and signal 2 represents “no-information”. Let

q/2 if s=1

m(slg) ={ 1/2 if s=2

(1—¢q)/2 if s=3

and let
2 Pr(t receives information) if s=1
m2(s[t) = { 2(1 — Pr(t receives information)) if s =2
2 Pr(t receives information) if s=3

Thus if type t receives information with probability 1 then his information reduces
to the original pair of signals. On the other hand, if type ¢ receives no information

then he receives signal 2 independent of q.

Each bidder ¢ submits a bid b; as a function of his taste-signal pair (¢; s;). The
k highest bidders receive an object and pay the k + 1st highest bid. If two or more
bidders are tied at the k-th highest bid then each such bidder has an equal chance
of receiving the object. The overall payoff of a winning bidder is u(t;, s;) — b;. The
payoff of a losing bidder is 0.

We consider symmetric Nash equilibria in pure strategies.® Thus we can describe
equilibrium behavior by a bidding function b(¢, s). The following assumption requires
that the bidding behavior captured by b (¢, s) is continuous and strictly increasing in
t.

3The restriction to pure strategies is without loss of generality. To see this note that if for a given
signal s, b is optimal for taste ¢, then every optimal bid with signal s and taste ¢’ > ¢ is at least b.
This is so as t contains no information about either g or other players’ actions, and so increasing ¢
simply makes the increased probability of winning resulting from the increase in bid strictly more
attractive. But then, for almost all ¢, there is a unique optimal bid. (To see this, let y(¢) be a
selection from the best response correspondence for some given s. Then, y(¢) is a non-decreasing
function, and y(t) jumps at every ¢ where the best response is non-unique. So, there are at most a
countable set of such points.) Since the distribution of ¢ is atomless, for every equilibrium, there is
a realization equivalent equilibrium in pure strategies (simply take a selection at the zero measure
set of points where the best response is not unique).

4Note that the argument in the previous footnote implies that the bidding behavior is weakly
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Assumption 2. b(t, s) is strictly increasing in t, continuous in t, and differentiable

in t at all but finitely many points.®

In the following we describe the equilibrium strategies from the perspective of
bidder 1. (Since we are working with symmetric equilibria, this is enough.) Let d
denote the kth highest bid among all bidders except bidder 1. When b; = d, then a
small increase in 1’s bid implies that he wins an object whereas a small decrease in
his bid implies that he does not win an object. We thus refer to the event d = b as
“b is pivotal”.

Our first result says that bids are increasing in the signal received. Moreover, each

buyer bids exactly what the object is worth to him if his bid is pivotal.

Proposition 1. If Assumption 2 holds, then in equilibrium b(t,s") > b(t, s) for all

s’ > s and all t. Moreover,

b(t,s) = E(u(q,t)|d=>bt,s),s) (2.1)

for all s and t.

The monotonicity of the bidding behavior in the signal received is a consequence
of the monotone likelihood ratio property and the continuity of the bidding functions.
To give an intuition for Equation (2.1), consider a small increase in player 1’s bid,
say from b to b+ e. If d < b then this change is irrelevant since 1 wins with either
b or b+ ¢ and pays the same amount, d, in either case. If d < b+ ¢ the change is

again irrelevant since 1 loses with either bid. The only situation in which the change

increasing in ¢t. Assumption 2 strengthens this to strict monotonicity and continuity.

In a previous version of this paper (Pesendorfer and Swinkels 1996), we assumed only two signals.
In that case the assumption of continuity of the bidding functions is unnecessary. At first blush, it
seems obvious that bidding functions must be strictly increasing in ¢, since in the presence of a tie,
either high ¢ types should want to bid a little more, or low ¢ types a little less. The difficulty comes
in the fact that when there is a tie at b, winning or losing may contain extra information about gq.
We have thus been unable to rule out that the possibility of equilbria involving flat spots in the
bidding functions, supported by a form of upside down winner’s curse at the associated bid (that is,
the news that one wins with a bid of b contains positive information conditional on the event that
the pivotal bid is at b, and losing contains negative news). See Pesendorfer and Swinkels (1996) for
a full discussion.

5Observe that since b(t, s) is monotone it is automatically differentiable almost everywhere. The
assumption that differentiability fails at most at finitely many points is needed for technical reasons.
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matters is thus when d < b < d + ¢, in which case bidding b + ¢ instead of b wins an
object at a price of approximately b. Player 1’s expected utility from the object in
this event is

Eu(g,t)[p<d<b+eg,s).

Taking € to zero and noting that at the optimal bid, b(¢,s), small changes in bid
should leave payoffs unaffected, yields Equation 1.

2.1. Comments on the Two Dimensional Type Space

Our model has the property that each bidder is characterized by two parameters: his
taste and his signal about quality. It is this two-dimensionality of the type space that
gives rise to the conflict between information aggregation and allocative efficiency
discussed in the introduction.

In contrast to our model, the vast majority of the existing auction literature
works with a one-dimensional type space: each player receives a single real valued
signal. Milgrom and Weber (1982) show that despite this one dimensional type
space, the model is rich enough to include pure private values (a player’s utility from
the object depends only on his own signal), pure common values (a player’s utility
from the object depends symmetrically on all signals) and some models which are
intermediate between private and common values (a player’s utility depends on all
signals, but weighs signals of other players differently than his own).

In the one-dimensional environment there can be no-conflict between information
aggregation and efficiency: a higher estimate of quality always also implies a higher
taste parameter. We are thus unable to explore this conflict using the standard
Milgrom Weber (1982) framework. Moreover, we would argue that most auction
settings contain both common and private values components. And, unless tastes
and information are perfectly correlated, this requires a type space with more than
one dimension.® For example, bidders on an oil lease may differ in their current cost
of exploration and drilling activity, and in addition, have different information about

the amount of oil which a certain tract might contain. It seems highly artificial to

6More correctly, while one can always map a multidimensional type space into a single dimensional
type space, doing so while maintaining any sort of monotonicity is impossible.
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assume that good information about the oil-content of a tract also implies that the
company has lower costs of exploration and drilling.

With a single dimensional type space, there is a natural guess about the form
of the equilibrium: bids will be strictly increasing in type (and symmetric across
players). Having made this guess, inference problems about equilibrium behavior
are reduced to inference problems about underlying parameters. So for example, the
question “what would I infer if I knew my bid was tied with the highest bid by my
opponents” reduces to “what would I infer if I knew my signal was tied with the
highest signal by my opponents.” One can then easily derive first order conditions
on what the bid of any given signal type must look like. Integrating these first order
conditions yields a candidate equilibrium, and the assumption of affiliation allows one
to verify that the candidate is indeed an equilibrium.

With a two dimensional type space, there is no “natural” complete ordering on
the type space. Guessing an order on the type space involves guessing which pairs of
signals and tastes go together: e.g., for any given type ¢, signal s and signal s’ what
type t' has the property that b(t',s") = b(t, s)? But this question cannot be answered
independent of the equilibrium strategies. It is equivalent to guessing what a bidder
infers from d = b. This in turn of course depends on how sensitive the bids of other
players are to their information.

As a consequence of the two-dimensional type space we have not been able to
prove existence of equilibria (although see Section 5 on e-equilibria). Our results
instead hinge on a partial characterization of what equilibria must look like in the

limit, if they exist.

3. Large Auctions

We now turn to the questions of asymptotic efficiency and information aggregation in
large auctions. To do so, we characterize the limit of auction outcomes as the number
of buyers and the number of objects converge to infinity. Formally, we consider a
sequence of auctions indexed by r. Auction r has k, objects and n, bidders, where

both k. and n, go to infinity as r — oo. We assume that the ratio of objects to
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bidders, k,./n,, stays away from zero and one along the sequence.” Thus, a situation
where there are always half as many objects as buyers satisfies our assumptions, but
one where the number of objects stays fixed as the number of buyers increases does

not.

Assumption 3. n, — oo as r — oo. Moreover, there is a 3 > 0 such that 1 — § >

k./n. > [ for all r.

To indicate that we are working with elements of a sequence we will subscript all
relevant objects such as strategies and inverse bidding functions by r.

Along this sequence of auctions we keep the prior distribution of quality and the
distribution of taste types fixed. As before, we allow the probability of receiving
an informative signal to vary with type. However, in addition we wish to allow
the information structure 7 (s|q,t) to vary with r. The motivation for this is that in
some auction settings, information acquisition will be endogenous. And, for example,
it may be that in large auctions, a smaller fraction of players choose to acquire
information than in auctions with a smaller number of players. To capture this, we

assume that the information structure takes the form

7 (slq, t) = m(s|q)mar(s]t). (3.1)

Hence we assume that m stays fixed along the sequence while m may change with
r. Thus, the information a signal reveals about the quality of the objects stays fixed,
but the probability that a particular taste type receives a particular signal may vary

in 7. The assumption is illustrated by the two examples which follow.

Example 2 There are two informative signals. Each bidder receives information

with probability 1/r. Hence, as r increases, the fraction of bidders who are informed

“In a companion paper (Pesendorfer and Swinkels (1997) dealing with a pure common values
setting, we were able to explicitly characterize the equilibrium, and this allowed us to derive an
information aggregation result even when k, /n,. went to 0 or 1. Here, we are only able to derive some
properties of the equilibrium: with this weaker characterization we require the stronger assumption
on k,/n, to obtain results. Whether our results would go through when &, /n, does go to 0 or 1 is
an open question.
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decreases to zero. An example of such an information structure is given by

mi(slg) =

and

Tor(s|t) =

s=1

q/2 if
1/2 if s=2

(1—¢q)/2 if s=3

Signals s; and so are informative about ¢, s; is not. In this example, the probability

of receiving an informative signal is the same for each bidder; it varies only with r.

Example 3 We may also extend Example 1 to this setting. Bidders first learn their

taste parameter t; and then have to decide whether to purchase information or not.

The decision to purchase with any given ¢; may depend on the number of market

participants. If information is purchased, it has the same structure as s; and s3 in

Example 2. Any symmetric information purchase behavior in this setting gives rise

to an information structure that can be captured by the function m; above and by

the following function o, :

2(Pr(type t acquires information|r) if s=1
mar(s[t) = § 2(1 — Pr(type t acquires information|r)) if s =2
2(Pr(type t acquires information|r) if s=3

The functions 7 and 7, for each r are assumed to satisfy A1l. Note in particular

however, that while part 4 of Assumption 1 requires that every signal is received with
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positive probability for each r, it does not place any lower bound on the probability
with which a signal is received. Thus, in Example 2, the probability of receiving

signal 1 or 3 is positive for each r, but tends to 0 as r — oc.

3.1. Asymptotic Efficiency

Efficiency requires that the players with the &k highest values are those who win
objects. This maximizes the gains from trade across buyers and the seller, and,
given our assumption of quasi-linear utility functions, is the unique Pareto optimal
allocation. Of course, given that a player who observes s’ > s always bids more
than one who observes s, exact efficiency is unattainable for any finite auction. In
particular, there is a positive probability that a bidder with type (¢, s') wins the object
while a bidder with type (¢, s), t' > ¢ does not.

For given r, let the random variable G} (¢) denote the maximal gains from trade,

and let the random variable G¢ (¢) denote the equilibrium gains from trade.® Let

Gy (q9) — Gy (q)

ny

LT(Q) =

be the per capita difference between the maximal and realized gains to trade for given

q.” We use L,.(q) as our measure of inefficiency:

Definition 1. A sequence of equilibria is asymptotically efficient if uniformly for all

q
L.(q) — 0

in probability as r — oo.
We now turn to the question of when asymptotic efficiency holds.

Proposition 2. Under Assumptions 1-3, any sequence of equilibria is asymptotically

efficient.

8G%(q) and G¢(q) are random variables since they depend on the particular realization of taste
parameters (t1,...,t,, ) and signals (s, ..., Sp, ).

9Because k,./n, is bounded from 0 and 1, it makes no difference if we measure losses on a per
unit or per person basis.
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To give an intuition for Proposition 2 it is convenient to first define the inverse of
the bidding function. For each signal s, define ¢,(b) so that b(s, ts(b)) = b for every bid
made with signal s. This is illustrated by Fig. 1. Since b(s,t) is a strictly increasing

and continuous function, ¢4(b) is well defined and unique.

Fig. 1. The inverse bidding function

The idea of the proposition can be summarized as follows: inefficiency occurs
only if the inverse bidding functions stay apart at a particular bid b (see Fig. 1).
But this in turn implies that the event that b is pivotal is very informative about
quality. But then, the signal cannot significantly change a bidders’ estimate of quality,
contradicting that the inverse bidding functions stay apart.

To be more precise, assume that there are two signals, s = 1,2 and that (contrary
to the proposition) L,.(q) > ¢ for some g. This implies that for some bid b, the taste
type who bids b with signal 1 is strictly greater than the taste type who bids b with
signal 2. Formally, t;,.(b) — t2.(b) > €. Recalling that W, the distribution of taste
types, has density bounded away from 0, this implies that W (¢,,.(b)) — W (t2.(b)) > €.
That is, the fraction of taste types who bid below b with signal 1 is strictly larger

than the fraction of taste types who bid below b with signal 2, even in the limit.
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Assume, for simplicity, that b is in the range of bids made with each signal. Then

Proposition 1 implies that

Elu(g, t1r(0))|dr = b, 1] = Elu(g, tar(b))|dy = b,2] = b (3.2)

But since t1,.(b) — t2,(b) > ¢ this equation can only hold if the inference about quality
made by a bidder with a good signal when conditioning on the event d, = b is
significantly different from the inference made by a bidder with a bad signal. Formally,

it must be the case that for all » and some €’ > 0

Elgld. = b,2] — E[q|d, = b,1] > £". (3.3)

We will argue that (3.3) cannot be satisfied for large r.

To see this, first observe that the probability that a bidder bids below bis strictly
decreasing in q. This follows since the probability that a bidder bids below b is larger
(by at least ¢’) if he receives signal 1 than if he receives signal 2. With higher ¢ fewer
bidders receive signal 1 and hence the probability that any given bidder bids below b
decreases. Now, if d, = b then exactly k, of the n, — 1 bids by players 2, ..., n, are
above b. If r is large, then the fraction of bids above b is unlikely to be much different
from its expectation. Hence, the bidder’s estimate of quality conditional on d, = b

must be very tightly distributed around the unique g that satisfies

k;

(1= W(t:,(0))) - 7(1g) + (1 = W(t2r(0))) - 7(2lg) = 1

That is, around the ¢ for which the expected number of bids above b is nfil. But
the fact that the estimate is tightly distributed, along with the fact that individual
signals contain limited information (part 2 of Assumption 1) implies that the private
signal s cannot significantly change the bidder’s estimate of the quality of the object
significantly once he conditions on the event d,, = b. But then (3.3) cannot be satisfied.

This provides intuition for the result when the probability of an informative signal

remains constant. How about a situation like Example 3, where the probability that
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bidders receive an informative signal (signals 1 and 3) goes to zero? The key is that
if in the limit almost everyone receives the same signal (signal 2), then efficiency is
automatic since b(2,t) is increasing in ¢. For inefficiency, it must be the case both
that t1,.(b) —t3,(b) remains large, and that a non-vanishing fraction of bidders chooses
to become informed. But, then we are back in the setting of our previous discussion,
since the fraction of people who bid above b will be strictly increasing in ¢, and hence

d, = b will be very informative about ¢, contradicting that t,.(b) — ¢5,(b) stays large.

3.2. Information Aggregation

As a benchmark for information aggregation we use the “full information” market,
i.e., the environment where all buyers know the true quality ¢ of the object . Clearly,
this is the relevant benchmark only in the case where bidders could infer the true
quality with high precision if they observed all the signals. So, for this section (and
indeed for the balance of the paper), we will assume that the signal structure stays
constant as r varies. In addition, we simplify the information structure so that the

probability of receiving a particular signal depends only on ¢. Thus, we assume

mr(s]g,t) = 7 (s]q)

for all r.

This assumption could be weakened substantially. See, for example, Pesendorfer
and Swinkels (1997, Section 3.5), where information aggregation obtains as long as
the fraction of informed bidders does not go to zero too fast. However, it clearly
cannot be relaxed entirely. If, for example, the number of people who receive in-
formation remains finite, then even if price aggregated all available information, our
full information benchmark would fail to be satisfied. Similarly, in the case of costly
signals, it must be the case that the price does not fully reveal ¢ in the limit for there
to be an incentive for players to purchase information.

With full information, the bidding behavior in any symmetric equilibrium is for
each bidder simply to bid his valuation u(t;,q). Thus the equilibrium price will be
equal to the k, + 1st highest valuation. Define ¢} = W‘l(’“’T’?’l) so that in expec-
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tation, a fraction (k. + 1)/n, of bidders have ¢ above t:. The law of large numbers
(plus the fact that u(q,t) is continuous in t) then implies that the equilibrium price
of the full information game converges in probability to u(q,t}) as r grows large.

We demonstrate in our next proposition that the equilibrium price of the market
where quality is unknown also converges to u(q,t}) in probability. Thus, the equilib-
rium price in a large market is very close (with high probability) to what it would be
if the quality of the object was known to all the buyers.

Let the random variable p, denote the equilibrium price in auction r. We can

then state:

Proposition 3. Suppose Assumptions 1-3 hold and the information structure m(.|.)

is fixed. Then the equilibrium price, p,, converges to u(q,t:) in probability.

Together Propositions 2 and 3 imply that the equilibrium price in a large market
is equal to the valuation of an object to the marginal bidder. Thus, in the limit
any bidder who does not buy an object has a valuation less than the equilibrium
price and conversely, every bidder who gets the object has a valuation larger than
the equilibrium price. This implies that no bidder “regrets” his bid, i.e., no bidder
would want to change his bid once the equilibrium price is announced.

To provide an intuition for Proposition 3 consider again the example with two
signals. Suppose some bid b is made by type (¢1,(b), 1) and by type (t2,(b),2). Fur-
thermore, suppose that t1,.(b) converges to t. By Proposition 2 we know that it must

also then be that t,,.(b) converges to #. By Proposition 1 we know that

E[u(tlr(b)7 Q)|d7‘ = bu 1] = E[u(t%‘(b)7 Q)|d7‘ = b7 2] (34)

and hence it follows that

Elu(t,q)|d, = b,1] — E[u(t,q)|d, = b,2] — 0. (3.5)

The last expression implies that in the limit the signal does not affect the expected
utility of a bidder once he conditions on b = d,.. But recall that by strict MLRP,
the probability of receiving the good signal, m(2|q), is strictly increasing in ¢ (and
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m(1|q) is strictly decreasing in ¢). Hence the only time the signal does not affect
a bidder’s beliefs about quality is if he can already predict the quality extremely
precisely without observing his signal. Therefore, (3.5) implies that the probability
distribution over ¢ conditional on d, = b becomes arbitrarily concentrated around the
true value q.

So, the event that b is pivotal reveals that quality is near ¢ with probability close

to one. From Proposition 1, it must then be that most of the time,

when b is pivotal, where ¢ is the taste type of the marginal bidder. Now we argue
that the same conclusion can be obtained in the event that b is the equilibrium price.
To see this, note that the event that b is pivotal occurs when &, — 1 of n, — 2 bidders
bid above b and one bidder bids b, whereas the event that b is the equilibrium price
occurs when k, of n, — 1 bidders bid above b and one bidder bids b. So, these two
events differ only in the behavior of one player. Since by part 2 of Assumption 1, the
behavior of player 1 contains only finite information about ¢, these two events are
roughly equivalent. Hence it follows that when the equilibrium price is b then again
the true quality ¢ and the taste parameter of the marginal bidder ¢ will almost always

satisfy

To complete the argument observe that by Proposition 2 and the law of large numbers
the marginal bidder has a type close to t* with probability close to one for large r.
Therefore the equilibrium price must be close to u(t, q) with probability close to one

for large 7.

4. The Limiting Bid Distribution

In this section we characterize the bidding behavior in the limit as » — oo for the
case of a constant information structure. For simplicity, we assume in this section

that the ratio of objects to bidders, k,./n., converges to a constant x € (0,1). Let
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t* = W1 — k) be the taste parameter such that the probability of drawing a taste
above t* is equal to the fraction of objects, k.

The bidding behavior in a large auction takes on a very simple form. Bidders
with tastes below ¢* — ¢ bid as if the true g of the object were 0 whereas bidders with
tastes slightly above t* +¢ bid as if the true ¢ of the object were 1. Bidders with these
tastes thus essentially ignore their information. Bidders who lie in a very narrow

range around t* behave in a way that depends sensitively on their information.

Proposition 4. For all € > 0, there exists 7 such that for all r > 7,
(1) for all t < t* —e, u(0,t) < b.(t,s) <u(0,t) +¢,
(2) for all t > t* + ¢, u(1,t) —e < b,(t,s) <u(l,t).

Figure 2 illustrates Proposition 4 for the case in which u(q,t) = q+t, kK = 1/2,
and the median of W is 1/2.

15 1

05 1

00 0.2 0.4 0.6 0.8 1

Fig. 2. The limit bid distribution

To give an intuition for Proposition 4 note that since b(t, s) is strictly increasing
in ¢ a bidder with ¢ < t* — ¢ expects the equilibrium price (and the pivotal bid)
to be larger than his own bid with probability close to one for all values ¢q. This is
the case since (by Proposition 3) the fraction of bidders bidding above ¢ is almost
always strictly larger than k,/n, for large r. If the unlikely event occurs that ¢ is the
marginal bidder then it must be the case that both an unusual distribution of ¢’s and

a very low value of g have been drawn. A similar argument applies for t > t* + ¢.
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This characterization of the equilibrium also makes clearer how the market man-
ages both information aggregation and allocative efficiency. To achieve allocative
efficiency, it is enough that the interval of tastes over which bids depend sensitively
on information grows narrow. Then, a growing fraction of bidders lie outside of this
interval, and thus act essentially independently of their information. On the other
hand, while the fraction of bidders who use their information a great deal converges
to 0, their absolute number grows fast enough that price contains all information
about quality in the limit.

The limiting characterization of the equilibrium has an interesting parallel to Fed-
dersen and Pesendorfer (1996). In that paper, voters have different tastes about two
candidates and different information about the candidates. Feddersen and Pesendor-
fer show that as the number of voters grows large, voters who have tastes either a
little to the left of center vote for the left candidate regardless of their information,
while voters a little to the right of center vote for the right candidate regardless of
their information. Only a narrow band of moderates uses their information in their
behavior. The analysis in that paper is simplified by the binary action space (vote
left or vote right), which essentially forces players to either use their information a
great deal or not at all. Interestingly, our limiting equilibrium approaches that re-
sult even though players have available to them strategies which use information to

intermediate degrees.

5. Epsilon Equilibria

While we are unable to prove existence of equilibrium we can demonstrate the exis-
tence of e—equilibria in the auction for large n. More precisely, for every ¢ there is an
n such that for n’ > n there are continuous and strictly increasing bidding functions
such that each type cannot increase his payoff by more than . These e—equilibria
satisfy information aggregation and are e—asymptotically efficient, i.e., the per-capita
gains from trade are within e of their maximum for n’ > n.

Rather than prove this result for the general class of utility functions and informa-
tion environments above, we specialize to our simple two signal example to illustrate

the point. It should be clear, however, that the argument can be generalized to
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any constant signal structure (satisfying our assumptions) at the expense of more

complicated notation.

Example 4 We assume that there are two signals, where 7(1|¢g) = 1 — ¢ and
7(2|q) = q. We assume k, /n, = % and that ¢ is uniform on [0, 1]. The payoff function
is assumed to be u(t,q) =t +q.

The following pair of bidding functions constitute a continuous e—equilibrium

that is asymptotically e—efficient and aggregates information.

t if t<1/2

(1) =9 e+ 5212 if 1/2<t<1/2+¢

t+1 if t>1/24¢

t if t<1/2-¢

Ft,2) = t+ 12 i 1/2-c<t<1/2

t+1 if t>1/2.

Fig. 3 depicts the two bidding functions for £ = .1. The upper line depicts b°(t, 2),
and the lower b°(¢,1).
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Figure 3: e—equilibrium strategies

First, we demonstrate that the depicted bidding functions are indeed e—efficient.
Asymptotic efficiency requires that for ¢ > 1/2 the probability of winning an object
converges to one. For the bidding functions above, the probability that a bidder is
bidding above 3/2 is bounded above by ¢(1/2—¢)+(1—¢)(1/2) < 1/2 and hence any
bid above 3/2 wins the object with probability close to one if  is large. Every bidder
with taste parameter ¢ € [1/2 + ¢, 1] bids above 3/2 and hence almost certainly wins
an object. Hence we have asymptotic e—efficiency.

Second, we demonstrate that the above bidding functions aggregate information.
To see this, observe that when the true quality is ¢, then for given ¢, the probability
of a bid below 1/2 + ¢ is

Pr(b < 1/2+ ¢q) =m(q) (1/2 + &) + ma(q)(1/2 — & + £9)
= (1-¢)(1/24¢eq) +q(1/2 —e(1—q))
= 1/24+¢(@—q).

By the law of large numbers this implies that the median bid when quality is g
must converge to 1/2 + ¢ in probability, yielding information aggregation. Finally,
we must demonstrate that the bidding functions constitute an e— equilibrium. To

see this, observe that since the equilibrium price is approximately 1/2 + ¢ for large
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n, every bidder in the interval (1/2 —¢,1/2+¢) is approximately indifferent between
getting the object and not getting the object. Hence the indicated strategies are an
e—best response for those types. Bidders with t > 1/2 4 ¢ all prefer to receive the
object and do so according to the stated bidding strategies. Similarly, bidders with
t < 1/2 — £ do not receive an object, which again is optimal. Hence the bidding
functions constitute an e—equilibrium.

We can strengthen these results and take £ to zero along the sequence while
retaining information aggregation (as long as we do so slowly enough that the law
of large numbers applies to the number of players with ¢ in (¢* — ¢,,t* + ¢,). Since
information aggregation will continue to hold, the strategies are optimal “in the limit”.
In addition, this sequence of ¢,—equilibria is asymptotically efficient.

The strategy for constructing e— equilibria with the desired properties for more
general signal structures is the following. First, bidders whose taste is below the
value t* — ¢ bid as if ¢ = 0 and bidders whose taste is above the value t* + ¢ bid
as if ¢ = 1. We know from Proposition 4 that this is a feature of all equilibria
that aggregate information and are asymptotically efficient. Second, bidders in the
interval ¢ € [t* — e,t* + €] bid as if this was a common value auction where all
bidders have valuation t* 4+ ¢q. The number of objects in this common value auction
is the total number of objects minus the expected number of bidders with valuations
above t* 4+ . We know that any symmetric equilibrium in a common value auction
aggregates information and that equilibria exist for these auctions (see Pesendorfer
and Swinkels (1997)) and hence we know that such strategies can be found. Since
information is aggregated and price converges to ¢ + t* it follows that the bidders in
the interval [t* — ¢, t* + £] are approximately indifferent between receiving the object
and not receiving it. Hence, we know that their bids are e—best responses. Bidders
with higher ¢ are playing close to a best response by winning always, and bidders
with lower ¢ are playing close to a best response by winning never. Hence we have

an e-equilibrium.'®

10The described equilibrium can be made to be strictly increasing in ¢ by having players use ¢
as their randomizing device for any given s (in Pesendorfer and Swinkels (1997), it is shown that
equilibria are non-atomic). It can be also be made continuous by patching things together over
the intervals (t* — e — 6,t* — ¢) and (t* 4+ &,t* + ¢ 4 §). If 6 is chosen small enough relative to e,
the behavior of the players in these intervals does not significantly the expectation of ¢ conditional
on any given p being pivotal. And, since information is aggregated, and the players in these two
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6. Conclusion

We explore information aggregation and efficiency in a non-cooperative model of price
formation where agents have private information and differ in their tastes. While
efficiency requires that behavior is a function of taste only, information aggregation
can only be accomplished if behavior is also affected by private information.

We show that if there are many agents the market can accomplish both an efficient
allocation and aggregate information: as the market grows each participant pays less
and less attention to his private information, so that in the limit, allocations are
efficient. At the same time the information embodied in aggregate behavior becomes
more informative, and, in the limit, reflects the true state of the world.

We demonstrate these results in a model that is quite special in many dimensions.
However, the ideas driving our results seem quite robust and may be summarized as
follows:

Efficiency: a non-negligible misallocation of resources implies that there are many
agents who both receive information and act on that information in a non-trivial way.
But then, aggregate behavior, as reflected in price, must be very informative about
quality. Hence it cannot be optimal for many agents to act on their information.!!

Information aggregation: In the case of a fixed signal structure the price must
make individual signals almost redundant. Otherwise, each of a large number of
market participants has an incentive to act on their private information and hence
the price will reflect that information.!?

Our efficiency result holds even if the number of informed bidders is endogenously
determined (as for example, with costly signals), and in particular, even if the fraction
of informed players drops to zero.

In contrast, we prove the information aggregation result by assuming a fixed signal

intervals have t near t*, they are playing near optimally.

1 An critical assumption for this argument is that the information of individual buyers are close
substitutes. More precisely, when the information of many buyers is pooled each signal becomes
negligible and hence no buyer has information that is essential for assessing the quality of the objects

This is in contrast to an Akerlof type model, where each individual seller has a monopoly over
information pertaining to his endowment. The addition of more sellers does not diminish this
monopoly power and inefliciency results.

12Whether or not information is aggregated in our model is irrelevant for welfare. However, it is
straightforward to extend the model in such a way that failure of information aggregation leads to
welfare losses. Such extensions are discussed in Pesendorfer and Swinkels (1997) p. 1265.
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structure. While this assumption can be relaxed somewhat, there is a real difference
between what is needed for efficiency vs. what is needed for information aggregation.
This is best seen in the context of costly information acquisition, where efficiency
holds but price must remain a noisy signal of quality for there to be an incentive for
some players to purchase information. Thus, in the costly signal case, the fraction of
informed bidders must not only go to zero, but do so quickly enough to preclude full
information aggregation.

One implication is that we need to be careful in rational expectations general
equilibrium models as to how we describe the amount of information in price. In
particular, there are examples (see Pesendorfer and Swinkels (1997, Section 3.5)) in
which a vanishing fraction of informed bidders is enough for information aggregation.
On the other hand, in the costly information case, we have a situation where a
zero measure set of agents is informed and information is not fully aggregated. The
continuum limit cannot distinguish between these two cases. The “correct” price
function is perfectly revealing in one case and not in the other. Thus, the appropriate
equilibrium price function may depend rather subtly on the details of the convergence

to the limit.

7. Proofs

7.1. Proof of Proposition 1

The following observations will be used in the proofs.

1. Since f,w are strictly positive continuous functions on a compact set there is a

~v > 0 such that f > v,w > ~.

2. Since (%u(q, t) > 0,2u(q,t) > 0 for all (¢,¢) € [0,1] x [0,] and since the partial

derivatives are continuous functions it follows that there is an 1 > 0 such that

the indifference curves defined by

u(g,t) =c
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have slopes bounded by —n and —1/n.

The following notation is used in the subsequent proofs. Let K (b|s) denote the
probability that a bid b wins in equilibrium given that the bidder has received signal
s. Let I1(b, t, s) denote the payoff of a bidder with taste ¢ and signal s if he bids b. Let
H, denote an equilibrium bid distribution, i.e., Hy is a measure on [0, ] x [0, c0) with
marginal W on its first coordinate. For a (Lebesgue) measurable subset X C [0, 00)
let Hy(X) be the probability of a bid b € X by a player with signal s.

For a given auction and equilibrium, and for every bid made with signal s, define
the function ¢,(b) by b(s,ts(b)) = b. If b is larger than any bid made, set t4(b) = ¢,
and similarly ¢,(b) = 0, for b smaller than any bid made. Since b(t,s) is a strictly
increasing continuous function, t4(b) is unique. Note that H([0,b]) = W (ts(b)). Note
also that H, = [b(0, s),b(¢, s)] is the support of H;.

By Assumption 1, t4(b) is increasing and differentiable at all but finitely many
points. Hence t4(b) is absolutely continuous and strictly increasing. Let H = UyH,,
and let B be the subset of all b € H for which all ¢,(b) are differentiable and for which
t'(b) # 0 for at least one s. Since t4(b) is absolutely continuous, Hs(B) = 1,s €
{1,...,5}.

Clearly if for all s, ¢,(.) is differentiable at b, then K (b|s) is also differentiable at b,
so that K (b|s) is differentiable for all b € B. If ¢,(b) > 0 for some s then K’(b|s) > 0.
Since Hy(B) = 1,Vs, it follows that suppK(.|s) = H. Finally, note that for b € B,
E (u(q,t)|d =10,s) is well defined. To see this, note that at points at which all the

functions t4(.) are differentiable, and at least one derivative is strictly positive,
lim E (u(g,t) |d € (b—2.b+¢).5)

is well defined and unique.
Lemma 1. Ifb € H, N B then Efu(g,ts(b))|d = b, s|] = 0.

Proof Consider a point b € Hy;NB. Since b € B it follows that E (u(q,t) |d = b, s)
and K'(b|s) are well defined and hence OI1(b, t, s)/0b is well defined and

OII(b,t, )

228~ (Blu(q, )l = b,5) — b K'(0]s)
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Since b € B, K'(b|s) > 0. And, since b € H, b is optimal for type t4(b), and so it
follows that Efu(q,ts(b))|d=1b,s] —b=0.1

The following lemma shows that equilibrium bids are increasing in the signal.
Lemma 2. For all t, and for all 8 > s, b(t,s") > b(t,s).

Proof First consider any bid b € B that is made by at least two types of bidder
(ts(b),s) and (ts(D),s"), s > s. In this case

Elu(q,ts(b))|d =b,s] = E[u(q,ty(b))|d =b,s'] = b.

By strict MLRP and since u is strictly increasing in ¢ we have that

Elu(q,t)|d =b,s'] > Eu(q,t)|d = b, s] (7.1)

for all ¢, and hence t4(b) > ty(b). Since b(t,s) is continuous and strictly increasing
in ¢ this further implies that if b(¢,s") > b(¢t, s) for some ¢ then b(t,s") > b(t,s) for
all t. That is, bidding functions never cross. To see this, assume that for some t',
b(t',s") < b(t',s), and, without loss of generality, assume ¢ < t’. Then, for bids b in
a neighborhood of b(t, s'), ty(b) < ts(b), while for bids in a neighborhood of b(#, s),
ty(b) > ts(b) (draw a picture). But, each of these neighborhoods must have non-
empty intersection with B, and hence one of these two inequalities is inconsistent
with (7.1).

Thus, we may order the signals according to the induced bidding behavior. Fur-
ther, the only way in which the lemma could fail is if for some s’ > s, b(., s') lay every-
where below b(., s), and in addition, b(., s") and b(., s) have non-overlapping supports,
so that (7.1) does not bind. Let (s1,...,s5) be a permutation of (1,...,.5) such that
b(t,s;) > b(t, sg), Vt whenever s; > si, and assume that (si,...,ss) # (1,...,.5), so
that the lemma fails. Let s, be the largest k such that s; < k. Then, since s, > s for
all k' > k, a simple induction shows that s, = k for all &' > k (begin by noting that
sg > s implies sg = s). Thus, all signals in {k+1,...,S) are used up by elements of
the permutations after k. Hence all bidders with signals s > k bid above b(0, sx). And,

since k does not appear later in the permutation, it must be that k appears before
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s in the permutation, and so b(t, k) < b(t, sx) for all ¢. Moreover, since supports of
misordered signals are non-overlapping, it must be the case that b(Z, k) < b(0, sg).

Now consider a deviation of type ¢, k to the bid b(¢, s;). Every bid in the interval
(b(t, k),b(0, sg)) is either made by no bidder or by a bidder with type (¢,s),t <t,s <
k. By Proposition 1 this implies that for all b € (b(¢, k), b(0, sx)) N B

Elu(g,t)|d = b, k] > Elu(q, ts(b))|d = b, 5] = b.
Similarly, for all b € (b(0, sx),b(¢, s,)) N B

Elu(g,t)|d = b, k] > E[u(q,t%(b))\d =0, s = 0.

Hence the deviation is strictly profitable if there is a positive mass of bidders bidding
n (b(¢, k), b(t, sk)) N B. But, in particular, all bidders who receive the signal s; bid
n [b(t, k),b(t, s;)] and since each signal is received by a strictly positive fraction of

types (by Al.4), we are done. H

7.2. Proof of Proposition 2

Let

Vi) = 3 [ mela. 0wt
= [ X mbslau

{s:b:-(t,5)<b}

denote the probability that a bidder bids below b given g in auction r. Observe
that since b,(t,s) is increasing in s it follows that Y ¢y s)<py Tr(8]q, t)w(t) is non-

increasing in g. Hence Y,.(b|q) is non-increasing in gq.

Lemma 3. The auction is asymptotically efficient if Y,.(b|0) — Y;.(b|1) — 0 uniformly

for all b as r — oo.
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Proof Observe that Y,.(b]0,t)—Y,.(b|1,¢) > 0, for all ¢. Hence, Y;.(b|0)—Y,(b|1) — 0
implies that for all € > 0 there is an 7 such that for » > 7 there are sets T, C [0, {]
with W(T,) > 1 — ¢ and

Y, (0]0,t) — Y, (b|1,t) < ¢

for ¢t € T,. This in turn implies that

> (me(s]0,t) — m(s]1,t) <e (7.2)

{s:b,(t,s)<b}

for all t € T, along the subsequence.

Now observe that by Assumption 1 (strict MLRP and m(s|q) > n for all (s, q))
it follows that for all ' < S, 3% m,(s|q,t) is strictly decreasing in ¢ whenever 0 <
> m,(slq',t) < 1 for some ¢. To see this, note that 0 < 3% 7,.(s|¢’,t) < 1 implies that
the relative weight mo,(.[t) puts on s € {1,...,s'} and on {s' +1,...,S} is bounded
away from 0 and co. A § movement between {1,...,s'} and {s’"+1,...,S} relative
to m1(s|q) thus translates into a 6 movement between {1,...,s'} and {s'+1,...,S}
relative to m,.(s|q,t) = m(s|q)ma.(s|t). Therefore, for all 6 > 0, there is ¢’ > 0 such
that if ¢ satisfies

b< > m(slg,t)<1-6
{s:br(t,5)<b}

for some ¢',then we have that

S om(sot) > > m(s|1,t)+ 6.

{s:b,(t,5)<b} {s:b,(t,5)<b}

Therefore, since € can be chosen arbitrarily small, inequality (7.2) can only hold if

either

> m(s]0,8) — 1

{s:b,(t,5)<b}

or

> m(s|1,t) — 0.

{s:br(t,s)<b}
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Hence we may conclude that 7T, can be partitioned into two subsets T4 and T'® where
for t € T the probability that ¢t wins an object converges to 1 whereas for t € T
the probability that ¢ wins an object converges to zero.

To prove the lemma it suffices to show that in the limit, 72 lies below T4, So, let
t2 € TA and & € TP be convergent subsequences with limits t2 and #* respectively.
Suppose t* > t. Then, for r large enough, t% > ¢2. But then, since bids are increasing
in t, b.(t%,s) > b,(t,s) for all s € {1,...,S}. Hence if t* > t* then since by definition
types with t € TP win with probability going to 0 while types with ¢ € T4 win with
probability going to 1, it must be that the probability that % receives a signal that is
strictly larger than the signal that t¢ receives converges to one. As this violates the

law of iterated expectation, we are done. W

Denote by X,(b) the event that k. — 1 of bidders {3,...,n,} bid above b and
n, — k., — 1 bidders bid below 0. Because the equilibrium is symmetric, the event
d, = b can be replaced for all relevant purposes by the event X,.(b) N {by = b}. We

will use this notation in the following lemma which proves Proposition 2.
Lemma 4. Y, (b|0) — Y,.(b|1) — 0 uniformly for all bas r — oo .

Proof

Step 1. Assume contrary to the Lemma that along some subsequence

Y, (b,[0) = Ye(br[1) > € (7.3)

We first demonstrate that (7.3) implies

Prllg — 7| > 6[X.(b,)] — 0 (7.4)

for some ¢;. Observe that (7.3) implies there is a subset 7, such that for all t € T,

1> Y, (b,]0,8,) — Y, (b,|1,8,) > ¢ (7.5)

and [, w(t)dt > e.
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Let SB(t,) = {s : b(t,,s) < b} and let SA(t,) = {1,...,S}\SZ. Let s =
max SP(t,) and s? = min SA(¢,). Clearly s + 1 = s2.

Since 7 (s|q) > n for all (s, ¢) by Assumption 1, (7.5) implies that there is 6(¢) > 0
such that for all q

Pr(s € S2(t,)|q,t.) > 6(¢),Pr(s € SA(t,)|q, t,) > 6(c).

Now observe that

SVt t) = 2 Pr(s € 520t

ZsesTB (tp) Tr(8l0tr)
2 ZSESTB(tr) 7TT(8|q= tr) . i Zses;“(tr) mr(slg;tr)
8q ZsES}?(tr) 7TT(8|Qu tr) + ZseSﬂ(bT) 7Tr(8|Q7 tr) aq 256573(%) mr(slg;tr) 1

seSA(tr) r(slgtr)

2
B 1 o m1(88|q) 2sesp 1) :11_((52%7727"(5‘”)
Zsesf?(tr)ﬂr(S'q’tr) +1 6(] 7'('1(8?‘(]) ZseS,ﬁ“(tr) %1(5%7727(8“7‘)

Zses;ﬁ‘(tr) mr(slg.tr)
2

(2 ﬂl(sf,|q)) 1 2seSB (1) %@r(sﬁﬂ
aq ﬂ-l (S?|Q) ZSGSTB(t’I‘) WT(S‘(I,tT) 1 ZSGSTA(tr) 7:1—11(28?‘]1(1)) WQT(S‘tr)

s€SA(tr) mr(slgtr)

D m(slo) (‘5(6)>2n6(€) = 5(5) <0

IN

8_q771(8,‘}]q) 2

where the first inequality follows from MLRP and the fact that s’ is the largest signal
in the set SZ(t,) and conversely s? is the smallest signal in the set S2(t,). Thus, (7.3)
implies that

S Yelbrle) <3(0) - <0, (7.)

Let
np—kp—1 kp—1
np—2

ar(q) = Y, (br|q) 72 [1 = Yo (brg)]

Let ¢f = argmax, a,(q). Let ¢, q be such that ¢’ + € < ¢ < ¢}. From (7.6) we know
that |¢ —q| > € implies that |Y,.(b.|¢') — Y.(b.|q)| > k(). Since «,.(q) is a single
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peaked function of ¢ that is uniformly continuous in the exponent it follows that
la,(¢') — - (q)| > K'(€) for some k'(g) > 0.
Now let f(¢|X,(b.)) denote the density of ¢ conditional on X,.(b,):

_ f(Q)O‘r(q)nFQ
 f(w)a, (w)—2dw’

f(a|X:(br))

But this implies that,

@)X (0)  f(d) (@)™ V2 3
-L ( ) < (K@),

An analogous argument holds for ¢/, ¢ such that ¢ — e > ¢ > ¢.
Thus for all 6 > 0
Pr{lg — ¢ > 6|X,(b,)] — 0

and the proof of Step 1 is complete.
Step 2. Pr[lq — ¢} > 6|X.(b.)] — O implies that t.(b,) — ts(b.) — 0 whenever
b € B.NHsr N Hryp.

Since

Prllg — 7| > 6] X, (b,)] — 0

it follows that for r large enough

w(g +261) > Elulg,t)| X (b), 52 = S, 51 = 5]
> Elu(q, )X, (b,),by = by, 51 = 5]
> Blu(q,t)|X,(br), 82 = 1,51 = 1]
> u(g; —26,t)

where the first and last inequalities follow from the assumption that individual signals
are only boundedly informative (A1.3) and from the uniform continuity of u. Recall

that the slopes of the indifference curves of u are bounded above by 1/1. Hence for
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t <t —46/n and for all signals s’ > s
Elu(q, t)|d, = by, 51 = 8’| < Efu(q, t +46/n)|d, = by, 51 = s].
Since by the hypothesis of Step 2, b, € B,NHs, N Hsr,, its follows that
by = E[(q, to ())|dy = by 51 = 5] = Elu(g, tan()lds = by, 51 = ).

Thus ts(b,) — tsr(b) < 46/n and since ¢ is arbitrary the claim follows.
Step 3. Say that H, and H,. overlap if their intersection contains an open interval.

For T C {1,... S5}, let

Y (blg,T) Z/ (slq, )w(t)dt.

seT

Claim: If H,,. and H,, overlap for all r along a subsequence then
Prllqg — g7| > 6[X,.(b,)] — 0

implies that

Y (b.10,{s,s'}) = Y (b1, {s,5'}) — 0.

Thus, the probability that a bidder bids below b, and receives a signal in the set
{s,s'} converges to zero.

From Step 2, the claim is true for any subsequence with b, € B.NH. NH,. Since
B, is dense in H,. N Hg,, the result for b, € H, N Hy, follows from the continuity
of ts, and Y,. Assume w.l.o.g. that s’ > s, so that Hs, N Hg, = [min Hy,., max Hs, |,

and consider b, > max Hs,. Then, t,.(b,) = t. Furthermore,



Now, we distinguish two cases. First, consider the case where the probability that a
bidder receives signal s’ and bids above b, (¢, s) converges to zero. In this case, the
claim is trivially true since Y,.(b.|g, {s,s'}) converges to one for all g.

Second, consider a subsequence where the probability that a bidder receives signal
s" and bids above b,(t, s) stays bounded away from zero. In that case, Y,.(b.(, $)|0, {s, s'})—
Y, (b, (¢, 5)|1,{s,s'}) stays bounded away from zero and (by MLRP) this implies that
Y, (b-(t, $)|0) — Y,.(|1) stays bounded away from zero. Now since b,.(¢,s) € Hs N Hgry
it follows from the argument above that t.(b.(¢, s)) — ts(b,(f,s)) — 0 and hence

0 < tor(by) — ton(br) < ton(bo(E, 8)) — ton(be(£, 5)) — 0.

and hence t,.(b,) — tg-(b,) — 0 and the claim follows.

An analogous argument handles the case b, < min Hy,.
Step 4. For each r, group signals together in such a way that s and s’ are in the
same group if and only if there is a chain of signals s = sq,...,s;, = § with the
property that s; and s;;; have overlapping supports for ¢ = 1, ...,k — 1. This defines
a partition of the set of signals which we denote by {G, }jK:T1 As a corollary of Step

3 we may conclude that for all j,
Y}(bT’O, Gj?“) o YT‘(bT‘lv Gj?") —0

whenever

Prllq¢ — ¢;| > 6| X, ()] — 0.

This follows from repeated application of step 3, noting that the chain separating
two members in a group cannot have more than S members. Thus we may summarize

Steps 1-3 by concluding that for all j

Y, (00, Gj) — Yo (b|L,Gyr) — 0 (7.7)

36



uniformly in b. This follows since Steps 1-3 have established that for any sequence
with the property that
Y, (b-10) — Y,.(b,|1) > ¢

(7.7) holds. On the other hand, if

(7.7) trivially follows.
Step 5. For each r, let G be a group for which Pr(s € () is maximal over the set
of groups. Then, Pr(s € G¥) — 1.

Assume not, so that for some ¢ > 0, in each r along a subsequence, there are
at least two groups of signals receiving weight at least €. Then, for each 7 in the
subsequence there exist consecutive signals s, and s, with the property that s, and
s, have non-overlapping support, and such that the probability of a signal of s, or
lower and of a signal of s/. or greater is at least . To see this, order the groups by the
signals they contain (clearly if k£ and k" are in a group, then so are signals between
k and k'), and let G, be the lowest group which receives weight at least . Then, s,
can be chosen as the largest element of G, and s, as s, + 1.

Since s, and s/, have non-overlapping support, b(¢, s,) < b(0, s%.), and so by Propo-
sition 1, no one bids in the interval (b(¢, s,),b(0, s.)). It follows that X, (b(¢,s,)) and
X, (b(0,s.)) are the same event: each occurs when exactly k. — 1 of bidders 3,. .., n,
received signal s, or greater.

But, because there is probability at least € of signals both below s,., and above s/,
it follows (by an argument very similar to step 1) that for large r, the information in
X, (b(t, sr)) (or equivalently X, (b(0,s.))) is enough to tie down ¢ very precisely. But
then s, and s, cannot be very informative about ¢, which, given that b(¢, s,) < b(0, s..),

contradicts that

b(t,s,) = E(u(q,t)|d, = b(t,s,),s,)

and

b(07 57") = E(“(Qu O)|dr = b(ou 87")7 87")

37



both hold.'?
Step 6. Y,.(0|0) — Y,.(b|1) — 0 uniformly for all b.

This follows since, by Step 5, almost all signals fall in a single group in the limit,
while by Step 4, Y,(b0,G,) — Y,(b|]1,G;) — O uniformly in b for every group of
signals. H

7.3. Proof of Proposition 3

Let b, denote the highest bid made with signal s, and let b,, denote the lowest bid
with signal s. The following lemma shows that the pivotal bid d,. falls in the interval
[bs,., bi,] With probability close to one if r is large and k,/n, is bounded away from
zero and one. Thus the pivotal bid almost always falls in the range of bids where

both types with signal 1 and types with signal S bid.

Lemma 5. Suppose Assumptions 1-3 hold and that w(s|q) is fixed along the sequence

of auctions. Then, Pr{d, € [bs,,b1,]} — 1 asr — oo.

Proof: We begin by establishing a property of MLRP. Let 1 < s < S, let
T=A{1,...s},and let T ={s'"+1,...,S}. Then,

Claim: 7(7T'|0) — n(7|1) > min [x(1]0) — =(1|1), 7(S|1) — 7(S]0)] .

Proof of claim: This is trivial if & =1 or ¢ = S — 1. Assume not, and define

T =T\1, and T¢ = T¢\S. Note that,

n() _ R(T0) + (x(T1) = m(TJ0)) — (x(S1) — 7(S]0))
R (T + (w(10) — w(1[1)) — (=(T¥]1) - 7(T7[0))
. w(0)
= (o)

where the equality is accounting, and the inequality is by MLRP.
Cross multiplying and simplifying yields

(7(7°(0) + 7(T10)) (w(T*[1) — 7(T*|0))

131t is possible that one or both of b(Z,s,) and b(0, s.) are not elements of B. However, noting
that all relevant entities are continuous, one can work instead with bids near b(¢, s,) and b(0, s..) to
derive the same contradiction.
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v

(1°10) (w(1]0) — 7(1]1)) + = (T10) (w(S|1) — 7(S]0))
(7(T°10) + x(T0) ) min [(1]0) — w(1[1), 7(S|1) — 7(S]0)]

Y]

from which
m(T°[1) — w(17°[0) > min [ (1]0) — 7(1[1),7(S|1) — 7 (S]0)]

and we are done.

This in hand, note that (1 — W(t,s(by,)) denotes the probability that a bidder
bids above by, when he receives signal s. Recall that 7(s|g) is bounded away from
zero for all g, m(S|q) is strictly increasing in ¢, and 7(1|q) is strictly decreasing in gq.

It therefore follows from the claim that

Y, (01,]0) = Y (b, [1) (7.8)
> min [(1/0) — w(L[1), 7(S|1) — 7(S]0)] (1 = W(t,s(bs,))

To see this, note that for each ¢, the set of signals who bid at or below b,
is a set of the form {1,...,s'}, where s’ > 1 always (by definition of by,), and
s’ < S whenever t > t.g(b1,). Conditional on such a ¢, Y,(b1.[0,t) — Y,(b1,|1,t) >
min [7(1]0) — 7(1]1),7(S|1) — 7(S]0)] using the claim. Since t > ¢,5(b;,) holds 1 —
W (t,s(by)) of the time, we are done.

Hence, since by Lemma 4
Y, (b1,[0) = ¥, (b1[1) — 0, (7.9)

it follows that
W(t'r‘S([_)lr)) — 1

A similar argument shows that

W (tri(bs,)) — 0.
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For 0 < z < 1, let ¢, satisfy W (t,) = z. By the strong law of large numbers the
fraction of bidders with ¢ < t, converges to = in probability as r — oo. Now observe

that Pr{d, < bs,} is equal to the probability that at least an 2= fraction of t's

T

drawn falls in the interval [0,¢,1(bg,)]. As long as k,./n, stays bounded away from
zero and one (Assumption 3) this probability converges to zero (by the law of large
numbers). A analogous argument shows that Pr{d, > b;,} — 0 and hence the lemma
follows. B

The proof of Proposition 3 proceeds in two parts. The following lemma shows
that if b is the pivotal bid then, for large r, there is essentially no uncertainty about
the value of q. Let g, = E(q|d, = ).

Lemma 6. Suppose Assumptions 1-3 hold and that w(s|q) is fixed along the sequence
of auctions. For all 6 > 0 there is an 7 such that for all r > 7, Pr{|q — ¢.| > é|d, =
b} < & for every b € [bg,, b1,] N B,.

Proof Let b € [bg,,b1,] N B,. From Proposition 1 we have that

Elu(g, t;1(b))dy = b,1) = b

and

Elu(q,trs(b))|dr = b, S) = b.

Recall that 7(s|q) is bounded away from zero for all ¢ and s, 7(S|q) is strictly increas-
ing in ¢ and 7(1|q) is strictly decreasing in ¢. Using the property of MLRP established
in the proof of Lemma 5, it therefore follows that for any b € [bg,., by,]

Y, (610) - Y (b]1)
> min[r(1)0) - w(1[1),7(S[1) — w(SI0)] (W (tn1(6)) — Wlt,s(b)  (7.10)

If the Lemma is false then there is a sequence of bids b, € [bg,, b1,] such that Pr{|q —
Gr| > 6|d, = b} > 6 for all r and for some 6 > 0. We will show a contradiction.
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Since Y, (b,|0) — Y;(b,|1) — 0 (by Lemma 4) it follows that ¢,1(b,) — t,s(b.) — 0.

Since u is uniformly continuous this in turn implies that
Elu(q,t)|d, = b,,S) — E[u(q,t)|d, = b,,1) — 0. (7.11)

Let F,. denote the sequence of probability distributions of ¢ conditional on d, = b.
Note that every sequence of probability distributions has a convergent subsequence.
Consider any convergent subsequence of F, with limit F.IfFis non-degenerate then

it follows that
lim (E[u(g. )ld, = by, S) — Elu(g,t)|d, = b, 1)) > 0
contradicting (7.11). Hence it must be that F'is a point mass at ¢ and hence
Pr(lg — E(qld, = by)| > 6| dp = by) — 0.

establishing the desired contradiction.

|

Proof of Proposition 3 By Lemma 6 it follows that whenever b € [bg,, bi,] N B,,
F(qld, = b) is concentrated around its expectation for large r. Now consider the
probability distribution F'(g|p. = b) of ¢ conditional on the price being b in auction
r. Note that the price is b if k, bidders bid above b, one bidder bids b, and n, — k, — 1
bidders bid below b. Thus F(q|p, = b) = F(q|d, = b,b; > b). Observe that for all

€ > 0 there is an 7’ such that for r >
|F(qld, = b) = F(qlp, = b)| < max|F(q|d, = b) — F(q|d. = b,s)| < ¢

The first inequality follows since b; is a garbling of player 1’s signal. The second
inequality holds because F'(q|d, = b) is arbitrarily concentrated around its mean for
large r, and hence adding one additional (noisy) signal only changes the distribution

by a very small amount. Since by Lemma 6 F(q|d, = b) is concentrated around the
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true value ¢* it follows that F'(¢|p, = b) is also concentrated around the true value
q
Consider a bid b € [bg,,b1,] N B,. If a bidder with type (¢, s) made the bid b and

if the equilibrium price is equal to b then by the preceding argument
prEt+q —(0+€),t+¢ +(6+¢€)

with probability 1—e—6, where ¢* denotes the true ¢g. Further note that by Proposition
2 it must be the case that for large r the bidder who makes the k, + 15 highest bid
has a t very close to t: with high probability. Thus for r sufficiently large we have
that

pr €t +¢" —(20+€),tr+q¢" + (26 +¢€)]

with probability larger than 1 — e — 26.

To prove the Proposition it is now sufficient to show that

Pr{p. ¢ [bs,,b1r] N B} — 0

as r — oo. But {p, € [bg,,b1,] N B,} denotes the event that the k, + 1-st highest bid
of n, bids is in [bg,, b1,] N B;.

As was shown in proving Lemma 5, W(ty,.(bg,)] — 0 and W(tg, (51T)] — 1. Since
Z—: is bounded from 0 and 1, so, for large r, is k;—tl Thus the strong law of large
numbers implies that

Pr{p, € [bg,, b1,]} — 1.
Finally, since Hs(B,) = 1 for all s, it follows that Pr{p, ¢ B,.} = 0 for all » which

proves the final claim. W

7.4. Proof of Proposition 4

We will demonstrate that b,.(t,.S) — «(0,t) uniformly for all ¢ < ¢t*—e. Since u(0,t) <
b.(t,s) < b.(t,S) this proves the result for ¢t < t* —e.
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Consider t < t* — ¢, and b,(¢,S) € [bg,,b1,] N B,. By Lemma 6 we know that

PI‘{|q - E(Q|dr = br(t7s))| > 6| dr = br(tﬂg)} —0

uniformly for all b.(¢,S) € [bs,, bi,], which in turn implies that

Pr{lg — E(q|X(b-(2,5))] > 6] X (b-(2,5))} — 0

uniformly for all b,.(t,S) € [bg,,b1,] since the information about ¢ contained in
the event {d, = bg,} differs from the information about ¢ contained in the event

X (b(t,9)) by at most one signal. Thus, uniformly for all b.(¢,S) € [bg,, b1,

Fla|X(6,(t,9)) = — f(a) r(Z), bb,,(t, )

Jo flw)ay(w, b.(t,S))" dw (7.12)

converges to a density that has all its mass concentrated at some §.. Recall that f is

a single peaked function of ¢. Since f(¢q) > v > 0 and is bounded, ¢, must satisfy
|, — argmax . (b, (¢, 5), ¢)| — 0
uniformly for all b,(¢,S) € [bg,, b1).

By Lemma 4,
Y, (b.(t,5)]0) — Y,.(b.(£,5)|1) — O (7.13)

and by Proposition 2, there is a 6 > 0 such that
Y, (be(t, $)]0) < W(t) — 6

for all ¢, for t < t* — ¢ for sufficiently large r. (To see this last inequality assume
that lim Y;.(b,(t* —e,.5)|0) > W (t*) for some convergent subsequence. Then, all types
(t,S) with t € [t* — £/2,t*] receive the object with probability close to one when ¢ is
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near 0 and r is sufficiently large. This violates asymptotic efficiency).
But then for large r, ”Tn’rikj;l > Y, (b.(t,5)|0) and Y,.(b,(¢, S)|q) is strictly decreas-
ing in ¢q. Hence, for ¢ € (0, 1],

ny—kp—1

ar(be(t,5),q) = (Yr(br(t, 9)|g) T (1 = Yi(b(t, S)|q)) 2

)
< (%90 T L= Y, b 0.9)/0) )
and consequently, for r sufficiently large,
0 = arg mg,xozr(br(t, S),q)
which implies that

¢ — 0.

Thus, b.(t,S) = E(u(q,t)|X,(b),ba = b,5) < E(u(q,t)|X,(b),5,S) — u(0,t) as
r — oo for all b.(t,S) € B, with t < t* —e. Note that B, is dense on the set of bids
of types (¢,5) with t < t* — e. Thus we have established that for a dense subset of
[0,t* — ], lim b,(t, S) = t. Continuity of b,.(¢,S) now gives the result.

The argument for ¢t > t* 4 ¢ is exactly analogous. W

44



References

1]

[9]

Feddersen Timothy, and Wolfgang Pesendorfer, 1997, “Voting Behavior and In-
formation Aggregation in Elections with Private Information,” Econometrica 65

1029-1058.

Grossman S. and J. E. Stiglitz, 1976, “Information and Competitive Price Sys-

tems,” American Economic Review 66 246-53.

Haile, Philip A.,“Auctions with Resale Markets,” Ph.D. Dissertation, Northwest-

ern University, December 1996.

Milgrom, Paul R.,1979, “A Convergence Theorem for Competitive Bidding with

Differential Information,” Econometrica, 47 670-688.

Milgrom, Paul R.,1981, “Rational Expectations, Information Acquisition, and

Competitive Bidding,” Econometrica, 49 921-943.

Milgrom, Paul R., and Robert J. Weber, 1982, “A Theory of Auctions and Com-
petitive Bidding,” Econometrica, 50 1089-1122.

Pesendorfer, Wolfgang and Jeroen M. Swinkels, 1996, “Efficiency and Information
Aggregation in Auctions” Center for Mathematical Studies in the Social Sciences

Discussion Paper No. 1168, Northwestern University.

Pesendorfer, Wolfgang and Jeroen M. Swinkels, 1997, “The Loser’s Curse and
Information Aggregation in Common Value Auctions,” Econometrica 65: 1247-

1282.

Wilson, Robert, 1977, “A Bidding Model of Perfect Competition,” Review of
Economic Studies 44 511-518.

45



