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Abstract

We examine a new approach to modeling uncer-
tainty based on plausibility measures, where a
plausibility measure just associates with an event
its plausibility , an element is some partially or-
dered set. This approach is easily seen to gener-
alize other approaches to modeling uncertainty,
such as probability measures, belief functions,
and possibility measures. The lack of structure
in a plausibility measure makes it easy for us to
add structure on an “as needed” basis, letting us
examine what is required to ensure that a plausi-
bility measure has certain properties of interest.
This gives us insight into the essential features
of the properties in question, while allowing us
to prove general results that apply to many ap-
proaches to reasoning about uncertainty. Plau-
sibility measures have already proved useful in
analyzing default reasoning. In this paper, we
examine their “algebraic properties”, analogues
to the use of

�
and � in probability theory. An

understanding of such properties will be essential
if plausibility measures are to be used in practice
as a representation tool.

1 INTRODUCTION

We must reason and act in an uncertain world. There may
be uncertainty about the state of the world, uncertainty
about the effects of our actions, and uncertainty about other
agents’ actions. The standard approach to modeling uncer-
tainty is probability theory. In recent years, researchers,
motivated by varying concerns including a dissatisfaction
with some of the axioms of probability and a desire to rep-
resent information more qualitatively, have introduced a
number of generalizations and alternatives to probability,
such as Dempster-Shafer belief functions [Shafer 1976],
possibility measures [Dubois and Prade 1990], and qualita-
tive probability [Fine 1973]. Our aim is to examine what is
perhaps the most general approach possible to representing
uncertainty, which we call a plausibility measure. A plausi-
bility measure associates with a set its plausibility, which is
just an element in a partially ordered space. Every system-

atic approach for dealing with uncertainty that we are aware
of can be viewed as a plausibility measure. Given how little
structure we have required of a plausibility measure, this is
perhaps not surprising.

As we shall show, this lack of structure turns out to be a
significant advantage of plausibility measures. By adding
structure on an “as needed” basis, we are able to understand
what is required to ensure that a plausibility measure has
certain properties of interest. This gives us insight into
the essential features of the properties in question while
allowing us to prove general results that apply to many
approaches to reasoning about uncertainty. For example, in
[Friedman and Halpern 1995a] we examine a necessary and
sufficient condition for getting the KLM properties [Kraus
et al. 1990] for defaults. Once we identify this condition,
it is quite easy to show why many different approaches
(such as preferential structures [Kraus et al. 1990], � -
rankings [Spohn 1987; Goldszmidt and Pearl 1992], and
possibility measures [Benferhat et al. 1992]) all satisfy
the KLM properties. Moreover, we also describe a weak
necessary and sufficient condition for the KLM properties
to be complete. This condition is easily seen to hold in
all of these approaches. These results help us understand
why the KLM properties characterize default reasoning in
several different approaches.

In this paper, we move beyond the realm of qualitative and
default reasoning, and take a more general look at plau-
sibility measures. If plausibility measures are to be used
as a tool for representing uncertainty, then we shall need
to be able to emulate some aspects of probabilistic reason-
ing, such as reasoning by cases and the ability to condition.
For example, a standard approach to computing Pr ����� is
to write it as Pr ���	� 
 1 � Pr ��
 1 � �������� Pr ���	� 
���� Pr ��
���� ,
where 
 1 ��������� 
 � is a partition of the space. Other tech-
niques for representing uncertainty, such as � -rankings and
possibility measures, support similar reasoning. We exam-
ine what properties a plausibility measure must satisfy to
allow us to carry out such reasoning. We provide construc-
tions that will be useful for any user of plausibility, show-
ing, for example, how we can start with an unconditional
plausibility measure and construct a conditional plausibility
measure with attractive properties. We also examine what
properties of conditional plausibility are required to capture
a plausibilistic analogue of Bayesian networks. Recently,



Darwiche and Ginsberg [Darwiche and Ginsberg 1992; Dar-
wiche 1992] and Weydert [1994] have proposed “abstract”
formalisms with somewhat similar aims; we show how
plausibility measures provide some advantages over both
of these approaches.

The rest of this paper is organized as follows. In Section 2
we describe plausibility measures. We investigate their
algebraic properties in Section 3, and apply these results in
Section 4 to reasoning about independence and qualitative
reasoning. We conclude with some discussion in Section 5.

2 PLAUSIBILITY MEASURES

A probability space is a tuple ��� ����� Pr � , where � is a
set of worlds, � is an algebra of measurable subsets of
� (that is, a set of subsets closed under finite union and
complementation to which we assign probability), and Pr
is a probability measure, that is, a function mapping each
set in � to a number in � 0 � 1 � satisfying the well-known
Kolmogorov axioms (Pr ������� 0, Pr ������� 1, and Pr ���! 

"�#� Pr ���$� � Pr ��
"� if � and 
 are disjoint).1

A plausibility space is a direct generalization of a proba-
bility space. We simply replace the probability measure Pr
by a plausibility measure Pl, which, rather than mapping
sets in � to numbers in � 0 � 1 � , maps them to elements in
some arbitrary partially ordered set. We read Pl �%��� as “the
plausibility of set � ”. If Pl ���$��& Pl ��
'� , then 
 is at least
as plausible as � . Formally, a plausibility space is a tuple( ��)� �����+*�� Pl � , where � is a set of worlds, � is an al-
gebra of subsets of � , * is a domain of plausibility values
partially ordered by a relation &�, (so that &-, is reflexive,
transitive, and anti-symmetric), and Pl maps the sets in �
to * . We assume that * is pointed: that is, it contains two
special elements ./, and 0/, such that 01,$&�,�23&�,4.1,
for all 265 * ; we further assume that Pl �����$�7. , and
Pl �����8�"0 , . As usual, we define the ordering 9 , by taking
2 1 9 , 2 2 if 2 1 & , 2 2 and 2 1 :�2 2. We omit the subscript
* from &�, , 9-, , .1, , and 01, whenever it is clear from
context.

Some brief remarks on the definition: The algebra � does
not play a significant role in this paper. We have chosen to
allow the generality of having an algebra of measurable sets
to make it clear that plausibility spaces generalize proba-
bility spaces. For ease of exposition, we omit the � from
here on in, always taking it to be 2 ; , and just denote a
plausibility space as �)� �<*�� Pl � . In some applications we
also do not care about the domain * . All that matters is
the ordering induced by & , on the subsets in � (see for
example [Friedman and Halpern 1995a; Friedman et al.
1995]). However, in dealing with conditional plausibility
the domain * plays a more significant role.

So far, the only assumption we have made about plausibility
is that & is a partial order. We make one further assumption:

1Frequently it is also assumed that Pr satisfies countable addi-
tivity, i.e., if =�> , ?#@ 0, are pairwise disjoint, then Pr A�B > =�>DC#EF > Pr AD=->GC . We defer a discussion of countable additivity to the
full paper.

A1. If �HI
 , then Pl ���$�J& Pl ��
"� .
Thus, a set must be at least as plausible as any of its sub-
sets. While this assumption holds for all the standard ap-
proaches to reasoning about uncertainty, we note that there
are interesting applications where this might not apply. For
example, if we take Pl ����� to denote how “happy” an agent
is if all he knows is that the true world is some world in
� , then one could well imagine that A1 might not hold.
Knowing that the true world is K might be viewed as bet-
ter than knowing that it is one of K and K�L . For another
example, suppose that we take Pl ����� to denote the desir-
ability of being in a situation where one needs to choose
among elements of � . It is well known in the literature
on choice theory that agents may occasionally view having
more options as a worse situation, not a better one [Kreps
1988]. Despite these caveats, we shall assume A1 for the
remainder of the paper.

Clearly plausibility spaces generalize probability spaces.
We now briefly discuss a few other notions of uncertainty
that they generalize:

M A belief function Bel on � is a function Bel : 2 ;ON
� 0 � 1 � satisfying certain axioms [Shafer 1976]. These
axioms certainly imply property A1, so a belief func-
tion is a plausibility measure.

M A fuzzy measure (or a Sugeno measure) P on �
[Wang and Klir 1992] is a function P : 2 ;RQNS� 0 � 1 � ,
that satisfies A1 and some continuity constraints. A
possibility measure [Dubois and Prade 1990] Poss
is a fuzzy measure with the additional property that
Poss �����T� sup U8VXWJ� Poss ��YXK$Z[� .

M An ordinal ranking (or � -ranking) on � (as defined
by [Goldszmidt and Pearl 1992], based on ideas that
go back to [Spohn 1987]) is a function � : 2 ;\N^] _a` ,
where ] _6`1�b] _ 3Y[cdZ , such that �e�)���#� 0, �e���f�#�
c , and �g�����T� min h VXW �e�)Y[ijZ[� if � :�b� . Intuitively,
an ordinal ranking assigns a degree of surprise to each
subset of worlds in � , where 0 means unsurprising
and higher numbers denote greater surprise. Again,
it is easy to see that if � is a ranking on � , then
�)� � ] _k` � ��� is a plausibility space, where lm& ] _knpo
if and only if o &ql under the usual ordering on the
ordinals.

M A preference ordering on � is a partial order r over
� . Intuitively, Kr�KsL holds if K is preferred to K�L .
Preference orders have been used to provide semantics
for conditional (or default) statements. In [Friedman
and Halpern 1995a] we show how to map preference
orders on � to plausibility measures on � in a way
that preserves the ordering of events of the form YXK$Z
as well as the truth values of defaults (see Section 4.2
for discussion).

M A parametrized probability distribution (PPD) is a tu-
ple ��� � Y Prt : u8v 0 Z[� where each Pr t is a probability
measure over � . Such sequences of measures pro-
vide semantics for defaults in w -semantics [Pearl 1989;
Goldszmidt et al. 1993]. In [Friedman and Halpern
1995a] we show how to map PPDs into plausibility



measures in a way that preserves the truth-values of
defaults (again, see Section 4.2).M A qualitative probability space [Savage 1954; Fine
1973] is a pair �)� � &#xy� , where &#x is a total pre-order
over 2 ; that satisfies several additional properties.
Intuitively, &#x is a qualitative representation of some
probability space Pr such that �z&#x!
 if and only
if Pr ���$�k& Pr ��
'� . A similar notion of qualitative
possibility spaces is discussed in [Dubois 1986]. It
easy to verify that both are instances of plausibility
spaces.

For a plausibility measure Pl with a domain * where sub-
traction makes sense, it is possible to define a dual notion
Pl { by taking Pl {|���$�}� Pl �)���J~ Pl � �"� , where � is the
complement of � . For example, the dual of a belief func-
tion is called a plausibility function [Shafer 1976] and the
dual of a possibility measure is a necessity measure [Dubois
and Prade 1990]; a probability distribution is its own dual.
Note that these dual notions are also plausibility measures.2

In general, a plausibility measure Pl on � does not have a
dual, although it does induce a dual ordering & { on subsets
of � , where �& { 
 iff Pl � ���Jv Pl � 
�� .
Given the simplicity and generality of plausibility mea-
sures, we were not surprised to discover that Weber [1991]
recently defined a notion of uncertainty measures, which
is a slight generalization of plausibility measure (in that
domains more general than algebras of sets are allowed),
and that Greco [1987] defined a notion of � -fuzzy mea-
sures which is somewhat more restricted than plausibility
measures in that the range * is a complete lattice. We
expect that others have used variants of this notion as well,
although we have not found any further references in the
literature. To the best of our knowledge, no systematic
investigation of plausibility measures of the type we are
initiating here has been carried out before.

3 ALGEBRAIC PROPERTIES

In probability theory there is a functional connection—
captured by addition—between the probabilities of disjoint
sets and the probability of their union. Similarly, there
is a functional connection—captured by multiplication—
between the conditional probability of � given 
 , the prob-
ability of 
 , and the probability of ���"
 . These functional
connections are frequently used in making probabilistic cal-
culations. Not surprisingly perhaps, many approaches of
handling uncertainty have analogues of addition and mul-
tiplication with similar roles. In particular, two recent
“abstract” approaches to reasoning about uncertainty—that
of Darwiche and Ginsberg [Darwiche and Ginsberg 1992;
Darwiche 1992] and Weydert [1994]—consider algebras of

2Although the word “plausibility” is used both in our notion
of plausibility measure and in the Dempster-Shafer notion of a
plausibility function, and plausibility functions are a special case
of plausibility measures, there is no other connection between the
two notions. There are simply not that many words that can be
used to describe notions of uncertainty. We hope the overloading
of “plausibility” will not cause confusion.

likelihood values that have some properties of probability,
and allow operations analogous to addition and multiplica-
tion. As we now show, plausibility measures provide us
with the tools to examine the assumptions on plausibility
captured by assuming analogues to addition and multipli-
cation. Moreover, the appropriate application of these tools
provides us with natural means of going from (uncondi-
tional) plausibility to conditional plausibility.

3.1 DECOMPOSABLE MEASURES

As we said above, probability theory postulates a functional
connection between the probability of disjoint events and
the probability of their union. Such an assumption can be
viewed as providing a systematic basis for dealing with
the combination of evidence, as well as providing a certain
modularity in the description of probabilities. For example,
if � is finite, a description of the probability of each world
in � determines Pr �%��� for any ��H�� . It is easy to impose
a similar requirement on plausibility measures. Consider
the following property:

DECOMP. If � and 
 and disjoint, �1L and 
$L are disjoint,
Pl �%���3& Pl ���1LD� , and Pl ��
'�	& Pl ��
$L�� , then Pl �%�� 

"�-& Pl �%�1L� �
$LD� .

We say that a plausibility measure Pl is decomposable if it
satisfies DECOMP.3 As we now show, decomposability is
enough to force there to be a function � � on * such that
Pl ���� �
"�#� Pl �%���e� � Pl ��
"� for disjoint sets � and 
 ; we
say that � � determines decomposition for Pl. In fact, the
axiom DECOMP � which results from replacing all occur-
rences of & in DECOMP by � is already enough to force
there to be a function � � that determines decomposition for
Pl. DECOMP forces � � to have a few additional properties
that make it even more like addition.

Definition 3.1: Suppose * is a pointed ordered domain
and � is a partial function mapping Dom �����JH * � * to * .
If � � ��L are two terms involving � , we write �T�$�T��L if ���!��L
provided � and ��L are both defined. (If one of � or ��L is not
defined, then ��� � ��L holds vacuously.) Similarly, we write
��& � ��L if ��&���L provided both � and ��L are defined. We say
that � is

M commutative if 2 1 ��2 2 � � 2 2 ��2 1,

M associative if ��2 1 ��2 2 ����2 3 �$��2 1 �/��2 2 ��2 3 �
M monotonic if 2 1 &b2 3 and 2 2 &�2 4 implies 2 1 �12 2 & �2 3 ��2 4,

M additive if 2y�'0�� � 2 , and 2/�/.�� � . ,

M multiplicative if 2y�"0$���[0 and 21�/.I�$��2 ,
M invertible if ��2 1 � 2 2 � � ��2 1 � 2 3 ��5 Dom ��� � � , 2 1 �"2 2 &2 3 ��2 4, and 2 2 v�2 4 � 0 implies 2 1 &b2 3.

3DECOMP is a weak variant of a property of qualitative proba-
bilities called disjoint unions in [Fine 1973, p. 17]. A similar prop-
erty has been examined in the theory of fuzzy measures [Dubois
1986; Weber 1991].



Theorem 3.2: Let
( ����� �+*�� Pl � be a plausibility space.

Pl is decomposable if and only if there is a commuta-
tive, monotonic, additive function � � on * with domain
Dom ��� � ����Yf��2 � 2 L � : ��� � � L H�� � �I��� L �4� � Pl ���$�1�
2 � Pl ���/LD�#�2�LDZ that determines decomposition for Pl such
that:

M � � is associative on representations of disjoint sets,
i.e., ��2 1 � � 2 2 ��� � 2 3 �\2 1 � � ��2 2 � � 2 3 � if there exist
pairwise disjoint sets � 1 � � 2 � � 3 such that Pl ���/t��$�
2�t , u�� 1 � 2 � 3.

Notice that the theorem does not say that � � is associa-
tive. We show by example in the full paper that, in general,
it is not.4 Interestingly, Fine [1973, p. 22] claimed that
associativity of � � in his framework follows from the as-
sociativity of  . This claim is not correct, although since
there are differences between our assumptions and his, our
counterexample does not apply to his framework. It is an
open question whether associativity holds in his framework
or not.5 We could, of course, define a (somewhat ugly)
condition that would force � � to be associative in general.
We suspect that this will not be necessary in practice.

Probability measures are decomposable, with decomposi-
tion determined by

�
. Similarly, possibility measures and

� -rankings are decomposable with decomposition deter-
mined by max and min, respectively. The embeddings
of preferential structures and w -semantics into plausibility
structures described in [Friedman and Halpern 1995a] also
lead to decomposable plausibility measures. On the other
hand, Dempster-Shafer belief functions are not in general
decomposable. This follows from the following general
observation:

Lemma 3.3: If ��� �+*�� Pl � is a decomposable plausibility
space and � and 
 are disjoint subsets of � such that
Pl ���$�#� Pl ��
"�#��0 , then Pl ���� �
"�#��0 .

Proof: Suppose Pl �����T� Pl ��
"�T�0 . Since Pl ���f�T�0 , by
DECOMP we have Pl ���� p
'�#� Pl ���� ��f�8� Pl �����T��0 .

Since it is easy to define a belief function Bel such that
Bel ���$�#� Bel ��
"�J� 0 for two disjoint sets � and 
 , while
Bel ��� 6
"�	� 1, it follows that belief functions are not
decomposable. A similar argument can be used to show
that necessity measures, the duals of possibility measures,
are not decomposable in general.

4That is, we show that there are four pairs of disjoint setsAD=/���/C , A��-���'C , A��/����C , A��/�<�	C such that Pl AD=-C E�¡ 1, Pl A��/C�E¡ 2, Pl A���C�E�¡ 3, Pl A��"CJE Pl AD=£¢	�/C�E�¡ 1 ¤ ¥ ¡ 2, Pl A���CJE�¡ 2,
Pl A���C�E�¡ 3, Pl A���C�E¡ 1, Pl A��	C�E Pl A���¢���C�E¡ ¤ ¥ ¡ 3, but
Pl A���¢��"C#¦E Pl A��}¢��	C . Thus, A�¡ 1 ¤ ¥ ¡ 2 C ¤ ¥ ¡ 3 ¦Em¡ 1 ¤ ¥ A�¡ 2 ¤ ¥ ¡ 3 C ,
although all terms are defined.

5A similar incorrect claim appears in [Darwiche and Gins-
berg 1992, p. 623]. However, in [Darwiche 1992], associativity
is claimed to hold only for “meaningful sums”. This seems to
correspond to the same restriction as in Theorem 3.2.

In many cases, we may start with a plausibility defined just
on the elements of � , not on all subsets of � . For exam-
ple, this may be the case if we try to elicit from the user an
ordering on the worlds in � , but do not elicit a comparison
between sets of worlds. As the next theorem shows, we
can then extend this to a decomposable plausibility mea-
sure determined by a total function � � that is commutative,
associative, additive, and monotonic.

Definition 3.4: We say that the ordered domain * L extends
the ordered domain * , denoted *¨§^* L , if * H * L ,01,��'01,�© , .1,I��.1,�© , and &�, is &�,�© restricted to * � * .

Theorem 3.5: Suppose that * is an ordered domain and
pl : � N * . Then there is a decomposable plausi-
bility structure

( �ª��� �+* L � Pl � such that Pl extends pl
(i.e., *z§* L and Pl �)Y[K$ZX�1� pl ��K/� for K«5I� ) and de-
composition for Plis determined by a total function � � that is
commutative, associative, additive, and monotonic. More-
over,

(
is the minimal decomposable extension of pl, in that

if
( L¬����� �<* L � Pl L � and Pl L is a decomposable measure that

extends pl, then Pl �����& Pl ��
"� implies Pl L ���$��& Pl L ��
"�
for all subsets � � 
�H�� .

Thus, if we are given an arbitrary decomposable plausi-
bility space, then the function determining decomposition
may not be associative (although it will still be associative
in many cases of interest). However, if we are just given a
plausibility on elements of � , we can construct a decom-
posable plausibility measure determined by a function that
is associative. Moreover, the minimality of our construc-
tion ensures that it does not make unnecessary assumptions
regarding the relative plausibility of sets of worlds.

3.2 CONDITIONAL PLAUSIBILITY

Conditioning plays a central role in probabilistic reasoning.
Not surprisingly, we are interested in studying conditioning
in the context of plausibility as well. Of particular interest
will be the connection between the conditional plausibil-
ity of � given 
 , and the plausibilities of 
 and �b�a
 .
Before we can study this relationship, we need to consider
conditioning in plausibility structures more generally.

Just as a conditional probability measure associates with
each pair of sets � and 
 a number, usually denoted
Pr ���	� 
'� , a conditional plausibility measure associates with
pairs of sets a conditional plausibility. Formally, a condi-
tional plausibility space is a family Y���� �+* W � Pl W � : �®H
�Z of plausibility spaces. We typically write Pl ��
p� ���
rather than Pl W ��
"� and Pl �%��� rather than Pl ���	�¯��� . In
keeping with standard practice in probability theory, we
also sometimes write Pl ��
p� � �<° � rather than Pl ��
p� �a� ° � .
Of course, we do not want the various Pl W ’s to be arbitrary.
Conditioning attempts to capture the intuition that when we
learn � , the probability of sets disjoint from � becomes
0, while the relative probability of subsets of � does not
change. The following coherence condition guarantees that
conditional plausibility spaces have the same property:

C1. Pl ��
p� � �+° ��& Pl ��±p� � �+° � if and only if Pl �����




p� ° �-& Pl ���!��±�� ° � .
In probability theory, the unconditional probability de-
termines the conditional probability, via the relation
Pr ���	� 
'��� Pr �%�b�k
"��² Pr ��
"� . This, of course, is not in
general true in arbitrary plausibility measures. We can have
two distinct conditional plausibility spaces Y���� �+* W � Pl W � :
�Hb�Z and Y���� �+* LW � Pl LW � : ��H��Z on the same space
� that agree on the unconditional probability (i.e., Pl ; �
Pl L ; ) and yet differ on their components. On the other hand,
if all we care about is the ordering of plausibilities, these
two conditional plausibility spaces must be essentially the
same. To make this precise, we say that two plausibility
spaces ��� �<*�� Pl � and ��� �+* L � Pl L � are (order-)isomorphic
if for any � � 
�H�� , we have that Pl �%���J& , Pl ��
"� if and
only if Pl L �%���J& ,�© Pl L ��
"� .
Proposition 3.6: Let Y���� �+* W � Pl W � : � H³�Z and
Yf�)� �+* LW � Pl LW � : �´Hµ�Z be two conditional plausibil-
ity spaces on � . If Pl ; and Pl L ; are isomorphic, then Pl W
and Pl LW are isomorphic for all �H�� .

Given an (unconditional) plausibility space
( �

��� �<*�� Pl � , we can find a conditional plausibility space
extending

(
and satisfying C1 in a straightforward way:

Consider Yf��� �<* W � Pl W � : �OH\�Z , where * W is a dis-
joint copy of YX265 * : 26&�, Pl �����¶Z and Pl W ��
"� is the
element in * W that corresponds to Pl �%���6
"� . It is easy
to see that this conditional plausibility space satisfies C1.
Note that since * W and *"· are disjoint when � :�4
 , we
cannot compare Pl ��±p� �$� to Pl � * � 
"� . In fact, it is easy to
verify that this plausibility space is the minimal one that
extends

(
and satisfies C1.

In some applications, we want more than just C1. We
want there to be a function � � such that Pl �%���a
�� ±'�}�
Pl ���	� 
 � ±'�e� � Pl ��
�� ±'� , as there is for probability. Such a
function � � is said to determine conditioning for Pl. To study
this functional connection (and, more generally, to allow
us to compare Pl ��
�� �$� to Pl ��
¸L�� �/L¹� when � :�\�1L ), we
consider standard conditional plausibility spaces, those for
which there is some domain * such that for each �H� ,
either * W ��Yf0 , Z or * W §�* .

To force the existence of a function determining condition-
ing, we require:

C2. If Pl ���� 
 � ±"�\& Pl �%�1L�� 
$L � ±$Lº� and Pl ��
�� ±'�O&
Pl ��
 L � ± L � , then Pl �%�I��
p� ±"�T& Pl ��� L �p
 L � ± L � .

Again, to get the functional dependency, we require only
a weaker version of C2 denoted C2 � , where all the & ’s
are replaced by � . Just as with DECOMP, the stronger
C2 forces the function � � determining conditioning to be
monotonic.

Axiom C2 says that Pl �%�b�k
"� is determined by Pl �%�� 
"�
and Pl ��
"� ; it does not follow that Pl �%�� 
"� is determined by
Pl ���"�J
"� and Pl ��
"� . To force this, we need to force � � to be
“invertible”. Roughly speaking, we want a division opera-
tor � » such that Pl ���	� 
'�#� Pl �%�k�}
"�y� » Pl ��
"� . Of course,
we expect that by increasing the numerator or decreasing
the denominator of a fraction like Pl ���!��
"��� » Pl ��
"� , we

get an answer that’s at least as large. This motivates the
following axiom:

C3. If Pl �����
p� ±"��& Pl ���1Le��
$L�� ±$L¼� and Pl ��
p� ±"��v
Pl ��
$L�� ±¸L¼� � 0 , then Pl ���� 
 � ±"�T& Pl ���1L�� 
$L � ±$L½� .

Again, we get a weaker version of this axiom, denoted C3 � ,
if we replace all the inequalities with � .

Theorem 3.7: Let
( �¾Yf�)� �<* W � Pl W � : �´HO�Z be a

conditional plausibility space. Pl satisfies C1 and C2 if
and only if there exists a multiplicative, monotonic func-
tion � � with domain Dom ��� �#���¿Yf��2 � 2�L½� : �y� � 
 � ±¿H
� � Pl �%�� 
 � ±"���42 � Pl ��
p� ±"����2fLGZ that determines con-
ditioning for Pl such that:

M � � satisfies limited associativity: if there exist sets
� � 
 � ± �+* such that 2 1 � Pl ���	� 
 � ± �<* � , 2 2 �
Pl ��
p� ± �+* � , and 2 3 � Pl ��±�� * � , then ��2 1 � ��2 2 �À� �-2 3 �2 1 � �6��2 2 � ��2 3 � .6

Pl additionally satisfies C3 if and only if � � is invertible.

Of course, the standard definition of conditioning in prob-
ability satisfies C1–C3, and conditioning is determined by
� . Similarly, the standard definition of conditioning in
� -rankings, which takes �e�%�� 
"���Á�g������
"�¸~Â�g��
"�
[Spohn 1987], satisfies C1–C3, with conditioning deter-
mined by addition. Finally, the standard notion of condi-
tioning in possibility measures [Dubois and Prade 1990]
which takes Poss ���	� 
'�}� 1 if Poss �%���a
'�}� Poss ��
"�
and Poss ���� 
"�T� Poss �����'
"� otherwise, satisfies C1–C3,
with conditioning determined by min. It may seem some-
what surprising here that min is invertible, as required by
C3. After all, in general, min ��2 1 � 2 3 �$� min ��2 2 � 2 3 � does
not imply that 2 1 �®2 2. This implication does, however,
hold in the domain of min in this case. We remark that
we can take an alternate definition of conditioning in pos-
sibility theory, by defining Poss ���	� 
"�#� 0 if Poss ��
"�#� 0
and Poss �%�� 
"��� Poss �%�b��
'��² Poss ��
"� otherwise. This
definition also satisfies C1–C3, with conditioning being
determined by multiplication. We shall contrast the two
definitions in the next section.

Note that our theorem does not force � � to be commutative.
It is easy to state conditions that force additional properties
of � � , such as commutativity (see [Fine 1973]).

What happens when we add the requirement of decompos-
ability to conditional plausibility measures? There are actu-
ally two ways to do this. We say that a conditional plausibil-
ity measure is locally decomposable if every Pl W is decom-
posable. This requirement ensures that for each � , there is a
function � � W such that Pl ��
" #±p� �$��� Pl ��
�� �$��� � W Pl ��±p� �$�
whenever 
 and ± are disjoint. This condition, however,

6In the full paper we show by example that ¤ Ã is not associative
in general. We remark that Fine [1973, p. 30] and Darwiche and
Ginsberg [1992, p. 625] again incorrectly claimed that similar
assumptions forced ¤ Ã to be associative on all of Dom A ¤ Ã C , and not
just on triples A�¡ 1 ��¡ 2 ��¡ 3 C of this special form. Moreover, in this
case, the example we provide is a counterexample to associativity
also in Fine’s framework.



does not relate � � W to � � · , i.e., the combination of disjoint
events depends on the evidence. We say that conditional
plausibility measure is globally decomposable (or just de-
composable) if it satisfies the following property:

DECOMP Ä . If � and 
 and disjoint, �1L and 
$L are
disjoint, Pl ���	� ±"��& Pl ���/L�� ±¸L¼� , and Pl ��
p� ±"�Å&
Pl ��
 L � ± L � , then Pl �%�I �
p� ±"�T& Pl ��� L  p
 L � ± L � .

It is easy to state and prove an analogous result to Theo-
rem 3.2, i.e., that a conditional plausibility space is globally
decomposable if and only if there is a commutative, mono-
tonic, and additive function � � such that for disjoint sets �
and 
 , we have Pl ���� �
p� ±"�#� Pl ���� ±"�e� � Pl ��
p� ±"� .
It is not immediately clear that we can find an invertible con-
ditional plausibility extending every (unconditional) plausi-
bility measure. As the next result shows,we can. Moreover,
there is a unique minimal algebraic conditional plausibility
measure, and it has some very nice properties.

Theorem 3.8: Let
( ����� �+*�� Pl � be a plausibility space.

Then there is a conditional plausibility space
(

0 �
Yf�)� �+* 0 � Pl W � : �ÆHÁ�Z extending

(
(i.e., *Ç§È* 0

and Pl ; � Pl) in which conditioning is determined by a
total function � � which is commutative, associative, mul-
tiplicative, invertible, and monotonic.7 Moreover, if

(
is

decomposable, then so is
(

0; in fact, there is a total func-
tion � � that is commutative, additive, and monotonic that
determines decomposition, and � � distributes over � � . In
addition, if there is an associative function that determines
decomposition for Pl, then � � is associative as well.

The construction of Theorem 3.8 tells us that for any plau-
sibility measure Pl we can find a “nice” (i.e., multiplica-
tive and invertible) conditional plausibility that extends it.
Moreover, there is a conditional plausibility measure ex-
tending Pl in which the functions determining conditioning
and decomposition are total, and have desirable properties
including commutativity and associativity of � � , and dis-
tributivity of � � over � � . As we show in the full paper,
these properties are not necessarily implied by C1–C3 and
DECOMP Ä alone. When combined with our construction in
Theorem 3.5, this gives us a way of starting with a plausibil-
ity measure on worlds in � , and extending to a conditional
plausibility measure with these attractive properties.

The conditional plausibility measure constructed in The-
orem 3.8 is in a precise sense the minimal one with all
the required properties. If we start with an unconditional
probability measure, � ranking, or possibility measure, the
standard approaches to conditioning do not in general give
us the conditional measure defined by this construction.
Thus, they makes some comparisons between conditional
plausibilities that are not forced by our requirements. In-
terestingly, if we consider the standard approach to con-
ditioning in possibility measures defined earlier (with � �
being min), it cannot be extended to a total commutative
function.

7Note that the fact that ¤ Ã satisfies these conditions guarantees
that É 0 satisfies C2 and C3.

Example 3.9: Suppose we have a possibility measure Poss
on a space � and sets ��H�
ÊH�± such that Poss ���$�1�
1 ² 4, Poss ��
"�"� 1 ² 2, and Poss ��±"�$� 3 ² 4. (It is easy to
find such a possibility measure.) Then, according to the
definitions, we have Poss ���	� 
 � ±'��� Poss ���	� ±"�$� 1 ² 4,
Poss ��
p� ±"��� 1 ² 2, and Poss ��
�� � � ±'�b� 1. Hence,
min � Poss ��
p� � � ±"� � Poss �%�� ±"�)� �
min � Poss ���	� 
 � ±"� � Poss ��
p� ±"���J� 1 ² 4, but Poss �%�� 
"� :�
Poss ��±"� . More abstractly, we have 2 1 � �	2 2 ��2 2 � �p2 3, but
2 1 :�®2 3. On the other hand, if � � could be extended to a
total, commutative, invertible function, we would have to
have 2 1 ��2 3. We return to this issue in the next section.

3.3 COMPARISON TO OTHER ALGEBRAIC
APPROACHES

We now briefly compare our approach to others in the liter-
ature.

Darwiche and Ginsberg’s [1992] approach is somewhat
similar to ours. They start with functions (which they call
states of belief ) that map formulas to an (unordered) set
of plausibility values. To relate these to plausibility mea-
sures, we can take � to be the set of all truth assignments,
and identify a formula with the set of worlds that satisfy it.
Darwiche and Ginsberg then describe various assumptions
that force the existence of what, in our terminology, are
functions � � and � � that essentially determine decomposi-
tion and conditioning. They then define an ordering & � �
on plausibilities in terms of � � : lÂ& � � o if there is a Ë
such that l'� � Ë�� o . Their assumptions do not force their
analogues of � � and � � to be total (although they are total
in all the examples provided).

Notice that Darwiche and Ginsberg assume that originally
we have a mapping from worlds to an unordered set of
plausibility values. They then impose an ordering on this
set. Their construction does not deal so well with the type
of situation discussed before Theorem 3.5, where we start
with a function pl that assigns to each world a plausibility in
some ordered set; there is no way to take into account this
initial ordering in their construction. For example, suppose
�Ì�®YXi �<Í Z and pl ��i�� � pl � Í � . Their construction would
make i and Í incomparable according to & � � , since there
is no Î such that Í � � Î$�4i . In particular, this means that
the Darwiche-Ginsberg approach cannot deal with initial
preferential orders, which arise in default reasoning (see
Section 4.2).

Weydert [1994] starts with total functions � � and � � on some
set � , where � � is commutative, associative, additive, and
monotonic, while � � is commutative, associative, multi-
plicative, invertible, and monotonic. (Indeed, he requires
even more of � � and � � , although it is beyond the scope
of the paper to explain these requirements.) Moreover, he
also assumes a totally ordered domain * of plausibilities.
He then define plausibility measures (quasi-measures in
his terminology) as functions from � to * such that � �
determines decomposition and � � determines conditioning.

Our discussion above shows that quasi-measures cannot



capture conditional possibility measures, since these can-
not be embedded in a total algebra. Similarly, they cannot
capture belief functions, since these are not decomposable,
nor preferential structures, since these are not totally or-
dered. Thus, Weydert’s framework is not general enough
to deal with many of the examples of interest to us.

4 APPLICATIONS

In this section, we discuss two possible applications of
plausibility: reasoning about independence and qualitative
reasoning.

4.1 INDEPENDENCE

The notion of independence plays a critical role in reason-
ing about uncertainty. Intuitively an event � is independent
of 
 given ± , if, once we know ± , evidence regarding 

does not provide us information about � . In probability
theory, we say that � and 
 are independent given ± if
Pr ���	� ±'��� Pr ���	� 
ÐÏ"±"� . It is easy to see that this is equiv-
alent to Pr ���	Ï1
�� ±'�#� Pr �%�� ±"�j� Pr ��
p� ±"� . Once we con-
sider formalisms other than probability theory, there are a
number of alternative definitions of independence that have
been considered in the literature; see, for example, [Fine
1973; Goldszmidt and Pearl 1992; Dubios et al. 1994]. We
do not consider all the alternatives in our discussion of in-
dependence in the context of plausibility structures. Rather,
we focus on one possible definition—perhaps the most ob-
vious generalization of the probabilistic definition—and a
more qualitative variant of it.

Suppose � � 
 � ±´HO� . We say that Pl makes � (plau-
sibilistically) independent of 
 given ± denoted Pl � �
Ind Ñ��%� � 
p� ±"� , if Pl ��
	��±"�8�"0 or Pl ���	� ±'�#� Pl ���	� 
 � ±'� .
Thus, � is independent from 
 given ± either if 
 is
implausible or if conditioning on 
 does not change the
plausibility of � .

To what extent do properties of probabilistic independence
carry over to this definition? That depends on what assump-
tions we make about the underlying plausibility measure.
Once we consider multiplicative plausibility measures (so
that it makes sense to use � � ), we can characterize plau-
sibilistic independence much as we did probabilistic inde-
pendence.

Proposition 4.1: (a) If Pl satisfies C2 � and Pl � �
Ind Ñ �%� � 
p� ±"� , then Pl ���Ò��
p� ±"�4� Pl ���� ±"�$� �
Pl ��
p� ±"� .

(b) If Pl satisfies C2 � and C3 � , then Pl � � Ind ÑÀ��� � 
�� ±'�
if and only if � Pl �%�� ±"� � Pl ��
p� ±"�)�65 Dom ��� �J� and
Pl �%����
�� ±'��� Pl ���	� ±"�e� � Pl ��
p� ±"� .

(c) If Pl satisfies DECOMP �Ä , � 1 �d� 2 �Ó� , Pl � �
Ind Ñ��%� 1 � 
p� ±"� , and Pl � � Ind Ñ���� 2 � 
p� ±"� , then Pl � �
Ind Ñ �%� 1  p� 2 � 
p� ±"� .

Thus, if Pl satisfies C2 � , then when � and 
 are uncondi-
tionally independent (i.e., independent given � ), the plau-
sibility of �I��
 is determined by Pl ����� and Pl ��
"� . This

seemsto be a fundamental property of independence, and al-
lows us to modularize the description of Pl. Decomposabil-
ity gives us another important property of independence: it
guarantees that Ind Ñ is closed under disjoint union.

In probability theory, independence is symmetric: if �
is independent of 
 , then 
 is also independent of � .
When is Ind Ñ symmetric? Expanding the definition of Ind Ñ ,
we see that it is symmetric if whenever Pl ���	� 
 � ±'�a�
Pl ���	� ±"� , then Pl ��
�� � � ±'�"� Pl ��
p� ±"� . Now if Pl satis-
fies C2 � , then Pl �%���p
p� ±"� can be expanded in two ways:
Pl ���	� 
 � ±'��� � Pl ��
�� ±'� and Pl ��
p� � � ±"�y� � Pl ���� ±"� . Thus,
we would expect Ind Ñ to be symmetric whenever � � is in-
vertible. This may not follow if � � is not total and commu-
tative. To see this, consider Example 3.9 again. The func-
tion min is invertible—C3 holds for conditional possibility
where conditioning is determined by min—yet, in that ex-
ample, we have Ind Ñ��%� � 
p� ±"� , but not Ind ÑÀ��
 � �� ±"� . To
get symmetry, we actually need the following variant of
C3 � :

C4 � . If Pl ���b�k
�� ±'��� Pl �%�1L��k
¸L<� ±$L½� and Pl ���	� ±"�1�
Pl �%�1L�� 
$L � ±$L¼� � 0 , then Pl �%�� 
 � ±"�8� Pl ���/L�� ±¸L¼� .

Proposition 4.2: If Pl satisfies C2 � and C4 � , then Pl � �
Ind Ñ �%� � 
p� ±"� if and only if Pl � � Ind Ñ ��
 � �� ±"� .
We note that C4 � is satisfied by the conditional plausibility
measure

(
0 constructed in Proposition 3.8, as well as by

probability theory and � -ranking. As Example 3.9 shows, it
is not satisfied by conditional possibility with conditioning
determined by min, although it is satisfied by conditional
possibility with conditioning determined by multiplication.

What we are often interested in is not just the indepen-
dence of one event (set) from another, but independence
among a family of events. Given a set Ô®��Y�� 1 �������+� �$Õ�Z
of events, define an atom over Ô to be an event of the
form �1L1 � ����� �6�/LÕ , where �1LÕ is either �$Õ or its com-
plement � Õ . Given three sets of events Ô , Ö , and × , we
say that Pl makes A strongly independent of B given C,
denoted Pl � � IND ÑØ��Ô � Ö��¯×"� , if, for all atoms Ù over Ô ,
all atoms Ú over Ö , and all atoms Û over × , we have
Pl � � Ind Ñ �%Ù � Ú�� Û/� . We remark that although this defini-
tion focuses on atoms, by part (c) of Proposition 4.2, we
can extend these independence assertions about atoms to
independence assertions about arbitrary sets in decompos-
able structures. Notice that if Ô is the singleton Y��"Z , Ö is
the singleton YX
�Z , and × is the singleton Y[±�Z and we are
dealing with a plausibility measure that is in fact a proba-
bility function, then this definition amounts to saying that
� is (probabilistically) independent of 
 given both ± and
± .8

Once we consider sets of events in this way, we can consider

8This definition of independence is related to independence
among random-variables [Pearl 1988]. Essentially, we are treat-
ing each event = as a two-valued random variable that has value
1 in all worlds ÜÞÝ}= and value 0 in worlds Ü!¦Ý= . The follow-
ing discussion can be easily extended to deal with many-valued
random variables. Because of space constraints we defer that to
the full version of the paper.



the semi-graphoid properties [Pearl 1988]:

G1. IND ÑÀ��Ô � Ö��¯×"� implies IND ÑÀ��Ö � Ô6�¯×¸� .
G2. IND ÑÀ��Ô � Öb �ß£�¯×"� implies IND Ñ���Ô � Ö��¯×¸� .
G3. IND ÑÀ��Ô � Öb �ß£�¯×"� implies IND Ñ���Ô � Ö��¯×I �ß�� .
G4. IND Ñ ��Ô � Ö��¯×"� and IND Ñ ��Ô � ß��¯×^ ®Ö}� implies

IND Ñ ��Ô � Öb �ß��¯×¸� .
These properties are well-known to hold for probabilistic
independence [Pearl 1988]. They also hold in the minimal
decomposable conditional plausibility measures of Propo-
sition 3.8. In fact, we can prove a somewhat stronger result.

Theorem 4.3: If Pl is a conditional plausibility measure
satisfying C2 � , C4 � , and DECOMP �Ä , then IND Ñ satisfies
the semi-graphoid properties in Pl.

This result is somewhat similar to one of Wilson [1994], and
shows that we need relatively little to get a non-probabilistic
notion of independence that obeys all the semi-graphoid
axioms.

It is known that any collection of independence statements
that satisfy the semi-graphoid properties can be represented
using a Bayesian network [Pearl 1988]. As we just saw,
it takes fairly little to get a notion of plausibilistic inde-
pendence that obeys all the semi-graphoid properties. Dar-
wiche [1992] shows how to construct Bayesian networks
in the framework of [Darwiche and Ginsberg 1992]. As
we observed, this framework embodies additional assump-
tions beyond C1, C2 � , C4 � , and DECOMP �Ä . While this
extra structure, particularly properties like invertibility and
commutativity, may not be necessary to define Bayesian
networks, Darwiche’s results suggest that they may be use-
ful in facilitating analogues of probabilistic algorithms for
updating beliefs in Bayesian networks. Whether this struc-
ture really is necessary is an issue that deserves further
exploration.

We now turn to a more qualitative notion of independence.
If Ô is strongly independent of Ö given × , then discovering
that some atom over Ö holds does not change the plausi-
bility of atoms over Ô . If all we care about is the relative
plausibility of events, then we can consider a weaker notion,
where discovering that some atom over Ö holds does not
change the relative plausibility of atoms over Ô . Thus, we
say Pl makes A weakly independent of 
 given ± , denoted
Pl � � Ind U ��Ô � 
p� ±"� , if either Pl ��
4��±'�	�"0 or for all
atoms Ù and Ù�L over Ô , we have Pl �%Ù�� ±'�"& Pl ��Ù�L<� ±"�
if and only if Pl ��Ù�� 
���±"��& Pl �%Ù�L�� 
4��±'� . We say
Pl makes A weakly independent of B given C, denoted
Pl � � IND U ��Ô � Ö��¯×"� , if, for all atoms Ú over Ö and all
atoms Û over × , we have Pl � � Ind U ��Ô � Ú�� Û/� . It is easy
to see that IND Ñ��%à �)á �ãâ#� implies IND U �%à �)á �¯â#� , as the
names suggest. There do not seem to be any straightfor-
ward conditions that force weak independence to obey the
semi-graphoid properties. Nevertheless, as we shall see
below, it may be that weak independence has an important
role to play in default reasoning.

4.2 QUALITATIVE REASONING

We briefly review some of the results on default reasoning
from [Friedman and Halpern 1995a; Friedman et al. 1995],
in light of the results of the previous sections.

A default is a formula of the form äTåqæ , where ä and æ
are propositional formulas. Such a default is read “ ä ’s are
typically (or normally, or by default) æ ’s”. For the discus-
sion here, we identify a formula ä with the set consisting of
the worlds where ä is true; this allows us to work with sets
rather than formulas. We then say that a default �'å�
 is
satisfied by a a plausibility measure Pl if either Pl �����J�'0
or Pl �����6
"� � Pl ����� 
}� , i.e., either � is implausible
and we accept the default vacuously, or 
 is more plausible
than its complement given � . This semantics for defaults is
identical to that given for possibility measures [Benferhat
et al. 1992] and for ordinal ranking structures [Goldszmidt
and Pearl 1992]. As shown in [Friedman and Halpern
1995a], we can map other semantic structures used for giv-
ing semantics to defaults—including preferential structures
[Kraus et al. 1990] and the parameterized probability dis-
tributions (PPDs) used in w -semantics [Goldszmidt et al.
1993]—to plausibility structures in such a way as to pre-
serve the semantics of defaults.

Default reasoning in all these approaches is characterized
by a collection of properties known as the KLM axioms
[Kraus et al. 1990]. Our semantics for defaults does not
guarantee that the KLM properties are satisfied. (In partic-
ular, they are not satisfied by probability measures.) What
extra conditions do we have to place on plausibility mea-
sures to ensure that these properties are satisfied? In the
presence of A1, the following axioms turn out to be all that
we need:

A2. If � , 
 , and ± are pairwise disjoint sets, Pl ���k }
'� �
Pl ��±"� , and Pl ���a 	±'� � Pl ��
'� , then Pl ���$� � Pl ��
m 
±"� .

A3. If Pl �%���#� Pl ��
"�#�'0 , then Pl �%�I �
"�#�'0 .

In [Friedman and Halpern 1995a] we prove that a plausibil-
ity measure satisfies all the KLM properties if and only if it
satisfies A2 and A3. Thus, A2 and A3 capture the essence
of the KLM properties.

Since all the plausibility structures that arise from possibil-
ity measures, � -rankings, preference structures, and PPDs,
satisfy A2 and A3, this explains why the KLM properties
hold in these approaches.9 Moreover, as we said in the intro-
duction, in [Friedman and Halpern 1995a] we also describe
a weak necessary and sufficient condition for the KLM
properties to be complete. This condition is easily seen to
hold in all of these approaches. These results help us under-
stand why the KLM properties characterize default reason-
ing in several different approaches. Plausibility structures
also give us the tools to show how these approaches all
differ once we allow first-order defaults [Friedman et al.
1995].

9We immediately get A3, using Lemma 3.3, as a consequence
of the decomposability of these approaches.



While there is general agreement that the KLM proper-
ties are the “core” of default reasoning, there is also general
agreement that they are too weak. For example suppose that
a knowledge base contains only the default Bird å Fly. Us-
ing the KLM properties, we cannot derive Bird Ï Red å Fly,
since it is consistent with this knowledge base that red birds
are exceptional. Yet, given that our knowledge base does
not contain any information indicating that red birds are
exceptional, we would like to infer that they are not. This
problem has been dubbed the irrelevance problem, since
we want our inference procedure to consider Red irrele-
vant to Bird å Fly. A great deal of recent work on default
reasoning (e.g., [Goldszmidt et al. 1993; Goldszmidt and
Pearl 1992; Pearl 1989]) has attempted to deal with the
irrelevance problem. Roughly speaking, given a partic-
ular knowledge base, these approaches focus on a set of
preferred structures that are determined by this particular
knowledge base. Intuitively, these preferred structures sat-
isfy the knowledge base and some additional irrelevance
properties that we want to view as true by default.

The results of the previous sections that plausibility may
provide us with a general approach for dealing with irrel-
evance. How can we capture irrelevance? Perhaps the
simplest definition is the following: 
 is irrelevant to the
default ±åÂ� according to Pl if ±!��
�å�� is satisfied by
Pl if and only if ±åÂ� is satisfied by Pl. It is easy to verify
that Pl � � Ind U �)Y��'Z � 
p� ±"� if and only if 
 is irrelevant
to ±�å� according to Pl. Thus, the weak notion of in-
dependence corresponds directly to irrelevance in default
reasoning. Since all that matters in the semantics of a de-
fault such as ±�å� is the relative plausibility of the sets
±b�Ð� and ±b� � , it is clear that we do not need the full
power of strong independence here.

We believe that by studying Ind U in the context of default
reasoning we can gain some insight into the irrelevance
problem. For example, we can make precise approaches
that make a maximal number of independence assumptions
that are consistent with the knowledge base. We note that a
similar suggestion is made by Dubois et. al. [1994] using a
slightly different notion of irrelevance. They say that 
 is
irrelevant to ±�å� if both ±�å� and ±��"
�å4� hold. We
believe that this condition is too strong, since it presupposes
the acceptance of the default. We are currently exploring
this issue further.

Qualitative measures also appear in the investigation of
belief change. The problem here is how an agent should
change his beliefs after making a (possibly surprising) ob-
servation. It turns out that we can use conditioning in
plausibility measures to handle belief change. Roughly,
we say that an agent believes � given evidence ° if
Pl ���	� ° � � Pl � �� ° � . If we want the agent’s beliefs to
be closed under conjunction—if the agent believes � and

 , then he also believes ���6
 —then we must limit our
attention to qualitative plausibility measures.

Independence also proves to be important in belief change.
In [Friedman and Halpern 1995b], we describe belief
change in a system by putting a plausibility measure on
histories or runs that describe how the system changes over

time. When doing probabilistic reasoning about such sys-
tems, in many cases it is reasonable to assume that a partic-
ular state transition is independent of when it occurs. This
Markov assumption greatly simplifies reasoning about com-
plicated systems, and has been shown to be widely appli-
cable in practice. There is no difficulty stating the Markov
assumption using plausibilistic notions of independence.
Moreover, as shown in [Friedman and Halpern 1995b], by
combining the Markov assumption with qualitative plau-
sibility measures, we get a natural and powerful model of
belief change. In this model, after making an observation,
the agent may revise earlier beliefs, as is done by belief revi-
sion [Alchourrón et al. 1985], may consider it possible that
his earlier beliefs were correct but the world has changed,
as is done by belief update [Katsuno and Mendelzon 1991],
or take some combination of the two possibilities.

5 DISCUSSION

In this paper, we have attempted to provide an introduction
to plausibility measures, with a focus on their algebraic
structure. Among other things, we showed how starting
with a plausibility on worlds, we can extend to a condi-
tional plausibility measure defined on arbitrary sets, where
the plausibilities have many of the properties satisfied by
probability. In particular, decomposition is determined by a
total function � � with many of the key properties of addition,
and conditioning is determined by a total function � � with
many of the key properties of multiplication. Moreover,
the independencies in this minimal conditional plausibil-
ity space satisfy the semi-graphoid conditions. Thus, we
provide a construction that can generate a Bayesian net-
work from a preferential structure. We believe that this
might have interesting implications in investigating the ir-
relevance problem in default reasoning.

More generally, as we hope our results show, plausibility
measures give us a general framework in which to study
fundamental issues of reasoning about uncertainty. They
allow us to compare various approaches, and extract the
key features needed to enable certain types of reasoning to
be carried out. Plausibilities measures have already proved
their usefulness in the analysis of qualitative default reason-
ing. We expect that many other applications will be found
in the future.
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