
PROBABILISTIC MODELING OF

GENE REGULATORY NETWORKS

FROM DATA

Thesis submitted for the degree

“Doctor of Philosophy”

by

Iftach Nachman

Submitted to the Senate of the Hebrew University
November 2004

ii

This work was carried out under the supervision of
Prof. Nir Friedman

iv

Acknowldegements

There are many people to whom I owe many thanks for helping me going through this long

process of completing a PhD. First, to my adviser Nir Friedman. During the six years I worked with

Nir, not only did I learn from him a whole lot, but I was also inspired by his capabilities: Developing

a birds-eye view, getting to the interesting core of a problem, passing hurdles without making an

issue, being very generous to his students - all these, and more, I hope I have learned from him over

those years.

I had the pleasure of collaborating with several people along my work: Michal Lineal who was

our first true biological collaborator, also provided support and help along the way like a caring

mother. Zohar Yakhini and Amir Ben-Dor, from whom I learned the art of cross-atlantic collab-

orative work. Dana Pe’er, who shared with me the first steps of this research. Gal Elidan, my

collaborator in the last paper of the PhD - it was a great fun! Aviv Regev, not only an excellent

collaborator and a great scientist but also a gracious host in my new work place.

Many thanks to all the other lab members: Matan,Ori,Yoseph,Tommy, Yuval, Hillel, Noa, Ariel,

Ilan and Omri. Many of you contributed from your time and efforts more than once when a pass

on a manuscript or a presentation practice run was needed. You do not have to watch your back

anymore when mentioning discrete variables! Gil Bejerano and Elon Portugaly, my office mates,

for making the hours there much more fun.

Many thanks to Alisa Shadmi from the ICNC. You were like a caring mother during this period,

and were always happy to help out of bureaucratic traps. Ruti Suchi and Regina Krizhanovsky also

helped many times with administrative issues. I am grateful to those who gave me bread during

the PhD years: the ICNC program masters scholarship, and the Horowitz fund for its generous

scholarship.

Finally, I want to thank my family. My parents Ovadia and Zipora and my brother Yuval for

constant interest and support in all ways. My wife Orit who went with me through all this journey

with love, and my children Yoav and Michal who were born into it - you made it all worthwhile.

I dedicate this work to the memory of my grandmother, Hofshia, who followed it from its first

day to the very last.

v

Abstract

The living cell consists of a complex system of interacting networks, involved in signal trans-

duction, metabolism, and regulation. Regulatory networks can be thought of as the core brain, or

master plan, controlling and operating all the functions of the cell. In this dissertation we try to gain

better understanding of such networks by analyzing experimental data. Our approach is based on

probabilistic generative modeling of experimental observations.

The challenge of learning about regulatory networks includes both unraveling their structure (a

qualitative aspect) and the precise nature of local interactions in them (a quantitative aspect). Both

these aspects are important for understanding how these networks work, what dynamic behaviour

they display under different conditions and what is their expected response to specific stimuli. New

experimental methods that have emerged in the past few years have made the exploration of such

networks possible. These methods include parallel measurement of mRNA abundance, or alterna-

tively regulator binding location, for many thousands of genes simultaneously. However, learning

from such data sources poses several challenges. First, both the biological processes that generated

the observed data and the processes involved in measuring those phenomena involve stochastic as-

pects, and are therefore not deterministic, nor exactly replicable. Second, most of the stages and

quantities in the regulatory pathways are not observed, and many of the design details are not known.

Finally, current data sets are sparse, while the number of participating genes in those networks can

be very large.

The model-based approach we present tries to describe how such data sets were generated. To

cope with the above challenges, it has to account for stochasticity at all levels, to allow the use of

unobserved entities, and to be able to search for the “correct” design diagram. In the theoretical part

of this work we present our choice of modeling language, which is based on probabilistic graphical

models, as well as novel representation schemes, model assessment methods and search algorithms

which are needed to adapt this language to our task, coping with its specific difficulties. We then

present two approaches for using these tools to learn regulatory networks from data.

We first introduce a novel representation scheme for Bayesian networks based on Gaussian

processes priors. These priors are semi-parametric in nature and can learn almost arbitrary noisy

functional relations. We develop the Bayesian score of Gaussian Process Networks and describe

how to learn them from data. We present empirical results on artificial and real-life domains with

non-linear dependencies.

Next, we introduce two novel methods for learning the structure of Bayesian networks, which

address specific difficulties: The first enables handling very large domains, and the second allows

learning continuous variable networks with non-linear interactions as well as handling new hidden

variables. The Sparse Candidate algorithm achieves faster learning by restricting the search space.

It iteratively restricts the parents of each variable to belong to a small subset of candidates, and then

searches for a network that satisfies these constraints. We evaluate this algorithm both on synthetic

and real-life data. Our results show that it is significantly faster than alternative search procedures

without loss of quality in the learned structures. The Ideal Parent method is a general method for

significantly speeding the structure search for continuous variable networks with common paramet-

ric distributions. Importantly, this method facilitates the efficient addition of new hidden variables

into the network structure. We demonstrate the method on several data sets, both for learning struc-

ture on fully observable data, and for introducing new hidden variables during structure search.

In the second part of the thesis we apply the tools from probabilistic modeling for the task of

learning regulatory networks from gene expression data. We begin by introducing the first applica-

tion of Bayesian networks for modeling gene regulatory networks. We show how such networks can

describe interactions between genes. We then describe a method for recovering gene interactions

from microarray data using Bayesian network learning techniques, and demonstrate the method on

real data from yeast.

Finally, we introduce a more realistic modeling approach. Unlike most previous works in the

field, here we employ quantitative transcription rates, and simultaneously estimate both the kinetic

parameters that govern these rates, and the activity levels of unobserved regulators that control them.

We apply our approach to expression data sets from yeast and E. Coli and show that we can learn

the unknown regulator activity profiles, as well as the binding affinity parameters. We also show

how the “Ideal Parent” method enables us to improve initial guesses of regulation topology, as well

as reconstruct ab initio the regulatory network from those data sets.

ii

Contents

1 Introduction 1

1.1 The Biology of Gene Regulation . 2

1.2 Experimental Methods . 3

1.2.1 cDNA Microarrays . 4

1.2.2 Reporter Plasmid Assays . 5

1.2.3 Sources of Noise . 6

1.3 Previous Analysis Approaches . 6

1.4 Our Approach . 8

1.5 Outline . 9

2 Bayesian Networks 11

2.1 Model Definition . 11

2.1.1 Equivalence Classes . 14

2.2 Representing Dependencies: the CPD . 15

2.2.1 Discrete Variables: multinomial CPDs . 16

2.2.2 Continuous Variables: Linear Gaussians and more 16

2.2.3 Hybrid Families . 18

2.3 Inference . 18

2.4 Learning Bayesian Networks . 19

2.4.1 Parameter Learning . 20

2.4.2 Learning Structure . 25

2.4.3 Scoring a Structure . 25

2.4.4 Search Algorithms . 28

2.5 Assigning Causal Interpretations . 29

2.6 Modeling Time: Dynamic Bayesian Networks . 31

3 Gaussian Process Networks 34

3.1 Background . 34

3.1.1 Why do we need non-parametric CPDs? 35

3.2 Gaussian Process priors . 37

iii

3.2.1 Prediction . 38

3.2.2 Covariance Functions . 39

3.3 Learning Networks with Gaussian Process priors 40

3.4 Experimental Evaluation . 41

3.4.1 Real life data . 45

3.5 Discussion . 47

4 Structure Learning Methods for Bayesian Networks 49

4.1 Learning from large domains: The “Sparse Candidate” Algorithm 50

4.1.1 The “Sparse Candidate” Algorithm . 51

4.1.2 Choosing Candidate Sets . 53

4.1.3 Learning with Small Candidate Sets . 57

4.1.4 Experimental Evaluation . 63

4.1.5 Discussion . 66

4.2 Learning in Continuous Variable Networks: The “Ideal Parent” Method 67

4.2.1 The “Ideal Parent” Concept . 68

4.2.2 Ideal Parents in Search . 73

4.2.3 Non-linear CPDs . 77

4.2.4 Other Noise Models . 80

4.2.5 Experimental Evaluation . 85

4.2.6 Discussion . 89

4.3 Discussion: Comparing the Two Methods . 90

5 Discrete and Linear Modeling of Regulatory Networks 92

5.1 Analyzing Expression Data . 93

5.1.1 Representing Partial Models . 94

5.1.2 Estimating Statistical Confidence in Features 95

5.1.3 Local Representations and Learning Algorithms 96

5.2 Application to Cell Cycle Expression Patterns . 98

5.2.1 Robustness Analysis . 98

5.2.2 Biological Analysis . 102

5.3 Discussion and Future Work . 106

6 Realistic Models of Regulatory Networks 108

6.1 Transcriptional Regulation Model . 109

6.1.1 Modeling Binding/Disassociation Events with state equations 111

6.1.2 Computing the Equilibrium Distribution of Promoter States 112

6.1.3 A Generic Regulation Function . 114

6.2 Temporal Regulation Modeling using Dynamic Bayesian Networks 115

6.2.1 Parameter Estimation . 117

iv

6.2.2 Structure Learning . 118

6.2.3 Transcription Rates . 119

6.3 Results on Small-Scale Systems . 120

6.3.1 Parameter Learning and Hidden Regulator Recovery 121

6.3.2 Identifying an Additional Regulator . 121

6.3.3 Example I: Test Data Prediction in E. Coli SOS System 122

6.3.4 Example II: Yox1-Mcm1 Two Regulator System 123

6.4 Modeling Larger Systems: A Non-Linear Dimensionality Reduction 123

6.4.1 Example III: yeast cell cycle system . 125

6.5 Discussion . 128

7 Discussion 131

7.1 Summary . 131

7.2 Related Work . 132

7.3 Future Directions . 134

7.3.1 Closing the Loop . 135

7.3.2 Incorporating Different Data Sources . 135

7.3.3 Putting Things into Use . 136

Bibliography 137

v

vi

Chapter 1

Introduction

The living cell can be viewed as a complex system of interacting networks. These networks can

be roughly divided to three types. Signal transduction networks can be thought of as the cell’s

input/output interfaces to the outside world. Metabolic networks take care of matter and energy.

Regulatory networks are the core brain, or master plan, controlling and operating all the functions

of the cell. The regulation of genetic expression lies at the heart of biological variety, accounting

for differences between cell types (e.g., blood, muscle, neural) in multi-cell organisms, as well

as different cell states and processes (e.g., differentiation, mating, replication, sugar metabolism) in

organisms of all levels. Moreover, it drives almost all dynamic processes occurring in the cell. In this

dissertation we try to gain better understanding of cellular networks, in particular gene regulatory

networks, by analyzing experimental data.

The genomic era brought massive amounts of data and new knowledge, and also opened the path

to exploring many questions which were not accessible up to now. The accumulating sequencing

projects, along with progress in genome annotation, are clearing up on a fundamental question for

many organisms: what is the cell’s working gene set? This set can be thought of as the set of building

blocks and working tools available for manufacturing in each cell. These blocks and tools must be

produced at the right times and in the right quantities for the cell to carry its essential processes.

Once this set is determined, we can turn to the next level of questions, such as:

• What is the function (or functions) of the proteins coded by each gene?

• In what processes or structures does it participate?

• Under which circumstances is this gene activated?

• What mechanisms regulate its expression level and how?

On a larger scale, we can ask questions on the networks involving the cell’s genes: What is the

structure of those networks? What are the parameters governing the interactions in them? What

dynamics do these networks follow?

New experimental methods that have emerged in the past few years have made the exploration

of these questions possible. Most notably, methods for the parallel measurement of the expression of

1

2 CHAPTER 1. INTRODUCTION

thousands of genes now supply snapshots of the whole cell transcriptome under specific conditions,

or at a specific stage of development (DeRisi et al., 1997; Lockhart et al., 1996; Wen et al., 1998).

A derived methodology can also detect all the locations in the DNA to which a given transcription

factor binds. Data from these two types of experiments allows us to try and reconstruct regulatory

networks, even without any prior knowledge.

Of course, extracting this knowledge is not straightforward. First, we need a language and

methodology for turning this wealth of data into useful models of regulatory networks. Second,

we must overcome difficulties such as measurement errors, stochastic biological behaviour, partial

observations, a limited number of experiments and a large number of modeled entities (i.e. genes).

We now give a brief description of the biology behind genetic regulation, followed by some of

the experimental and analysis methods used to decipher them.

1.1 The Biology of Gene Regulation

Living cells comprise the lowest living organisms (such as bacteria and yeast), and are the building

blocks of higher organisms. Each cell is composed of a lipid membrane sac, containing many diverse

molecules which execute the cell’s functions and constitute its structure. The majority of those

molecules are proteins, and the main difference between cells of the same organism performing

different functions is in their protein content, or proteome. How is this variety achieved?

According to the central dogma of molecular biology, each cell of a given species contains

the same blueprint for manufacturing proteins. This blueprint comes in the form of long DNA

molecules, organized in one or more chromosomes, and is replicated each time a cell divides. There

are two main steps in the production of proteins: First, RNA molecules are transcribed from a region

on the DNA molecule called a gene, which encodes the protein. Second, these RNA molecules

are processed, exported out of the nucleus (in eukaryotic organisms), and are then translated into

proteins. This flow of information is depicted in Figure 1.1. The quantity of protein molecules, as

well as their activity state, are both subject to regulation occurring at different stages of this process.

The differences in regulation between different genes, and under different conditions creates the

variety and dynamics in the cell. Transcription initiation is mostly regulated by transcription factors.

These factors are proteins themselves, which bind to specific binding sites on the DNA region

upstream of the regulated gene (called the gene’s promoter). Some of these factors act as activators,

while others act as repressors of transcription. For many genes, the relevant transcription factors

display combinatorial effects. For example, the combination of two activators might be needed to

initiate transcription. A third factor, if bound, might repress this activation. That same factor might

act as an activator for different genes.

Other modes of regulation include the control of the DNA structure. For a gene to be transcribed,

the surrounding DNA should be accessible to the transcription machinery. The dynamic changing

of this structure (called chromatin remodeling), plays an important role, though less understood,

of transcription regulation. Other regulation mechanisms include the active degradation of mRNA

1.2. EXPERIMENTAL METHODS 3

Figure 1.1: The central dogma of molecular biology. Information flows from DNA to RNA
by a transcription process, and from RNA to protein by translation. (Image taken from
http://bass.bio.uci.edu/ hudel/bs99a/lecture20/central2.gif)

or protein products. The completed protein may be subject to further regulation, applied to its

localization in the cell, and its modification through addition or removal of chemical groups.

If we take into account that most of the machinery responsible for specific regulation is com-

posed of proteins, and that all proteins are themselves subject to such processes of regulation, the

emerging picture is of a complex network of regulation interactions, governing the cell state and

dynamics.

1.2 Experimental Methods

To study the mechanisms and structure of regulation, we need experimental methods to measure

the products of the regulation path at different stages. Specifically, we want to measure the protein

and/or mRNA molecule quantities of specific genes. These quantities are referred to as the gene’s

protein or mRNA expression levels, and the whole process of regulation is generally called gene

expression regulation. Up to a few years ago, experimentalists who wished to examine some of

these regulation processes could only measure the expression levels of few individual genes by

one of several methods. The biggest breakthrough of recent years was the introduction of methods

4 CHAPTER 1. INTRODUCTION

controlsample

mix

DNA plasmid

GFP

operon X

(a) cDNA microarray method (b) Reporter plasmid method

Figure 1.2: mRNA expression measurement methods. (a) cDNA microarray method. Equal
amounts of sample (tagged red) and control (tagged green) extracts are poured onto the chip. The
ratio of green to red in each probe indicates how much that gene is over or under-expressed. (b)
Reporter plasmid method. Each well holds a different E.Coli strain, containing a plasmid with a
reporter GFP gene. In each strain the GFP is preceded by a promoter of a different operon. The rate
of GFP production is indicative of the promoter activity, and therefore the transcription rate.

which can measure such expression levels in parallel, for many hundreds and even thousands of

genes. The usage of these methods has seen an exponential growth since their introduction.

We now briefly describe two approaches for measuring mRNA expression levels. Data sets from

these methods are the main data source used in this thesis. We note that methods for measuring

protein levels in parallel have also been developed (seeHaynes and Yates (2000) for a review), but

the availability of large scale data sets from these methods is much more limited.

1.2.1 cDNA Microarrays

In recent years, technical breakthroughs in spotting hybridization probes and advances in genome

sequencing efforts lead to development of DNA microarrays (DeRisi et al., 1997; Lockhart et al.,

1996). These consist of many species of probes, either oligonucleotides or cDNA, that are immobi-

lized in a predefined organization to a solid phase.

The basis of these methods is the phenomena of hybridization: a single strand RNA (or DNA)

molecule will hybridize under the right conditions to a molecule containing the reverse comple-

ment sequence. Each probe, therefore, contains many copies of the reverse complement of one

or more segments of a specific gene. The extracted mRNA from the studied sample is reverse-

transcribed into coding DNA (cDNA) molecules, which are then poured onto the microarray. The

cDNA molecules of each gene then hybridize to the corresponding probe. The hope is that the

1.2. EXPERIMENTAL METHODS 5

amount of hybridized molecules in the probe will be proportional to their amount in the total sam-

ple. By labeling the sample’s cDNA molecules prior to hybridization, usually by attachment of

phosphorous tags, one can then estimate the amount of hybridized molecules in each probe by mea-

suring the emitted light intensity.

Microarrays come in two main flavors: cDNA microarrays and oligonucleotide chips. In cDNA

microarrays, each probe consists of cDNA molecules a few hundred base pair long, taken from

cDNA libraries. The advantage of this method is that the probed genes do not even have to be

sequenced to be measured on the array. The common use of cDNA microarrays is for measurement

of competitive hybridization: the extract from the sample of interest is labeled with red fluorescent

tags. It is then mixed with an equal amount of extract from a reference condition which has been

labeled with green tags. The mixture is then applied to the microarray, and for each gene the

corresponding cDNA copies from the two populations compete on hybridization onto the probe.

The ratio between red (sample) and green (control) signals then quantifies how much that gene is

over or under-expressed in the sample compared to the control (Figure 1.2(a)). Using this ratio has

the advantage of filtering out noise factors with similar effects on both populations.

In oligonucleotide chips (Lockhart et al., 1996) for each gene there are multiple probes com-

posed of short oligonucleotides (usually 25 base pair long), half of which representing exact seg-

ments from the measured gene, and the other half representing the same segments with a single mu-

tation. Processing this combination of probes yields a more sensitive estimate of the gene’s mRNA

level, controlling for different hybridization efficiencies and other sources of noise. Oligonucleotide

chips are typically used with a single fluorescently tagged sample.

Early microarray experiments examined few samples, and mainly focused on differential display

across tissues or conditions of interest. The design of recent experiments focuses on performing a

larger number of microarray assays ranging in size from a dozen to a few hundreds of samples.

Typical experiments may track the development of a phenomenon through a temporal sequences

of samples, examine multiple samples of similar conditions (e.g., many samples of different tumor

biopsies) and/or examine multiple samples at varying conditions (e.g. gene knock-outs and varying

cultures). In such experiments, the measured expression levels of a given gene across the different

assays is termed the expression profile of that gene.

1.2.2 Reporter Plasmid Assays

Recently, Kalir et al. (2001), introduced an experimental method that provides detailed transcription

rate information. The method measures the promoter activity of different E. Coli operons by moni-

toring green fluorescent protein (GFP) level in different E. Coli strains. In each strain, the GFP gene

is implanted in a reporter plasmid, preceded by a promoter sequence of the operon of interest. GFP

level is therefore indicative of the total RNA transcribed from that operon (given that GFP degra-

dation rate is virtually zero in E. Coli). Since the colonies go through an exponential growth stage

during the experiment, it is necessary to estimate the total number of cells at each measurement.

This is done by measuring the optical density (OD) of the culture, which is directly proportional to

6 CHAPTER 1. INTRODUCTION

the number of cells. The experiment design is such that the same protocol is executed in parallel to

several dozen such E. Coli. strains, placed in separate wells (Figure 1.2(b)). In each well, the exper-

iment records the GFP and OD level every 2 or 3 minutes, and the number of such measurements is

essentially unlimited. A gene’s transcription rate can therefore be estimated by the derivative of the

GFP level divided by the OD level measured in the corresponding well.

The reporter plasmid method offers several advantages over the microarray methods. First, the

measurements are done in vivo. Second, since each measurement only involves a visual scan, rather

than a brand new microarray, it enables sampling of high frequency time series of several hundred

samples at a very low cost. The limitation of this method is in it’s scale, which is somewhat smaller.

Current experiments measure around a 100 gene probes simultaneously. This enforces experimental

design where the measured genes have to be carefully pre-selected prior to measurements.

1.2.3 Sources of Noise

The measurement of mRNA transcript levels is subject to many different types of noise, both from

biological and from technical sources. First, the process of gene regulation is stochastic in nature,

with every stage along its path subject to variability. The mRNA transcription level of a gene is a

result of a sum of stochastic events, such as DNA binding, transcription initiation and elongation,

and eventually also degradation (McAdams and Arkin, 1997). The higher the transcription rate, the

more events are involved, resulting in a higher variance. This suggests that most biological sources

of noise are multiplicative in nature.

On the technical side there are many sources of noise in the methods we reviewed. The effi-

ciency of the hybridization process differs between probes, as well as its dependence on temperature.

Cross-hybridization may occur between homologous genes. The amount of sample that reaches

each probe has some variability. The spot size and density depends on surface and solution proper-

ties, which vary between probes. Uneven surface can also lead to different background intensities,

as some of the tagged molecules stick to that surface. Some of these sources of noise do not depend

on the gene’s mRNA quantity in the sample, and therefore contribute additive components to the

experiment noise. In general, in cDNA microarray experiments some of the noise can be reduced

by using the expression ratio signal. In oligonucleotide chip experiments many of these sources of

noise are eliminated by proper signal normalization algorithms (Irizarry et al., 2003; Li and Wong,

2001) which take into account both the different probes per gene and external control probes present

on the chip.

1.3 Previous Analysis Approaches

We now briefly review previous approaches used for analyzing gene expression data. In the final

chapter of this thesis we get back to these methods and discuss their relation to our work. Most

of the early analysis tools for expression data sets were based on clustering algorithms. These

1.3. PREVIOUS ANALYSIS APPROACHES 7

approaches attempt to locate groups of genes that have similar expression patterns over a set of

experiments (Alon et al., 1999; Ben-Dor et al., 1999; Eisen et al., 1998b; Michaels and et al., 1998;

Spellman et al., 1998). The genes in each group are then postulated to have similar mechanisms

of regulation, and are therefore assumed to be functionally related. Oftentimes, a sequence mo-

tif finding procedure is applied to the promoter regions of the genes in each cluster, in order to

find putative binding sites of the cluster’s common regulators (Zhang, 1999). Different clustering

approaches differ by the similarity measure employed (for example, linear correlation) and the clus-

tering algorithms (for example, hierarchical clustering). Alternatively, clustering and classification

algorithms have also been applied to the experiments (Alizadeh et al., 2000; Ben-Dor et al., 2000;

Bhattacharjee et al., 2001). Besides classifying disease types (which can be useful for diagnosis),

this approach can also reveal which genes are relevant to which biological conditions, an important

step towards identification of drug targets.

A more ambitious goal for analysis is revealing the structure of the transcriptional regulation

process. A number of models have been proposed, along with methods for learning them from data.

Perhaps the simplest is the Boolean networks model (Kauffmann, 1993; Somogyi et al., 1996). In

this model, each gene is modeled as a boolean entity, which can be in one of two states: on or off.

The dynamics are modeled over a discrete series of time points. The state of each gene is determined

by a boolean function of some of the other genes at the previous time step. Different algorithms have

been proposed for inferring the network structure of such models from observations (Akutsu et al.,

1998; Liang et al., 1998), typically by employing information-theoretic considerations. Other de-

terministic approaches model the expression of a gene as a linear (D’Haeseleer et al., 1999) or

sigmoid (Mjolsness et al., 1991; Weaver et al., 1999) function of its regulators, either directly or as

a solution to a set of differential equations (Chen et al., 1999b). In these approaches every gene

is apriori assumed to depend on all other genes, and the connection strengths are learned through

optimization, thus substituting structure learning with parameter learning.

The network inference methods we describe here are model based: They are all based on some

simplified description, or a model, of the biological processes that could have generated the observed

data. This is in contrast to most clustering approaches, which are procedural in nature: they specify

a procedure, or a sequence of procedures, to be applied to the input data, without basing it on a

specific model. Why do we need a model? After all, when we are interested in a specific question

(like which genes are functionally related), a procedure based on insightful analysis of the problem

can do the work pretty well. This holds for experimental procedures as well. What is the advantage

of formulating a description of our domain of interest?

First, a model has an intuitive appeal in that its components correspond to real entities in our

domain. We can therefore use it to get new insights into the nature of the domain, even if they

were not part of the original motivation for building it. For example, we can analyze the in-degree

distribution of nodes in a regulation network model, and learn something about the number of

regulators per gene. Second, we can use the model to generate predictions, by simulation or analysis.

For example, we can ask what would be the outcome of turning off a certain gene. Finally, the

8 CHAPTER 1. INTRODUCTION

natural interpretation of a model allows us to use it modularly, for example by adding or removing

genes into a network model.

A common feature to the models described above is their determinism: Once the structure and

parameters of a model are learned, setting it to an initial state will determine the exact dynamics of

the system, including its steady state (if one exists). As we discussed in the previous section, the

biological processes of regulation and the measurement methods employed contain many stochastic

components, noise sources and hidden quantities. This might explain why the success of these

deterministic methods in learning from real data sets has been limited.

1.4 Our Approach

Our aim in this thesis is to learn about gene regulation networks from experimental data. To ap-

proach this challenging task, we adopt a probabilistic model based approach. Given a data set of

measurements of any kind, we try to come up with a probabilistic model describing how this data

was generated. Such a model tries to account for both the biological processes that generated the

observed phenomena (for example, certain amounts of molecules of a given kind at a given time),

and the processes involved in measuring these phenomena (such as assays which measure molecule

quantities). Both types of processes involve stochastic events (and therefore are not deterministic,

nor exactly replicable). Moreover, some of the stages and quantities in those processes are not ob-

served. For some the design details are not known: how they are connected to the other components

in the system. The modeling language we use, therefore, has to account for stochasticity at all levels,

to allow the use of unobserved entities, and to be able to search for the “correct” design diagram.

We choose to base our modeling language on Bayesian networks(Pearl, 1988). These networks

are graphical representations of joint probability distributions over many random variables, captur-

ing properties of conditional independence between these variables. Such models are attractive for

their ability to describe complex stochastic processes, and since they provide clear methodologies

for model learning from (noisy) observations. Bayesian networks allow different representations for

the local regulatory interactions between the modeled entities, and we explore here some possible

representations. Also, their formalism allows to model hidden, or unobserved entities. We will use

this capability when we develop a realistic model of regulation.

We learn our models (both parameters and structure) automatically from data, trying to maxi-

mize the probability of the model given the data. Though there are well known methods for learning

such models, we have to face specific difficulties related to our domain, including a small number of

samples, a large number of variables, hidden variables at several levels and non-standard interaction

and noise forms. To this end we develop two algorithms for speeding up model structure search,

to overcome both the size of the domain and the cost of parameter computations in some of the

models. We also develop two specific representation schemes, one of them non-parametric and the

other a non-linear interaction model based on first principles of the biological processes.

The application of Bayesian network methods to our task requires careful definition of the model

1.5. OUTLINE 9

semantics, the variables used and the assumptions at the background. We present two different

approaches for learning regulation networks. In the first one we show how specific network features

can be assessed by learning ensembles of models, using a simplified interaction model. In the

second one we model explicitly the hidden variables in the regulation process, and employ a realistic

interaction model, resulting in quantitative as well as qualitative predictions. Both methods are

tested on data sets from different organisms, demonstrating their effectiveness.

1.5 Outline

The outline of this thesis is as follows. In Chapter 2 we review Bayesian networks, which form the

basis to all our models. After definitions are given, we describe different possibilities for modeling

dependencies in these networks. We then review methods for learning these models, both structure

and parameters, from observational data. We focus on features of the Bayesian network model and

on model variants which will be useful later on.

In Chapter 3 we introduce a novel representation scheme for Bayesian networks based on Gaus-

sian process priors. These priors are semi-parametric in nature and can learn almost arbitrary noisy

functional relations. We develop the Bayesian score of Gaussian Process Networks and describe

how to learn them from data. We present empirical results on artificial data as well as on real-life

domains with non-linear dependencies.

In Chapter 4 we introduce two novel methods for structure learning, which address specific dif-

ficulties: One for handling very large domains, and one for learning continuous variable networks

with non-linear interactions as well as handling new hidden variables. The Sparse Candidate al-

gorithm achieves faster learning by restricting the search space. It iteratively restricts the parents

of each variable to belong to a small subset of candidates, and then searches for a network that

satisfies these constraints. We evaluate this algorithm both on synthetic and real-life data, and show

that it is significantly faster than alternative search procedures without loss of quality in the learned

structures. The Ideal Parent method is a general method for significantly speeding the structure

search for continuous variable networks with common parametric distributions. Importantly, this

method facilitates the addition of new hidden variables into the network structure efficiently. We

demonstrate the method on several data sets, both for learning structure on fully observable data,

and for introducing new hidden variables during structure search.

In Chapter 5 we give a first application of Bayesian networks for modeling gene regulatory

networks. We start by showing how Bayesian networks can describe interactions between genes.

We then describe a method for recovering gene interactions from microarray data using tools for

learning Bayesian networks and for statistically validating their features. Finally, we demonstrate

this method on the S. Cerevisiae cell-cycle measurements ofSpellman et al. (1998).

In Chapter 6 we discuss some of the limitations of the models presented inChapter 5. We then

describe a more realistic modeling approach. Unlike previous works, here we employ quantita-

tive transcription rates, and simultaneously estimate both the kinetic parameters that govern these

10 CHAPTER 1. INTRODUCTION

rates, and the activity levels of unobserved regulators that control them. We apply our approach

to expression data sets from yeast and E. Coli and show that we can learn the unknown regulator

activity profiles, as well as the binding affinity parameters. Finally we show how the “Ideal Parent”

method enables us to improve initial guesses of regulation topology, as well as reconstruct ab initio

the regulatory network from those data sets.

In Chapter 7 we give concluding remarks, discuss recent related work, and describe some future

challenges which come up from missing aspects in our framework.

Chapter 2

Bayesian Networks

In the introduction we hinted at some of the qualities we require from a modeling language to be

suitable for modeling gene regulatory networks from experimental data. This language should be

able to account for stochasticity, both at the biological process level and at the measurement level.

It must be able to model unobserved entities, since many of the biological processes and molecules

involved in regulation are not measured. And finally, it should be able to search for the “correct”

design diagram, since our knowledge of the regulation wiring diagram is at best partial.

In this chapter we review Bayesian networks, our main modeling tool. As we show in the next

chapters, it will form the basis for our models of gene regulation networks. We show how within the

Bayesian network framework we can answer such questions as: What is the most likely structure

of a regulation network, given a set of observations and possibly some prior knowledge? Which

features of this structure are we more confident in? Given the structure of a network, can we predict

the effect of specific expression values in some of the genes on the expression of some other genes?

Bayesian networks are a language for representing joint probability distributions of many ran-

dom variables. They are particularly effective in domains where the interactions between variables

are fairly local: each variable directly depends on a small set of other variables. Bayesian networks

have been applied extensively for modeling complex domains in different fields (see, for example

Heckerman et al., 1995b). This success is due both to the flexibility of the models and to the natu-

ralness of incorporating expert (or prior) knowledge into the domain. Another important ingredient

for many applications is the ability to induce such models from data. This is particularly important

when our knowledge about the domain is partial, as is the case in the biological domains we are in-

terested in. We now give a brief overview of the formalism of Bayesian networks and the algorithms

for learning such models from observed data.

2.1 Model Definition

We begin with a number of notations. Consider a finite setX = {X1, . . . ,XN} of random variables.

Each variable Xi may be discrete, in which case it may take on any value xi from the domain

11

12 CHAPTER 2. BAYESIAN NETWORKS

Val(Xi), or it may be continuous, in which case it might take a value from some real interval. In

this thesis, we use capital letters, such as X,Y,Z , for variable names and lowercase letters x, y, z

to denote specific values taken by those variables. Sets of variables are denoted by boldface capital

letters X,Y,Z, and assignments of values to the variables in these sets are denoted by boldface

lowercase letters x,y, z.

A key notion in the language of Bayesian networks is that of conditional independence.

Definition 2.1.1: We say that X is conditionally independent of Y given Z if

P (X|Y,Z) = P (X|Z)

and we denote this statement by (X ⊥ Y | Z).

To demonstrate this notion, consider the case of a very rare genetic mutation in a family of three

generations: grandfather, father and son. Let’s say we are interested in the probability of the son

to carry this mutation. With no prior knowledge, this probability might be very small (say one in a

million). If we know the grandfather has the mutation, then this probability rises to 0.25. In other

words, the son’s genotype is dependent on his grandfather’s genotype. Now, assume we know the

father does not carry the mutation. In this case, the son’s chances of having the mutation are again

low, regardless of whether the grandfather carries the mutation or not. This is true because genetic

information can pass from the grandfather to the son only through the father. We therefore say the

son’s genotype is conditionally independent of his grandfather’s given his father’s genotype.

As we shall see, the Bayesian network model associates a set of random variables with a graph

representation. We therefore want to tie the notion of conditional independence with some graph-

ical representation. One intuitive way of doing this, is through a set of rules called local Markov

assumptions:

Definition 2.1.2: Let G be a Directed Acyclic Graph (DAG) whose vertices correspond to random

variables X = {X1, . . . ,XN}. Let UXi
denote the parents of Xi in G. We say that G encodes the

local Markov assumptions over X : Each variable Xi is independent of its non-descendants, given

its parents in G.

∀Xi (Xi ⊥ NonDescendantsXi | Ui)

and we denote the set of these assumptions as Markov(G)

To demonstrate the concept of local Markov assumptions, we extend our genetic mutations

example to a family of 5 persons. Figure 2.1 shows a graph for the random variables denoting

the mutation carrying for each of the 5 persons. In this particular example, the structure of this

network also represents the relevant part of the family tree (i.e. a parent in this network corresponds

to a parent in real life). According to the Markov assumptions, we can read several independence

relations from this network, which in this example make sense intuitively. For example, the three

2.1. MODEL DEFINITION 13

A

B

E

D

C

Figure 2.1: An example of a simple Bayesian network structure for the family genetics example.
This network structure implies several conditional independence statements:(A ⊥ E),(B ⊥ D |
A,E), (C ⊥ A,D,E | B), (D ⊥ B,C,E | A), and (E ⊥ A,D).

generation example we gave above corresponds to the assumption that C is independent of A (or

E) given B. As another example, (B ⊥ D | A,E) means that if we know the genotype of the

grandparents E and A, the genotype of B is independent of that of his brother D. This is intuitive:

B and D are brothers, and so their genotypes are dependent. But once we know the genotype of

their common parent A, none of them adds new information about the other.

Armed with the notion of reading independencies from a graph structure, we can now define

Bayesian networks. These include the structural graph component, but also a quantitative compo-

nent.

Definition 2.1.3: (Pearl, 1988) A Bayesian network is a representation of a joint probability distri-

bution, consisting of two components. The first component, G, is a directed acyclic graph (DAG)

whose vertices correspond to the random variables X = X1, . . . ,XN , and whose structure encodes

the Markov assumptions Markov(G) over X . The second component, θ, describes a conditional

probability distribution (CPD), P (Xi|UXi
), for each variable Xi in X .

The first component of the Bayesian network gives a set of independence conditions between the

variables. The second component gives a local probability model for each variable given its parents

in the network. These two components, G and θ, specify a unique distribution over X1, . . . ,XN ,

thanks to a result due to Pearl (1988):

Theorem 2.1.4: The independence assumptions derived from Markov(G) are satisfied by a distri-

bution P (X1, . . . ,XN) if and only if P can be written as

P (X1, . . . ,XN) =
n∏

i=1

P (Xi | Ui) (2.1)

where Ui are the parents nodes of the variable Xi in G.

This theorem is a direct consequence of the chain rule of probabilities and properties of conditional

independence. The product form in Eq. (2.1) is called the chain rule for Bayesian networks. This

14 CHAPTER 2. BAYESIAN NETWORKS

product form makes a Bayesian network representation of a joint distribution compact and econo-

mizes the number of parameters. For example, for our domain of 5 variables, if we do not use any

independence assumptions, the joint distribution can be decomposed as:

P (A,B,C,D,E) = P (A)P (B|A)P (C|A,B)P (D|A,B,C)P (E|A,B,C,D)

while when using the independence assumptions implied by the network inFigure 2.1 we can write

the same distribution as:

P (A,B,C,D,E) = P (A)P (E)P (B|A,E)P (C|B)P (D|A)

In the case where all the variables are binary, the former form requires 1 + 2 + 4 + 8 + 16 = 31
parameters, while the latter requires only 1 + 1 + 2 + 4 + 2 = 10 parameters. More generally, if G
is defined over N binary variables and its indegree (i.e., maximal number of parents) is bounded by

K, then instead of representing the joint distribution with 2N − 1 independent parameters we can

represent it with at most 2KN independent parameters.

2.1.1 Equivalence Classes

More than one graph can imply exactly the same set of independencies. For example, consider the

graphs X → Y and X ← Y . Both imply the set Ind(G) = ∅. This observation leads to a definition

of equivalence between networks:

Definition 2.1.5: Two graphs G1 and G2 are equivalent if Ind(G1) = Ind(G2). That is, both graphs

are alternative ways of describing the same set of independencies .

This notion of equivalence is crucial, since when we examine observations from a distribution,

we cannot distinguish between equivalent graphs, under the common scenario of learning networks.

This scenario is violated in two cases: First when we restrict the allowed networks to a certain

structural family, for example trees. Second, when we use a type of CPDs that prefers a certain

directionality in the connections. In both these cases we might have a preference of one equivalent

network over another. Pearl and Verma (1991) show that we can characterize equivalence classes

of graphs using a simple representation. In particular, these results establish that equivalent graphs

have the same underlying undirected graph but might disagree on the direction of some of the arcs.

We first define a useful sub-structure that plays a key role in the definition of graph equivalence.

Definition 2.1.6: (Pearl, 1988) A v-structure is an induced sub-graph of the form X → Y ← Z so

that no edge exists between X and Z .

The v-structure implies an interesting set of dependencies. Given the value of Y , two possibly

independent variables become dependent. A classic example of such a dependency can be seen in

our genetic mutation example (Figure 2.1). Consider the variable B and its parents E and A. The

2.2. REPRESENTING DEPENDENCIES: THE CPD 15

X

Y

Z

Z

Y

X
Z

Y

X

I

X

Y

Z

X

Y

Z

Z

Y

X

Z

Y

X
Z

Y

X Z

Y

X

I

Z

Y

X

II

Z

Y

X

II

X

Y

Z

Z

Y

X

I II

PDAG

X

Y

Z

X

Y

Z

Z

Y

X

I II

PDAG

Figure 2.2: The skeleton X − Y − Z is partitioned into two equivalence classes: I representing
{(X ⊥ Z | Y),¬(X ⊥ Z | ∅)} and II the v-structure representing {¬(X ⊥ Z | Y), (X ⊥ Z | ∅)}.
The right pane illustrates the corresponding PDAGs.

genotypes of E and A are independent apriori, since they have no blood relation. However, given

the genotype of their common child B, they become dependent: if we know B carries the mutation,

then we know one of the parents has to carry it as well. In this case if the father A does not carry the

mutation (A = 0), then the mother E must carry it. In other words, P (E = 1 | A = 0, B = 1) = 1.

On the other hand, if the father does carry the mutation, the chance that the mother also carries it

is small. In other words, P (E = 1 | A = 1, B = 1) = ε. The variables A and E are therefore

dependent given the value of their common child B. This type of dependency is exceptional among

those found in small network sub-structures.

We can now give precise conditions for two networks to be equivalent:

Theorem 2.1.7: (Pearl and Verma, 1991) Two Bayesian network structures are equivalent if and

only if they have the same underlying undirected graph (termed skeleton) and the same v-structures.

For example, the skeleton X − Y − Z can be partitioned into two equivalence classes. One

containing three graphs representing {(X ⊥ Z | Y),¬(X ⊥ Z | ∅)} and the v-structure repre-

senting {¬(X ⊥ Z | Y), (X ⊥ Z | ∅)}. Moreover, an equivalence class of network structures can

be uniquely represented by a partially directed graph (PDAG) P, where a directed edge X → Y

denotes that all members of the equivalence class contain the directed edge X → Y ; an undirected

edge X−Y denotes that some members of the class contain the directed edge X → Y , while others

contain the directed edge Y → X. Given a DAG G, the PDAG representation of its equivalence

class can be constructed efficiently (Chickering, 1995). Figure 2.2 shows the equivalence classes

and corresponding PDAG representations for a three variable skeleton.

2.2 Representing Dependencies: the CPD

We now focus on the quantitative part of the Bayesian network model, namely the parameteriza-

tion θ. This parameterization defines the conditional probability distributions (CPDs) P (Xi | Ui),

16 CHAPTER 2. BAYESIAN NETWORKS

which can be of any general form. We explore some of the common choices for CPD representa-

tions.

2.2.1 Discrete Variables: multinomial CPDs

When both the variable Xi and its parents Ui are discrete, the most general representation for a CPD

is a conditional probability table (CPT). Each row in these tables corresponds to a specific joint

assignment uXi
to UXi

, and specifies the probability distribution for Xi conditioned on uXi
. For

example, if UXi
consists of k binary valued variables, the table will specify 2k distributions. This

general representation can describe any discrete conditional distribution. This flexibility, however,

comes at a price: The number of free parameters is exponential in the number of parents.

As an example, consider the conditional distribution of B in our genetic domain given its parents

A and E. By basic genetics, if a parent carries the mutation, there is a 50% chance he would pass it

to the child. The conditional probability table will therefore look like:

a e P (b = 0) P (b = 1)

a = 0 e = 0 1.00 0.00

a = 0 e = 1 0.50 0.50

a = 1 e = 0 0.50 0.50

a = 1 e = 1 0.25 0.75

In this case, the number of free parameters needed to describe the CPD is 22 = 4. In some

cases, depending on the structure of dependence of the variable on its parents, we can represent the

CPD with other forms, using fewer parameters. For example, there are cases where observing one

of the parent variables makes the other parent irrelevant: A person’s probability of being involved

in an accident on a certain day depends on his driving history. However, given that he did not

drive that day, that history becomes irrelevant. This phenomena is captured by a Context Specific

Independence (CSI) representation for CPDs (Boutilier et al., 1996) that is in fact a limited form of

a decision tree. Another representation form is Default tables (Friedman and Goldszmidt, 1996).

These are suitable for cases where the probability distribution of Xi given Ui has some default

value excluding a small number of assignments ui.

2.2.2 Continuous Variables: Linear Gaussians and more

When a variable X and some or all of its parents are continuous (real) valued, no general parametric

form can capture all types of dependence. There are different representation choices, all of them

hide some modeling assumptions. We now briefly describe some representations for the case where

all the parent variables are continuous.

2.2. REPRESENTING DEPENDENCIES: THE CPD 17

(a) (b)

U

X

P(X|U)

U

X

P(X|U)

Figure 2.3: Two examples of conditional density representations for a variable X having a single
parent U. (a) A linear Gaussian CPD. (b) A sigmoid Gaussian CPD.

The simplest and best understood families of conditional densities are the linear Gaussian mod-

els. In this model we assume that

P (X | U) ∼ N(a0 +
∑

i

ai · Ui, σ2).

That is, X is normally distributed around a mean that depends linearly on the values of its parents.

The variance of this normal distribution is independent of the parents’ values. In this representation

there are |U| + 2 parameters: |U| + 1 linear coefficients and one variance parameter. This figure

is much smaller than the number of parameters for multinomial distributions, a property which is

common to many of the continuous variable CPDs.

Networks where all the variables have a linear Gaussian CPD are called Gaussian networks (Geiger and Heckerma

1994). In such networks the joint density of the whole domain is a multivariate Gaussian. Further-

more, there is a simple procedure for going between the Gaussian network representation (parame-

terized by {ai}, {σi}) and the multivariate Gaussian representations (parametrized by a mean vector

µ and a covariance matrix Σ). This makes several computations and tasks (like inference, discussed

in Section 2.3) particularly simple. The drawback of Gaussian networks is that their representation

is limited to modeling linear dependencies between variables. Thus, if the dependencies in the mod-

eled domain are significantly non-linear, even the best-fit parameters will not describe observations

from that domain very well, and the model’s predictions are likely to be poor.

In many real world domains the dependencies are known to be non-linear, and some functional

form of this non-linearity is assumed. For example, when modeling neural interactions, it is pop-

ular to represent their dependencies using a sigmoid function (Bishop, 1995). This form shows a

saturation effect, and therefore is plausible biologically. The simplest way to embed this type of

18 CHAPTER 2. BAYESIAN NETWORKS

dependency within a CPD is:

P (X | U) ∼ N(θ1
1

1 + e−
P

i ai Ui + θ0, σ
2) (2.2)

That is, X is normally distributed around a mean that depends in a sigmoid manner on the values

of its parents. Here, again, we can use a fixed variance parameter σ2 for all values of the parents.

Figure 2.3 demonstrates the sigmoid and linear Gaussian dependencies. In our domain of interest,

namely gene expression regulation, we also expect a non-linear form of dependencies. InChapter 6

we develop the functional form of this dependency from basic principles of the biological processes

involved, and use it to define CPDs.

There are cases where we do not know in advance what form of dependence to expect. A pos-

sible approach in this case is to use mixtures of Gaussians (Xu and Jordan, 1996). In this approach

we model the conditional distribution as a weighted mixture

P (X | U) =
∑

j

wjfj(X | U)

where each fj is a linear Gaussian distribution. In theory, such mixtures can approximate a wide

range of conditional distributions. In particular, they can represent multi-modal distributions, and

thus can represent relationships that are not purely functional. An alternative approach is to use a

non-parametric representation for the CPD. We discuss this approach at length inChapter 4.

2.2.3 Hybrid Families

When our network contains a mixture of discrete and continuous variables, we need to consider how

to represent a conditional distribution for a continuous variable where some of its parents are discrete

valued, and for a discrete variable with continuous parents. The latter case is usually disallowed, and

received very little theoretical treatment (see, e.g. (Koller et al., 1999; Lerner et al., 2001)). When

a continuous variable X has a combination of discrete parents UD and continuous parents UC, we

usually use a mixture of densities(Lauritzen and Wermuth, 1989): For each joint assignment uD

to UD, we represent the conditional density of X given UC using one of the simple CPD forms

we described. For example, if we use linear Gaussians, the resulting CPD is a mixture of linear

Gaussians. The number of components in this mixture is as the number of possible assignments to

UD, which grows exponentially with the number of discrete parents.

2.3 Inference

A fundamental task in any graphical model is that of inference. That is, we want to be able to

answer general queries of the form P (X | Z) where X,Z ⊂ X , as efficiently as possible. Assume

for example, that we want to evaluate the probability of the grandson C to carry the rare mutation

2.4. LEARNING BAYESIAN NETWORKS 19

in the model of Figure 2.1. By the complete probability formula

P (c) =
∑

a,b,d,e

P (a, b, c, d, e)

We can improve on this by utilizing the decomposition of the joint probability which results in

P (c) =
∑

b

P (c|b)
∑

a

P (a)
∑

e

P (e)P (b|e, a)
∑

d

P (d|a)

which is significantly more efficient: Each internal summation typically goes over the different

assignments of only few variables, eliminating one of them. The computed factors are then reused

in the next outer summation. While the complexity of the simple summation is O(2N) (in the

case of binary valued variables), this decomposed summation costs only O(N2C), where C is

roughly the number of possible assignments to the largest family in the network. The larger the

network is, the bigger the advantage of this procedure. Furthermore, the factors computed during

this summation can be reused in the computation of other queries. This procedure of variable

elimination (summation) is the basis of all exact inference methods.

There are methods that enable answering multiple queries at the cost of two variable elimination

computations. These include Bucket Elimination (Dechter, 1996) and Junction Trees (e.g., (Jensen et al.,

1990)), both of which widely used. However, these cannot overcome the fact that inference in

Bayesian networks is in general (excluding tree structured networks) NP-hard (Cooper, 1990).

Consequently, to cope with large scale networks, a range of approximate inference techniques

have been developed. These include sampling methods such as Gibbs sampling (seeNeal, 1993,

for an overview of sampling techniques), variational approximation methods such as the Mean

Field approximation (see Jordan et al., 1998, for an introduction) and Loopy Belief Propagation

(e.g., Murphy and Weiss, 1999, and references therein). While these methods have shown great

success in different scenarios, like exact inference, approximate inference is NP-hard (Dagum and Luby,

1997) and choosing the best method of inference for a particular task remains a challenge.

2.4 Learning Bayesian Networks

A major advantage of Bayesian network models is the ability to learn them from observed data.

This is important, since rarely are we in a situation where we know apriori both the structure and

the exact parameters of the network describing our domain of interest. In the more common case,

we might have some idea on the structure of dependencies, and maybe some idea on what local form

these dependencies take. In these cases we need a methodology to learn a model that best describes

the underlying distribution that generated the data.

The learning task deals with the following situation: We are given a training set of samples

D = {x[1], . . . ,x[M]} that are independently drawn from some unknown generating Bayesian

20 CHAPTER 2. BAYESIAN NETWORKS

network G∗ with an underlying distribution P∗. Our goal is to recover G∗.

We first deal with an easier task, where we assume the correct network structure G is given, and

we only need to estimate the best parameters. We then present some approaches for learning the

best structure given a data set.

2.4.1 Parameter Learning

Assume we are given a network structure G, and a set of data instances D for the variables rep-

resented in G. A natural question is what values for the network parameters θ best describe the

process that generated the data. Though the assumption of known structure is not a reasonable one

in our domain, the theory of parameter estimation is a basic building block for the structure learning

methods described in Section 2.4.2.

We first need to define a measure of quality for a set of parameters θ over a data set D. Without

using any prior assumptions on the parameters, an intuitive and widely used measure is the proba-

bility that a model equipped with θ assigns to D. This is called the likelihood function of θ given D,

which we denote here by L(θ : D):

L(θ : D) =
M∏

m=1

P (x[m] | θ)

In Maximum likelihood estimation we wish to choose parameters θ̂ that maximize the likelihood

of the data:

θ̂ = max
θ

L(θ : D) (2.3)

In many common cases a maximum likelihood estimator is both consistent and unbiased: it

tends to the true value of the parameter as the number of data samples grows larger, and its mean

value for finite sample sizes is also equal to the true parameter. There are cases, however, where

neither consistency nor unbiasedness hold (see for example (Minka, 1998)).

Eq. (2.3) could potentially be a hard expression to optimize, due to the high dimensionality

of θ and the large number of parameters that need to be concurrently optimized. One of the big

advantages of the Bayesian network representation is that this likelihood decomposes into local

likelihood functions. Not only does this simplify the calculation of the likelihood, more importantly

it renders finding its optimal parameters tractable. Each local likelihood can be optimized in an

independent manner, thus decomposing a complex global problem into smaller sub-problems.

2.4. LEARNING BAYESIAN NETWORKS 21

L(θ : D) =
M∏

m=1

P (x[m])

=
M∏

m=1

n∏
i=1

P (xi[m] | ui[m] : θ)

=
n∏

i=1

[
M∏

m=1

P (xi[m] | ui[m] : θ)

]

=
n∏

i=1

Li(θXi|ui
: D)

where Li(θXi|UXi
: D) =

∏M
m=1 P (xi[m] | ui[m] : θ) is the local likelihood function for Xi,

whose form depends on our choice of CPD representation.

The maximum likelihood estimate for the local likelihood function parameters can often be

computed in closed form. In the case of table CPDs this local likelihood can be further decomposed

into a simple tractable form. Suppose we have a variable X with its parents U, then we have

a parameter θx|u for each combination of x ∈ Val(X) and u ∈ Val(U). The idea behind the

decomposition is to group together all the instances in which X = x and U = u. We denote by

M [x,u] the number of these instances, and M [u] =
∑

x∈X M [u, x]. Then by rearranging the order

of the product we can write

Li(θX|U : D) =
∏

u∈Val(Ui)

∏
x∈Val(X)

θ
M [x,u]
x|u (2.4)

By optimizing the local likelihood functions under normalization constraints, we obtain the maximal

likelihood estimators (MLE) for the parameters of the multinomial table CPD:

θ̂x|u =
M [x,u]
M [u]

(2.5)

We call the counts M [x,u] and M [u] sufficient statistics. Given these counts, the actual data in-

stances x[1] . . . x[M] themselves are no longer needed. The sufficient statistics summarize all the

relevant information from the data that is needed in order to calculate the likelihood. For the case

of linear Gaussian CPDs, for example, the sufficient statistics required for computing the MLE

estimators are the first and second moments of the variables and its parents (that is, the observed

expectations E[X], E[Ui], E[X Ui] and E[Ui Uj]). each i and j).

22 CHAPTER 2. BAYESIAN NETWORKS

The Bayesian Approach

The maximum likelihood estimation approach for fitting parameters to data has a number of disad-

vantages. As most estimators in orthodox statistics, it is based on some intuition, and may or may

not possess some desired qualities, such as consistency and unbiasedness, depending on the CPD.

But the most obvious drawback of the ML estimator is its total reliance on the training data, without

assuming any prior knowledge. This drawback is most evident when the training data set is small.

Assume, for example we are trying to estimate the probability of a coin to fall heads up from three

coin tosses only. If in all tosses the coin falls tails up, our ML estimation of the coin’s parameter

would be P (headsup) = 0. This counters our prior belief that the coin is more or less balanced,

and that the three successive tosses represent a not-so-unlikely event. We say in such cases that the

ML estimator overfits the training data. This causes it to represent poorly the true distribution.

We therefore turn to the Bayesian approach, which formulates this concept of prior belief in a

principled manner. We first demonstrate this approach on a data set D of a single variable X. The

idea is that before observing any data, we have some initial distribution, P (θ), termed the prior,

which encodes our beliefs on the modeled process. This prior can encode a strong belief (as it

might do in the example of the coin toss), in which case P (θ) can be sharply peaked around certain

values. On the other hand, this prior can also encode ignorance, in cases where we do not have a

strong notion of the process. In those cases, the prior might be more flat.

After we observe some data D we can update our belief over θ, to reflect the combination of

our prior belief and the observations. The updated distribution, denoted P (θ | D), is called the

posterior distribution, and is obtained through Bayes rule:

P (θ | D) =
P (D | θ)P (θ)

P (D)
. (2.6)

The term P (D), termed the marginal likelihood, averages the probability of the data over all possible

parameter assignments:

P (D) =
∫

P (D | θ)P (θ)dθ (2.7)

In the Bayesian approach we do not give one estimate of the parameters. Rather than pretending

we know the true value of θ, we use our updated posterior belief over θ to weigh the different

possibilities. A new sample X[M + 1] will therefore have the following distribution:

P (X[M + 1] | D) =
∫

P (X[M + 1] | D, θ)P (θ | D)dθ (2.8)

We now turn to the issue of choosing a prior distribution P (θ). We would like this prior to

have certain qualities: first, its parametric form should allow a good description of our prior belief

over the parameters. Second, the choice of parameter values for this prior should reflect this prior

belief. And last, we would like the prior to have a convenient form for the computations we need

to perform, particularly the integrals in Eq. (2.7) and Eq. (2.8). The prior we choose will typically

2.4. LEARNING BAYESIAN NETWORKS 23

represent a compromise between those desired qualities. One well-known strategy is to choose a

prior with a suitable form so the posterior belongs to the same functional family as the prior. The

choice of the family depends on the form of the likelihood function, and so such a prior is said to be

conjugate to the likelihood parametric family. Having the same form for the posterior and the prior

has some advantages, as we discuss below.

For multinomial distributions the conjugate prior has the form of a Dirichlet distribution (DeGroot,

1970). This distribution is parameterized by a set of hyperparameters αx1|u, . . . αxK |u, one such

hyperparameter corresponding to each xj ∈ Val(X). The Dirichlet distribution is specified by:

P (θ) = Dirichlet(αx1|u, . . . αxK |u) ∝
∏
j

θ
α

xj |u−1

xj |u (2.9)

This form is very similar to the multinomial likelihood form inEq. (2.4), and so the posterior distri-

bution has the same form:

Proposition 2.4.1: (DeGroot, 1970) If P (θ) is Dirichlet(αx1 , . . . αxK) then the posterior P (θ | D)
is Dirichlet(αx1 +M [x1], . . . , αxK +M [xK]) where M [x] are the sufficient statistics derived from

D.

Thus, the hyper-parameters αxi play a similar role to the empirical counts and are often referred

to as imaginary counts and their sum M′ ≡ ∑x αx is called the effective sample size of the prior.

That is, using a Dirichlet prior with the above hyper-parameters is equivalent to having seen, prior

to D, M ′ other samples where in M′αxk of them are X = xk. This intuition is also reflected in the

resulting form for the likelihood of a new sample:

P (X[M + 1] | D) =
αx + M [x]∑
x′ αx′ + M [x′]

(2.10)

For Gaussian densities there also exist conjugate priors. For a general multivariate Gaussian

distribution, the conjugate prior for the mean vector µ and precision matrix W is called a normal-

Wishart prior (DeGroot, 1970, p. 178). The posterior also has a normal-Wishart form, and the

likelihood of a new sample has the form of a t distribution. Geiger and Heckerman (1994) give a

full account of these results.

We now turn back to full Bayesian networks. In the case of MLE we have seen that the likelihood

function decomposes according to the network structure. This allowed us to estimate the parameters

θXi|Ui
for each family independently in Eq. (2.3). For Bayesian estimation, this is not guaranteed a

priori. There can be priors that introduce dependencies between parameters of different variables,

or between different parameters of the same variable. When setting a prior over all the network’s

parameters, it is therefore useful to introduce some independence assumptions:

24 CHAPTER 2. BAYESIAN NETWORKS

Definition 2.4.2: (Spiegelhalter and Lauritzen, 1990) A parameter prior P (θ) for a Bayesian net-

work is said to satisfy global parameter independence if it decomposes into the following form

P (θ) =
n∏

i=1

P (θXi|Ui
)

For multinomial CPDs, where X has a distinct set of parameters for each instantiation of its parents

U, a further independence assumption is:

Definition 2.4.3: Let X be a variable with parents U and a multinomial CPD. We say the prior

P (θX|U) has local parameter independence if P (θX|U) =
∏

u P (θX|u)

We say that the prior P (θ) satisfies parameter independence if it satisfies both global and local

parameter independence. Another useful requirement is parameter modularity:

Definition 2.4.4: (Geiger and Heckerman, 1994) A parameter prior satisfies parameter modularity

if for any two network structures G and G′ in which UXi
G = UXi

G′ = U then

P (θX|U | G) = P (θX|U | G′) (2.11)

That is, the prior for a conditional distribution depends only on the choice of parents for Xi and is

independent of other aspects of the graph G.

Assuming parameter independence, we can assign an independent prior distribution θxi|ui
∼

Dirichlet(αx1
i |ui

, . . . αxK
i |ui

) for each variable and each instantiation of its parents in the network.

The estimation problem in this case decomposes to the different families in the network:

P (Xi[M + 1] = xi | Ui[M + 1] = ui,D) =
αxi|ui

+ M [xi,ui]∑
x′

i
αx′

i|ui
+ M [xi′ ,ui]

(2.12)

For the Gaussian network case, Geiger and Heckerman (1994) show that one can use a normal-

Wishart prior over the parameters of the multivariate Gaussian distribution on X implied by the

network. For any subset of variables Y ∈ X this prior implies a normal-Wishart prior on the

relevant part of the mean vector and the covariance matrix. The posterior therefore also has a

normal-Wishart form, and the new sample density for Y is a multivariate t distribution. By using

{Xi,Ui} or Ui in the role of Y, we can obtain the new sample local estimate for the Gaussian

network case:

P (Xi[M + 1] = xi | Ui[M + 1] = ui,D) =
P (Xi[M + 1] = xi,Ui[M + 1] = ui | DXi,Ui)

P (Ui[M + 1] = ui | DUi)

2.4. LEARNING BAYESIAN NETWORKS 25

where DY denotes the data set limited to the variables in Y. Geiger and Heckerman (1994) prove

the correctness of this equation using the parameter independence and modularity assumptions, and

show that the normal-Wishart prior is consistent with those assumptions (Heckerman and Geiger,

1995) .

2.4.2 Learning Structure

There are few cases where we can determine a full Bayesian network structure solely by expert

knowledge of the domain. This is typical for simple domains with not too many variables. The

more common case, especially in domains like the gene regulation domain, is that we either have no

idea about the structure or we have partial knowledge on some of its parts. In such cases we would

like to be able to learn the structure from data. In this section we describe the known approaches for

learning structure from data.

Constraint Based vs. Score Based Approaches

The theory of learning networks from data has been examined extensively over the last decade.

Somewhat generalizing, there are two approaches for finding structure. The first approach poses

learning as a constraint satisfaction problem. In that approach, we try to estimate properties of

conditional independence among the attributes in the data. Usually this is done using a statistical

hypothesis test, such as χ2-test. We then build a network that exhibits the observed dependencies

and independencies. Examples of this approach include Pearl and Verma (1991) and Spirtes et al.

(1993). The second approach poses learning as an optimization problem. We start by defining

a statistically motivated score that describes the fitness of each possible structure to the observed

data. The learner’s task is then to find a structure that maximizes the score. In general, this is an

NP-hard problem (Chickering, 1996), and thus we need to resort to heuristic methods. Although the

constraint satisfaction approach is efficient, it is sensitive to failures in independence tests. Thus,

the common opinion is that the optimization approach is a better tool for learning structure from

data.

In this thesis we take the score based approach to learning. We start by defining a structure

score. We then describe a search algorithm that attempts to find the highest scoring structure.

2.4.3 Scoring a Structure

The most principled approach for scoring a network structure is, again, the Bayesian approach.

As in the case of parameter estimation, we do not assume a single “correct” structure, but rather

state our prior beliefs on the structure using a prior distribution P (G) over the space of possible

network structures, and then update those beliefs using the data and Bayesian conditioning, to give

a posterior distribution P (G | D) over this space.

We start with the prior over structures, P (G). Several priors have been proposed, all of which

26 CHAPTER 2. BAYESIAN NETWORKS

are quite simple. Without going into detail, a key property of all these priors is that they satisfy

Structure modularity:

Definition 2.4.5: A prior P (G) satisfies Structure Modularity if it can be written in the form

P (G) ∝
∏

i

ρ(Xi, UXi
G);

That is, the prior decomposes into a product, with a term for each family in G. In other words

the choices of the families for the different nodes are independent a priori. The uniform prior, for

example, in which all structures have the same prior probability, satisfies this property in a trivial

manner.

We next need to specify a prior over parameters given the structure, P (θ | G). Once we define

these priors, we can examine the form of the posterior probability. Using Bayes rule, we have that

P (G | D) ∝ P (D | G)P (G).

The term P (D | G) is the marginal probability of the data given G and is defined as the integration

over all possible parameter values for G

P (D | G) =
∫

P (D | G, θ)P (θ | G)dθ (2.13)

Alternatively, we can define P (D | G) using the chain rule:

P (D | G) =
∏

i

P (x[i] | x[1], . . . ,x[i − 1],G)

where P (x[i] | x[1], . . . ,x[i − 1],G) is the probability of the i’th instance after observing the pre-

vious i− 1 instances. If the parameter prior we use satisfies parameter independence and parameter

modularity as defined in Section 2.4.1 one can show (see Heckerman et al., 1995a) that if D is

complete, then:

P (D | G) =
∏

i

P (xi[1], . . . , xi[M] | ui[1], . . . ,ui[M])

If, additionally, the prior P (G) satisfies structure modularity, we can also conclude that the

posterior probability P (G | D) decompose into families. Expressing this in log space, we obtain the

2.4. LEARNING BAYESIAN NETWORKS 27

Bayesian score for structure:

ScoreBayesian(G : D) (2.14)

= log P (G | D)

=
∑

i

[log ρ(Xi, UXi
G) + log P (xi[1], . . . , xi[M] | ui[1], . . . ,ui[M])] + Const.

This decomposition of the score to local terms is crucial for learning structure, as we show in the

next section. The terms in the sum are called the family scores. In case we are using a uniform

prior on the structure space, the ρ() terms only add a constant to the sum, and can be ignored.

For multinomial variables, Heckerman et al. (1995a) show that by using a Dirichlet prior over the

parameters, one can compute the family scores inEq. (2.14) in closed form:

FamScoreBDe(Xi,Ui : D) (2.15)

= log P (xi[1], . . . , xi[M] | ui[1], . . . ,ui[M])

= log

[∏
ui

Γ(αui
)

Γ(αui
+ M [ui])

∏
xi

Γ(αxi|ui
+ M [xi,ui])

Γ(αxi|ui
)

]

where Γ is the Gamma function, αui
=
∑

xi
αxi|ui

and M [ui] =
∑

xi
M [xi,ui]. The score is called

BDe for Bayesian Dirichlet equivalence score. The “equivalence” part is due to a strong property

that is satisfied by this score, called score equivalence: any two equivalent network structures will

obtain the same score on a given data set. This property might be desired during structure search, in

case we do not want to be biased towards certain structures in an equivalence class.

For linear Gaussian variables, Geiger and Heckerman (1994) develop a score with similar prop-

erties, called BGe (Bayesian Gaussian equivalence) score, by using the normal-Wishart parameter

prior. The family scores, in this case also have a closed form expression.

Besides the multinomial and the Gaussian cases, the marginal likelihood P (D | G) usually does

not have a closed form expression, even if it can be decomposed into separate family terms. In

these cases we usually use some approximation to the Bayesian score. There are a number of ap-

proximations (Akaike, 1974; Cheeseman and Stutz, 1995; Schwarz), all of them use the maximum

a-posteriori (MAP) or maximum likelihood (ML) parameters, and some complexity penalization

term. The most widely used of these is the Bayesian Information Criterion (BIC) score (Schwarz):

ScoreBIC(G : D) = log L(θ̂,G : D)− log M

2
Dim(θ̂) (2.16)

where θ̂ are the MAP parameters of G given D (or the maximum likelihood parameters, in case we

do not use a prior). This score can also be decomposed into local family scores:

ScoreBIC(G : D) =
∑

i

[�Xi(D : Ui, θ̂i)− log M

2
Dim(θ̂i)] (2.17)

28 CHAPTER 2. BAYESIAN NETWORKS

Input : D // training set
G0 // initial structure

Output : A final structure G

Gbest← G0

repeat
G← Gbest

foreach Add,Delete,Reverse edge in G do
G′← ApplyOperator(G)
if G′ is cyclic then continue
if Score(G′ : D) > Score(Gbest : D) then
Gbest← G′

end
end foreach

until Gbest == G
return Gbest

Algorithm 1: Greedy Hill-Climbing Structure Search for Bayesian Networks

where θ̂i are the MAP parameters for the CPD of Xi, and �Xi(D : Ui, θ̂i) is the log local likelihood

function of Xi given its parents Ui. The BIC score is closely related to the MDL (Minimum De-

scription Length) principle (Rissanen, 1989): it approximates the number of bits needed to describe

the data using the model. This follows a well known principle from learning theory, that models

which compress the data better, also have better generalization performance, or alternatively are

closer to the generating distribution. It can be shown that as the size of the data set grows to infinity,

the BIC score converges to the Bayesian score.

2.4.4 Search Algorithms

How do we use the Bayesian score we just defined? The Bayesian approach is to use the posterior

over all structures P (G | D) as our “solution”. This posterior can be used, for example, to estimate

certain features in the networks f(G) by computing their expected values over all networks:

E[f] =
∑
G

f(G)P (G | D)

A simple feature might be the existence of an edge between two variables. The expectation E[f]
in that case is the probability of a structure to have this edge given the data. Since the summation

over all possible structures is usually prohibitively expensive, some methods were suggested to

approximate these expectations (Attias, 1999; Friedman and Koller, 2003).

A more common approach, is to seek for the highest scoring structure. In the case of a Bayesian

score, this would be the Maximum a posteriori scoring structure, or it can be any one of the alterna-

tive scores, such as the BIC score. This problem is known to be NP-hard (Chickering, 1996). Thus,

2.5. ASSIGNING CAUSAL INTERPRETATIONS 29

we resort to a heuristic search. We define a search space where each state in this space is a network

structure. We define a set of operators that take us from one structure to another. This defines a

graph structure on the states: neighboring states are those which are one operation away. We then

start with some initial structure (usually the empty graph) and using the operators traverse this space

searching for high scoring structures.

The simplest operators are those which involve a change of a single edge at a time: Add, Remove

or Reverse an edge. The benefit of such simple operators is that they only affect the family score of

one or two variables. Thus, if our score decomposes into family scores, we only need to recompute

one or two terms. For instance, if we add an edge to the variable Xi, we only have to recalculate

Xi’s family score, as the other family scores remain unchanged. This significantly reduces the

computation time. Note we only consider operations that result in legal networks. That is acyclic

networks that satisfy any other constraints we specify (e.g. maximal indegree constraints).

Once we have evaluated the scores for all neighboring states, we need to decide which move to

make. The simplest choice is the greedy hill climbing approach. Here we simply make a move to

the highest scoring neighbor. We then continue until we reach a local maximum. Although this pro-

cedure does not necessarily find a global maximum, it often performs well in practice.Algorithm 1

describes the flow of greedy hill climbing search.

Some alternative heuristics to the greedy method try to overcome the problem of local maxima.

These include stochastic hill climbing, simulated annealing, TABU search and random restarts.

These techniques typically try to evade local maxima by allowing search steps which either decrease

the score, or that move to structures beyond the immediate neighbors in structure space.

2.5 Assigning Causal Interpretations

A Bayesian network is a model of dependencies between multiple measurements. However, in

many cases we are also interested in modeling the mechanisms that generated these dependencies.

Thus, we want to model the flow of causality in the modeled domain. For example, we would like

to draw conclusions such as “Gene A activates gene B”, rather than merely “The expression levels

of genes A and B are statistically dependent”.

A causal network is a model of such causal processes. It models not only the distribution of

the observations, but also the effects of interventions. If X causes Y , then manipulating the value

of X affects the value of Y . On the other hand, if Y is a cause of X, then manipulating X will

not affect Y . Thus, although X → Y and X ← Y are equivalent Bayesian networks, they are not

equivalent causal networks. While at first glance there seems to be no direct connection between

probability distributions and causality, causal interpretations for Bayesian Networks have been pro-

posed (Pearl, 2000; Pearl and Verma, 1991). A causal network is mathematically represented sim-

ilarly to a Bayesian network, a DAG where each node represents a random variable along with a

local probability model for each node. However, causal networks have a stricter interpretation of

the meaning of edges: the parents of a variable are its immediate causes.

30 CHAPTER 2. BAYESIAN NETWORKS

A causal network can be interpreted as a Bayesian network when we are willing to make the

Causal Markov Assumption: given the values of a variable’s immediate causes, it is independent

of its earlier causes. When the causal Markov assumption holds, the causal network satisfies the

Markov independencies of the corresponding Bayesian network. For example, this assumption is a

natural one in models of genetic pedigrees: once we know the genetic makeup of the individual’s

parents, the genetic makeup of her ancestors is not informative about her own genetic makeup.

The central issue is: When can we learn a causal network from observations? This issue received

a thorough treatment in the literature (Heckerman et al., 1999; Pearl and Verma, 1991; Spirtes et al.,

1993, 1999). We briefly review the relevant results for our needs here. For a more detailed treatment

of the topic we refer the reader to (Cooper and Glymour, 1999; Pearl, 2000).

To learn about causality we need to make several assumptions. The first one is a modeling

assumption: we assume that the (unknown) causal structure of the domain satisfies the Causal

Markov Assumption. Thus, we assume that causal networks can provide a reasonable model of

the domain. Some of the results in the literature require a stronger version of this assumption,

namely that causal networks can provide a perfect description of the domain (that is an independence

property holds in the domain if and only if it is implied by the model). The second assumption is

that there are no latent or hidden variables that effect several of the observable variables. We discuss

relaxations of this assumption below.

If we make these two assumptions, then we essentially assume that one of the possible DAGs

over the domain variables is the “true” causal network. However, as discussed above, from obser-

vations alone, we cannot distinguish between causal networks that specify the same independence

properties, i.e., belong to the same equivalence class (see section2.1.1). Thus, at best we can hope

to learn a PDAG description of the equivalence class that contains the true model.

Once we identify such a PDAG, we are still uncertain about the true causal structure in the

domain. However, we can draw some causal conclusions. For example, if there is a directed path

from X to Y in the PDAG, then X is a causal ancestor of Y in all the networks that could have

generated this PDAG including the “true” causal model. Thus, in this situation we can recover

some of the causal directions. Moreover, by using Theorem2.1.7, we can predict what aspects of a

proposed model would be detectable based on observations alone.

When data is sparse, we can not identify a unique PDAG as a model of the data. In such

a situation, we can use the posterior over PDAGs to represent posterior probabilities over causal

statements. In a sense the posterior probability of “X causes Y ” is the sum of the posterior of

all PDAGs in which this statement holds (See Heckerman et al. (1999) for more details on this

Bayesian approach). The situation is somewhat more complex when we have a combination of

observations and results of different interventions. From such data we might be able to distinguish

between equivalent structures. Cooper and Yoo (1999) show how to extend the Bayesian approach

of Heckerman et al. (1999) for learning from such mixed data.

A possible pitfall in learning causal structure is the presence of latent variables. In such a

situation the observations that X and Y depend on each other probabilistically might be explained

2.6. MODELING TIME: DYNAMIC BAYESIAN NETWORKS 31

by the existence of an unobserved common cause. When we consider only two variables we cannot

distinguish this hypothesis from the hypotheses “X causes Y ” or “Y causes X”. However, a more

careful analysis shows that one can characterize all networks with latent variables that can result in

the same set of independencies over the observed variables. Such equivalence classes of networks

can be represented by a structure called partial ancestral graph (PAGs) (Spirtes et al., 1999). As can

be expected, the set of causal conclusions we can make when we allow latent variables is smaller

than the set of causal conclusions when we do not allow them. Nonetheless, in many cases causal

relations can be recovered even in this case. The situation is more complicated when we do not have

enough data to identify a single PAG. As in the case of PDAGs, we might want to compute posterior

scores for PAGs. However, unlike PDAGs the question of scoring a PAG (which consists of many

models with different number of latent variables) remains an open question.

2.6 Modeling Time: Dynamic Bayesian Networks

So far we have assumed our data set is composed of independent samples from the generating

distribution. Formally, this means that the likelihood over the samples can be decomposed as:

P (D | G, θ) =
M∏

m=1

P (X[m] | G, θ)

When our samples come from a time series of observations, taken from the domain in some

intervals, this assumption no longer holds. Unless the process we are watching is totally memory-

less, an observation at time t carries some information on observation at adjacent times (both in the

future and in the past). For example, assume we want to model the concentrations of two enzymes,

A and B. Assume also that A catalyzes the production of B, and B catalyzes the degradation of

A. Such a type of interaction is termed a negative feedback loop, and is quite common in living

cells: it usually results in either oscillatory behavior or in a stabilizing effect, depending on the time

constants. Now, suppose we have a series of T observations, in some time intervals, of these two

enzymes, and we index those observations with t = 1, . . . , T . Clearly A[t] is not independent of

A[t− 1], since the concentrations have some persistence over time - they go up or down gradually.

Can we suggest a Bayesian network like model to describe this data?

First we note that if we know the enzymes’ concentrations at time t and the reaction parameters,

their concentrations at earlier times do not help us predict their value at t + 1. This is called the

Markov assumption: given the current observation X[t], the next observation X[t+1] is independent

of past observations, X[1], . . . ,X[t − 1]. (Or more simply: the future is independent of the past

given the present). This is a reasonable assumption in many domains. If the Markov assumption

32 CHAPTER 2. BAYESIAN NETWORKS

A

B

A

B

A

B

A

B

t t+1

A

B

A

B

t t+1

A

B

A

B

1 2

A

B

3

A

B

4

A

B

A

B

1 2

A

B

3

A

B

4

(a) Interaction diagram (b) 2-TBN representation (c) Unrolled network

Figure 2.4: A dynamic model for the two enzyme system. (a) The interaction diagram (b) A 2-TBN
representation of the dynamic Bayesian network model. (c) The unrolled network for 4 time slices.

holds, the data likelihood can be decomposed as:

P (X[1], . . . ,X[T]) = P (X[1])
T∏

t=2

P (X[t] | X[t− 1])

Using this formulation, we still have to specify M sets of probability distributions, where M might

be very large. We therefore usually make another simplifying assumption, that P (X[t] | X[t− 1])
does not depend on t. That is, the probabilistic model is invariant over time, or time invariant. In

the enzymes example, this means e.g. that A’s effect on B does not depend explicitly on time, but

rather on the concentrations themselves and the reaction parameters.

The Markov and time-invariance assumptions allow us to represent the probability distribution

over the whole time series in a compact way. We note we only need two sets of parameters: one set

to describe the initial distribution P (X[1]), and another set to describe P (X[t] | X[t − 1]). Each

of these can be decomposed, similar to regular Bayesian networks, according to the dependency

structure of the domain. The graphical representation of this model is consisted of two consecutive

time slices. This representation is called a 2-TBN (2 time-slice BN).Figure 2.4(a) shows the interac-

tion model for the two enzymes schematically. Figure 2.4(b) shows the 2-TBN representation of the

probabilistic model. Since the time invariance assumption implies that the inter-time slice CPDs are

correct for any t, this model defines a distribution over arbitrarily long sequences of time slices. For

each length of time series T , we just need to reproduce the 2-TBN template T − 1 times, and con-

catenate them, resulting in a legitimate Bayesian network. Figure 2.4(c) shows such an “unrolled”

network for 4 time slices. Such a graphical model is called a Dynamical Bayesian Network (DBN).

We note several properties of the DBN model. First, in our case both variables have persistence

edges between time slices. This reflects the tendency of many variables to persist over time with

high probability. Second, in our model all dependencies are between time slices. In a DBN there can

also be connections within a time slice. These represent interactions (or dependencies) which are

much faster than the inter-slice time interval, and are therefore modeled as instantaneous. Finally,

we note that our example interaction model contains a cycle. Unlike static Bayesian networks,

which do not allow cycles, the DBN model can capture cyclic dependencies by breaking the chain

of dependencies according to time. This is a big advantage in modeling biological domains, which

2.6. MODELING TIME: DYNAMIC BAYESIAN NETWORKS 33

often contain feedback loops.

Many popular dynamic models, such as hidden Markov models, or linear dynamical systems

(also called Kalman filters) are special cases of DBNs. As for representing dependencies, any form

of CPD we use in a BN can also be used in a DBN. Inference is essentially similar to the BN case,

as it is done on the unrolled network model. It usually requires approximations, unless the domain

is very small (Boyen and Koller, 1998; Doucet et al., 2000a; Murphy and Weiss, 2001). Parameter

and structure learning are typically done on the 2-TBN representation (Friedman et al., 1998), but

other than that are similar to what is done on static Bayesian networks.

Chapter 3

Gaussian Process Networks

3.1 Background

In the previous chapter we have introduced several options for representing dependencies in Bayesian

networks. As our motivation comes from modeling data from gene expression experiments, we must

ask ourselves: is any of these representations appropriate for our needs? What are the pros and cons

of using each one of them in this context?

One simple approach to model expression data would be to treat each gene as being either in an

“activated” or “suppressed” mode. This requires the discretization of the input data. Once the data

is discretized we can use multinomial CPDs to model the dependencies between genes. As we shall

see in Chapter 5, however, we loose much of the information in the data during the discretization

process. Thus, we seek methods that can directly represent and learn interactions among continuous

variables.

The best understood approach for modeling continuous distributions in Bayesian networks is

based on linear Gaussian conditional densities (seeSection 2.2.2). As we have shown, this form of

continuous Bayesian network can be learned efficiently using exact Bayesian derivations. Unfortu-

nately, the expressive power of Gaussian networks is limited. Formally, “pure” Gaussian networks

can only learn linear dependencies among the measured variables. This is a serious restriction when

learning in domains with non-linear interactions, or domains where the nature of the interactions is

unknown. A common way of avoiding this problem is to introduce hidden variables that represent

mixtures of Gaussians (e.g., Thiesson et al., 1998; Xu and Jordan, 1996).

Another problematic aspect of gene expression data is the large number of attributes (genes) that

are measured (i.e., thousands) and the relatively few samples (i.e., dozens). Thus , we seek methods

that are statistically robust and can detect dependencies among many possible alternatives.

In this chapter we address the problem of learning continuous networks by using Gaussian

Process priors. This class of priors is a flexible semi-parametric regression model. We call the

networks learned using this method Gaussian Process Networks. The resulting learning algorithm

is capable of learning a large range of dependencies from data.

34

3.1. BACKGROUND 35

This approach has several important properties. First, the Gaussian Process regression method is

inherently Bayesian. Thus, the integration of this form of regression into the Bayesian framework of

model selection is natural and fairly straightforward. This allows us to interpret the learning results

as posterior probabilities, and to assess the posterior probability of various networks structures

(e.g., using methods such as presented in Friedman and Koller, 2003). Second, the semi-parametric

nature of the Gaussian process prior allows to learn many continuous functional dependencies.

This is crucial for exploratory data analysis where there is little prior knowledge on the form of

interactions we may encounter in data. In addition, the Gaussian Process prior is biased to find

functional dependencies among the variables in the domain. Thus, it is a useful prior for domains

where we believe there is a direct causal dependency between attributes.

3.1.1 Why do we need non-parametric CPDs?

As we saw, common parametric forms for CPDs, such as linear Gaussian forms, impose constraints

on the nature of interactions we can model. Multinomial CPDs, on the other hand, do not assume a

specific form for the dependencies, but to use them we have to pay the price of discretizing the data.

An alternative approach, which tries to gain the benefits of both worlds, is modeling the depen-

dencies using non-parametric forms of CPDs. In this approach, the conditional density of a variable

Xi given its parents Ui is described using the instances of Xi and Ui in the data. In other words,

the density can be written as:

P (Xi | Ui) = f(Xi,Ui;x[1], . . . , x[M],ui[1], . . . ,ui[M], θ) (3.1)

where θ denote other parameters. The idea behind this description is, intuitively, assigning high

density near regions which are highly represented in the data and low density in regions which have

low representation. Typically, the additional parameters θ define how the density is smoothed (or

interpolated) between data points, as well as outside their regions.

An example of such a non-parametric conditional density was suggested byHofmann and Tresp

(1996). Their method is based on a the well known practice of density estimation using kernel func-

tions (Parzen, 1962; Rosenblatt, 1956). Roughly speaking, given training examples x[1], . . . ,x[M],
the kernel estimate for P (X) is

Pkernel(x) =
1
M

M∑
m=1

g

(
1
σ
||x− x[m]||2

)

where g() is a kernel function and σ is a “smoothing” parameter. A common choice is to take g

to be the density function of a normal distribution with zero mean and unit variance. Figure 3.1

demonstrates kernel densities for two variables, X and U . Hofmann and Tresp use such estimates

to find the conditional distribution by setting P (x | u) = Pkernel(x, u)/Pkernel(u).

Kernel methods are extremely flexible density estimators. As they are not committed to any

36 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

X

U

P(U)

Figure 3.1: An illustration of kernel densities for two variables, X and U . The bottom plot shows the
kernel density Pkernel(u) (y-axis) as a function of U (x-axis). The density (dashed red) is composed
of a sum of kernel functions centered around the data points (solid blue). The top plot shows the
kernel estimate of the joint density Pkernel(x, u).

parametric form, they can fit almost any density function. However, their performance depends

crucially on the smoothness parameter, σ. When σ is too large, the density is over-smoothed,

loosing much of the information in the samples. When σ is too small, the estimator overfits the

data, resulting in a spiked density. We thus need to tune this parameter to avoid both overfitting and

over-smoothing. This is usually done by cross-validation testing: Several partitions of the data set

are made, where in each partition one part of the data set is used for training, or learning the model

(in our case the density estimator), and the other part is used to test the performance of the model

(in our case, by computing the log likelihood the estimator assigns to the test samples). We can now

define the total log-likelihood obtained for all the test samples as an optimization objective, and

optimize σ using this objective. Hofmann and Tresp use a leave-one-out cross-validation procedure:

for a data set of size M they use M partitions, where in each partition M − 1 samples are used for

training and the remaining sample is used for testing.

In addition to parameter optimization, we need to find a way of comparing the score of dif-

ferent network structures in this non-parametric setting. Hofmann and Tresp suggest to do so by

comparing the cross-validated estimate of the logarithmic loss of each family. This is essentially

an estimate of the out-of-sample loss the family will incur on new data. To summarize, for each

family, Hofmann and Tresp’s procedure searches for the parameters that minimize the log-loss in

cross validation estimate, and then return this log-loss estimate as the score of the family.

3.2. GAUSSIAN PROCESS PRIORS 37

3.2 Gaussian Process priors

In recent years, there has been much interest in the use of Gaussian Process priors for regres-

sion (Williams and Rasmussen, 1996) as well as for classification (Gibbs and MacKay, 1997). These

priors possess some attractive features, and have a strong modeling power. For example, it can be

shown that predictors like feed-forward neural networks and radial-basis function networks con-

verge to Gaussian process predictors as the number of internal nodes goes to infinity (MacKay,

1998). The advantage of using Gaussian process predictors is that one can directly control prop-

erties of the learned functions (like periodicity, typical lengthscale and typical amplitude) directly

through the prior’s parameters, and that computations that involved complex parameter optimization

in the network predictors are replaced by simple matrix operations. We now review the basics of

Gaussian Processes, how they can be interpreted as priors and how they are used for regression.

Consider a set of variables U. We want to model a prior over finite samples from an vari-

able X which we believe to be a function of U. We can treat the value of X for each value u
as a random variable. Formally, a stochastic process over U is a function that assigns to each

u ∈ Val(U) a random variable X(u). Furthermore, for each finite set of coordinates u1:M ≡
{u[1], . . . ,u[M]} the process assigns a joint probability distribution, P (X1:M | u1:M ,Θ), where

X1:M ≡ {X[1], . . . ,X[M]} and X[m] ≡ X(u[m]). One type of commonly used stochastic pro-

cesses is discrete time processes. Here U takes discrete sequential values t = 1, 2, . . ., usually

referred to as time points. Examples of such processes are Bernoulli point processes and Markov

processes of any order (see, e.g., Durrett (1991) for formal definitions). The joint probability sup-

plied by the process can be used as a prior over finite samples from X.

A stochastic process is said to be a Gaussian process (GP) if for any finite sample u1:M , the

assigned joint probability P (X1:M | u1:M ,Θ) is a multivariate Gaussian distribution. We note that

the domain U does not have to be a discrete set. It can equally consist of, for example, points in

Euclidean space. Figure 3.2 illustrates the concept of a Gaussian Process.

To specify such a process, we need a way of describing the mean value of each variable X(u)
and the covariance matrix for each finite subset of values we choose. This is done, by specifying

two functions:

• A mean function µ(u), so that E[X(u)] = µ(u).

• A covariance function C(u,u′), so that Cov[X(u),X(u′)] = C(u,u′).

The joint distribution of X1:M is therefore:

P (x1:M |u1:M) =
1
Z

exp(−1
2
(x1:M − µ1:M)T C−1

M (x1:M − µ1:M)) (3.2)

where µ1:M is the vector of means 〈µ(u[1]), . . . , µ(u[M])〉 and CM is the M -by-M covariance

matrix with the (i, j) entry C(u[i],u[j]). We note that by basic properties of Gaussian distribu-

tions, defining distributions in this manner guarantees consistency. For example, if u1:M and u′
1:N

38 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

U

u2 x(u2)

x(u1)

u1x
(u

2
)

x(u1)

0 2 4 6 8
0

0.5

1

1.5

2

0 2 4 6 8
0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

UU

u2 x(u2)

x(u1)

u1x
(u

2
)

x(u1)

0 2 4 6 8
0

0.5

1

1.5

2

0 2 4 6 8
0

0.5

1

1.5

2

0 2 4 6 8
0

0.5

1

1.5

2

0 2 4 6 8
0

0.5

1

1.5

2

Figure 3.2: An illustration of a Gaussian Process. Each point ui in the domain U (e.g. u1, u2) has a
corresponding Gaussian random variable, X(ui). The joint density of a finite set of these variables
(e.g. P (X(u1),X(u2))) is shown to be a multivariate Gaussian.

x(u1)

u1 u

?

u

? x
(u
)

x(u1)

Figure 3.3: Prediction using a Gaussian Process prior. After seeing one sample (u1, x(u1)), we
are interested in predicting the value of X at any given point u (left). The joint P (X(u),X(u1))
is a two-dimensional Gaussian (center). The conditional P (X | u, u1, x1), which is obtained by
projecting the joint distribution on x(u1), is a univariate Gaussian (right).

are two samples with some overlapping points, then the marginals of their implied distributions

P (X1:M |u1:M) and P (X′
1:N |u′

1:N) on the overlap set are the same.

3.2.1 Prediction

Before we discuss the covariance function C and its parameters, let us see how we use the GP to

predict the value of the process at a new point. We shall assume µ(u) = 0 from now on.

Assume we already observed M points x1:M given u1:M , and we are given a parametrized

covariance function. By the definition of the Gaussian process P (X1:M ,XM+1 | U1:M ,UM+1) is

an M + 1-dimensional Gaussian distribution. Since we observed the values X1:M , we can compute

the conditional distribution over XM+1 given these observations. A basic property of multivariate

3.2. GAUSSIAN PROCESS PRIORS 39

Gaussian distributions is that the conditional distribution given the value of some of the variables

is also a Gaussian distribution. Thus, the conditional distribution P (XM+1 | X1:M ,U1:M ,UM+1)
is a univariate Gaussian distribution (see Figure 3.3). Using properties of Gaussian distributions we

compute the mean and variance of this distribution using:

µM+1 = kT C−1
M x1:M (3.3)

σM+1 = κ− kT C−1
M k

where k = (C(u[M + 1],u[1]), . . . , C(u[M + 1],u[M])) and κ = C(u[M + 1],u[M + 1]). In

other words, having observed M values of the process we can represent the conditional density at

any new coordinate x using CM , the covariance matrix calculated for the first M points. Note that

this falls under the definition of a non-parametric density we gave inEq. (3.1): both CM and k are

parameterized using the first M data points.

3.2.2 Covariance Functions

We now deal with the issue of covariance functions. As we can see, this function determines a prior

over functions. The only constraint on the covariance is that it should produce positive semidefinite

matrices.

In general, if the covariance of two close points is large, then the prior prefers smooth functions.

The covariance between points further away determines properties like periodicity, smoothness, and

amplitude of the learned functions. These aspects of the covariance function are controlled by its

hyperparameters θ. For example, Williams and Rasmussen (1996) suggest the following function:

C(u,u′ : θ) = θ0 exp

⎧⎨
⎩−1

2

d∑
Uk∈U

(uk − u′
k)

2

λ2
k

⎫⎬
⎭+ θ1 + θ2

d∑
Uk∈U

uku
′
k + θ3δu,u′ (3.4)

In this function each hyperparameter controls a different characteristic of the learned functions.

The hyperparameter θ0 controls the amplitude of variation of the function. The hyperparameter

θ1 controls how far can the whole function be shifted from the zero line. The hyperparameter θ2

accounts for linear tendencies in the function. The hyperparameter θ3 is the variance of a point-wise

white noise term, which is uncorrelated between different points. The hyperparameters λk are the

length scales of the different directions in u, over which the function changes considerably.

What value of hyperparameters should we use in C when constructing the Gaussian Process

density? The Bayesian approach is to assign the hyperparameters a prior, and then integrate over

them. Let D = {u1:M ,x1:M}, then we should make predictions as

P (x[M + 1]|u[M + 1],D) =
∫

P (x[M + 1]|u[M + 1],D, θ)P (θ|D)dθ

40 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

As this integral is usually intractable, we can try to approximate it. One way is to useθ̃, the maximum

a posteriori estimator for θ, as suggested in Gibbs and MacKay (1997). Another option is to solve

the integral numerically, e.g. by using a Monte Carlo method (as inWilliams and Rasmussen, 1996).

In this work we take the first approach, as we explain in the next section.

3.3 Learning Networks with Gaussian Process priors

We now examine Networks with Gaussian Process priors. We first note that given a network struc-

ture we can define conditional densities for any variable X given its parents in the network U using

a Gaussian process prior, just as we discussed in the previous section. The structure along with these

Gaussian process priors, one for each variable, comprise a full Bayesian network model, which we

call a Gaussian process network.

We now turn to the problem of learning the structure of Gaussian process networks. We would

like to define a Bayesian structure score, as described in Section 2.4.3, for this type of networks.

After making the parameter independence and parameter and structure modularity assumptions de-

scribed in Section 2.4.1, we can decompose this score into separate family scores. Recall that given

a data set D, the family score of Xi and its parents Ui is defined as

FamScore(Xi,Ui : D) ≡ P (xi[1], . . . , xi[M] | ui[1], . . . ,ui[M], A[UG
Xi

= Ui])

These terms can be computed using the Gaussian Process prior for Xi as a function of Ui. As

before, we will assume that the mean function for this prior is 0, and thus we only need to choose a

covariance function CXi|Ui
. Once we do that, the score is easy to compute. The Gaussian Process

prior implies that xi,1:M ≡ xi[1], . . . , xi[M] are normally distributed with the covariance matrix

CM specified by the covariance function C(·, · : θ) and the parents’ values ui[1], . . . ,ui[M], and

so:

score(Xi,Ui | D, θ) = (2π)−
M
2 |CM |−

1
2 exp

(
−1

2
xT

i,1:MC−1
M xi,1:M

)

We see that given a Gaussian Process prior, the computation of the marginal probability can

be done in closed form. This prior is thus very appealing. It can learn a wide range of functional

dependencies, and we can compute the Bayesian score exactly. In this sense, Gaussian Process

priors fit well with the Bayesian model selection approach of learning Bayesian network structure.

In practice, we usually do not fix the parametrized covariance function in advance. Instead, we

select a family of priors, such as the ones inEq. (3.4), and define a prior over this family, P (θ). The

proper Bayesian score would then require us to integrate over the hyperparameters:

FamScore(Xi,Ui : D) =
∫

score(Xi,Ui | D, θ)P (θ)dθ

Unfortunately, whatever prior we choose, we do not know how to perform this integration in closed

3.4. EXPERIMENTAL EVALUATION 41

form, since score(Xi,Ui | D, θ) is a complex function of θ. The approach we take, which is quite

common in many other applications of Bayesian methods, is to approximate this integral with the

MAP hyperparameters. This approximation is reasonable if the posterior probability over hyper-

parameters is sharply peaked over a single maximum. In such situations, most of the integral is

determined by the area near the MAP parameters. A slightly better approximation is the Laplace

approximation, where the posterior probability in the integral is approximated as a Gaussian distri-

bution over the parameters θ (see, e.g., Chickering and Heckerman, 1997). This however requires

the calculation of the Hessian of the log posterior probability, which can be time consuming. We

therefore use an estimate for this term, which scales like K
2 log(N), where K in our case is the

number of hyperparameters of the covariance function. The resulting estimate is in the spirit of

the Bayesian information criterion (BIC) score we reviewed in Section 2.4.3, having a term which

penalizes the model for over-complexity:

FamScore(Xi,Ui : D) = max
θ

score(Xi,Ui | D, θ)P (θ)− K

2
log(N)

To score a family Xi given Ui, we perform conjugate gradient ascent to search for the MAP

parameters. The evaluation of each point during the search requires to invert and to compute the

determinant of an M -by-M matrix. Thus, the computational costs of this closed form equation is

O(M3) in naı̈ve implementations. This operation is repeated in each iteration of the hyperparameter

optimization step. In practice this optimization converges quite rapidly (10-20 iterations). In the

experiments reported here, we follow Rasmussen (1996) and use an inverse Gamma prior on the

lengthscale hyperparameters, and a log-normal prior on the other hyperparameters. Finally, we can

use the GP score defined above in conjunction with any structure search algorithm (such as greedy

hill climbing described in Section 2.4.2), resulting in a procedure for learning Gaussian process

networks.

3.4 Experimental Evaluation

We first want to test the GP score on the simplest case. We therefore ask the following question:

Given two variables, X and Y , with some noisy functional dependence between them, will the

GP network learner prefer the network where X is independent of Y, or the one in which they are

dependent. Furthermore, we expect that, up to a certain noise level, the GP learner will prefer the

direction for which it can fit a “nice” function, since such a function is more likely in a GP prior.

For example, in Figure 3.4 we see a noisy quadratic dependence. The GP prior will assign a very

low likelihood to the X → Y dependence, since it is hard to fit a function in this direction, while the

dependence Y → X will get a higher probability, as it can be explained by a quadratic functional

dependence with a certain noise width at each point.

To test this, we produced data sets of two variables with dependencies of linear, quadratic,

cubic and sinusoidal nature. On top of the functional dependence, a non-correlated Gaussian noise

42 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

X → Y Y → X

−10 −5 0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

15

20

25

30

Figure 3.4: An example of a non-invertible dependence between X and Y. The explanation X → Y
does not have a functional form, whereas Y → X can be explained as a noisy function.

was added. For each case we compared between the different network models, in terms of the GP

network scores for the training set, and the log likelihood of the test set when that particular model

was used for prediction. This was repeated for different noise levels, and different training set sizes.

Figure 3.5 shows the dependence of those measures on the function noise level. We observe that for

the true dependency model, the prediction quality and the GP family score rise as the level of noise

drops. We see that even for noise levels as high as 1.5 times the dependent variable amplitude, the

true dependence is still preferred over the no-dependence model. We also see that the direction of

dependence is clear in the non-invertible cases, like the sinusoidal and the quadratic dependencies.

In those cases, the score of the “wrong” direction dependency is as low as the no-dependency model.

The cubic data set in our case is borderline-invertible, and so the distinction is less clear cut. For

the linear case, if the slope is not too steep, both directions have a functional form, and so no one

direction is preferred over the other. The Gaussian Process preference for functional direction can

be useful when learning causal networks if we assume the interactions in our domain are functional.

We next compare the GP network learning method against two continuous variable models: the

Gaussian network model with the BGe scoring metric described in Section 2.4.3, and the kernel

network, described in Section 3.1.1. We start with two variable networks, with the same four types

of functional relations as described before. Figure 3.6 shows the prediction quality of the three

methods on those data sets, comparing the log loss of the predictions made by the dependent model

to those made by the independent model. One can see that for the quadratic and sinusoidal relations,

both far from linear, the Gaussian method prediction quality is the same for both models, while

the GP learner continually performs better with the dependent model. The kernel method, which

is insensitive to directionality or linearity, also performs better with the dependent model. This

difference between the three methods is demonstrated inFigure 3.7, which compares the conditional

density estimation of the methods on a data set with a clear functional direction. One can see that

the GP estimator is the most sensitive to the direction of the dependency, both in terms of quality

3.4. EXPERIMENTAL EVALUATION 43

(a) data samples (b) GP family score (c) Test Log Likelihood

X

Y

-150

-100

-50

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y Score
X ind Y Score

Y->X Score

-11

-10

-9

-8

-7

-6

-5

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y LogL
X ind Y LogL

Y->X LogL

X

Y

-150

-100

-50

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y Score
X ind Y Score

Y->X Score

-8

-7

-6

-5

-4

-3

-2

-1

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y LogL
X ind Y LogL

Y->X LogL

X

Y

-150

-100

-50

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y Score
X ind Y Score

Y->X Score

-13

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y LogL
X ind Y LogL

Y->X LogL

X

Y

-150

-100

-50

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y Score
X ind Y Score

Y->X Score

-10

-9

-8

-7

-6

-5

-4

-3

0 0.5 1 1.5 2 2.5 3 3.5 4

X->Y LogL
X ind Y LogL

Y->X LogL

Figure 3.5: GP family scores and prediction accuracy as a function of sample noise, for different
functional dependencies. (a) Data sets of quadratic, sinusoidal, cubic and linear dependencies of Y
on X. In the shown sets the noise level on Y is 0.4 times its range. (b-c) Family scores and prediction
accuracy for 3 network models: The no-dependency network, the X → Y “true” network and the
Y → X “opposite direction” network. The X axis is the sample noise on Y in units of its range.
The Y axis is the GP score for each family (b) or the average log loss of a test data set following
parameter optimization on a different training set (c).

44 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160 180 200

Gaussian
GP

Kernel

0.9

1

1.1

1.2

1.3

1.4

1.5

0 20 40 60 80 100 120 140 160 180 200

Gaussian
GP

Kernel

cubic linear

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

Gaussian
GP

Kernel

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

Gaussian
GP

Kernel

quadratic sinusoidal

Figure 3.6: Sample complexity comparison for the Gaussian, Gaussian Process and Kernel meth-
ods. The plots show log likelihood ratio of the test set, between the no-dependency model and the
X → Y model (x-axis) vs. number of training samples (y-axis). Four different functional relations
between X and Y were tested (see Figure 3.5). Both training and test set have a noise level of 0.4
standard deviation of the dependent variable.

of fit, as well as in the qualitative prediction. Unlike the two other methods, it captures the noisy

sinusoidal dependency, interpolating quite well into the middle range which is not represented in

the data.

We now turn to comparing the reconstruction capability of the three methods. We start with

small artificial networks with different functional relations, and check which method reconstructs

the true network with higher accuracy. We sampled 50 and 100 instance data sets from 3 variable

networks of all possible architectures, with linear, quadratic, sinusoidal or mixed functional rela-

tions. A non-correlated noise of width 0.4 of the variable’s amplitude was added. We applied the

three network learning methods on these data sets. Both GP and kernel methods performed well in

reconstructing the correct skeleton of the generating network, with the GP performing only slightly

better. However, the GP does significantly better in identifying the original DAG for data sets with

non-invertible connections (quadratic and sinusoidal). In those cases, as expected, the GP learner

orients the arcs in the “true” functional direction, while the kernel method does not necessarily do

so. The Gaussian network model does not perform as well in this task, where in most of the cases

3.4. EXPERIMENTAL EVALUATION 45

(a) GP (b) Gaussian (c) Kernel
G: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

G: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

g: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

g: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

K: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

K: sin miss

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

G: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

G: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

g: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

g: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

K: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

K: sin miss

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

Figure 3.7: Conditional density estimation for Gaussian Process, linear Gaussian and kernel es-
timators. Plots on the top row show estimation of P (Y |X) from a sample of points where the
dependence between Y and X has a noisy sine-wave form, and the middle region in the joint space
is not represented. The samples are shown as ’+’ marks (X is along the x-axis). The color scheme
shows the estimated conditional density P (Y |X) for each value (x, y). Bottom row: estimates of
P (X|Y) for the same data set (the axis are interchanged).

with non-linear connections, the learned networks are missing some of the arcs. This is not sur-

prising, since the best linear-Gaussian model one can fit to a non-linear function often has a large

variance, making this connection low scoring.

3.4.1 Real life data

We next tested Gaussian Process Networks on real world data sets of continuous attributes, com-

paring it to the other two methods. We use three data sets from the UCI machine learning reposi-

tory (Blake and Merz, 1998). These data sets are:

• Boston housing data set - a data set describing different aspects of neighborhoods in the

Boston area, and the median price of houses in those neighborhoods. The data set contains

506 samples with 14 attributes.

• Abalone data set - a data set of physical measurements of abalones. The data set contains

4177 samples with 9 attributes.

• Glass identification data set - a data describing the material concentrations in glasses, with

a class attribute denoting the type of the glass. The data set contains 214 samples with 10

attributes.

46 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

Table 3.1: Average Log Loss on an independent test set achieved by the three methods for different
training set sizes.

Boston Abalone Glass
Size Gaussian GP Kernel Gaussian GP Kernel Gaussian GP Kernel

10 -53.7 −2.8× 104 -56.2 -322.4 -319.8 -410.5 -43.8 -153.8 -72.8
20 -40.9 -447.8 -40.6 0.6 -0.1 -9.3 -10.4 -74.4 -52.8
50 -37.1 -44.7 -47.7 4.5 10.3 -8.1 -6.6 -51.3 -84.0

100 -34.4 -50.7 -132.3 7.6 11.5 -7.0 -3.3 -52.9 -35.4
150 -32.3 -70.3 4.4 9.3 13.1 -6.5 -2.5 -2.0 -42.8
200 -31.0 -43.5 8.3 10.5 13.1 -34.1
300 12.0 12.9 -5.3

For each data set, we performed structure learning with each method, using subsets of the orig-

inal data set, which was permuted in a random order. We then used the learned structure and the

optimized parameters to predict the likelihood of the corresponding test set, which consisted of a

separate subset of the data set. Test set sizes varied between 64 samples (Glass data set) and 300

samples (Boston and Abalone sets). Some of the attributes in those data sets are either discrete

(such as class attributes), or have only few values in the data. To accommodate these variables,

we used the hybrid approach described in Section 2.2.3. In this approach, all discrete variables are

forced to precede all continuous variables. For each continuous variable X having some mixture of

continuous parents Uc and discrete parents Ud, we model the distribution P (X | Uc) separately

for each state of Ud. The score for such a family is given by

score(X,Uc,Ud | D) =
∑

ud∈Ud

score(X,Uc | Dud
)

where Ud is the set of values taken by Ud, and Dud
is the subset of data where Ud have values ud.

Table 3.1 lists the average log likelihood of the test set, for each method and each training set

size. We note that both in the glass and abalone domains the Gaussian process method performs

well compared to the Gaussian model, while the kernel method does not do as well. On the Boston

domain, however, the kernel method seems to rate quite high. This is due to one variable (index of

accessibility to radial highways) which only has nine values appearing in the data set. The kernel

method assigns no parents to this variable, and learns a distribution composed of sharp “delta” peaks

around those values. In cases like this, the kernel method has to be bounded not to learn distributions

which are too sharp. Another option is to treat those variables as discrete. In general, however, the

Gaussian and GP methods, modeling only function-like relations, can not account for multi modal

distributions.

Figure 3.8 shows two examples from the abalone domain of connections learned by the Gaussian

Process network, plotted with the training samples. The GP learner clearly fits a non-linear function

to the data, whose width varies according to the density of points in each area. Beyond the range of

3.5. DISCUSSION 47

Whole Weight (y) vs. Diameter (x) Number of Rings (y) vs. Shell Weight (x)

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.8: Two examples of function predictions made by the GP learner on the abalone data set.
The data set points of the two attributes are shown as scattered ’+’ marks. The solid lines show the
predicted mean function (mean of P (y | x)) and its width (one standard deviation) at each point.

sample points, the width of the predicted function rises, as the uncertainty increases. The figure on

the right is an example where the dependent variable is semi-discrete (number of rings), showing that

the method is capable of handling this type of data as well. These examples show that by learning

Gaussian Process networks we can discover interesting relations even under noisy measurements.

3.5 Discussion

In this chapter we introduced the notion of Gaussian Process networks and developed the Bayesian

score for learning them. We report on results that show that this method generalizes well from noisy

data. The combination of this powerful regression technique with the flexible language of Bayesian

networks seems like a promising tool for exploratory data analysis, causal structure discovery, pre-

diction, and Bayesian classification.

There are several methods closely related to Gaussian Processes that are relevant to this work.

Wahba (1990, 2000) makes a connection between Gaussian processes and reproducing kernel Hilbert

spaces (RKHS), showing that the solution to the posterior Bayesian estimate of the Gaussian process

(as in Eq. (3.3)) is also the solution to a spline smoothing problem posed as a variational minimiza-

tion problem in an RKHS. The smoothing parameter is optimized using cross validation methods,

whereas in the case of Gaussian process priors, we use a MAP estimate for the hyperparameters.

In related works (e.g. Wahba, 1991), the relevance of the different components of the function is

estimated from the learned smoothing parameters. In Gaussian process methods there is a similar

notion, judging the relevance of different input dimensions by their estimated lengthscales in the

covariance function (MacKay, 1998). Inputs with estimated large lengthscales are deemed less

relevant, because the function hardly changes in those directions. A promising direction for future

research is guiding the search in the network space by those learned lengthscales, resulting in a

48 CHAPTER 3. GAUSSIAN PROCESS NETWORKS

more efficient and accurate search procedure. This is important when using the Gaussian process

score method, as its computation is costly.

The main cost of computing Gaussian process conditional densities (or scores) comes from in-

verting the covariance matrix CM , a computation which costs O(M3). For single family computa-

tions this is feasible up to around 1000 data points, but when performing structure search, combined

with hyperparameter optimization, this computation has to be repeated many times. This makes the

application of the method to data sets of more than a few hundred instances very hard. In recent

years, the computational cost of GP regressors yielded a number of suggested solutions, including

sparse representations (Csato and Opper, 2002; Lawrence et al., 2003; Smola and Bartlett, 2001),

decomposed representations (Tresp, 2001) and approximate computations (Gibbs and MacKay, 1997;

Williams and Seeger, 2001). Incorporating any one of these methods will enable learning from

larger data sets.

Another issue is the approximation method used for evaluating the marginal likelihood. The

assumption that the posterior probability has a unique sharp peak does not always hold. We therefore

want to test methods which do not rely on the MAP estimate of the hyperparameters. Such methods

include Monte Carlo sampling methods, as discussed inWilliams and Rasmussen (1996).

In the current work we dealt only with learning from fully observed data. However, in case

we are dealing with partial observations, or when our model includes hidden variables, we typically

need to perform inference in the network for computing a posterior over the missing values. Though

inference is well defined in Gaussian Process networks (similarly to other non-linear networks),

it involves estimating integrals which do not have a closed form. We therefore have to devise

appropriate approximations, such as particle-based inference methods (Doucet et al., 2001, 2000b),

which can get quite costly.

Finally, when coming to select a family of models for a specific problem, such as modeling gene

regulation networks, we must take care that this family is of the right complexity, or representation

power, for the problem and the amount of data at hand. It is quite possible that the Gaussian

process representation is too flexible in this context. If we are interested not only in generalization

power, but also in learning a model which is close to the real biology, restricting ourselves to a

specific parametric form of dependencies can work for us, given that we have a sound basis for this

particular parametrization. In Chapter 6 we develop such a representation, which is based on the

details of the biochemical reactions modeled.

Chapter 4

Structure Learning Methods for

Bayesian Networks

In the previous chapters we have reviewed Bayesian networks, including several representations of

dependencies in them as well as some standard methods for learning their structure and parameters.

These learning methods have been applied successfully in many domains (e.g. Friedman and Goldszmidt,

1998; Geiger and Heckerman, 1994; Hofmann and Tresp, 1996; Lerner, 2002), and though the learn-

ing problem itself is NP-hard, heuristic methods often yield very good results. However, our do-

mains of interest, namely gene regulatory systems, possess some properties which make the learning

task especially hard.

First, these domains are usually quite large, in terms of the number of variables. Depending

on the system studied, we typically want to learn structure over domains with several hundred to

several thousand variables. Now, the size of structure space is super-exponential in N , the number

of variables (Harary and Palmer, 1973). For example, for N = 10 there are in the order of 1012

distinct structures, while for N = 13 the order climbs to 1021. It is clear then that with hundreds of

variables, all heuristic methods cannot cover but a tiny fraction of structure space during the search.

Second, when coming to model regulatory networks in a realistic way, we will want to use

conditional distribution models which can capture the behavior of regulatory interactions. These

interactions, as we shall see in Chapter 6 are not expected to be linear. Whether they are modeled

in a non-parametric way, as with Gaussian process priors, or with a specialized parametric model

(which we will introduce in Chapter 6), the structure scores based on those models require intensive

computation, as they involve non-linear parameter optimization.

In this chapter we try to cope with these difficulties by introducing two heuristic methods for

speeding up structure search. Both methods try to focus the search on promising candidate struc-

tures. Both do this on a local scale, i.e. on a per-variable basis, using two different approaches.

The “Sparse Candidate” algorithm works iteratively. First, it restricts the parents of each vari-

able to belong to a small subset of candidates. It then searches for a network that satisfies these

49

50 CHAPTER 4. STRUCTURE LEARNING METHODS

constraints. The learned network is then used as the basis for selecting better candidates for the next

iteration.

The “Ideal Parent” method focuses on continuous variable network learning. It efficiently

identifies good candidates for adding or replacing a parent to a variable. First, it computes what

form an ideal parent profile would take, based on the parametric form of the variable’s CPD. It then

compares existing variables to this profile. Importantly, this method also facilitates the addition of

new hidden variables into the network structure efficiently.

In the next sections we describe the two methods, and give some experimental results showing

their advantages. At the end of this chapter we tie some knots between these methods, suggesting

ways to combine them in order to further speed up structure search.

4.1 Learning from large domains: The “Sparse Candidate” Algorithm

In Section 2.4.2 we presented the problem of structure learning in Bayesian networks, and described

some heuristic algorithms for learning structure. Such “generic” search procedures do not apply

any knowledge about the expected structure of the network to be learned. For example, greedy hill-

climbing search procedures examine all possible local changes in each step and apply the one that

leads to the biggest improvement in score. The usual choice for “local” changes are edge addition,

edge deletion, and edge reversal. Thus, there are approximately O(N2) possible changes where N

is the number of variables.1

The cost of these evaluations becomes acute when we learn from massive data sets. Since the

evaluation of new candidates requires collecting various statistics about the data, it becomes more

expensive as the number of instances grows. To collect these statistics, we usually need to perform a

pass over the data. Although, recent techniques (e.g., (Moore and Lee, 1997)) might reduce the cost

of this collection activity, we still expect non trivial computation time for each new set of statistics

we need.

It seems, however, that most of the candidates considered during the search can be eliminated in

advance by using our statistical understanding of the domain. For example, in greedy hill-climbing,

most possible edge additions might be removed from consideration. If X and Y are almost in-

dependent in the data, we might decide not to consider Y as a parent of X. Of course, this is a

heuristic argument, since X and Y can be marginally independent, yet have strong dependence in

the presence of another variable (e.g., X is the XOR of Y and Z). In many domains, however, it

is reasonable to assume that this pattern of dependencies does not appear. For many continuous

variable conditional density families, like linear Gaussians, these patterns are not possible at all.

The use of a measure of dependence, such as the mutual information, between variables to

guide network construction is not new. For example, Chow and Liu’s algorithm (Chow and Liu,

1968) uses the mutual information to construct a tree-like network that maximizes the likelihood

1Some of these changes introduce cycles, and thus are not evaluated. Nonetheless, the number of feasible operations
is usually quite close to O(N2).

4.1. THE “SPARSE CANDIDATE” ALGORITHM 51

score. When we consider networks with larger in-degree, several authors use the mutual information

to greedily select parents (Cheng et al., 1997, 2001). However, these authors do not attempt to

maximize any statistically motivated score. In fact, it is easy to show situations where these methods

can learn erroneous networks. This use of mutual information is a simple example of a statistical

cue. Other cues can come about from examining algorithms of constraint-based approaches to

learning. In this section, we incorporate similar considerations within a procedure that explicitly

attempts to maximize a score. We provide an algorithm that empirically performs well in massive

data sets.

The general idea is quite straightforward. We use statistical cues from the data, to restrict the

set of networks we are willing to consider. This is done by restricting the possible parents of each

node to a specific set of candidates. We then search for the highest scoring structure satisfying those

restrictions. Any search techniques we use in this case will perform faster, since the search space is

significantly restricted. Moreover, as we show, in some cases we can find the best scoring network

satisfying these constraints. In other cases, we can use the constraints to improve our heuristics.

Of course, such a procedure might fail to find a high-scoring network: a misguided choice of

candidate parents in the first phase can lead to a low scoring network in the second phase, even if

we manage to maximize the score with respect to these constraints. The key idea of our algorithm

is that we use the network we found at the end of the second stage to find better candidate parents.

We then can find a better network with respect to these new restrictions. We iterate in this manner

until convergence.

In the next section we outline the structure of our “Sparse Candidate” algorithm and show

that there are two orthogonal issues that need to be resolved: how to select candidates in each

iteration, and how to search given the constraints on the possible parents. We examine these issues

in Section 4.1.2 and Section 4.1.3, respectively. In Section 4.1.4 we evaluate the performance of the

algorithm on synthetic and real-life datasets. We conclude with a discussion of related work and

future directions in Section 4.1.5.

4.1.1 The “Sparse Candidate” Algorithm

We now outline the framework for our Sparse Candidate algorithm The underlying principle for

our algorithm is fairly intuitive. It calls for two variables with a strong dependency between them

to be located “near” each other in the network. The strength of dependency between variables

can often be measured using mutual information or correlation (Cover and Thomas, 1991). In fact,

when restricting the network graph to a tree, Chow and Liu’s algorithm (Chow and Liu, 1968) does

exactly that. It measures the mutual information (formally defined below) between all pairs of

variables and selects a maximal spanning tree as the required network.

We aim to use a similar argument for finding networks that are not necessarily trees. Here, the

general problem is NP-hard (Chickering, 1995). However, a seemingly reasonable heuristic is to

select pairs (X,Y) with high dependency between them and create a network with these edges.

This approach however, does not take more complex interactions into account. For example, if the

52 CHAPTER 4. STRUCTURE LEARNING METHODS

Input : A data set D = {x1, . . . ,xN}
An initial network B0

A decomposable score: Score(B : D) =
∑

i FamScore(Xi, UB
i : D)

A parameter k

Output : A network B

for n = 1, 2, . . . until convergence do
Restrict : Based on D and Bn−1, select for each variable Xi a set Cn

i (|Cn
i | ≤ k) of

candidate parents.
This defines a directed graph Hn = (X , E), where E = {Xj → Xi|∀i, j,Xj ∈ Cn

i }.
(Note that Hn is usually cyclic.)
Maximize : Find network Bn = 〈Gn,Θn〉 maximizing Score(Bn : D) among
networks that satisfy Gn ⊆ Hn (i.e., ∀Xi, UGn

i ⊆ Cn
i ,)

end
Return Bn

Algorithm 2: Outline of the Sparse Candidate algorithm

true structure includes a substructure of the form X → Y → Z , we might expect to observe a strong

dependency between X and Y , Y and Z , and also between X and Z . However, once we consider

both X and Y as parents of Z , we might recognize that X does not help in predicting Z given the

value of Y .

Our approach is based on the same basic intuition of using mutual information, but we do so in

a refined manner. We use measures of dependency between pairs of variables to focus our attention

during the search. For each variable X, we find a set of variables Y1, . . . , Yk that are the most

promising candidate parents for X. We then restrict our search to networks in which only these

variables can be parents of X. Thus, instead of having N − 1 potential parents for a node, we only

consider k possible parents, where k � N . This means a we work in a much smaller search space

in which we can hope to find a good structure quickly. Though this procedure limits the number of

parents of each variable by some constant k, in many real world situations it is reasonable limitation.

The main drawback of this procedure is, that once we choose the candidate parents for each

variable, we are committed to them. Thus, a mistake in this initial stage can lead us to find an

inferior scoring network. We therefore iterate the basic procedure, using the constructed network to

reconsider the candidate parents and choose better candidates for the next iteration. In the example

of X → Y → Z , if Y is detected as a parent of Z in the first iteration, X would not be chosen as a

candidate for Z in the next iteration, allowing a variable with weaker dependency to replace it.

The resulting procedure has the general form shown in Algorithm 2. This framework defines

a whole class of algorithms, depending on how we choose the candidates in the Restrict step, and

how we perform the search in the Maximize step. The choice of methods for these two steps are

mostly independent of one another. We examine each of these in detail in the next two sections.

4.1. THE “SPARSE CANDIDATE” ALGORITHM 53

Input : Data set D = {x1, . . . ,xN}
A network Bn

A measure M
A parameter k

Output : For each variable Xi a set of candidate parents Ci of size k

forall Xi , i = 1, . . . , n do
Calculate M(Xi,Xj) for all Xj �= Xi such that Xj �∈ Ui

Choose x1, . . . , xk−l with highest ranking , where l = |Ui|
Set Ci = Ui ∪ {x1, . . . , xk−l}

end
Return {Ci}

Algorithm 3: Outline of the Restrict step

Before we go on to discuss these issues, we address the convergence properties of these itera-

tions. Clearly, at this abstract level, we cannot say much about the performance of the algorithm.

However, we can easily ensure its monotonic improvement. We require that in the Restrict step,

the selected candidates for Xi’s parents include Xi’s current parents, i.e., the selection must satisfy

UGn
i ⊆ Cn+1

i for all Xi.

This requirement implies that the network Bn is a legal structure in iteration n + 1. Thus, if the

search procedure at the Maximize step also examines this structure, it must return a structure that

scores at least as well as Bn. Immediately, we get that Score(Bn+1 : D) ≥ Score(Bn : D).

Another issue is the stopping criteria for our algorithm. There are two types of stopping criteria:

a score based criterion that terminates when Score(Bn : D) = Score(Bn−1 : D), and a candidate

based criterion that terminates when Cn
i = Cn−1

i for all i. Since the score is a monotonically

increasing bounded function, the score based criterion is guaranteed to stop. However, the candidate

based criterion might be able to continue to improve after an iteration with no improvement in the

score. It can also enter a non-terminating cycle, therefore we need to limit the number of iterations

with no improvement in the score.

4.1.2 Choosing Candidate Sets

In this section we discuss possible measures for choosing the candidate set. To choose candidate

parents for Xi, we assign each Xj some measure of relevance to Xi. As the candidate set of Xi, we

choose those variables with the highest measure. This general outline is shown inAlgorithm 3. It is

clear that in some cases, such as XOR relations, pairwise scoring functions are not enough to capture

the dependency between variables. However, for computational efficiency we limit ourselves to this

type of functions.

When considering each candidate, we essentially assume that there are no spurious indepen-

dencies in the data. More precisely, if Y is a parent of X, then X is not independent (or “almost”

54 CHAPTER 4. STRUCTURE LEARNING METHODS

C

A

B

D

Figure 4.1: Network for Example 4.1.1

independent) of Y , given any subset of the other parents.

A simple and natural measure of dependence is mutual information:

I(X;Y) =
∑
x,y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)

Where P̂ denotes the observed frequencies in the dataset. The mutual information is always

non-negative. It is equal to 0 when X and Y are independent. The higher the mutual information,

the stronger the dependence between X and Y .

Researchers have tried to construct networks based on I(X;Y), i.e., add edges between vari-

ables with high mutual information (Chow and Liu, 1968; Ezawa and Schuermann, 1995; Sahami,

1996). While in many cases mutual information is a good first approximation of the candidate

parents, there are simple cases for which this measure fails.

Example 4.1.1: Consider the four-variable network illustrated in Figure 4.1. We can easily select

parameters for this network such that I(A;C) > I(A;D) > I(A;B). Thus, if we select only two

parents based on mutual information, we would select C and D. These two, however, are redundant

since once we know C , D adds no new information about A. Moreover, this choice does not take

into account the effect of B on A.

This example shows a general problem in pairwise selection, which our iterative algorithm over-

comes. After we select C and D as candidates, and the learning procedure hopefully only sets C as

a parent of A, we reestimate the relevance of B and D to A. How can this be done with the mutual

information? We outline two possible approaches:

The first approach is based on an alternative definition of the mutual information. We can define

the mutual information between X and Y as the distance between the distributionP̂ (X,Y) and the

distribution P̂ (X)P̂ (Y), which assumes X and Y are independent:

I(X;Y) = DKL(P̂ (X,Y)||P̂ (X)P̂ (Y))

4.1. THE “SPARSE CANDIDATE” ALGORITHM 55

where DKL(P ||Q) is the Kullback-Leibler divergence, defined as:

DKL(P (X)||Q(X)) =
∑
X

P (X) log
P (X)
Q(X)

.

Thus, the mutual information measures the error we introduce if we assume that X and Y are

independent. If we already have an estimate of a network B, we can use a similar test to measure

the discrepancy between our estimate PB(X,Y) and the empirical estimate P̂ (X,Y). We define

MDisc(Xi,Xj | B) = DKL(P̂ (Xi,Xj)||PB(Xi,Xj))

Notice that when B0 is an empty network, with parameters estimated from the data, we get that

MDisc(X,Y | B0) = I(X : Y). Thus, our initial iteration in this case uses mutual information

to select candidates. Later iterations use the discrepancy to find variables for which our modeling

of their joint empirical distribution is poor. In our example, we would expect that PB(A,B) in the

network, when only C is a parent of A, is quite different from P̂ (A,B). Thus, B would measure

highly relevant to A, while PB(A,D) would be a good approximation of P̂ (A,D). Therefore, even

“weak” parents have the opportunity to become candidates at some point.

One of the issues with this measure is that it requires us to compute PB(Xi,Xj) for pairs of

variables. When learning networks over large number of variables this can be computationally

expensive. However, we can easily approximate these probabilities by using a simple sampling

approach. Unlike computation of posterior probabilities given evidence, the approximation of such

prior probabilities is not hard. We simply sample N instances from the network, and from these we

can estimate all pair-wise interactions. (In our experiments we use N = 1000.)

The second approach to extend the mutual information score is based on the semantics of

Bayesian networks. Recall that in a Bayesian network Xi’s parents shield it from its non-descendants.

This suggests that we measure whether the conditional independence statement “Xi is independent

of Xj given Ui” holds. If it holds, then the current parents separate Xj from Xi and Xj is not a

parent of Xi. On the other hand, if it does not hold, then either Xj is a parent of Xi, or Xj is a

descendant of Xi.

Instead of testing whether the conditional independence statement holds or not, we estimate

how strongly it is violated. The natural extension of mutual information for this task, is the notion

of conditional mutual information:

I(X;Y |Z) =
∑
Z

P̂ (Z)DKL(P̂ (X,Y |Z)||P̂ (X|Z)P̂ (Y |Z))

This measures the error we introduce by assuming that X and Y are independent given different

values of Z . We define

MShield(Xi,Xj | B) = I(Xi;Xj |Ui)

56 CHAPTER 4. STRUCTURE LEARNING METHODS

Once again, we have that if B0 is the empty network, then this measure is equivalent to I(Xi;Xj).
Although shielding can remove X’s ancestors from the candidate set, it does not “shield” X from

its descendants.

A deficiency of both these measures is that they do not take into account the cardinality of

various variables. For example if both Y and Z are possible candidate parents of X, but Y has

two values (one bit of information), while Z has eight values (three bits of information), we would

expect that Y is less informative about X than Z . On the other hand, we can estimate P (X|Y)
more robustly than P (X|Z) since it involves fewer parameters.

Such considerations lead us to use scores which penalize structures with more parameters, when

searching the structure space, since the more complex the model is, the easier we are misled by the

empirical distribution. We use the same considerations to design such a score for the Restrict step.

To see how to define a measure of this form, we start by reexamining the shielding property.

Using the chain rule of mutual information:

I(Xi;Xj |Ui) = I(Xi;Xj ,Ui)− I(Xi;Ui)

That is, the conditional mutual information is the additional information we get by predicting Xi

using Xj and Ui, compared to our prediction using Ui. Since the term I(Xi;Ui) does not depend

on Xj , we don’t need to compute it when we compare the information that different Xj’s provide

about Xi. Thus, an equivalent comparative measure is

MShield(Xi,Xj | B) = I(Xi;Xj ,Ui)

Now, if we consider the score of the Maximize step as a cautious approximation of the mutual

information, with a penalty on the number of parameters, we can get the score measure;

MScore(Xi,Xj | B) = FamScore(Xi;Xj ,Ui : D).

This simply measures the score when adding Xj to the current parents of Xi.

Calculating MShield and MScore is more expensive than calculating MDisc. The calculation

of MDisc only requires the joint statistics for all pairs Xi and Xj , which in turn require only one

pass over the data and can then be cached for later iterations. The other measures require the joint

statistics of Xi, Xj , and Ui. In general Ui changes between iterations, and usually requires a new

pass over the data set each iteration. The cost of calculating these new statistics can be reduced by

limiting our attention to variables Xj that have large enough mutual information with Xi. Note that

this mutual information can be computed using previously collected statistics.

Most of the measures we have developed up to now are tailored for discrete random variables.

The information based measure do not translate well to most continuous conditional density fami-

lies. The MScore measure, however, can be applied to any variable, with any conditional probability

family, no matter if its parents are discrete, continuous or a hybrid of both types.

4.1. THE “SPARSE CANDIDATE” ALGORITHM 57

4.1.3 Learning with Small Candidate Sets

In this section we examine the problem of finding a constrained Bayesian network attaining a maxi-

mal score. We first show why the introduction of candidate sets improves the efficiency of standard

heuristic techniques, such as greedy hill-climbing. We then suggest an alternative heuristic “divide

and conquer” paradigm that exploits the sparse structure of the constrained graph.

Formally, we attempt to solve the following problem:

Maximal Restricted Bayesian Network (MRBN)

Input:

• A set D = {x1, . . . ,xN} of instances

• A digraph H of bounded in-degree k

• A decomposable score S

Output: A network B = 〈G,Θ〉 so that G ⊆ H , that maximizes S with respect to D.

As can be expected, this problem has a hard combinatorial aspect.

Proposition 4.1.2: MRBN is NP-hard.

This follows from a slight modification of the NP-hardness of finding an optimal unconstrained

Bayesian network (Chickering, 1996).

Standard Heuristics

Though MRBN is NP-hard, even standard heuristics are computationally more efficient and give a

better approximation compared to the unconstrained problem. This is due to the fact that the search

space is substantially smaller, as is the complexity of each iteration, and the number of counts

needed.

The search space of possible Bayesian networks is extremely large. By searching in a smaller

space, we can hope to have a better chance of finding a high-scoring network. Although the search

space size for MRBN remains exponential, it is tiny in comparison to the space of all Bayesian

networks on the same domain. To see this, note that even if we restrict the search to Bayesian

networks with at most k parents, there are O(
(
n
k

)
) possible parent sets for each variable. On the

other hand, in MRBN, we have only O(2k) possible parent sets for each variable. (Of course, the

acyclicity constraints disallow many of these networks, but it does not change the order of magnitude

in the size of the sets).

Examining the time complexity for each iteration in heuristic searches also points in favor of

MRBN. In greedy hill climbing we initially compute a score for all possible edges, a total of O(n2)
computations. In each subsequent iteration, we only need to compute a score for the variable whose

family has changed in the previous iteration, meaning O(n) new calculations. In MRBN we begin

with O(kn) initial calculations, after which each iteration only requires O(k) calculations.

58 CHAPTER 4. STRUCTURE LEARNING METHODS

A large fraction of the learning time involves collecting the sufficient statistics from the data.

Here again, restricting to candidate sets saves time. When k is reasonably small, we can compute

the statistics for {Xi} ∪ Ci in one pass over the input. All the statistics we need for evaluating

subsets of Ci as parents of Xi can then be computed by marginalization from these counts. Thus,

we can dramatically reduce the number of statistics collected from the data.

Divide and Conquer Heuristics

In this section we describe algorithms that utilize the combinatorial properties of the candidate graph

H in order to efficiently find the maximal scoring network, given the constraints. To simplify the

following discussion, we abstract the details of the Bayesian network learning problem and focus

on the underlying combinatorial problem. This problem is specified as follows:

Input: A digraph H ≡ {Xj −→ Xi : Xj ∈ Ci}, and a set of weights w(Xi,Y) for each Xi and

Y ⊆ Ci

Output: An acyclic subgraph G ⊆ H that maximizes WH [G] ≡∑i w(Xi, UG
i)

One of the most effective paradigms for designing algorithms is “Divide and Conquer”. The

main idea of this approach is to take a complex problem and decompose it into simpler problems

that can be solved separately. In this particular problem, the global constraint we need to satisfy is

acyclicity. Otherwise, we would have selected, for each variable Xi, the parents that attain maximal

weight. Thus, we want to decompose the problem into components, so that we can efficiently

combine their maximal solutions. We use standard graph decomposition methods to decompose H .

Once we have such a decomposition, we can find acyclic solutions in each component and combine

them into a global solution.

Strongly Connected Components: (SCC)

The simplest decomposition of this form is one that disallows cycles between components, i.e,

strongly connected components. A subset of vertices A is strongly connected if for each X,Y ∈ A,

H contains a directed path from X to Y and a directed path from Y to X. The set A is maximal

if there is no strongly connected superset of A. It is clear that two maximal strongly connected

components must be disjoint, and there cannot be a cycle that involves vertices in both of them

(for otherwise their union would be a strongly connected component). Thus, we can partition the

vertices in H into maximal strongly connected components. Every cycle in H will be contained

within a single component. Thus, once we ensure acyclicity “locally” within each component, we

get an acyclic solution over all the variables. This means we can search for a maximum on each

component independently.

To formalize this idea, we begin with some definitions. Let A1, . . . Am be a partition of

{X1, . . . ,Xn}. We define the following subgraphs: HXi = {Y → Xi|Y ∈ Ci}, Hj =
⋃

Xi∈Aj
HXi .

For G ⊂ Hj , let WAj
[G] =

∑
Xi∈Aj

w(Xi, UG
i).

4.1. THE “SPARSE CANDIDATE” ALGORITHM 59

foreach possible order σ on S do
for i = 1, 2 do

find Gi,σ ⊂ Hi, that maximizes WHi [] among graphs that respect σ ;
end
Gσ ← G1,σ ∪G2,σ ;

end
Return G = arg maxGσ W [Gσ] ;

Algorithm 4: Outline of using a separator to efficiently solve MRBN

Proposition 4.1.3: For A1, . . . ,Am strongly connected components of H , if for each j, Gj ⊂ Hj

is the acyclic graph that maximizes WAj [G] then

• The graph G = ∪jGj is acyclic.

• G maximizes WH [G].

Decomposing H into strongly connected components takes linear time (see, e.g., Cormen et al.,

1990), therefore we can apply this decomposition, and search for the maxima on each component

separately. However, when the graph contains large connected components, we still face a hard

combinatorial problem of finding the graphs Gj . For the remainder of this section we will focus on

further decomposition of such components.

Separator Decomposition

We now decompose strongly connected graphs, therefore we must consider cycles between the

components. However, our goal is to find small “bottlenecks” through which these cycles must go

through. We then consider all possible ways of breaking the cycles at these bottlenecks.

Definition 4.1.4: A separator of H is a set S of vertices so that:

1. H \ S has two components H′
1 and H ′

2 with no edges between them. For j ∈ {1, 2} let

Hi = H ′
i ∪ S.

2. For each Xi,∃j ∈ {1, 2} so that {Xi ∪ Ci} ⊆ Hj

Intuitively, S separates the vertices into two sets, such that no potential family crosses the border.

For each vertex we therefore search for the maximal choice of parents in only one component (H1

or H2). Let A1 and A2 be a disjoint partition of all vertices into two sets, so that if Xi ∈ Aj , then

Xi ∪ Ci ⊂ Hj . The second property of the separator ensures that such a partition exists. Unlike

the SCC decomposition, however, this decomposition does not allow us to maximize W for each

Hj independently. Suppose that we find two acyclic graphs G1 and G2 that maximize WA1 [] and

60 CHAPTER 4. STRUCTURE LEARNING METHODS

WA2[], respectively. If the combined graph G = G1 ∪G2 is acyclic, then it must maximize WH [].
Unfortunately, G might be cyclic. However, the first property of separators ensures that the source

of potential conflicts between G1 and G2 involves vertices in the separator S: For X,Y ∈ S, if there

is a path from X to Y in G1 and in addition there is a path from Y to X in G2, then the combined

graph will be cyclic. Conversely, it is also easy to verify, that any cycle in G must involve at least

two vertices in S.

This suggests a way of ensuring that the combined graph will be acyclic. If we force some order

on the vertices in S, and require both G1 and G2 to respect this order, then we disallow cycles.

Formally, let σ be a partial order on {X1, . . . ,Xn}. We say that a graph G respects σ, if whenever

there is a directed path Xj −→ . . . −→ Xi in G, then Xi �≺σ Xj .

Proposition 4.1.5: Let S be a separator in H and let σ be a complete order on S. Let G1 ⊂ H1

and G2 ⊂ H2 be two acyclic graphs that respect σ. Then, G = G1 ∪G2 is acyclic.

Given S, a small separator in H , this suggests a simple approach described in Algorithm 4.

This approach considers |S|! pairs of independent sub-problems. If the cost of finding a solution to

each of the sub-problems is smaller than for the whole problem, and if |S| is relatively small, this

procedure can be more efficient.

Proposition 4.1.6: Using the same notation as in the separator-algorithm, if ∀σ for i ∈ {1, 2}, Gi,σ

maximizes WHi [] among the graphs that respect σ then:

• Gσ maximizes WH [] among the graphs that respect σ

• G = arg maxGσ W [Gσ] maximizes WH [].

Proposition 4.1.6 implies that Algorithm 4 returns the optimal solution.

Cluster-Tree Decomposition

In this section we present cluster trees, which are representations of the candidate graphs, implying

a recursive separator decomposition of H into clusters. The idea is similar to those of standard

clique-tree algorithms used for Bayesian network inference (e.g., (Jensen, 1996)). We use this

representation to discuss a class of graphs for which WH [] can be found in polynomial time.

Definition 4.1.7: A Cluster Tree 2 of H is a pair (K, T), where T = (J, F) is a tree and K =
{Kj |j ∈ J} is a family of clusters, subsets of {X1, . . . ,Xn}, one for each vertex of T , so that:

• For each Xi, there exists j(i) ∈ J such that {Xi ∪ Ci} ⊆ Kj(i).

• For all i, j, k ∈ J , if j is on the path from i to k in T , then Ki ∩Kk ⊂ Kj . This is called the

running intersection property.

2This definition coincides with that of a Tree Decomposition for the moralized graph of H (Bodlaender, 1997), as
defined in graph theory. We use our modified definition also when referring to tree width at the end of this section.

4.1. THE “SPARSE CANDIDATE” ALGORITHM 61

We introduce some notation: Let (i, j) be an edge in T . Then Si,j = Ki ∩Kj is a separator in

T , breaking it into two subtrees T1 and T2. Define Aj to be the set of vertices assigned (with their

parents) to Kj: Aj = {Xi|j(i) = j}. For i = 1, 2, define A[Ti] =
⋃

j∈Ti
Aj .

Whenever |Si,j| is small, and the two subtrees are not too big, we can use Si,j efficiently as in

Algorithm 4. But when one of the subtrees T1 or T2 is big, we would like to decompose it further.

This can be done in a recursive manner, using the tree structure and the other separators. We now

devise a dynamic programming algorithm for computing the optimal graph using the cluster tree

separators. First, let us root the cluster tree at an arbitrary K0 ∈ K, inducing an order on the tree

vertices. Each cluster Kj ∈ K is the root of a subtree Tj , spanning away from K0. Sj is the tree

separator, separating Tj from the rest of T (S0 = ∅). The sub-vertices of Kj are its neighbors in

Tj . Figure 4.2 shows a candidate graph H for a domain with seven variables, and a corresponding

possible cluster tree. In this tree A and F are assigned to K0, G and E are assigned to K1, B,C and

D are assigned to K2. The separator S1, for example, separates the subtree T1 (composed of K1)

from the rest of the tree. The sub-vertices of K0 are K1 and K2, both of which have no sub-vertices

of their own.

Define for each cluster Kj and each total order σ on Sj the weight W [Tj , σ] of the maximal

partial solution for the subtree Tj which respects σ

W [Tj, σ] = max
acyclic G ⊂ H[A[Tj]]

respecting σ

WA[Tj][G]. (4.1)

The crux of the algorithm is that finding these weights can be done in a recursive manner, based

on previously computed maxima.

Proposition 4.1.8: For each cluster Kj ∈ K and order σ over Sj: Let K1, . . . ,Kk be the sub-

vertices of Kj . Then:

W [Tj , σ] = max
σ′ (max

acyclic G ⊂ H[Aj]

respecting σ′

WAj [G] +
k∑

i=1

W [Ti, σ
′|Si])

where σ′ ranges on all orders on Kj that are consistent with σ, ,and σ′|Si is the restriction of σ′ to

an order over Si.

Proposition 4.1.8 facilitates rapid evaluation of all the tables W [Tj, σ] in one phase, working our

way from the leaves inwards towards K0. At the end of this traversal, we have computed the weight

of each ordering on all separators adjacent to the root cluster K0. A second phase then traverses T

62 CHAPTER 4. STRUCTURE LEARNING METHODS

(a) (b)

E

B

F

A

G D

C
Order Score

A<B -18.5

B<A -13.2

Order Score

E<B -4.7

B<E -12.1

A,B,E,F

A,B,C,D

A,B

B,E,G

B,E

K0

K1

K2

S1

S2

Figure 4.2: Illustration of the Cluster Tree algorithm. (a) The graph H , showing all candidate
parents of each variable. (b) A corresponding cluster tree, along with possible weight “messages”
W [Tj, σ]

from the root outwards, in order to back-trace the choices made during the first phase, leading to

the maximum total weight WH [G]. Figure 4.2(b) shows the computed weights for T1 and T2 at the

end of the first phase in our example. The weights computed for S1, for example, correspond to the

subtree consisting of K1, and so W [T1, σ] here sums the scores over the families of G and E. In

this case, the ordering E < B allows the consideration of B as a parent of E, resulting in a higher

score (weight).

Examining the complexity of this algorithm, we see that each cluster Kj is visited twice, the first

(more expensive) visit requiring O(|Sj |! · |Aj | · 2k) operations, where k is the size of the candidate

sets. Thus, we get the following result:

Theorem 4.1.9: If c is the size of the largest cluster in the cluster tree, and s the size of the largest

separator, then finding G that maximizes W [G] can be done in O(2k · c · s! · |J |).

In summary, the algorithm is linear in the size of the cluster tree but worse than exponential in

the size of the largest separator in the tree. This, in turn, is of course bounded by the size of the

largest cluster, c. This size is called the width of the cluster tree decomposition of the moralized

graph of H (Bodlaender, 1997). The discussion until now assumed a fixed cluster tree. In practice

we also need to select the tree decomposition. Our analysis shows that a good choice would be the

tree with the minimal width. This size is called the tree width of the original graph. Determining the

tree width of a graph, and finding a tree decomposition with a minimal width are both well-known

and hard problems that are beyond the scope of this section (for a review of related results, see

Bodlaender (1997)). However, we note that if there is a cluster tree of small width, it can be found

in polynomial time.

We note that this algorithm is another example of turning an NP-complete graph problem to a

polynomial (or even linear) time one, given a tree decomposition with a bounded tree width. Such

methods were shown for several classic graph problems. Bodlaender (1993) gives a survey of some

of these results, as well as applications of bounded tree width to real life problems.

4.1. THE “SPARSE CANDIDATE” ALGORITHM 63

Cluster-Tree Heuristics

Although the algorithm of the previous section is linear in the number of clusters, it is worse than

exponential in the size of the largest cluster. Thus, in many situations we expect it to be hopelessly

intractable. Nonetheless, this algorithm provides some intuition on how to decompose the heuristic

search for our problem. The key idea is that although after computing a cluster tree, many of the

clusters might be large, we can use a mixture of the exact algorithm on small clusters and heuristic

searches such as greedy hill climbing on the larger clusters. We now briefly outline the main ideas

of this approach.

When Kj is sufficiently small, we can efficiently store the tables W [Tj, σ] used by the exact

cluster tree algorithm. However, if the clusters are large, then we cannot do the maximization of

Proposition 4.1.8. Instead, we perform a heuristic search, such as greedy hill-climbing, over the

space of parents for vertices in Aj to find a partial network that is consistent with the ordering

induced by the current assignment.

By proceeding in this manner, we approximate the exact algorithm. This approximation exam-

ines a series of small search spaces, that are presumably easier to deal with than the original search

space. This approach can be easily extended to deal with cluster trees in which only some of the

separators are small.

4.1.4 Experimental Evaluation

In this section we illustrate the effectiveness of the sparse candidate algorithm. We examine both

a synthetic example and a real-life dataset. Our current experiments are designed to evaluate the

effectiveness of the general scheme and to show the utility of various measures for selecting candi-

dates in the Restrict phase. In the experiments described here we use greedy hill-climbing for the

Maximize phase.

The basic heuristic search procedure we use is a greedy hill-climbing that considers local moves

in the form of edge addition, edge deletion, and edge reversal. At each iteration, the procedure

examines the change in the score for each possible move, and applies the one that leads to the

biggest improvement. These iterations are repeated until convergence. To escape local maxima,

the procedure is augmented with a simple version of TABU search. It keeps a list of the N last

candidates seen, and instead of applying the best local change, it applies the best local change that

results in a structure not on the list. Note that because of the TABU list, the best allowed change

might actually reduce the score of the current candidate. We terminate the procedure after some

fixed number of changes failed to result in an improvement over the best score seen so far. After

termination, the procedure returns the best scoring structure it encountered.

In the reported experiments we use this hill-climbing procedure both for the Maximize phase

of the sparse candidate algorithm, and as a search procedure by itself. In the former case, the only

local changes that are considered are those allowed by the current choice of candidates. In the latter

case, the procedure considers all possible local changes. This latter case serves as a reference point

64 CHAPTER 4. STRUCTURE LEARNING METHODS

Method Iter Time Score KL Stats
Greedy 40 -15.35 0.0499 2656
Disc 5 1 14 -18.41 3.0608 908

2 19 -16.71 1.3634 1063
3 23 -16.21 0.8704 1183

Disc 10 1 20 -15.53 0.2398 1235
2 26 -15.43 0.1481 1512
3 32 -15.43 0.1481 1733

Shld 5 1 14 -17.50 2.1675 915
2 29 -17.25 1.8905 1728
3 36 -16.92 1.5632 1907

Shld 10 1 20 -15.86 0.5357 1244
2 35 -15.50 0.1989 1968
3 41 -15.50 0.1974 2109

Score 5 1 12 -15.94 0.6756 893
2 27 -15.34 0.0550 1838
3 34 -15.33 0.0479 2206

Score 10 1 17 -15.54 0.2559 1169
2 30 -15.31 0.0352 1917
3 34 -15.31 0.0352 2058

Table 4.1: Summary of results on synthetic data from the alarm domain. These results report the
quality of the network, measured both in terms of the score (BDe score divided by number of in-
stances), and KL divergence to the generating distribution. The other columns measure performance
both in terms of execution time (seconds) and the number of statistics collected from the data. The
methods reported are Disc – discrepancy measure, Shld – shielding measure, and Score – score
based measure.

against which we compare our results.

To compare these search procedures we need to measure both their performance in the task

at hand, and their computational cost. Performance evaluation is based on the score assigned to

the network found by each algorithm. In addition, for synthetic data , we can also measure the

true error with respect to the generating distribution. This allows us to assess the significance of

the differences between the scores. Evaluating the computational cost is more complicated. The

simplest approach is to measure running time. We report running times on an unloaded Pentium

II 300MHz machines running Linux. These running times, however, depend on various coding

issues in our implementation. We attempted to avoid introducing bias within our code for either

procedure, by using the same basic library for evaluating the score of candidates and for computing

and caching of sufficient statistics. Moreover, the actual search is carried by the same code for

greedy-hill climbing procedure.

As additional indication of computational cost, we also measured the number of sufficient statis-

tics computed from the data. In massive datasets these computations can be the most significant

portion of the running time. To minimize the number of passes over the data we use a cache that

allows us to use previously computed statistics, and to marginalize statistics to get the statistics of

subsets. We report the number of actual statistics that were computed from the data.

Finally, in all of our experiments we used the BDe score of (Heckerman et al., 1995a) with a

uniform prior with equivalent sample size of ten. This choice is a fairly uninformed prior that does

not code initial bias toward the correct network. The strength of the equivalent sample size was set

4.1. THE “SPARSE CANDIDATE” ALGORITHM 65

-54

-53.5

-53

-52.5

-52

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Greedy HC
Disc

Score
Shld

Time (sec)

S
c
o
re

 (
B

D
e
/
M

)

-83.4

-83.2

-83

-82.8

-82.6

-82.4

-82.2

-82

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (sec)

S
co

re
 (

B
D

e/
L

)

(a) Text 100 (b) Text 200

Time (sec)

S
co

re
 (

B
D

e/
L

)

-500

-490

-480

-470

-460

-450

-440

-430

-420

-410

0 5,000 10,000 15,000 20,000 -418

-417

-416

-415

-414

4000 6000 8000

-418

-417

-416

-415

-414

4000 6000 8000

Time (sec)

S
co

re
 (

B
D

e/
L

)

(c) Cell Cycle 800 (d) Cell Cycle 800 (cloesup)

Figure 4.3: Performance of the different algorithms on the text and biological domains. Each graph
plots the score (y-axis) vs. running time (x-axis). The reported methods vary in terms of the can-
didate selection measure: (Disc – discrepancy measure, Shld – shielding measure, Score – score
based measure); Greedy HC – greedy hill-climbing. Candidate set sizes used in the experiments:
text – k = 15; cell cycle – k = 20. The points on each curve for the sparse candidate algorithm
are the end result of an iteration. The dashed line marks the maximal score obtained by the greedy
method.

prior to the experiments and was not tuned.

In the first set of experiments we used a sample of 10000 instances from the “alarm” network

(Beinlich et al., 1989). This network has been used for studies of structure learning in various

papers, and is treated as a common benchmark in the field. This network contains 37 variables,

of which 13 have 2 values, 22 have 3 values, and 2 have 4 values. Although this data set is not

particularly massive, it does allow us to observe the behavior of our search procedure.

The results for this small data set are reported in Table 4.1. In this table we measure both the

score of the networks found and their error with respect to generating distributions. The results on

this toy domain show that our algorithm, in particular with the Score selection heuristic, finds net-

works with comparable score to the one found by greedy hill climbing. Although the timing results

for this small scale experiments are not significant, we do see that the sparse candidate algorithm

usually requires fewer statistics records. Finally, we note that the first iteration of the algorithm finds

reasonably high scoring networks. Nonetheless, subsequent iterations improve the score. Thus, the

66 CHAPTER 4. STRUCTURE LEARNING METHODS

re-estimation of candidate sets based on our score does lead to important improvements.

To test our learning algorithms on more challenging domains we examined data from text and

from a biological domain. In the text domain, we used a data set that contains messages from

20 newsgroups (approximately 1000 from each) (Jochims, 1997). We represent each message as a

vector containing one attribute for the newsgroup and attributes for each word in the vocabulary. We

constructed data sets with different numbers of attributes by focusing on subsets of the vocabulary.

We did this by removing common stop words, and then sorting words based on their frequency in

the whole data set. The data sets included the group designator and the 99 (text 100 set) or 199 (text

200 set) most common words. We trained on 10,000 messages that were randomly selected from the

total data set. In the biological domain, we devised another synthetic dataset, which originates in

real biological data. We used gene expression data from (Spellman et al., 1998). The data describes

expression levels of 800 cell-cycle regulated genes, over 76 experiments (we return to this data in

Chapter 5). We learned a network from this dataset, and then sampled 5000 instances from the

learned network. We then used this synthetic dataset.

The results of these experiments are reported in Figure 4.3. As we can see, in the case of

100 attributes, by using the Score selection method with candidate sets of sizes 15, we can learn

networks that are reasonably close to the one found by greedy hill-climbing in about half the running

time. When we have 200 attributes, the speedup is larger than 3, and in the cell cycle domain (having

800 variables), the speedup is up to 3.5 fold (the Score selection method finishes in under 6000

seconds). We expect that as we consider data sets with larger number of attributes, this speedup

ratio will grow. The ratios between the number of statistics collected during the runs are similar

to the ratios of running time (data not shown). After the first iteration, where the initial O(N2)

statistics are collected, each iteration adds only a modest number of new statistics, since we only

calculate the measure for pairs of variables that initially had a significant mutual information. We

also note that the discrepancy measure has a slower learning curve than the score measure. This

might be due to better candidate selection of the score measure, which reflects the most in the first

iterations, where most changes take place.

4.1.5 Discussion

The “Sparse Candidate” algorithm offers a simple heuristic for improving search efficiency. By

restricting our search to examine only a small number of candidate parents for each variable, we can

find high-scoring networks efficiently. Furthermore, we showed that we can improve the choice of

the candidates by taking into account the network we learned, thus getting higher scoring networks.

We demonstrated both of these effects in our experimental section. These results show that our

procedure can lead to dramatic reduction in the learning time with a small loss of quality.

Second, we showed that by restricting each variable to a small group of candidate parents,

we can sometimes get theoretical guarantees on the complexity of the learning algorithm. This

result is of theoretical interest: to the best of our knowledge, this is the first non-trivial case for

which one can find a polynomial time learning algorithm for networks with in-degree greater than

4.2. LEARNING IN CONTINUOUS VARIABLE NETWORKS: THE “IDEAL PARENT” METHOD67

one. This theoretical argument might also have practical ramifications. As we showed, even if the

exact polynomial algorithm is too expensive, we can use it as a guide for finding good approximate

solutions.

In addition to the experimental results we describe here, the “Sparse Candidate” algorithm was

already applied in several other projects. In (Boyen et al., 1999), the sparse candidate method is

combined with the structural EM procedure (Friedman, 1997) for learning structure from incomplete

data. In that setup, the cost of finding statistics is much higher, since instead of counting number of

instances, we have to perform inference for each of the instances. As a consequence the reduction

in the number of requested statistics (as shown in our results) leads to significant saving in run

time. Similar cost issues occur in (Getoor et al., 1999), where a variant of the algorithm is used

for learning probabilistic models from relational databases. Finally, as we shall see inChapter 5,

this procedure is a crucial component in our analysis of real-life gene expression data that contains

thousands of attributes.

There are several directions for future research. When coming to learn a network over several

thousand variables, the cost of the initial Restrict step of the algorithm is prohibitive (since it is

quadratic in the number of variables). Developing heuristic methods for finding good candidates

would enable learning in such domains. Once we learn a network based on these candidates, we can

use it to help focus on other variables that should be examined in the next Restrict step. Another

direction of interest is the combination of our methods with other recent ideas for efficient learning

from large datasets, such as (Moore and Lee, 1997). Finally, the usage of the method on continuous

variable networks is currently limited only to the score measure. At the end of this chapter we point

at additional measures which can be tailored to specific conditional densities, and can also speed up

significantly the initial quadratic step.

4.2 Learning in Continuous Variable Networks: The “Ideal Parent”

Method

The “Sparse Candidate” algorithm presents a heuristic method for choosing candidate parents based

on conditional pairwise scores. In each iteration, however, we still have to perform greedy structure

search, though in a much more restricted space. Greedy search involves computing a family score

for each suggested edge change. This score computation, as we saw, can be costly in many cases.

Can we avoid the necessity to compute a full score? Can we estimate the score using a cheaper

computation?

In this section we focus on learning continuous variable networks, which are crucial for a wide

range of real-life applications. When we learn linear Gaussian networks (Geiger and Heckerman,

1994), we can use sufficient statistics to summarize the data, and a closed form equation to evaluate

the score of candidate families. In general, however, we are also interested in non-linear interactions.

These usually require non-linear parameter optimization to evaluate the score of a candidate family.

68 CHAPTER 4. STRUCTURE LEARNING METHODS

This severely limits the applicability of standard heuristic structure search procedures to rich non-

linear models.

We present a general method for speeding search algorithms for structure learning in continuous

variable networks. Our method can be applied to many forms of a unimodal parametric conditional

distribution, including the linear Gaussian model as well as many non-linear models. The ideas

are inspired from the notion of residues in regression (McCullagh and Nelder, 1989), and involve

the notion of “ideal parents”. For each variable, we construct an ideal parent profile of a new

hypothetical parent that would lead to the best possible prediction of the variable. We then use

this profile to efficiently select potential candidate parents that have a similar profile of values.

Using basic principles, we derive a similarity measure that can be computed efficiently and that

approximates the improvement in score that would result from the addition of a candidate hidden

parent. This provides us with a fast method for scanning many potential parents and focus more

careful evaluation (scoring) to a smaller number of promising candidates.

The ideal parent profiles we construct during search also provide new leverage on the problem

of introducing new hidden variables during structure learning. Basically, if the ideal parent profiles

of several variables are sufficiently similar, and are not similar to the profile of an existing variable

in the current model, we can consider adding a new hidden variable that serves as a parent of all

these variables. The ideal profile allows us to estimate the impact this new variable will have on

the score, and suggest the values it takes in each instance. And so, the method provides a guided

approach for introducing new variables during search and allows to contrast them with alternative

search steps in a computationally efficient manner.

4.2.1 The “Ideal Parent” Concept

Structure learning typically involves a traversal of a super-exponential search space. Even when us-

ing a greedy local search procedure, structure learning is extremely time consuming. This problem

is even more acute when considering parameterizations that require using non-linear optimization

for estimating the maximum likelihood parameters. Our goal in this section is to efficiently select

the approximately best candidate parent during the search procedure for Bayesian networks with

continuous variables, and to facilitate the addition of new and effective hidden variables into the

network structure. We start by characterizing the notion of an ideal parent that will enable us to do

so.

The basic idea is straightforward — for a given variable, we want to construct a hypothetical

“ideal parent” that would best predict the variable. We will then compare existing candidate parents

to this imaginary one and find the ones that are most similar. Throughout this discussion, we focus

on a single variable X that in the current network has parents U. To make our discussion concrete,

we focus on networks where we represent X as a function of its parents U = {U1, . . . , Uk} with

CPDs that have the following general form:

X = g(α1u1, . . . , αkuk : θ) + ε (4.2)

4.2. THE “IDEAL PARENT” METHOD 69

where g is a function that integrates the contributions of the parents with additional parameters θ, αi
that are scale parameters applied to each of the parents, and ε that is a noise random variable with

zero mean. In here, we assume that ε is Gaussian with variance σ2. In Section 4.2.4 we deal with

more general forms of noise modeling.

When the function g is the sum of its arguments, this CPD is the standard linear Gaussian CPD.

However, we can also consider non-linear choices of g. For example,

g(y1, . . . , yk : θ) ≡ θ1
1

1 + e−
P

i yi
+ θ0 (4.3)

is a sigmoid function where the response of X to its parents’ values is saturated when the sum is

far from 0. Both of these examples of CPDs are instances of generalized linear models (GLMs)

(McCullagh and Nelder, 1989). This class of CPDs uses a function g that is applied to the sum of

its arguments, called the link function in the GLM literature. However, we can also consider more

complex functions, as long as they are well defined for any desired number of parents. For example,

in Chapter 6 models based on chemical reactions are considered, where the function g does not have

a GLM form. An example of a two variable function of this type is:

g(y1, y2 : θ) = θ
y1y2

(1 + y1)(1 + y2)

With this definition for a CPD, we now can define the ideal parent for X.

Definition 4.2.1: Given a dataset D, and a mode function g for the CPD of X given its parents U
with parameters θ and α, the ideal parent Y of X is such that for each instance m,

x[m] = g(α1u1[m], . . . , αkuk[m], y[m] : θ) (4.4)

Under mild conditions, the ideal parent profile (i.e., value of Y in each instance) can be computed

for almost any unimodal parametric conditional distribution. The only requirement from g is that it

should be invertible w.r.t. each one of the parents.3

The resulting profile for the ideal parent Y is the optimal set of values for the k + 1’th parent,

in the sense that it would maximize the likelihood of the child variable X. Intuitively, if we can

efficiently find a candidate parent that is similar to the optimal parent, we can improve the model by

adding an edge from this parent to X.

We now develop the computation of the similarity measure between the ideal profile and a

candidate parent for the case of a linear Gaussian distribution. InSection 4.2.2 we describe how to

use this measure to perform the actual search.

3In Definition 4.2.1 we implicitly assume x[m] lies in the image of g. If this is not the case, we can substitute x[m]
with xg[m], the point in g’s image closest to x[m]. This guarantees the prediction’s mode for the current set of parents
and parameters is as close as possible to X.

70 CHAPTER 4. STRUCTURE LEARNING METHODS

Linear Gaussian

Let X be a variable in the network with a set of parents U, and a linear Gaussian conditional

distribution. In this case, g in Eq. (4.2) takes the form

g(α1u1, . . . , αkuk : θ) ≡
∑

i

αiui + θ0

In using the BIC score (see Section 2.4.3), whenever we consider a change in the structure, such

as adding Z as a new parent of X whose current parents are U, we need to compute the change in

likelihood

∆X|U(Z) = max
θ′

�X(D : U ∪ {Z}, θ′)− �X(D : U, θ)

where θ is the current maximum likelihood parameters for the family. The change in the BIC score

is this difference combined with the change in penalty terms. To evaluate this difference, we need

to compute the maximum likelihood parameters of X given the new choice of parents. In the “ideal

parent” approach we use a fast method for choosing the promising candidates for additional parent,

and then compute the BIC score only for these candidates. This reduces the time complexity of the

scoring step.

To choose promising candidate parents to add, we start by computing the ideal parent Y for X

given its current set of parents. This is done by inverting the linear link function g with respect to this

additional parent Y (note that we can assume, without loss of generality, that the scale parameter of

Y is 1). This results in

y[m] = x[m]−
∑

j

αjuj[m]− θ0 (4.5)

We can summarize this in vector notation, by using �x = 〈x[1], . . . , x[M]〉, and so we get

�y = �x− U�α

where U is the matrix of the parent values on all instances, and �α is the vector of scale parameters.

Having computed the ideal parent profile, we now want to efficiently evaluate its similarity to

profiles of candidate parents. Intuitively, we want the similarity measure to reflect the likelihood

gain by adding Z as a parent of X. Ideally, we want to evaluate ∆X|U(Z) for each candidate parent

Z . However, instead of reestimating all the parameters of the CPD after adding Z as a parent, we

approximate this difference by only fitting the scaling factor associated with the new parent and

freezing all other parameters of the CPD.

Proposition 4.2.2 Suppose that X has parents U with a set �α of scaling factors. Let Y be the ideal

parent as described above, and Z be some candidate parent. Then the change in likelihood of X in

the data, when adding Z as a parent of X, while freezing all parameters except the scaling factor

4.2. THE “IDEAL PARENT” METHOD 71

of Z , is

C1(�y, �z) ≡ max
αZ

�X(D : U ∪ {Z}, θ ∪ {αZ})− �X(D : U, θ)

=
1

2σ2

(�y · �z)2

�z · �z

Proof: We can write the difference in log-likelihood after and before the addition of the parent p as

(with the α’s of the other parents held fixed):

log P (�x|U , �z, αz)− log P (�x|U) =
1

2σ2
�y · �y − 1

2σ2
(�y · �y − 2αz�z · �y + α2

z�z · �z)

=
1

2σ2

[
2αz�z · �y + α2

z�z · �z
]

The first equality follows from the substitution of �y as defined in Eq. (4.5). After substituting

αz with its maximum likelihood estimate which is �z·�y
�z·�z , we get the desired result.

Note that by definition of Y , the maximum likelihood estimator of σ2 is 1
M �y ·�y.4 If we substitute

it in the definition of C1, we get an intuitive result:

C1(�y, �z) =
M

2
(�y · �z)2

(�z · �z)(�z · �z)
=

M

2
cos2 φ�y,�z

where φ�y,�z is the angle between �y and �z. The smaller the angle between these two vectors, the

higher the similarity, regardless of their norms: It can easily be shown that �z = c�y (for any constant

c) maximizes this similarity measure.

Note that C1(�y, �z) is a lower bound on ∆X|U(Z), the improvement on the log-likelihood by

adding Z as a parent of X. When we add the parent we optimize all the parameters, and so we

expect to attain a likelihood as high, or higher, than the one we attain by freezing some of the

parameters. This is illustrated in Figure 4.4(a) that plots C1 vs. the true likelihood improvement for

several thousand edge modifications.

We can get a better lower bound by optimizing additional parameters. In particular, after adding

a new parent, the errors in predictions change, and so we can readjust the variance term. As it turns

out, we can perform this readjustment in closed form.

Proposition 4.2.3 Suppose that X has parents U with a set �α of scaling factors. Let Y be the ideal

parent as described above, and Z be some candidate parent. Then the change in likelihood of X in

the data, when adding Z as a parent of X, while freezing all other parameters except the variance

4We choose to use σ2 explicitly in the definition of C1 for compatibility with the developments below.

72 CHAPTER 4. STRUCTURE LEARNING METHODS

of X, is

C2(�y, �z) ≡ max
αZ ,σ

�X(D : U ∪ {Z}, θ ∪ {αZ})− �X(D : U, θ)

= −M

2
log sin2 φ�y,�z

Proof: The maximum likelihood estimator of the new variance parameter is:

σ2
z =

1
M

∑
m

(x[m]− g(u[m], αzz[m])2

=
1
M

(αz�z − �y) · (αz�z − �y)

=
1
M

(
�y · �y − (�z · �y)2

�z · �z
)

The second equality comes from plugging in the definition of �y, and the third from incorporating

the maximum likelihood estimate of αz . The log likelihood difference is therefore:

log P (�x|U , �z;αz , σz)− log P (�x|U ;σ) = −M log(σz) + M log(σ)− M

2
+

M

2

= −M

2
log
(

�y · �y − (�z · �y)2

�z · �z
)

+
M

2
log(�z · �z)

=
M

2
log

1

1− (�z·�y)2

(�z·�z)(�y·�y)

The last two terms after the first equality are the sum of squares terms after we have substituted both

σ and σz with their maximum likelihood estimates. In the second equality we have plugged those

estimators in the first two terms. The result follows immediately from the last equality.

We can easily show that

C1(�y, �z) ≤ C2(�y, �z) ≤ ∆X|U(Z)

due to the set of parameters we optimize in each quantity. As seen in Figure 4.4 C2 is clearly a

tighter bound than C1, particularly for promising candidates. It is important to note that both C1

and C2 are monotonic functions of (�y·�z)2

�z·�z , and so they consistently rank candidate parents of the

same variable. When we compare changes that involve different ideal parents, such as adding a

parent to X1 compared to adding a parent to X2, the ranking by these two measures might differ.

4.2. THE “IDEAL PARENT” METHOD 73

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

S
im

ila
rit

y

∆ Score
0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

S
im

ila
rit

y

∆ Score

(a) C1 score (b) C2 score

Figure 4.4: Demonstration of the C1 (a) and C2 (b) similarity measures for linear Gaussian CPDs.
The similarity measures (y-axis) are shown against the change in log likelihood resulting from
the corresponding edge modifications (x-axis). Points shown correspond to several thousand edge
modifications in a run of the ideal parent method on real-life yeast gene expressions data.

4.2.2 Ideal Parents in Search

The technical developments of the previous section show that we can approximate the score of

candidate parents for X by comparing them to the ideal parent Y . Is this approximate evaluation

useful? We now discuss two ways of using this approximation during structure search.

Guiding Heuristic Search

When performing a local heuristic search, at each iteration we have a current candidate structure and

we consider some operations on that structure. These operations might include edge addition, edge

replacement, edge reversal and edge deletion. We can readily use the ideal profiles and similarity

measures developed to speed up two of these: edge addition and edge replacement. These two

modification form the bulk of edge changes considered by a typical search algorithm, since edge

deletions and reversals can only be applied to the relatively small number of existing edges.

When considering adding an edge Z → X, we use the ideal parent profile for X and compute

its similarity to Z . We repeat this for every other candidate parent for X. We then compute the

full score only for the K most similar candidates, and insert them (and the associated change in

score) to a queue of potential operations. In a similar way, we can utilize the ideal parent profile

for considering edge replacement for X. Suppose that Z is a parent of X. We can define the ideal

profile for replacing Z while freezing all other parameters of the CPD of X. The difference here

is that for each current parent of X we compute a separate ideal profile - one corresponding to

replacement of that parent with a new one. We then use the same policy as above for examining

74 CHAPTER 4. STRUCTURE LEARNING METHODS

replacement of each one of the parents.

We note that we can tradeoff between the accuracy of our move evaluations and the speed of the

search, by changing K, the number of candidate changes per family for which we compute a full

score. Using K = 1, we only score the best candidate according to the ideal parent method ranking,

thus achieving the largest speedup. Since our ranking only approximates the true score difference,

this strategy might miss good moves. Using higher values of K brings us closer to the standard

search both in terms of move selection quality but also in terms of computation time.

In the experiments in Section 4.2.5, we integrated the changes described above into a greedy

hill climbing heuristic search procedure. This procedure also examines moves that remove an edge,

which we evaluate in the standard way. The greedy hill climbing procedure applies the best available

move at each iteration (among these that were chosen for full evaluation).

Adding New Hidden Variables

One of the hardest challenges in learning graphical models is dealing with hidden variables. Such

variables pose several problems, the hardest of which is detecting when and how should one add

a new hidden variable into the network structure. When we learn networks in a domain with a

large number of variables, and each hidden variable influences a relatively small subset of these

variables, this becomes a major issue (see, e.g., Elidan and Friedman, 2003; Elidan et al., 2001;

Martin and VanLehn, 1995; Zhang, 2002).

The ideal parent profiles provide a straightforward way to find when and where to add hidden

variables to the domain. The intuition is fairly simple: if the ideal parents of several variables are

similar to each other, then we know that a similar input is predictive of all of them. Moreover, if we

do not find a variable in the network that is close to these ideal parents, then we can consider adding

a new hidden variable that will serve as their combined input, and, in addition, have an informed

initial estimate of its profile.

When introducing a new hidden variable Z , it can be connected as a parent to any subset, or

cluster, of the variables. Ideally, we would like it to be beneficial for several children at once. The

difference in log-likelihood due to adding a new parent with profile �z is the difference between the

log-likelihood of families it is involved in:

∆X1,...,XL
(Z) =

L∑
i

∆Xi|Ui
(Z)

where we assume, without loss of generality, that the members of the cluster are X1, . . . ,XL. To

score the network with Z as a new hidden variable, we also need to deal with the difference in the

complexity penalty term, and the likelihood of Z as a root variable. These terms, however, can be

readily evaluated. The difficult term is finding the profile �z that maximizes ∆X1,...,XL
(Z).

4.2. THE “IDEAL PARENT” METHOD 75

Using the ideal parent approximation, we can lower bound this improvement:

∆X1,...,XL
(Z) ≥

L∑
i

C1(�yi, �z) ≡
∑

i

1
2σ2

i

(�z · �yi)2

�z · �z (4.6)

and so we want to find the profile �z that maximizes this bound. We will then use this optimized

bound as our cluster score, and search for the best cluster for connecting Z . Rewriting the last

expression from Eq. (4.6) in matrix notation, we want to find �z∗ that maximizes

�z∗ = arg max
�z

�zTYYT�z

�zT�z
(4.7)

where Y is the matrix whose columns are yi/σi.

It is easy to see that �z∗ must lie in the span of Y: any component orthogonal to this span

increases the denominator of Eq. (4.7), but leaves the numerator unchanged, and therefore does not

obtain a maximum. We can therefore express the solution as:

�z∗ =
∑

i

λiyi/σi = Y�λ (4.8)

Furthermore, the objective in Eq. (4.7) is known as the Rayleigh quotient of the matrix YYT

and the vector �z, and its optimum is achieved when �z equals the eigenvector of YYT corresponding

to the largest eigenvalue (Wilkinson, 1965). We can express this eigenvector problem as follows:

YYT �z∗ = γ �z∗

Plugging in Eq. (4.8) we get:

YYTY�λ = γY�λ

Multiplying both sides by YT and defining A ≡ YTY , we can write:

AA�λ = γA�λ

We can now either solve this reduced generalized eigenvalue problem directly, or, if A is non-

singular , we can multiply both sides by A−1 and end up with a simple eigenvalue problem:

A�λ = γ�λ

which is easy to solve as the dimension of A is L, the number of variables in the cluster, which is

typically relatively small. Once we find the L dimensional eigenvector λ∗ with the largest eigenvalue

γ∗, we can express with it the desired parent profile �z∗.

76 CHAPTER 4. STRUCTURE LEARNING METHODS

We can get a better bound of ∆X1,...,XL
(Z) if we use C2 similarity rather than C1. Unfortu-

nately, optimizing the profile �z with respect to this similarity measure is a harder problem that is

not solvable in closed form. Since the goal of the cluster identification is to provide a good starting

point for the following iterations that will eventually adapt the structure, we use the closed form

solution for Eq. (4.7). Note that once we optimized the profile z using the above derivation, we

can still use the C2 similarity score to provide a better bound on the quality of this profile as a new

parent for X1, . . . ,XL.

Now that we can approximate the benefit of adding a hidden variable to a cluster of variables,

we still need to consider different clusters to find the most beneficial one . As the number of clusters

is exponential, we adapt a heuristic agglomerative clustering approach (Duda and Hart, 1973, e.g.,)

to explore different clusters. We start with each ideal parent profile as an individual cluster and at

each point we merge the two clusters that lead to the best expected improvement in the BIC score

(combining the above approximation with the change in penalty terms). This procedure potentially

involves O(N3) merges, where N is the number of variables. We save much of the computations

by pre-computing the matrix YTY only once, and then using the relevant sub-matrix in each merge

In practice, the time spent in this step is insignificant in the overall search procedure.

Learning with Missing Values

Once we consider learning structure with hidden variables, we have to deal with the issue of miss-

ing values while considering subsequent structure changes. Similar considerations can arise if the

dataset contains partial observations of some of the variables.

To deal with this problem, we use an Expectation Maximization approach (Dempster et al.,

1977) and its application to network structure learning (Friedman, 1997). At each step in the search

we have a current network that provides an estimate of the distribution that generated the data, and

use it to compute a distribution over possible completions of the data. Instead of maximizing the

BIC score, we attempt to maximize the expected BIC score

IEQ[BIC (D, G) | Do] =
∫

Q(Dh | Do)BIC (D, G)dDh

where Do is the observed data, Dh is the unobserved data, and Q is the distribution represented by

the current network. As the BIC score is a sum over local terms, we can use linearity of expectations

to rewrite this objective as a sum of expectations, each over the scope of a single CPD. This implies

that when learning with missing values, we need to use the current network to compute the posterior

distribution over the values of variables in each CPD we consider. Using these posterior distributions

we can estimate the expectation of each local score, and use them in standard structure search

(discussed above). Once the search algorithm converges, we use the new network for computing

expectations and reiterate until convergence (see (Friedman, 1997)).

How can we combine the ideal parent method into this structural EM search? Since we do not

necessarily observe neither X nor all of its parents, the definition of ideal parent cannot be applied

4.2. THE “IDEAL PARENT” METHOD 77

directly. Instead, we define the ideal parent to be the profile that will match the expectations given

Q. That is, we choose y[m] so that

IEQ[x[m] | Do] = IEQ[g(α1u1[m], . . . , αkuk[m], y[m] : θ) | Do]

In the case of linear Gaussian CPDs, this implies that

�y = IEQ[�x | Do]− IEQ[U | Do]�α

Once we define the ideal parent, we can use it to approximate changes in the expected BIC

score (given Q). For the case of linear Gaussian, we get terms that are similar to C1 and C2 of

Proposition 4.2.2 and Proposition 4.2.3, respectively. The only change is that we apply the simi-

larity measure on the expected value of �z for each candidate parent Z . This is in contrast to exact

evaluation of IEQ

[
∆X|UZ | Do

]
, which requires the computation of the expected sufficient statistics

of U, X, and Z .

To facilitate efficient computation of the expectations, we adopt an approximate variational

mean-field form (e.g., Jordan et al., 1998; Murphy and Weiss, 1999) for the posterior. This ap-

proximation is used both for the ideal parent method and the standard greedy approach used in

Section 4.2.5. This results in computations that require only the first and second moments for each

instance z[m], and thus can be easily obtained from Q.

Finally, we note the structural EM iterations are still guaranteed to converge to a local maximum.

In fact, this does not depend on the fact that C1 and C2 are lower bounds of the true change to the

score, since these measures are only used to pre-select promising candidates which are scored before

actually being considered by the search algorithm. Indeed, the ideal parent method is a modular

structure candidate selection algorithm and can be used as a black-box by any search algorithm.

4.2.3 Non-linear CPDs

We now turn to dealing with the case of non-linear CPDs. In the class of CPDs we are considering,

this non-linearity is mediated by the function g, which we assume here to be invertible. Examples

of such function include the sigmoid function shown inEq. (4.3) and hyperbolic functions that are

suitable for modeling gene transcription regulation, such as we develop inChapter 6, among many

others. When we learn with non-linear CPDs, parameter estimation is harder. To evaluate a potential

parent Z for X we have to perform non-linear optimization (e.g., conjugate gradient) of all of the

α coefficients of all parents as well as other parameters of g. In this case, a fast approximation can

boost the computational cost of the search significantly.

As in the case of linear CPDs, we compute the ideal parent profile �y by inverting g (We assume

that the inversion of g can be performed in time that is proportional to the calculation of g itself as

is the case in CPDs considered above.) Suppose we are considering the addition of a parent to X in

addition to its current parents U, and that we have computed the value of the ideal parent y[m] for

78 CHAPTER 4. STRUCTURE LEARNING METHODS

0

1

g
(z

)

0.5

y(0.5)
-4 -2 0 2 4

0

1

g
(z

)

0.5

0

1

g
(z

)

0

1

g
(z

)

0.5

y(0.5)
-4 -2 0 2 4-4 -2 0 2 4 0

1

g
(z

)

y(0.85)
-4 -2 0 2 40

1

g
(z

)

0

1

g
(z

)

y(0.85)
-4 -2 0 2 4

y(0.85)
-4 -2 0 2 4-4 -2 0 2 4

(a) x = 0.5 (b) x = 0.85

0

2

-4 -2 0 2 4

P
(X

=0
.5

|Z
)

z

Exact
Approx

0

2

-4 -2 0 2 4

P
(X

=0
.5

|Z
)

0

2

-4 -2 0 2 4

P
(X

=0
.5

|Z
)

z

Exact
Approx
Exact
Approx

z
0

2

-4 -2 0 2 4

P
(X

=0
.8

5|
Z

)

z
0

2

-4 -2 0 2 4

P
(X

=0
.8

5|
Z

)

z
0

2

-4 -2 0 2 4

P
(X

=0
.8

5|
Z

)

(c) x = 0.5 (d) x = 0.85

Figure 4.5: Likelihood approximations for a non linear CPD. The top plots show the sigmoid func-
tion g(z), and a linear approximation of it around y = g−1(0.5) = 0 (a) and y = g−1(0.85) (b). The
bottom plots show the resulting Gaussian approximation to the likelihood P (X|Z). Exact functions
are shown in red; Approximations are shown in blue.

each sample m by inversion of g. Now consider a particular candidate parent Z whose value at the

m’th instance is Z[m]. How will the difference between the ideal value and the value of Z reflect

in prediction of X for this instance?

In the linear case, the difference z[m] − y[m] translated through g to a prediction error. In the

non-linear case, the effect of difference on predicting X depends on other factors, such as the values

of the other parents, despite the fact that their parameters are held fixed: Consider again the sigmoid

function g of Eq. (4.3). If the sum of the arguments to g are close to 0, then g locally behaves like

a sum of its arguments. On the other hand, if the sum is far from 0, the function is in one of the

saturated regions, and big differences in the input almost do not change the prediction.

Our solution to this problem is to approximate g by a linear function around the value we predict.

We use a first-order Taylor expansion of g around the value of �y and write

g(u, �z) ≈ g(u, �y) + (�z − �y)
∂g(u, �y)

∂�y

As a result, the “penalty” for a distance between �z and �y depends on the gradient of g at the particular

value of �y, given the value of the other parents. In instances where the derivative is small, larger

deviations between y and z have little impact on the likelihood of X, and in other instances where

the derivative is large, the same deviations may lead to worse likelihood. Figure 4.5 shows the

4.2. THE “IDEAL PARENT” METHOD 79

linear approximation for a sigmoid function with a single parent, Z , for two values of the dependent

variable X. When x = 0.5, the value of the ideal parent is y = g−1(0.5) = 0. The derivative of g

around this point is the highest, and the approximation of P (X|Z) is sensitive to small changes in z.

On the other hand, the linear approximation is the best at this point, and so even when the deviation

of z from y is large, the likelihood approximation is still good. When x = 0.85, the gradient at the

corresponding y value is smaller, and the sensitivity to the deviations is smaller. As we can see, the

quality of likelihood approximation is not as good for this point.

With this linear approximation, we can develop similarity measures that parallel the develop-

ments for the linear case. There are two main differences. First, due to the use of Taylor expansion,

we can no longer prove that these are underestimates of the likelihood. Second, due to the differ-

ent value of the gradient at different instances, the contribution of distance at each instance will be

weighted differently.

Proposition 4.2.4 Suppose that X has parents U with a set �α of scaling factors. Let Y be the ideal

parent as described above, and Z be some candidate parent. Then the change in log-likelihood of X

in the data, when adding Z as a parent of X, while freezing all other parameters, is approximately

C1(�y � g′(y), �z � g′(y))− 1
2σ2

(c1 − c2). (4.9)

where g′(y) is the vector whose m’th component is ∂g(�αu, y)/∂y |u[m],y[m], and � denotes component-

wise product. Similarly, if we also optimize the variance, then the change in log-likelihood is ap-

proximately

C2(�y � g′(y), �z � g′(y))− M

2
log

c1

c2
(4.10)

In both cases,

c1 = (�y � g′(y)) · (�y � g′(y)) ; c2 = (�x− g(u)) · (�x− g(u))

do not depend on �z.

Thus, we can use exactly the same measures as before, except that we “distort” the geometry

with the weight vector g′(y) that determines the importance of different instances. Instances where

the gradient is higher have a higher weight. These instances are more sensitive to the value of z,

but the likelihood approximation for them is more accurate, as we have seen. In this sense, the

weighting also compensates for inaccuracies caused by the approximation.

To approximate the likelihood difference, we also add the correction term which is a func-

tion of c1 and c2. This correction is not necessary when comparing two candidates for the same

family, but is required for comparing candidates from different families, or when adding hidden

values. Note that if g is linear then the correction term vanishes altogether andProposition 4.2.2

and Proposition 4.2.3 are recovered.

80 CHAPTER 4. STRUCTURE LEARNING METHODS

We can now efficiently perform the ideal add and replace steps in the structure search. The

complexity is again O(M(d − 1)) for computing the ideal profile and O(KM) for computing the

similarity measure for each candidate parent. As before, the significant gain in speed is that we

only perform few parameter optimizations (that are expected to be costly as the number of parents

grows), rather than O(N) such optimizations.

Adding a new hidden variable with non-linear CPDs introduces further complication. We want

to use, similarly to the case of a linear model, the structure score ofEq. (4.6) with the distorted C1

measure. Optimizing this measure has no closed form solution in this case and we need to resort

to an iterative procedure or an alternative approximation. In here, we approximateEq. (4.9) with a

form that is similar to the linear Gaussian case, with the “distorted” geometry of �y.

4.2.4 Other Noise Models

Up to now we have only handled CPDs where the uncertainty is modeled using an additive Gaussian

term. In some cases we wish to use different forms of noise. For example, as we discussed in

Chapter 1, the biological processes related to regulation as well as the related measurement methods

have many noise components which are multiplicative. Such a noise process can be modeled using

CPDs of the form

X = g(α1u1, . . . , αkuk : θ)(1 + ε) (4.11)

where, as in Eq. (4.2) ε is a zero mean noise random variable. Another popular choice for modeling

multiplicative noise is the log-normal form:

log(X) = log(g(α1u1, . . . , αkuk : θ)) + ε (4.12)

that is, the log of the random variable is distributed normally. In this section we try to general-

ize the concepts introduced so far to such general CPD forms, and present explicit results for the

multiplicative noise CPD of Eq. (4.11).

Let us first denote the conditional density function of X in the following general form:

P (X | U) = q(X; g(α1u1[m], . . . , αkuk[m] : θ), φ)

where g is the link function as before, and φ denotes parameters of the “noise” part of the function

(e.g. variance parameters). In the additive case of Eq. (4.2) we have q = N (X; g, σ2). In the

multiplicative case above we have q = N (X; g, (gσ)2). We first note that in some unimodal CPD

forms, like the multiplicative noise CPD, g is not the actual mode of q. Since our motivation in

defining the ideal parent profile �y is to maximize the likelihood of the child variable instances �x, we

now redefine it in a more generalized way:

Definition 4.2.5: Given a dataset D, and a CPD P (X;U) = q(X; g(U), φ) for X given its parents

4.2. THE “IDEAL PARENT” METHOD 81

U with parameters θ, α and φ, the ideal parent Y of X is such that for each instance m,

∂q(x[m]; g)
∂g

∣∣∣∣
g=g(α1u1[m],...,αkuk[m],y[m]:θ)

= 0 (4.13)

That is, �y is the vector which makes g(u, �y) maximize the likelihood of the child variable at each

instance. Since ∂q
∂y = ∂q

∂g
∂g
∂y = 0, this definition also means that the ideal parent maximizes the

likelihood w.r.t. the values of a new parent. We note that in case the distribution is a simple Gaussian

with whatever form of g, this definition coincides with Definition 4.2.1. Of course, the definition is

useful only if �y can be extracted efficiently fromEq. (4.13).

The new definition motivates us to use a different approximation than before when computing

the score difference. We now choose to approximate the log likelihood function directly around �y.

As we shall see, for the case of additive Gaussian noise modeling, the results coincide with those

obtained when approximating g. The second order approximation is:

log P (�x | u, αzz) ≈ log P (�x | u, y) + (αz�z − �y) · ∂ log P (�x | u, �y)
∂�y

+
1
2
(αz�z − �y)T H(αz�z − �y)

where H is the Hessian matrix of log P (�x | u, �z) at the point αz�z = �y. The first order term vanishes

since as we noted ∂q
∂y = 0, which implies also ∂ log(q)

∂y = 0. Using the chain rule, we can derive the

expression for the Hessian:

Hm,n =
∂2 log P (�x | u, �y)

∂y[m]∂y[n]

= δmn
1
q2
m

(
−
(

∂qm

∂gm

∂gm

∂y[m]

)2

+ qm

{
∂2qm

∂gm
2

(
∂gm

∂y[m]

)2

+
∂qm

∂gm

∂2gm

∂y[m]2

})

where we used the abbreviations gm ≡ g(u[m], y[m]) and qm ≡ q(x[m]; gm). The Hessian matrix

is always diagonal, since each term in the log likelihood involves y[m] from a single sample m.

After eliminating terms involving ∂q
∂g , the Hessian simplifies to:

Hm,n = δmn
1

qm

∂2qm

∂gm
2

(
g′m
)2

where g′m ≡ ∂gm

∂y[m] , and the approximation equation boils down to:

log P (�x | u, αz�z) ≈ log P (�x | u, �y) +
1
2

∑
m

(αzz[m]− y[m])2

qm

∂2qm

∂gm
2

(
g′m
)2

(4.14)

As in the linear Gaussian case, we managed to write the likelihood difference using some distance

between the new parent αz�z and the ideal parent �y, and as in the non-linear case, this distance is

82 CHAPTER 4. STRUCTURE LEARNING METHODS

deformed by different weighting for different samples. Using this deformation, we can define the

C1 measure for the generalized CPD case similarly to previous definitions:

Proposition 4.2.6 Suppose that X has parents U with a set �α of scaling factors. Let Y be the

ideal parent as defined in Eq. (4.13), and Z be some candidate parent. Then the change in log-

likelihood of X in the data, when adding Z as a parent of X, while freezing all other parameters,

is approximately

C1(�y, �z) ≈ log P (�x | u, �y)−max
αZ

1
2
K(αz�z − �y, αz�z − �y)− log P (�x | u)

= log P (�x | u, �y)− 1
2
K(�y, �y) +

1
2

(K(�y, �z))2

K(�z, �z)
− log P (�x | u)

where K(., .) is an inner product of two vectors defined as:

K(�a,�b) =
∑
m

a[m]b[m]
−1
qm

∂2qm

∂gm
2

(
g′m
)2

The first equation follows directly from Eq. (4.14), and the second one follows from replacing αz

with its maximum likelihood estimator, which is K(�y,�z)
K(�z,�z) . The inner product K entails the deforma-

tion for the general case: The factor (g′m)2 weights each vector by the gradient of g, as explained

in Section 4.2.3. The new factor −1
qm

∂2qm

∂gm
2 measures the sensitivity of qm to changes in gm for each

instance. Since we are dealing with a maximum point of qm, this factor is always positive. In the

Gaussian noise models we have considered in the previous sections, it equals a constant: 1
σ2 . In

non-Gaussian models, this sensitivity can vary between instances.

It is easy to see the generalized definition of C1 coincides with the two previous ones given

for linear and for non-linear Gaussian CPDs: For a linear Gaussian CPD we have g′m = 1, and

so K(�a,�b) = 1
σ2�a ·�b. All terms which do not depend on �z cancel out in this case, resulting in our

original definition of C1 from Proposition 4.2.2. For the non-linear Gaussian case, we get K(�a,�b) =
1
σ2 (�a � g′(y)) · (�b � g′(y)), and the original form of Proposition 4.2.4 is obtained. The power of the

new definition is that it is applicable to any link function and unimodal noise model. The difference

between different distributions and different link functions will be in the form of the derivatives

inside the kernel function K, and in the additional log P terms. We note that we cannot give a

similarly general expression for C2, since it requires optimizing both σ and αz simultaneously. The

solution to this problem depends on the form of the distribution.

We now solve the case of the multiplicative noise density ofEq. (4.11). First, let’s write it in an

explicit density form:

P (x | u) =
1√

2Πσ|g(u)| exp

(
− 1

2σ2

(
x

g(u)
− 1
)2
)

4.2. THE “IDEAL PARENT” METHOD 83

To avoid singularity, we will restrict the values of g to be positive. The partial derivatives of qm are:

∂qm

∂gm
=

[
− 1

gm
+

1
σ2

(
x

gm
− 1
)

x

g2
m

]
qm

∂2qm

∂gm
2

=
[
− 1

gm
+

1
σ2

(
x

gm
− 1
)

x

g2
m

]2

qm +
[

1
g2
m

+
1
σ2

(
x

gm
− 1
) −2x

g3
m

− 1
σ2

x2

g4
m

]
qm

By definition of �y the first derivative zeros out, and so:

− 1
gm

+
1
σ2

(
x

gm
− 1
)

x

g2
m

= 0 (4.15)

which results in the following requirement for �y:

g(α1u1[m], . . . , αkuk[m], y[m] : θ) = x[m]
−1 +

√
1 + 4σ2

2σ2
(4.16)

(The negative solution is discarded due to the constraint g > 0). Note that now the link function

should equal a scaled version of x[m]. We can now extract y[m] as before by inverting gm.

The remaining terms for the second derivative are:

∂2q

∂g2
=

[
1
g2
− 1

σ2

(
x

g
− 1
)

2x
g3
− 1

σ2

x2

g4

]
q

= − 1
g2

[
1 +

1
σ2

x2

g2

]
q

= − 1
g2

kσq

The second equation comes from substituting inEq. (4.15) and the third equation from plugging in

Eq. (4.16), where kσ is a positive constant function of σ. We can now express K similarly to the

dot product expressions we used before:

K(�a,�b) = kσ(�a �
g′(y)
g(y)

) · (�b �
g′(y)
g(y)

) (4.17)

where g′(y)
g(y) is the vector whose m’th component is g′m

gm
. This weighting is similar to the one we

used for the non-linear Gaussian case, but additionally scales down each instance m by gm. This

has an intuitive explanation: Since in the multiplicative density the noise level is expected to go up

with g, this rescaling brings all samples to the same noise scale.

84 CHAPTER 4. STRUCTURE LEARNING METHODS

100 1000

−1.2

−1.1

−1

Tr
ai

n

Greedy
Ideal K=2
Ideal K=5

100 1000
−1.8

−1.6

−1.4

−1.2

−1

−0.8

Te
st

(a) (b)

100 1000
0

0.2

0.4

0.6

0.8

Re
ca

ll

100 1000
0

0.5

1

1.5

To
ta

l

(c) (d)

Figure 4.6: Evaluation of using Ideal search on synthetic data with 44 variables. We compare Ideal
search with K = 2 (dashed) and K = 5 (solid), against the standard Greedy procedure (dotted).
The figures show, as a function of the number of instances (x-axis), for linear Gaussian CPDs: (a)
average training log likelihood per instance per variable; (b) same for test; (c) percent of true edges
obtained in learned structure; (d) total number of edges learned as percent of true number.

For completeness, we write the additional log P terms in the expression of C1 for the multi-

plicative density:

log P (�x | u, �y)− log P (�x | u) = −
∑

log(σ′g(u[m], y[m])) +
∑

log(σg(u[m])) −
1

2σ′2
∑

(
x[m]

g(u[m], y[m])
− 1)2 +

1
2σ2

∑
(

x[m]
g(u[m])

− 1)2

= −M log
−1 +

√
1 + 4σ′2

2σ′ −
∑

log x[m] +
∑

log σg(u[m]) −
M

2σ′2

(
2σ′2

−1 +
√

1 + 4σ′2 − 1
)2

+
1

2σ2

∑
(

x[m]
g(u[m])

− 1)2

where σ′ denotes the new variance parameter. For C1 it is the same as σ. For C2, in this case there

is no closed form solution for the joint optimization problem. A possible alternative is to optimize

αz and σ′ iteratively.

4.2. THE “IDEAL PARENT” METHOD 85

100 1000

−0.6

−0.4

−0.2

0

Tr
ai

n

Greedy
Ideal K=2
Ideal K=5

100 1000
−1

−0.8

−0.6

−0.4

−0.2

0

Te
st

(a) (b)

100 1000
0

0.2

0.4

0.6

0.8

Re
ca

ll

100 1000
0

0.5

1

1.5

To
ta

l

(c) (d)

Figure 4.7: Same as Figure 4.6, for Sigmoid CPDs.

4.2.5 Experimental Evaluation

We now examine the impact of the ideal parent method in two settings. In the first setting, we use

this method for pruning the number of potential moves that are evaluated by greedy hill climbing

structure search. We apply this learning procedure to complete data (and data with some missing

values) to learn dependencies between the observed variables. In the second setting, we use the ideal

parent method as a way of introducing new hidden variables, and also use it as a guide to reduce

the number of evaluations when learning structure that involves hidden variables and observed ones

with a Structural EM search procedure.

In the first setting, we applied standard greedy hill climbing search (Greedy) and greedy hill

climbing supplemented by the ideal parent method as discussed inSection 4.2.2 (Ideal). In using

the ideal parent method, we used the C2 similarity measure (Section 4.2.1) to rank candidate edge

additions and replacements, and then applied full scoring only to the top K ranking candidates per

variable.

To evaluate the impact of the method, we start with a synthetic experiment where we know the

true underlying network structure. In this setting we can evaluate the magnitude of the performance

cost resulting from the approximation we use. We used a network learned from real data (see below)

with 44 variables. From this network we can generate datasets of different sizes and apply our

method with different values of K. Figure 4.6 and Figure 4.7 compare the ideal parent method and

the standard greedy procedure for linear Gaussian CPDs and Sigmoid CPDs. Using K = 5 is, as

we expect, closer to the performance of the standard greedy method both in terms of training set and

86 CHAPTER 4. STRUCTURE LEARNING METHODS

Ideal K = 2 vs Greedy Ideal K = 5 vs Greedy
Dataset N M train test edges moves eval speed train test edges moves eval speed

Linear Gaussian
AA full 44 173 -0.024 0.006 87.1 96.5 3.6 2 -0.008 0.007 94.9 96.5 9.3 2
AA full Cond 173 44 -0.038 0.082 92.2 92.6 1.2 2 -0.009 0.029 96.9 98.2 2.9 2
Met full 89 173 -0.033 -0.024 88.7 91.5 1.6 3 -0.013 -0.016 94.5 96.9 4.4 2
Met full Cond 173 89 -0.035 -0.015 91.3 98.0 1.0 2 -0.007 -0.023 98.9 98.5 2.4 2

Linear Gaussian with missing values
AA 354 173 -0.101 -0.034 81.3 95.2 0.4 5 -0.048 -0.022 90.7 96.0 0.9 5
AA Cond 173 354 -0.066 -0.037 74.7 87.5 0.4 14 -0.033 -0.021 86.3 101.1 1.6 11

Sigmoid
AA full 44 173 -0.132 -0.065 49.7 59.4 2.0 38 -0.103 -0.046 60.4 77.6 6.1 18
AA full Cond 173 44 -0.218 0.122 62.3 76.7 1.0 36 -0.150 0.103 73.7 79.4 2.3 21
Met full 89 173 -0.192 -0.084 47.9 58.3 0.9 65 -0.158 -0.059 56.6 69.8 2.6 29
Met full Cond 173 89 -0.207 -0.030 60.5 69.5 0.8 53 -0.156 -0.042 69.8 77.7 2.2 29

Table 4.2: Performance comparison of the Ideal parent search with K = 2 or K = 5 and Greedy
on real data sets. vars - number of variables in the dataset; N - number of variables; M - number
of instances; train - average difference in training set log likelihood per instance per variable; test
- same for test set; edges - percent of edges learned by Ideal with respect to those learned by
Greedy. moves - percent of structure modifications taken during the search; eval - percent of moves
evaluated; speed - speedup of Ideal over greedy method. All figures are average over 5 fold cross
validation sets.

test set performance then K = 2. For linear Gaussian CPDs test performance is essentially the same

with a slight advantage for the standard greedy method using Sigmoid CPDs. When considering the

percent of true edges recovered , again the standard method shows some advantage over the ideal

method with K = 5. However, looking at the total number of edges learned , we can see that the

standard greedy method achieves this by using close to 50% more edges then the original structure

for Sigmoid CPDs. Thus, advantage in performance comes at a high complexity price (and as we

demonstrate below, at a significant speed cost).

We now examine the effect of the method on learning from real-life datasets. We base our

datasets on a study that measures the expression of the baker’s yeast genes in 173 experiments

(Gasch et al., 2000). In this study, researchers measured expression of 6152 yeast genes in its re-

sponse to changes in the environmental conditions, resulting in a matrix of 173 × 6152 measure-

ments. In the following, for practical reasons, we use two sets of genes. The first set consists of 639

genes that participate in general metabolic processes (Met), and the second is a subset of the first

with 354 genes which are specific to amino acid metabolism (AA). We choose these sets since part

of the response of the yeast to changes in its environment is in altering the activity levels of different

parts of its metabolism. For some of the experiments below, we focused on subsets of genes for

which there are no missing values (full, consisting of 89 and 44 genes, respectively).

On these datasets we can consider two tasks. In the first, we treat genes as variables and exper-

iments as instances. The learned networks indicate possible regulatory or functional connections

between genes, as we discuss in Chapter 5. A complementary task is to treat experiments as vari-

ables (Cond). A learned network in this scenario indicates dependencies between the responses to

different conditions.

4.2. THE “IDEAL PARENT” METHOD 87

In Table 4.2 we summarize differences between the Greedy search and the Ideal search with

K set to 2 and 5, for the linear Gaussian CPDs as well as sigmoid CPDs. Since the C2 similarity

is only a lower bound of the BIC score difference, we expect the candidate ranking of the two

to be different. As most of the difference comes from freezing some of the parameters, a possible

outcome is that the Ideal search is less prone to overfitting. Indeed as we see, though the training

set log likelihood in most cases is lower for Ideal search, the test set performance is comparable or

better.

Of particular interest is the tradeoff between accuracy and speed when using the ideal parent

method. In Figure 4.8 we examine this tradeoff in four of the data sets described above using linear

Gaussian and sigmoid CPDs. In both cases, the performance of the ideal parent method approaches

that of standard greedy as K is increased. As we can expect, in both types of CPDs the ideal parent

method is faster even for K = 5. However, the effect on total run time is much more pronounced

when learning networks with non-linear CPDs. In this case, most of the computation is spent in

optimizing the parameters for scoring candidates. And so, reducing the number of candidates eval-

uated results in a dramatic effect. AsTable 4.2 shows, the number of score evaluations with the ideal

heuristic is usually a small fraction of the number of evaluations carried out by the standard search.

This speedup in non-linear networks makes previously “intractable” real-life learning problems (like

gene regulation network inference) more accessible.

In the second experimental setting, we examine the ability of our algorithm to learn structures

that involve hidden variables and introduce new ones during the search. In this setting, we focus on

two layered networks where the first layer consists of hidden variables, all of which are assumed to

be roots, and the second layer consists of observed variables. Each of the observed variables is a

leaf and can depend on one or more hidden variables. Learning such networks involves introducing

different hidden variables, and determining for each observed variable which hidden variables it

depends on.

To test the performance of our algorithm, we used a network topology that is curated from

biological literature for the regulation of cell-cycle genes in yeast (seeSection 6.4.1). This network

involves 7 hidden variables and 141 observed variables. We learned the parameters for the network

(using either linear Gaussian CPDs or sigmoid CPDs) from a cell cycle gene expression dataset

(Spellman et al., 1998). From the learned network we then sampled datasets of varying sizes, and

tried to recreate the regulation structure using either greedy search or ideal parent search with the

corresponding type of CPDs. In both search procedures we introduce hidden variables in a gradual

manner. We start with a network where a single hidden variable is connected as the only parent to

all observed variables. After parameter optimization, we introduce another hidden variable - either

as a parent of all observed variables (in greedy search), or to members of the highest scoring cluster

(in ideal parent search, as explained in Section 4.2.2). We then let the structure search modify

edges (subject to the two-layer constraints) until no beneficial moves are found, at which point we

introduce another hidden variable, and so on. The search terminates when it is no longer beneficial

to add a new variable.

88 CHAPTER 4. STRUCTURE LEARNING METHODS

1 2 3 4 5

0

0.1

0.2

K

∆
E[

lo
gL

]

Amino Acid
Metabolism
Conditions (AA)
Conditions (Met)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

K

Sp
ee

du
p

(a) Gaussian performance (b) Gaussian speedup

0 5 10 15 20

−0.1

0

0.1

K

∆
E[

lo
gL

]

0 5 10 15 20
0

20

40

60

80

100

120

K

Sp
ee

du
p

(c) Sigmoid performance (d) Sigmoid speedup

Figure 4.8: Evaluation of Ideal search on real-life data. (a) average log likelihood per instance on
test data (based on 5-fold cross validation) relative to Greedy when learning with linear Gaussian
CPDs (y-axis) against K (x-axis). (b) Speedup over Greedy (y-axis) against K (x-axis). (c),(d)
same for sigmoid CPDs.

Figure 4.9 shows the performance of the ideal parent search and the standard greedy procedure

as a function of the number of instances. As can be seen, although there are some differences in

training set likelihood, the performance on test data is essentially similar, and approaches that of

the Golden model (true structures with trained parameters) as the number of training instances

grows. Thus, as in the case of the yeast experiments considered above, there was no degradation of

performance due to the approximation made by our method.

We then considered the application of our algorithm to the real-life cell-cycle gene expression

data described above with linear Gaussian CPDs. Although this data set contains only 17 samples, it

is of high interest from a biological perspective to infer from it as much as possible on the structure

of regulation. We performed leave-one-out cross validation and compared the Ideal parent method

with K = 2 and K = 5 to the Greedy. To avoid overfitting, we limited the number of hidden

parents for each observed variable to 2. Although the standard greedy procedure achieved higher

train log-likelihood performance, its test performance is significantly worse as a result of overfitting

for two particular instances. As we have demonstrated in the synthetic example above, the ability of

the ideal method to avoid overfitting via a guided search does not come at the price of diminished

performance when data is more plentiful. When the observed variables were allowed to have up to

5 parents, all methods demonstrated overfitting which for Greedy was by far more severe.

4.2. THE “IDEAL PARENT” METHOD 89

10 100
−60

−50

−40

−30

−20
∆

E
[l

o
g

L
]

Greedy
Ideal K=2
Ideal K=5
Gold

10 100
−120

−100

−80

−60

−40

−20

∆
E

[l
o

g
L

]

(a) train (b) test

Figure 4.9: Evaluation of performance in two-layer network experiments on synthetic data. The
data was generated from a model learned from real data with 143 observable variables. (a) average
log likelihood per instance on training data (y-axis) for Greedy , Ideal search with K = 2 and
Ideal search with K = 5, and the true structure with trained parameters Golden, when learning
with linear Gaussian CPDs against the number of training samples (x-axis). (b) Same for test set.

Finally, as we expect the nature of biological interactions in the cell cycle regulation domain to

be non-linear, we set out to learn a model for this data using the richer but computationally demand-

ing Sigmoid CPDs. To make computations tractable, we used in both methods a variational mean

field approximation for computing posteriors over the hidden variables in the E-step of Structural

EM. Unfortunately, even in this limited setting the standard greedy method proved non-feasible.

The ideal method produced networks with interesting structure which, as we show inChapter 6 can

be subject to biological analysis.

4.2.6 Discussion

In this part we set out to learn continuous variable networks. We addressed two fundamental chal-

lenges: First, we show how to speed up structure search, particularly for non-linear conditional

probability distributions. This speedup is essential as it makes structure learning feasible in many

interesting real life problems. Second, we show a principled way of introducing new hidden vari-

ables into the network structure. We use the concept of an “ideal parent” for both of these tasks and

show its benefits on both synthetic and real-life biological domains.

The unique aspect of the Ideal parent approach is that it leverages on the parametric structure of

the conditional distributions. In here, we applied this in conjunction with a greedy search algorithm.

However, it can be supplemented to many other search procedures, such as simulated annealing, as

a way of speeding up evaluation of candidate moves. Of particular interest is how the “Ideal Parent”

method can help algorithms that inherently limit the search to promising candidates such as the

“Sparse Candidate” algorithm.

Few works touched on the issue of when and how to add a hidden variable in the network

structure (e.g. Elidan and Friedman, 2003; Elidan et al., 2001; Martin and VanLehn, 1995; Zhang,

90 CHAPTER 4. STRUCTURE LEARNING METHODS

2002). Only some of these methods are potentially applicable to continuous variable networks, and

none have been adapted to this context. To our knowledge, this is the first work to address this issue

in a general context of continuous variable networks.

Many challenges remain. First, to combine the Ideal Parent method within other search pro-

cedures as a plug-in for candidate selection. Second, to apply the method to additional and more

complex conditional probability distributions, and to leverage the connection to Generalized Lin-

ear Models (McCullagh and Nelder, 1989), where a variety of optimization methods for specific

types of CPDs exist. Finally, to use better approximations for adding new hidden variables in the

non-linear case.

4.3 Discussion: Comparing the Two Methods

The “Sparse Candidate” and “Ideal Parent” methods share the same motivation. Both offer heuristic

methods for speeding structure search. The “Sparse Candidate” is a complete algorithm for structure

search, which treats the parametric representation and choice of family score as a black box. The

“Ideal Parent” idea supplies a heuristic method for fast estimation of family scores.

There are several ways in which these two methods can be married. The most obvious one is

applying the “Ideal Parent” method within the Maximize step of the “Sparse Candidate” search.

Instead of doing full greedy search within the restricted space of networks, we can use one of the

Ideal method variants. This would significantly speed up that step, which is still exponential in cost,

though in a much more reduced space.

Another called for application of the “Ideal Parent” method is within the Restrict step of the

search. As we noted in Section 4.1.2, of all the measures we suggested for choosing candidate

parents, the score measure is the only one directly applicable to most continuous variable conditional

density representations. For non-linear dependencies this step becomes very costly, due to non-

linear optimization involved in score computation. This is especially true for the first iteration,

where O(N2) measure computations are needed. We can therefore suggest a new measure, based

on the ideal parent method, which we call the ideal measure:

MIdeal(Xi,Xj | B) = C2(�yXi , �xj)

where �yXi is the ideal parent profile of Xi given its current parents in the network B.

We note that the Restrict step using MIdeal is similar to the candidate selection stage in the

supplemented greedy search we described in Section 4.2.2. When using the same K in both cases,

we end up with the same list of candidate additional parents for each variable. The difference is in

what we do next: in the supplemented greedy search we fully score all candidates and take a single

structure move (the highest scoring one). In “Sparse Candidate” we run full greedy search restricted

to the candidate parent lists, until convergence.

These two approaches are two extremes over a continuum, and so we can naturally suggest

4.3. DISCUSSION: COMPARING THE TWO METHODS 91

intermediate approaches. For example, after the Restrict step with MIdeal, we can run only a fixed

number of greedy steps in the Maximize step, or run the search until score improvement drops to a

certain level. These choices, together with the usage of the Ideal method in the Maximize step, lead

to different tradeoffs between efficiency and accuracy.

Chapter 5

Discrete and Linear Modeling of

Regulatory Networks

The main research question posed in this thesis is that of modeling gene regulatory networks using

gene expression data. In the last three chapters we introduced our basic modeling language, as

well as some advanced representation and search techniques. We are now ready to present the

first use of this language to our stated purpose. In this chapter, we introduce a new approach for

analyzing gene expression patterns which uncovers properties of the transcriptional program by

examining statistical cues in the data. We base this approach on Bayesian networks. The approach,

probabilistic in nature, is capable of handling noise as well as estimating the confidence in the

different features of the network. We are therefore able to focus on interactions whose signal in the

data is strong.

Why are Bayesian networks suitable for analyzing gene expression patterns? First, they are

particularly useful for describing processes composed of locally interacting components; that is, the

value of each component directly depends on the values of a relatively small number of components.

Second, as we showed in the previous chapters, there are well understood statistical foundations

for learning Bayesian networks from observations, and computational algorithms to do so, which

have been used successfully in many applications. Finally, Bayesian networks provide models of

causal influence: Although they are mathematically defined strictly in terms of probabilities and

conditional independence statements, a connection can be made between this characterization and

the notion of direct causal influence, as we discussed in Section 2.5. Although this connection

depends on several assumptions that do not necessarily hold in gene expression data, the conclusions

of Bayesian network analysis might be indicative about some causal connections in the data.

The remainder of this chapter is organized as follows. InSection 5.1 we describe how Bayesian

networks can be applied to model interactions among genes and discuss the technical issues that

are posed by this type of data. In Section 5.2 we apply our approach to the gene-expression data

of Spellman et al. (1998), analyzing the statistical significance of the results and their biological

92

5.1. ANALYZING EXPRESSION DATA 93

plausibility. Finally, in Section 5.3, we conclude with a discussion of related approaches and future

work.

5.1 Analyzing Expression Data

We start with our modeling assumptions and the type of conclusions we expect to find. Our aim is

to understand a particular system (a cell or an organism and its environment) that is the subject of

investigation. At each point in time, the system is in some state. For example, the state of a cell can

be defined in terms of the concentration of proteins and metabolites in the various compartments,

the amount of external ligands that bind to receptors on the cell’s membrane, the concentration

of different mRNA molecules in the cytoplasm, etc. The cell (or other biological system) prefers

certain states to others. Thus, some states are more probable if we consider random sampling of the

system. The probability distribution over states captures the “region” of state space the cell attempts

to stay in (other states are either visited for only brief periods of time, or are never reached).

Our aim is to estimate such a probability distribution and understand its structural features. Of

course, a state of a system can be infinitely complex. Thus, we describe a distribution over only

some of the attributes of states. In this chapter, we are mainly dealing with random variables that

denote the mRNA expression level of specific genes. However, we can also consider other random

variables that denote other aspects of the system state, such as the phase of the system in the the

cell-cycle process. Other examples include measurements of experimental conditions, temporal

indicators (i.e., the time/stage that the sample was taken from), background variables (e.g., which

clinical procedure was used to get a biopsy sample), and exogenous cellular conditions.

We thus attempt to build a model which is a joint distribution over a collection of random

variables that describe the system states. If we had such a model in a form of a Bayesian network,

we could answer a wide range of queries about the system. For example, does the expression level

of a particular gene depend on the experimental condition? Is this dependence direct, or indirect? If

it is indirect, which genes mediate the dependency? Not having a model at hand, we want to learn

one from the available data and use it to answer questions about the system.

The most abundant form of data available is mRNA expression measurements, mostly from

microarray experiments. In order to learn such a model from expression data, we need to deal with

several important issues that arise when learning in the this domain. These involve statistical aspects

of interpreting the results, algorithmic complexity issues in learning from the data, and the choice of

local probability models. In the following sections we describe how we handle each of these issues.

Most of the difficulties in learning from expression data revolve around the following central

point: Contrary to most situations where one attempts to learn models (and in particular Bayesian

networks), expression data involves transcript levels of thousands of genes while current data sets

typically contain a few dozen samples. This raises problems in both computational complexity

and the statistical significance of the resulting networks. On the positive side, genetic regulation

networks are believed to be sparse, i.e., given a gene, it is assumed that no more than a few genes

94 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

directly affect its transcription. Bayesian networks are especially suited for learning in such sparse

domains.

5.1.1 Representing Partial Models

When learning models with many variables, small data sets are not sufficiently informative to sig-

nificantly determine that a single model is the “right” one. Instead, many different networks should

be considered as reasonable explanations of the given data. From a Bayesian perspective, we say

that the posterior probability over models is not dominated by a single model (or equivalence class

of models).

One potential approach to deal with this problem is to find all the networks that receive high

posterior score. Such an approach is outlined by Madigan and Raftery (1994). Unfortunately, due

to the combinatoric aspect of networks the set of “high posterior” networks can be huge (i.e., expo-

nential in the number of variables). Thus, in a domain such gene expression with many variables

and diffused posterior we cannot hope to explicitly list all the networks that are plausible given the

data.

Our solution is as follows. We attempt to identify properties of network that might be of interest.

For example, are X and Y “close” neighbors in the network. We call such properties features. We

then try to estimate the posterior probability of features given the data. Since each feature f is either

present or not present in a given network G, we can write:

P (f | G) = f(G) =

{
1 if f is a feature of G
0 otherwise

(5.1)

and the posterior probability of a feature f given the data is:

P (f | D) =
∑
G

f(G)P (G | D). (5.2)

Of course, exact computation of such a posterior probability is as hard as processing all networks

with high posterior. However, as we shall see below, we can estimate these posteriors by finding

representative networks. Since each feature is a binary attribute, this estimation is fairly robust even

from a small set of networks (assuming that they are an unbiased sample from the posterior).

Before we examine the issue of estimating the posterior in such features, we briefly discuss

two classes of features involving pairs of variables. While in this chapter we handle only pairwise

features, it is clear that this type of analysis is not restricted to them.Pe’er et al. (2001) extends this

type of analysis to more feature types, including whole subnetworks.

The first type of feature is Markov relations: Is Y in the Markov blanket of X? The Markov

blanket of X is the minimal set of variables that shield X from the rest of the variables in the

model. More precisely, X given its Markov blanket is independent from the remaining variables in

the network. It is easy to check that this relation is symmetric: Y is in X’s Markov blanket if and

5.1. ANALYZING EXPRESSION DATA 95

D resample

resample

resam
ple

D1

D2

Dm

.
.
.

Learn

Learn

Learn

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

Gene Expression
Data Set

Resampled Data
Sets

Learned
Networks

Extract
Features

E A 0.66

B A 1.00

E A 0.66

B A 1.00

Features +
Confidence

Levels

Figure 5.1: Suggested flow for analysis of gene expression data.

only if there is either an edge between them, or both are parents of another variable (Pearl, 1988).

In the context of gene expression analysis, a Markov relation indicates that the two genes are related

in some joint biological interaction or process. Note that two variables in a Markov relation are

directly linked in the sense that no variable in the model mediates the dependence between them.

It remains possible that an unobserved variable (e.g., protein activation) is an intermediate in their

interaction.

The second type of features is order relations: Is X an ancestor of Y in all the networks of a

given equivalence class? That is, does the given PDAG contain a path from X to Y in which all

the edges are directed? This type of feature does not involve only a close neighborhood, but rather

captures a global property. Recall that under the assumptions discussed inSection 2.5, learning that

X is an ancestor of Y would imply that X is a cause of Y . However, these assumptions are quite

strong (in particular the assumption of no latent common causes) and thus do not necessarily hold in

the context of expression data. Thus, we view such a relation as an indication, rather than evidence,

that X might be a causal ancestor of Y .

5.1.2 Estimating Statistical Confidence in Features

We now face the following problem: To what extent does the data support a given feature? More

precisely, we want to estimate the posterior of features as defined in (5.2). Ideally, we would like

to sample networks from the posterior and use the sampled networks to estimate this quantity.

Unfortunately sampling from the posterior is hard problem. The general approach to this problem

is to build a Markov Chain Monte Carlo (MCMC) sampling procedure (Madigan and York, 1995)

(see (Gilks et al., 1996) for a general introduction to MCMC sampling). However, it is not clear

96 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

how these methods scale up for large domain.

Although recent developments in MCMC methods (such as Friedman and Koller, 2000) show

promise for scaling up, we choose here to use an alternative method as a “poor man’s” version of

Bayesian analysis. An effective, and relatively simple, approach for estimating confidence is the

bootstrap method (Efron and Tibshirani, 1993). The main idea behind the bootstrap is simple. We

generate “perturbed” versions of our original data set, and learn from them. In this way we collect

many networks, all of which are fairly reasonable models of the data. These networks reflect the

effect of small perturbations to the data on the learning process.

In our context, we use the bootstrap as follows:

• For i = 1 . . . m.

– Construct a dataset Di by sampling, with replacement, N instances from D.

– Apply the learning procedure on Di to induce a network structure Gi.

• For each feature f of interest calculate

conf(f) =
1
m

m∑
i=1

f(Gi)

where f(G) is the indicator function defined in Eq. (5.1).

We refer the reader to Friedman et al. (1999) for more details, as well as large-scale simulation

experiments with this method. These simulation experiments show that features induced with high

confidence are rarely false positives, even in cases where the data sets are small compared to the

system being learned. This bootstrap procedure appears especially robust for the Markov and order

features described in section 5.1.1. In addition, simulation studies by Friedman and Koller (2000)

show that although the confidence values computed by the bootstrap are not equal to the Bayesian

posterior they correlate well with estimates of the Bayesian posterior for features.

Figure 5.1 shows the suggested bootstrap flow for analysis of gene expression data on a sample

domain consisting of 5 genes. The two feature examples given are edge features, meaning simply

the existence of a specific edge. In this example, an edge from gene E to gene A is present in 0.66

of the learned networks, and so is assigned a confidence level of 0.66. An edge from B to A is

present in all learned networks, and therefore is assigned the maximal confidence level. In a similar

manner, confidence levels can be assigned to Markov and order features we described above.

5.1.3 Local Representations and Learning Algorithms

In order to specify a Bayesian network model, we need to choose the type of the local probability

models we learn. In this chapter, we consider two of the simplest approaches:

5.1. ANALYZING EXPRESSION DATA 97

• Multinomial model. In this model we treat each variable as discrete and learn a multinomial

distribution that describes the probability of each possible state of the child variable given the

state of its parents, as described in Section 2.2.1.

• Linear Gaussian model. In this model we learn a linear regression model for the child

variable given its parents, as described inSection 2.2.2.

These models were chosen since their posterior and marginal distributions can be efficiently

calculated in closed form. For the multinomial model we use the Dirichlet parameter prior, and

accordingly the BDe structure score. For the linear Gaussian model we use normal-Wishart priors

and the BGe structure score (see Section 2.4.3 for details). We note here several properties of these

models which are important for our task. First, the priors contain a notion of a prior network,

which reflects our prior belief on the structure and parameters of the underlying distribution of the

domain, and a notion of an effective sample size, which reflects how strong is our belief in the prior

network. Intuitively, setting the effective sample size to K , is equivalent to having seen K samples

from the distribution defined by the prior network. Second, when learning from complete data (i.e.

with no missing values) these scores are structure equivalent, i.e., if G and G′ are equivalent graphs

they are guaranteed to have the same score. Third, these network scores are decomposable to local

family scores. Finally, these local family scores can be computed using a closed form equation. (see

Section 2.4.3 for more details).

To apply the multinomial model we need to discretize the gene expression values. We choose to

discretize these values into three categories: under-expressed (−1), normal (0), and over-expressed

1, depending on whether the expression rate is significantly lower than, similar to, or greater than

control, respectively. The control expression level of a gene can be either determined experimentally

(as in the methods of DeRisi et al., 1997), or it can be set as the average expression level of the gene

across experiments. We discretize by setting a threshold to the ratio between measured expression

and control. In our experiments we choose a threshold value of 0.5 in logarithmic (base 2) scale.

Thus, values with ratio to control lower than 2−0.5 are considered under-expressed, and values

higher than 20.5 are considered over-expressed.

Each of the two models has benefits and drawbacks. On one hand, it is clear that by discretizing

the measured expression levels we are loosing information. The linear-Gaussian model does not

suffer from the information loss caused by discretization. On the other hand, the linear-Gaussian

model can only detect dependencies that are close to linear. In particular, it is not likely to discover

combinatorial effects (e.g., a gene is over expressed only if several genes are jointly over expressed,

but not if at least one of them is not over expressed). The multinomial model is more flexible and

can capture such dependencies.

In section 2.4.2, we formulated learning Bayesian network structure as an optimization prob-

lem in the space of directed acyclic graphs. As we showed, the number of such graphs is super-

exponential in the number of variables. Since in our domain we consider hundreds of variables, we

must deal with an extremely large search space. Therefore, we need to use efficient search algo-

rithms. In this chapter we use the “Sparse Candidate” algorithm described in Chapter 4. For the

98 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

candidate selection step we use the score measure MScore, which proved successful on synthetic

domains.

5.2 Application to Cell Cycle Expression Patterns

We applied our approach to the data ofSpellman et al. (1998). This data set contains 76 gene expres-

sion measurements of the mRNA levels of 6177 S. cerevisiae ORFs. These experiments measure

six time series under different cell cycle synchronization methods. Spellman et al. identified 800

genes whose expression varied over the different cell-cycle stages.

In learning from this data, we treat each measurement as an independent sample from a distri-

bution, and do not take into account the temporal aspect of the measurement. Since it is clear that

the cell cycle process is of temporal nature, we compensate by introducing an additional variable

denoting the cell cycle phase. This variable is forced to be a root in all the networks learned. Its

presence allows to model dependency of expression levels on the current cell cycle phase.

We used the Sparse Candidate algorithm with a 200-fold bootstrap in the learning process. We

performed two experiments, one with the discrete multinomial distribution, the other with the linear

Gaussian distribution. The learned features show that we can recover intricate structure even from

such small data sets. It is important to note that our learning algorithm uses no prior biological

knowledge nor constraints. All learned networks and relations are based solely on the informa-

tion conveyed in the measurements themselves. Figure 5.6 at the end of this chapter illustrates the

graphical display of some results from this analysis.

5.2.1 Robustness Analysis

We first performed a number of tests to analyze the statistical significance and robustness of our

procedure. Some of these tests were carried on a smaller data set with 250 genes for computational

reasons.

To test the credibility of our confidence assessment, we created a random data set by randomly

permuting the order of the experiments independently for each gene. Thus for each gene the order

was random, but the composition of the series remained unchanged. In such a data set, genes are

independent of each other, and thus we do not expect to find “real” features. As expected, both

order and Markov relations in the random data set have significantly lower confidence. We compare

the distribution of confidence estimates between the original data set and the randomized set in

Figure 5.2. Clearly, the distribution of confidence estimates in the original data set have a longer

and heavier tail in the high confidence region. In the linear-Gaussian model we see that random

data does not generate any feature with confidence above 0.3. The multinomial model is more

expressive, and thus susceptible to overfitting. For this model, we see a smaller gap between the

two distributions. Nonetheless, randomized data does not generate any feature with confidence

above 0.8, which leads us to believe that most features that are learned in the original data set with

5.2. APPLICATION TO CELL CYCLE EXPRESSION PATTERNS 99

Markov Order
Multinomial

�

0

200

400

600

800

1000

1200

1400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ea

tu
re

s
w

it
h

C
on

fi
de

nc
e

ab
ov

e

�

t

F
e

a
tu

re
s
 w

it
h
 C

o
n
fi
d
e

n
c
e

 a
b
o

v
e

 t

0

10000

20000

30000

40000

50000

60000

70000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

F
e

a
tu

re
s
 w

it
h
 C

o
n
fi
d
e

n
c
e

 a
b
o

v
e

 t

0

10000

20000

30000

40000

50000

60000

70000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10000

20000

30000

40000

50000

60000

70000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Linear-Gaussian

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

�

0

100

200

300

400

500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random
Real

F
ea

tu
re

s
w

it
h

C
on

fi
de

nc
e

ab
ov

e

�

0

2000

4000

6000

8000

10000

12000

14000

0.2 0.4 0.6 0.8 1

�

F
ea

tu
re

s
w

it
h

C
on

fi
de

nc
e

ab
ov

e

�

0

200

400

600

800

1000

0.2 0.4 0.6 0.8 1

Random
Real

Figure 5.2: Plots of abundance of features with different confidence levels for the cell cycle data set
(solid line), and the randomized data set (dotted line). The x-axis denotes the confidence threshold,
and the y-axis denotes the number of features with confidence equal or higher than the correspond-
ing x-value. The graphs on the left column show Markov features, and the ones on the right column
show Order features. The top row describes features found using the multinomial model, and the
bottom row describes features found by the linear-Gaussian model. Inset in each graph is plot of the
tail of the distribution.

such confidence are not an artifact of the bootstrap estimation.

Since the analysis was not performed on the whole S. cerevisiae genome, one concern is that the

results are highly sensitive to the number and choice of genes. We therefore tested the robustness

of our analysis to the addition of more genes, comparing the confidence of the learned features

between the 800 gene dataset and a smaller 250 gene data set that contains genes appearing in eight

major clusters described by Spellman et al.. Figure 5.3 compares feature confidence in the analysis

of the two datasets for the multinomial model. As we can see, there is a strong correlation between

confidence levels of the features between the two data sets. The comparison for the linear-Gaussian

model gives similar results.

A crucial choice for the multinomial experiment is the threshold level used for discretization

of the expression levels. It is clear that by setting a different threshold, we would get different

discrete expression patterns. Thus, it is important to test the robustness and sensitivity of the high

confidence features to the choice of this threshold. This was tested by repeating the experiments

100 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

Order relations Markov relations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3: Comparison of confidence levels obtained in two datasets differing in the number of
genes, on the multinomial experiment. Each relation is shown as a point, with the x-coordinate
being its confidence in the the 250 genes data set and the y-coordinate the confidence in the 800
genes data set. The left figure shows order relation features, and the right figure shows Markov
relation features.

using different thresholds. The comparison shows a definite correlation between the confidence

estimates of features obtained at different discretization thresholds (graphs not shown). Obviously,

this linear correlation gets weaker for larger threshold differences. We also note that order relations

are much more robust to changes in the threshold than Markov relations.

A valid criticism of our discretization method is that it penalizes genes whose natural range of

variation is small: since we use a fixed threshold, we would not detect changes in such genes. A

possible way to avoid this problem is to normalize the expression of genes in the data. That is, we

rescale the expression level of each gene, so that the relative expression level has the same mean

and variance for all genes. We note that analysis methods that use Pearson correlation to compare

genes, such as (Ben-Dor et al., 1999; Eisen et al., 1998b), implicitly perform such a normalization.1

When we discretize a normalized dataset, we are essentially rescaling the discretization factor dif-

ferently for each gene, depending on its variance in the data. We tried this approach with several

discretization levels, and got results comparable to our original discretization method. The 20 top

Markov relations highlighted by this method were a bit different, but interesting and biologically

sensible in their own right. The order relations were again more robust to the change of methods and

discretization thresholds. A possible reason is that order relations depend on the network structure

in a global manner, and thus can remain intact even after many local changes to the structure. The

1An undesired effect of such a normalization is the amplification of measurement noise. If a gene has fixed expres-
sion levels across samples, we expect the variance in measured expression levels to be noise either in the experimental
conditions or the measurements . When we normalize the expression levels of genes, we loose the distinction between
such noise and true (i.e., significant) changes in expression levels. In the Spellman et al. dataset we can safely assume
this effect will not be too grave, since we only focus on genes that display significant changes across experiments.

5.2. APPLICATION TO CELL CYCLE EXPRESSION PATTERNS 101

Order relations Markov relations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Comparison of of confidence levels between the multinomial experiment and the linear-
Gaussian experiment. Each relation is shown as a point, with the x-coordinate being its confidence
in the multinomial experiment, and the y-coordinate its confidence in the linear-Gaussian experi-
ment. left - order relation features; right - Markov relation features.

Markov relation, being a local one, is more easily disrupted. Since the graphs learned are extremely

sparse, each discretization method “highlights” different signals in the data, which are reflected in

the Markov relations learned.

A similar picture arises when we compare the results of the multinomial experiment to those of

the linear-Gaussian experiment (Figure 5.4). In this case there is virtually no correlation between

the Markov relations found by the two methods, while the order relations show some correlation.

This supports our assumption that the two methods highlight different types of connections between

genes.

Finally, we consider the effect of the choice of prior on the learned features. It is important to

ensure that the learned features are not simply artifacts of the chosen prior. To test this, we repeated

the multinomial experiment with different values of K, the effective sample size, and compared the

learned confidence levels to those learned with the default value used for K, which was 5. This was

done using the 250 gene data set and discretization level of 0.5. The results of these comparisons

are shown in Figure 5.5. As can be seen, the confidence levels obtained with K value of 1 correlate

very well with those obtained with the default K, while when setting K to 20 the correlation is

weaker. This suggests that both 1 and 5 are low enough values compared to the data set size of

76, making the prior’s affect on the results weak. An effective sample size of 20 is high enough to

make the prior’s effect noticeable. Another aspect of the prior is the prior network used. In all the

experiments reported here we used the empty network with uniform distribution parameters as the

prior network, encoding zero prior knowledge about the domain. As our prior is non-informative,

keeping down its effect is desired. It is expected that once we use more informative priors (by

102 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

K = 1 vs. K = 5 K = 20 vs. K = 5
Order relations Markov relations Order relations Markov relations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Comparison of confidence levels between runs using different parameter priors. The
difference between priors is in the effective sample size, K. Each relation is shown as a point, with
the x-coordinate being its confidence in a run with K = 5, and the y-coordinate its confidence in a
run with K = 1 (left figures) or K = 20 (right figures). Both runs are on the 250 gene set, using
discretization with threshold level 0.5.

incorporating biological knowledge, for example) and stronger effective sample sizes, the obtained

results will be more biased towards our prior beliefs.

In summary, although many of the results we report below (especially order relations) are stable

across the different experiments discussed in the previous paragraph, it is clear that our analysis is

sensitive to the choice of local model, and in the case of the multinomial model, to the discretization

method. It is probably less sensitive to the choice of prior, as long as the effective sample size

is small compared to the data set size. In all the methods we tried, our analysis found interesting

relationships in the data. Thus, one challenge is to find alternative methods that can recover all these

relationships in one analysis. One option, which we develop in the next chapter, is to use a more

biologically realistic type of CPD, that would circumvent the need for discretization on one hand,

and allow realistic nonlinear dependency relations on the other.

5.2.2 Biological Analysis

We believe that the results of this analysis can be indicative of biological phenomena in the data.

This is confirmed by our ability to predict sensible relations between genes of known function. We

now examine several consequences that we have learned from the data. We consider, in turn, the

order relations and Markov relations found by our analysis.

Order Relations

The most striking feature of the high confidence order relations, is the existence of dominant genes.

Out of all 800 genes only few seem to dominate the order (i.e., appear before many genes). The

intuition is that these genes are indicative of potential causal sources of the cell-cycle process. Let

Co(X,Y) denote the confidence in X being ancestor of Y . We define the dominance score of X

5.2. APPLICATION TO CELL CYCLE EXPRESSION PATTERNS 103

Table 5.1: List of dominant genes in the ordering relations. Included are the top 10 dominant genes
for each experiments.

Score in Experiment
Gene/ORF Multinomial Gaussian Notes
MCD1 550 525 Mitotic Chromosome Determinant,null mutant is inviable
MSH6 292 508 Required for mismatch repair in mitosis and meiosis
CSI2 444 497 cell wall maintenance, chitin synthesis
CLN2 497 454 Role in cell cycle START, null mutant exhibits G1 arrest
YLR183C 551 448 Contains forkheaded associated domain, thus possibly nuclear
RFA2 456 423 Involved in nucleotide excision repair, null mutant is inviable
RSR1 352 395 GTP-binding protein of the RAS family involved in bud site selection
CDC45 - 394 Required for initiation of chromosomal replication, null mutant lethal
RAD53 60 383 Cell cycle control, checkpoint function, null mutant lethal
CDC5 209 353 Cell cycle control, required for exit from mitosis, null mutant lethal
POL30 376 321 Required for DNA replication and repair, null mutant is inviable
YOX1 400 291 Homeodomain protein
SRO4 463 239 Involved in cellular polarization during budding
CLN1 324 - Role in cell cycle START, null mutant exhibits G1 arrest
YBR089W 298 -

as
∑

Y,Co(X,Y)>t Co(X,Y)k, using the constant k for rewarding high confidence features and the

threshold t to discard low confidence ones. These dominant genes are robust to parameter selection

for both t, k, the discretization cutoff of section 5.1.3 and the local probability model used. A list

of the highest scoring dominating genes for both experiments appears inTable 5.1.

Inspection of the list of dominant genes reveals quite a few interesting features. Among them

are genes directly involved in initiation of the cell-cycle and its control. For example, CLN1, CLN2,

CDC5 and RAD53 whose functional relation has been established (Cvrckova and Nasmyth, 1993;

Drebot et al., 1993). The genes MCD1, RFA2, CDC45, RAD53, CDC5 and POL30 were found

to be essential (Guacci et al., 1997). These are clearly key genes in essential cell functions. Some

of them are components of pre-replication complexes(CDC45,POL30). Others (like RFA2,POL30

and MSH6) are involved in DNA repair. It is known that DNA repair is associated with tran-

scription initiation, and DNA areas which are more active in transcription, are also repaired more

frequently (McGregor, 1999; Tornaletti and Hanawalt, 1999). Furthermore, a cell cycle control

mechanism causes an abort when the DNA has been improperly replicated (Eisen et al., 1998a).

Most of the dominant genes encode nuclear proteins, and some of the unknown genes are also

potentially nuclear: (e.g., YLR183C contains a forkhead-associated domain which is found almost

entirely among nuclear proteins). A few non nuclear dominant genes are localized in the cytoplasm

membrane (SRO4 and RSR1). These are involved in the budding and sporulation process which

have an important role in the cell-cycle. RSR1 belongs to the RAS family of proteins, which are

known as initiators of signal transduction cascades in the cell.

104 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

Table 5.2: List of top Markov relations, multinomial experiment.

Confidence Gene 1 Gene 2 Notes
1.0 YKL163W-PIR3 YKL164C-PIR1 Close locality on chromosome
0.985 PRY2 YKR012C Close locality on chromosome
0.985 MCD1 MSH6 Both bind to DNA during mitosis
0.98 PHO11 PHO12 Both nearly identical acid phosphatases
0.975 HHT1 HTB1 Both are Histones
0.97 HTB2 HTA1 Both are Histones
0.94 YNL057W YNL058C Close locality on chromosome
0.94 YHR143W CTS1 Homolog to EGT2 cell wall control, both involved in Cy-

tokinesis
0.92 YOR263C YOR264W Close locality on chromosome
0.91 YGR086 SIC1 Homolog to mammalian nuclear ran protein, both involved

in nuclear function
0.9 FAR1 ASH1 Both part of a mating type switch, expression uncorre-

lated
0.89 CLN2 SVS1 Function of SVS1 unknown
0.88 YDR033W NCE2 Homolog to transmembrame proteins suggest both in-

volved in protein secretion
0.86 STE2 MFA2 A mating factor and receptor
0.85 HHF1 HHF2 Both are Histones
0.85 MET10 ECM17 Both are sulfite reductases
0.85 CDC9 RAD27 Both participate in Okazaki fragment processing

Markov Relations

We begin with an analysis of the Markov relations in the multinomial experiment. Inspection of

the top Markov relations reveals that most are functionally related. A list of the top scoring rela-

tions can be found in Table 5.2. Among these, all involving two known genes make sense biolog-

ically. When one of the ORFs is unknown careful searches using Psi-Blast (Altschul et al., 1997),

Pfam (Sonnhammer et al., 1998) and Protomap (Yona et al., 1998) can reveal firm homologies to

proteins functionally related to the other gene in the pair. For example YHR143W, which is paired

to the endochitinase CTS1, is related to EGT2 - a cell wall maintenance protein. Several of the

unknown pairs are physically adjacent on the chromosome, and thus presumably regulated by the

same mechanism (see Blumenthal, 1998), although special care should be taken for pairs whose

chromosomal location overlap on complementary strands, since in these cases we might see an arti-

fact resulting from cross-hybridization. Such an analysis raises the number of biologically sensible

pairs to nineteen out of the twenty top relations.

There are some interesting Markov relations found that are beyond the limitations of clustering

techniques. Among the high confidence Markov relations, one can find examples of conditional

independence, i.e., a group of highly correlated genes whose correlation can be explained within

our network structure. One such example involves the genes CLN2,RNR3,SVS1,SRO4 and RAD51.

5.2. APPLICATION TO CELL CYCLE EXPRESSION PATTERNS 105

Table 5.3: List of top Markov relations, Gaussian experiment. (The table skips over 5 additional
pairs with close locality.)

Confidence Gene 1 Gene 2 Notes
1.0 YOR263C YOR264W Close locality on chromosome
1.0 CDC46 YOR066W YOR066W is totally unknown.
1.0 CDC45 SPH1 No suggestion for immediate link.
1.0 SHM2 GCV2 SHM2 interconverts glycine, GCV2 is regulated by

glycine
1.0 MET3 ECM17 MET3 required to convert sulfate to sulfide, ECM17 sul-

fite reductase
1.0 YJL194W-CDC6 YJL195C Close locality on chromosome
1.0 YGR151C YGR152C Close locality on chromosome
1.0 YGR151C YGR152C-RSR1 Close locality on chromosome
1.0 STE2 MFA2 A mating factor and receptor
1.0 YDL037C YDL039C Both homologs to mucin proteins
1.0 YCL040W-GLK1 WCL042C Close locality on chromosome
1.0 HTA1 HTA2 two physically linked histones
. . .
0.99 HHF2 HHT2 both histones
0.99 YHR143W CTS1 Homolog to EGT2 cell wall control, both involved in Cy-

tokinesis
0.99 ARO9 DIP5 DIP5 transports glutamate which regulates ARO9
0.975 SRO4 YOL007C Both proteins are involved in cell wall regulation at the

plasma membrane.

Their expression is correlated, and in Spellman et al. (1998) they all appear in the same cluster. In

our network CLN2 is with high confidence a parent of each of the other 4 genes, while no links

are found between them (see Figure 5.6). This suits biological knowledge: CLN2 is a central and

early cell cycle control, while there is no clear biological relationship between the others. Some of

the other Markov relations are inter-cluster, pairing genes with low correlation in their expression.

One such regulatory link is FAR1-ASH1: both proteins are known to participate in a mating type

switch. The correlation of their expression patterns is low and Spellman et al. cluster them into

different clusters. When looking further down the list for pairs whose Markov relation confidence is

high relative to their correlation, interesting pairs surface. For example SAG1 and MF-ALPHA-1,

a match between the factor that induces the mating process and an essential protein that participates

in the mating process. Another match is LAC1 and YNL300W. LAC1 is a GPI transport protein

and YNL300W is most likely modified by GPI (based on sequence homology).

The Markov relations from the Gaussian experiment are summarized in Table 5.3. Since the

Gaussian model focuses on highly correlated genes, most of the high scoring genes are tightly cor-

related. When we checked the DNA sequence of pairs of physically adjacent genes at the top of

Table 5.3, we found that there is significant overlap. This suggests that these correlations are spuri-

ous and due to cross hybridization. Thus, we ignore the relations with the highest score. However,

106 CHAPTER 5. DISCRETE AND LINEAR MODELING OF REGULATORY NETWORKS

in spite of this technical problem, few of the pairs with a confidence of > 0.8 can be discarded as

biologically false.

Some of the relations are robust and also appear in the multinomial experiment (e.g. STE2-

MFA2, CST1-YHR143W). Most interesting are the genes linked through regulation. These include:

SHM2 which converts glycine that regulates GCV2 and DIP5 which transports glutamate which

regulates ARO9. Some pairs participate in the same metabolic process, such as: CTS1-YHR143

and SRO4-YOL007C all which participate in cell wall regulation. Other interesting high confidence

(> 0.9) examples are: OLE1-FAA4 linked through fatty acid metabolism, STE2-AGA2 linked

through the mating process and KIP3-MSB1, both playing a role in polarity establishment.

5.3 Discussion and Future Work

In this chapter we presented a new approach for analyzing gene expression data that builds on the

theory and algorithms for learning Bayesian networks. We described how to apply these techniques

to gene expression data. The approach builds on two techniques that were motivated by the chal-

lenges posed by this domain: a novel search algorithm (the “Sparse Candidate” algorithm) and an

approach for estimating statistical confidence (Friedman et al., 1999). We applied our methods to

real expression data of Spellman et al. (1998). Although, we did not use any prior knowledge, we

managed to extract many biologically plausible conclusions from this analysis.

Our approach is quite different than the clustering approach used by (Alon et al., 1999; Ben-Dor et al.,

1999; Eisen et al., 1998b; Michaels and et al., 1998; Spellman et al., 1998), in that it attempts to

learn a much richer structure from the data. Our methods are capable of discovering causal relation-

ships, interactions between genes other than positive correlation, and finer intra-cluster structure.

The biological motivation of our approach is similar to work on inducing genetic networks from

data (Akutsu et al., 1998; Chen et al., 1999a; Somogyi et al., 1996; Weaver et al., 1999). There are

two key differences: First, the models we learn have probabilistic semantics. This better fits the

stochastic nature of both the biological processes and noisy experiments. Second, our focus is on

extracting features that are pronounced in the data, in contrast to current genetic network approaches

that attempt to find a single model that explains the data.

The line of research presented here was extended in several works. InPe’er et al. (2001), the

notion of a feature was extended beyond pairwise relations, to include separators, hubs, and finally

whole subnetworks. Additionally, the method is extended to account for learning from intervention

experiments (i.e. knock-out or over-expression of a certain gene). InPe’er et al. (2002) the model

learning is focused on finding regulatory interactions by limiting the set of possible parents to pro-

teins known to be involved in regulation, and by choosing an optimal small set of such regulators.

Pe’er (2003) surveys and extends on both these works, and presents results on additional data sets.

A lot of progress can still be done in this line of work. For example, the use of prior biological

knowledge through the prior network mechanism is yet to be explored. This prior network can also

be built on other, new forms of data, such as DNA binding location data. Another direction for

5.3. DISCUSSION AND FUTURE WORK 107

improvement is developing the theory and algorithms for estimating confidence levels. Finally, a

very promising direction involves the interaction between such learning methods and intervention

experiments. Methods that, following learning from an initial data set, can suggest the most infor-

mative set of intervention experiments, can lead to a truly synergistic interaction between theory

and experiment.

Figure 5.6: An example of the graphical display of Markov features. This graph shows a “local map”
for the gene SVS1. The width (and color) of edges corresponds to the computed confidence level.
An edge is directed if there is a sufficiently high confidence in the order between the genes connected
by that edge. This local map shows that CLN2 separates SVS1 from several other genes. Although
there is a strong connection between CLN2 to all these genes, there are no other edges connecting
them. This indicates that, with high confidence, these genes are conditionally independent given the
expression level of CLN2.

Chapter 6

Realistic Models of Regulatory Networks

In the previous chapter we have presented the first graphical model based approach to modeling

and learning of gene regulation networks. In recent years many other methods have been developed

to reconstruct such networks from high-throughput data, including genomic sequences, expression

profiles and transcription factor location assays (Ong et al., 2002; Pe’er et al., 2001; Segal et al.,

2002; Simon et al., 2001; Spellman et al., 1998; Tavazoie et al., 1999).However, these methods are

based on coarse grained qualitative models, and cannot provide a realistic and quantitative view

of regulatory systems. Recent studies (Guet et al., 2002; Kitano, 2002) indicate that network func-

tion depends on both qualitative and quantitative aspects of network organization. For example,

Guet et al. (2002) show how differences in quantitative reaction rates have drastic effects on the

function of circuits with identical qualitative properties such as connectivity and logic.

Furthermore, many of the network modeling methods, (including the one presented inChapter 5)

attempt to learn regulatory connections by modeling dependencies between the mRNA levels of a

transcription factor and its target gene (Figure 6.1(a)). Doing this they ignore a whole chain of reg-

ulation events, including translation of the regulator protein, activation of that protein, binding of

that protein to the promoter region of the target gene and initiating transcription at a certain rate.

The mRNA levels of the target gene are determined by this rate as well as the degradation rate of

the mRNA molecules (Figure 6.1(b)). Most of these processes are not measured in typical high-

throughput experiments, and are therefore hidden from us. In promoter activity experiments, the

transcription rate can be deduced indirectly from the measurements, but the other processes are still

hidden.

The problem with the simple model is that it fails in any case there is active regulation in any

of the hidden stages. The most common case is the post-translational modification stage, where a

regulator can be dynamically induced or inhibited by processes like phosphorilation. In such cases

we might see no variability at all at the mRNA level of the regulator, and therefore no regulatory

connection can be learned for it based on expression data alone. As we see inFigure 6.1(b), the

closest quantities on the regulation path representing the two genes are the active protein level of

the transcription factor, and the mRNA transcription rate of the target gene. While the latter is

108

6.1. TRANSCRIPTIONAL REGULATION MODEL 109

TF

G

mRNA

mRNA
transc. rate

protein

active
protein

mRNA

mRNA
degrad. rate

TF

G

TF

G

TF

Activation
signal

G

(a) Simplified path (b) Realistic path

Figure 6.1: Two possible models of a regulatory connection between a transcription factor TF and
a target gene G. (a) A simplified path (b) A more realistic path; The dashed line separates between
the observed (left) and hidden (right) processes of regulation in typical microarray experiments.

observed in some experiments, and can be derived in others, the former is essentially hidden from

us.

In this chapter, we present a novel framework for the reconstruction of quantitative, realistic,

fine-grained, dynamical models of gene regulatory networks. This method tries to answer the two

weaknesses of other methods we pointed out. First, it models the connection between the hidden

activity level of regulators, and the observed (or derived) mRNA transcription rates of target genes.

Activity levels are modeled as unobserved variables, that indirectly encompass upstream regulatory

events, without directly modeling these events. In particular, unlike previous work, we do not use

the expression levels of regulators, and can thus identify the results of post-transcriptional events.

Second, rather than using a simple qualitative interaction model, we build our regulation model

from basic principles of the biochemical interactions.

The remainder of this chapter is organized as follows. In Section 6.1 we develop a kinematic

model for the dependence of a target gene’s transcription rate on its regulators’ active protein lev-

els. In Section 6.2 we incorporate this regulation model into a DBN-based model for transcription

rates of complete regulation systems, composed of several target genes and regulators. We discuss

methods for learning the parameters and structure for these models, and also methods to derive

transcription rates from different expression measurement methods. InSection 6.3 we evaluate our

framework on small systems, controlled by one or two regulators, both from synthetic and from

real-life data. In Section 6.4 we apply the method to a large regulatory system in yeast. We show

how we can recover both regulator activity profiles and kinetic parameters for networks of known

architecture, as well as successfully learn a complex regulatory network ab initio.

6.1 Transcriptional Regulation Model

To develop a quantitative realistic probabilistic model of gene regulatory networks, we start by

choosing a realistic model for regulator-target dependencies. First, we derive a kinematic model

110 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

κb κd
1=+

=

−

−

H

H

db

SS

SHS κκ
κb κd
κb κd

1=+

=

−

−

H

H

db

SS

SHS κκ γ = 1

γ = 4
γ = 20

γ = 250

Activity level H

T
ra

n
sc

ri
p

ti
o

n

ra
te

 g
(H

)

H

H
Hg

γ

γ
β

+

=

1
)(

γ = 1

γ = 4
γ = 20

γ = 250

Activity level H

T
ra

n
sc

ri
p

ti
o

n

ra
te

 g
(H

)

H

H
Hg

γ

γ
β

+

=

1
)(

T
ra

n
sc

ri
p

ti
o

n

ra
te

A
ct

iv
it

y
le

ve
l

Time

γ = 1

γ = 4γ = 20
γ = 250

T
ra

n
sc

ri
p

ti
o

n

ra
te

A
ct

iv
it

y
le

ve
l

Time

γ = 1

γ = 4γ = 20
γ = 250

(a) Two promoter states (b) Regulation as function of H (c) Temporal behavior

Figure 6.2: A kinematic model of transcription regulation by a single activator. (a) An active regu-
lator protein, H , may bind to and disassociate from a target gene’s promoter, with rate constants Kb

and Kd, respectively. In a population of cells, fractions S− and SH of cells have free and bound pro-
moters, respectively and satisfy the steady-state reaction equations. The bound gene is transcribed
with rate g(H) = βSH . (b) The regulation function, describing the transcription rate as a function
of the active regulator concentration H , is in the Michaelis-Menten form. The transcription rate is
a non-linear function of the activity level of H that depends on γ = Kb/Kd; In particular, at high
levels of H , the transcription rate saturates. (c) Temporal behaviour of a single activator and the
transcription rates of genes it regulates with different kinematic parameters.

of how the transcription rate of a single gene depends on its regulators. We then consider how to

model the behaviour of multiple genes over time, and how to learn the model parameters and the

unobserved activity levels of regulators from actual measurements, including transcriptional rates.

Our regulation model is based on a regulation function that describes the transcription rate of

a target gene (number of RNA molecules transcribed per unit of time per cell) as a function of the

concentration of active regulator(s) (number of proteins in active form in nucleus per cell). We

start with the simplest example of a gene regulated by a single activator (Figure 6.2(a)). In this case,

the regulation function takes the familiar, non-linear Michaelis-Menten form:

g(H : β, γ) = β
γH

1 + γH
(6.1)

where H denotes the concentration of active regulator protein, β is the maximum transcription

rate the gene can achieve, and γ is Kb/Kd the ratio of association and disassociation constants.

Figure 6.2(b-c) show the behavior of the regulation function for different values of the affinity pa-

rameter γ. We note two things: First, the regulation function is non-linear, displaying a saturation

effect. Second, the form of the function and the rate of saturation depends strongly on the affinity

parameter γ. Figure 6.2(c) shows how target genes with different parameters can display a cascaded

activation, such as measured in some known systems (Kalir et al., 2001). For the case of a single

repressor, the regulation function takes the form:

g(H : β, γ) = β
1

1 + γH
(6.2)

6.1. TRANSCRIPTIONAL REGULATION MODEL 111

We now develop regulation functions from basic principles of the biochemical reactions in-

volved. We first consider the state equations of those reactions, and then solve the equilibrium

equations to obtain the steady state distribution of promoter states in the population. By assigning

mean activity levels to each promoter state, we will obtain the resulting mean transcription rate.

6.1.1 Modeling Binding/Disassociation Events with state equations

We begin by considering the biochemical reactions involved in the binding and disassociation of

transcription factors from binding sites at the promoter region of the target gene. In the case of

a single regulator, the simplest model assumes a single binding site in the target gene’s promoter.

Figure 6.2(a) illustrates this reaction. A biochemical equation describing this reaction is:

S + A
KA

b−−⇀↽−−
KA

d

SA (6.3)

where S is the concentration of free binding sites, A is the concentration of free regulator molecules,

and SA is the concentration of sites bound to a regulator. Kb and Kd are the binding and disassoci-

ation constants, respectively, of the reaction.

In case there are two regulators, A and B, we must make some modeling choices. Perhaps the

simplest choice is modeling a single binding site per factor, where there is neither competition in

binding, nor synergism. In this case we consider the two binding reactions independent, and the

state equations are:

S + A
KA

b−−⇀↽−−
KA

d

SA (6.4)

S + B
KB

b−−⇀↽−−
KB

d

SB

Here KA
b and KA

d are the kinetic constants for regulator A, and KB
b and KB

d are the constants

related to regulator B. A more realistic picture takes into account synergism, meaning difference

in binding energies due to the current binding state of the promoter. For example, if regulator A is

currently bound, it might facilitate the binding of regulator B to the promoter. If the difference in

energies is large, it is sometimes said that A “recruits” B. In this case, the possible transitions in

112 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

γA γBA

γB

γAB

γA γB

(a) (b)

Figure 6.3: Possible promoter states and allowed transitions for a two-regulator promoter. (a) syn-
ergistic binding scenario (b) competitive binding scenario. For each reaction, γX = KX

b /KX
d .

the promoter state form a cycle, as shown in Figure 6.3(a), and the associated reactions are:

S + A
KA

b−−⇀↽−−
KA

d

SA (6.5)

S + B
KB

d−−⇀↽−−
KB

d

SB

SA + B
KAB

b−−−⇀↽−−−
KAB

d

SAB

A + SB
KBA

b−−−⇀↽−−−
KBA

d

SAB

Each one of the four possible reactions has its corresponding binding and disassociation constants.

Here KAB
b denotes the binding rate constant of B to a promoter where A is already bound. This

model generalizes over the independent binding scenario, which is obtained if γAB = γB and

γBA = γA.

Yet a different scenario is one where A and B compete on the same site, or that their sites are

too close to allow concurrent binding of the two factors, as depicted inFigure 6.3(b). In this case

we can describe the reactions as follows:

A + SB
KB

d−−⇀↽−−
KB

b

S + A + B
KA

b−−⇀↽−−
KA

d

SA + B

In all the reactions described above, the rate constants are believed to depend strongly on the

nucleotide sequence of the binding site: a high affinity sequence can result in a large difference in

free energy between the bound and unbound states, resulting in a high ratio between Kb and Kd.

6.1.2 Computing the Equilibrium Distribution of Promoter States

To obtain transcription rates from the biochemical equations, we must first clarify what we assume

biologically and what phenomena we neglect.

6.1. TRANSCRIPTIONAL REGULATION MODEL 113

All the experimental methods we have described measure mRNA quantities (or transcription

rates) in a large population of cells. This means that, when formulating a model, we can only model

the mean behavior over such a population, rather than single-cell behavior. We therefore compute

the mean transcription rate for a target gene in a cell population.

We assume that the change in concentration of a regulator is much slower than the kinetics of

reactions described, and that at each time point the system is nearly at an equilibrium. Thus, we

model the reactions described in the previous section in steady-state. A further assumption we make

is that the number of active regulator molecules in each cell is much larger than the number of its

target sites, thus neglecting any possible competition between different target genes on the same

regulator.

To compute the distribution over promoter states, we first translate the state equations into a set

of concentration equations, which have two types: conservation equations, and mass-action type

equations.

Conservation equations simply sum the quantities of a component (e.g. a site, or a regulator

molecule) in different states, making sure they equal the total amount of that component.

For the two regulator case we described earlier, the conservation equations are:

Stot = S + SA + SB + SAB (6.6)

Atot = A + SA + SAB

Btot = B + SB + SAB

where the quantities in the equations denote number of entities in the cell population (i.e., SA means

number of sites in the population bound to A regulator only, and so on).

The mass action equations describe the equilibrium state of each reaction, under the assumption

of detailed balance. Detailed balance means that between any two states which are connected by a

reaction (e.g. S and SA), the flux in both directions of the reaction is equal. This means that the

number of associations occurring per second in the population equals the number of disassociations

occurring per second in this reaction. We note that unless the reaction graph has a cycle (as in

Figure 6.3(a)), detailed balance is a direct result of equilibrium. However, we will assume it holds

even when the reaction graph allows other forms of equilibrium.

The mass action equations for the independent S + A � SA and S + B � SB reactions are:

KA
b S ·A = KA

d SA

KB
b S · B = KB

d SB

For the other cases (synergistic, competitive) the equations take a similar form, with different rate

constants.

Depending on whether no regulator, A, B, or both are bound to the promoter, we distinguish four

114 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

possible binding site configurations. We denote the fraction of sites in the population at each con-

figuration by S−,−, SA,−, Sxb−,B, and SA,B(so, for example, SA,B = SAB/Stot). We can express

each of these fractions by combining the conservation equations with the mass-action equations. In

the case of independent binding the resulting distribution is:

S−,− = 1/Z Sxb−,B = γBB/Z

SA,− = γAA/Z SA,B = γAAγBB/Z

where Z = (1 + γAA)(1 + γBB) is a normalizing constant, or a partition function: it is a sum of

all the enumerators, or explicitly:

Z = 1 + γAA + γBB + γAAγBB

When we solve the equations for the synergistic case described inEq. (6.5), we get a similar

result, except for the double binded case, which now becomes:

SA,B = γAAγABB/Z = γBBγBAA/Z

and the partition function Z is changed to maintain normalization. We note that we got a constraint

on the relation between the different constants:

γAγAB = γBγBA

which is no surprise, since these four constants are all equilibrium ratios between concentrations in

an interconnected system of reactions, and therefore they are not independent. Algebraically, we

have 5 equations (4 mass action equations and one conservation equation) and 4 hidden variables,

meaning the system is over-constrained, and the effective number of free parameters is down by

one. If we repeat the same computation for three regulators, A, B and C , the reaction graph is

cube-like, describing 12 reactions, each with its equilibrium constant. Now we have 13 equations

(13 mass-action equations and one conservation equation) and 8 hidden variables. This means the

number of free γ parameters is down from 12 to 7.

6.1.3 A Generic Regulation Function

We can now define a regulation function for two regulators as a generic weighted sum over all

possible binding states. In the non-competitive case, there are four such states, and the regulation

function looks like:

g(H1,H2 : �α, β, γ1, γ2) = β(α−,−S−,− + α−,BSxb−,B + αA,−SA,− + αA,BSA,B) (6.7)

6.2. TEMPORAL REGULATION MODELING USING DYNAMIC BAYESIAN NETWORKS115

where H1 and H2 are the concentrations of the two regulators, β is the maximal transcription rate

and �α is the vector of α parameters indicating the activity level of the different binding states.

For example, for two non-cooperative activators we can set αA,−, α−,B, αA,B to 1, and α−,− to 0,

reflecting that transcription occurs whenever at least one regulator is bound. For a more realistic

model, where different promoter states may result in different rates, we can allow α to take any real

value in the range [0, 1].
The regulation function can be easily extended to any number of regulators, and to handle more

complex scenarios, such as competitive or cooperative interactions between different regulators or

a single regulator with two binding sites, each with a different effect on transcription. Let D be

the number of factors controlling the promoter. Let H = H1, . . . ,HD denote the active protein

concentrations of those D factors. A generic function for the case of independent non-competitive

binding can be written as:

g(H;β,�γ, �α) = β

∑
I∈{0,1}D αI

∏D
i=1 IiγiH

ni
i∏D

i=1(1 + γiH
ni
i)

(6.8)

Here each vector I ∈ {0, 1}D denotes a promoter binding state: Ii = 1 means that Hi is bound,

and Ii = 0 means Hi is not bound. The ni coefficients are called Hill coefficients (Hill, 1913).

In enzyme kinetics, they measure the cooperativity in binding of effector molecules to multiple

attachment sites on a target molecule (e.g. oxygen molecules binding to Hemoglobin). In our model

they can also partially absorb effects of multiple binding sites per regulator with possible synergism

between them, though their use implies that the cooperation between the multiple regulator copies

is required also for regulation. In the experiments we report below, we set those coefficients to 1.

If we want to model competition in binding, not all vectors in {0, 1}D necessarily represent

a legitimate binding state. Let C ⊂ {0, 1}D denote the set of legitimate binding states, then the

corrected regulation function is:

g(H;β,�γ, �α) = β

∑
I∈C αI

∏D
i=1 IiγiH

ni
i∑

I∈C

∏D
i=1 IiγiH

ni
i

(6.9)

This formalism can express both cooperativity and competition between regulators. Competition on

binding is captured by the terms which are absent from the sums. Cooperativity is captured by the

different magnitudes of the α activation levels for different binding combinations.

6.2 Temporal Regulation Modeling using Dynamic Bayesian Networks

To model a regulatory network, we need to consider not only multiple regulators, but also multiple

target genes and their temporal behaviour. Since regulators typically regulate multiple targets in the

same regulon (Lee et al., 2002; Shen-Orr et al., 2002), the same activity levels of a regulator H can

be used in the regulation functions of all of its targets. However, the functions themselves are gene

116 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

specific. Consider a simple system of K genes that are regulated by the same regulator H where we

measure transcription rates at T time points. Is it possible to reconstruct the values of H at different

times, and the gene specific reaction constants? Since we have K ×T observations, and we assume

that these can be explained by T values of H and 2K parameters (different β and γ for each gene),

we have an over-constrained problem when K > 2 and T > 2. Thus, such a reconstruction is

feasible in principle.

We use the language of dynamic Bayesian networks (DBNs) which we reviewed inSection 2.6.

By this we model the system as a stationary Markovian stochastic process over discrete time points.

Our model combines a regulation diagram (e.g.,Figure 6.4(a)) that summarizes the regulation topol-

ogy between two types of attributes: the activity of regulators H1, . . . ,HD and the transcription

rates of target genes R1, . . . , RK . The state of the system at time point t is described by random

variables H
(t)
1 ,H

(t)
2 , . . . and R

(t)
1 , R

(t)
2 , . . . that denote the values of all the system’s attributes at

time t.

The model describes relations between variables at the same time point and at consecutive time

points. First, to represent the behaviour of the regulator activity attribute, we assume that H
(t+1)
i

depends on H
(t)
i . We model this dependence with the persistence equation:

H
(t+1)
i = H

(t)
i + ε

(t+1)
hi

(6.10)

where ε
(t+1)
hi

is a normally distributed noise variable with zero mean and variance σi. By modeling

the magnitude of change, our model prefers a smoother sequence of values Hi. Second, the tran-

scription rate of each target gene depends on the instantaneous activity levels of the regulators that

control it, as encoded by the regulation diagram. For example, if Rk depends on two regulators H1

and H3, then

R
(t)
k = g(H(t)

1 ,H
(t)
3 : �αk, βk, �γk)

(
1 + ε(t)

rk

)
(6.11)

where g(.) is the regulation function given by Eq. (6.9). The parameters �αk,βk and �γk are gene-

specific (so for example, �γk = [γk
1 γk

3]). The noise variable ε
(t)
rk is again Gaussian with zero mean

and variance σk. Note we use a multiplicative noise model: the noise level for Rk depends on its

expected value given the regulator activity levels. As we reviewed inSection 1.2.3, and as can be

observed in most gene expression data sets, the most dominant sources of noise in expression exper-

iments are multiplicative. We note that Eq. (6.10) and Eq. (6.11) define the conditional probabilities

P (H(t+1)
i | H(t)

i) and P (R(t+1)
k | H(t+1)

1 , . . . ,H
(t+1)
D), respectively.

Figure 6.4(b) illustrates the DBN structure that corresponds to the transcriptional network of

Figure 6.4(a). This structure represents the dependencies of variables at time t + 1 on variables in

the previous time step and the current time state. When we want to model the behavior of the system

in the time range 1, . . . , T , we duplicate this structure T − 1 times to get a Bayesian network with

T copies of each variable. Figure 6.4(c) illustrates this for three time points.

6.2. TEMPORAL MODELING OF REGULATION 117

H
1

H
2

R1 R2 R3 R4

H
1

H
2

R1 R2 R3 R4

H
1

H
2

H
1

H
2

R1 R2 R3 R4R1 R2 R3 R4

H
1

H2

R
4

R
2

R
3

R
1

H
1

H2

R
4

R
2

R
3

R
1

t t+1

H
1

H2

R
4

R
2

R
3

R
1

H
1

H2

R
4

R
2

R
3

R
1

t t+1

H
1

H2

R
4

R
2

R
3

R
1

R
4

R
2

R
3

R
1

H
1

H2

R
4

R
2

R
3

R
1

R
4

R
2

R
3

R
1

t t+1

R3
4

H1
1

H1
2

R1
4

R1
2 R1

3
R1

1

1

H2
1

H2
2

R2
4

R2
2 R2

3
R2

1

2

H3
1

H3
2

R3
2

R3
3

R3
1

3

R3
4

H1
1

H1
2

R1
4

R1
2 R1

3
R1

1

1

H2
1

H2
2

R2
4

R2
2 R2

3
R2

1

2

H3
1

H3
2

R3
2

R3
3

R3
1

3

H1
1

H1
2

R1
4

R1
2 R1

3
R1

1

1

H2
1

H2
2

R2
4

R2
2 R2

3
R2

1

2

H3
1

H3
2

R3
2

R3
3

R3
1

3

(a) Regulation Diagram (b) DBN model (c) Unrolled network

Figure 6.4: Schematic representation of a DBN model for temporal gene regulation. (a) A regulation
diagram with 2 regulators and 4 targets. (b) A 2-TBN representation of the DBN induced by this
diagram. (c) An example of the unrolled Bayesian network model for three time points.

The DBN model for time range 1, . . . , T defines a joint distribution over all the random vari-

ables in these T time points. The joint density of an assignment to all the variables is the prod-

uct of the densities of the values of error variables ε
(t)
hi

and ε
(t)
rk that achieve equality in Eq. (6.10)

and Eq. (6.11):

P (H(1), . . . ,H(T),R(1), . . . ,R(T)) (6.12)

=
D∏

i=1

[P (H(1)
i)

T∏
t=2

P (H(t)
i | H(t−1)

i)]
K∏

k=1

[
T∏

t=1

P (R(t)
k | H(t))]

=
T∏

t=1

[
D∏

i=1

P (ε(t)
hi

)
K∏

k=1

P (ε(t)
rk

)]

6.2.1 Parameter Estimation

Once we define the DBN model, we can learn the kinetic parameters and the hidden activity levels

of regulators from observations. We consider an observed set E = R(1), . . . ,R(T) of transcription

rates of K genes in T time points and try to optimize for the most likely assignment of parameters

and levels. Thus, assuming a fixed regulation diagram G, we want to find parameters that maximize

the likelihood

�(h, θ : G,E) = log P (E,h | θ,G)

where h are the values of the unobserved regulator activity levels at different times, and θ are the

kinetic and variance parameters of the model. The right hand side can be decomposed according to

Eq. (6.12). In order to make sure we learn sensible values for the model parameters, we follow the

Bayesian approach and use priors over them. What priors are appropriate for each parameter type?

First, we would like to ensure that all parameters end up positive. Also, we want the α activities to

be bounded between [0, 1]. We therefore use a uniform prior over this range for the α parameters.

For the γ affinity parameters we use a gamma prior of the following form:

P (γ) ∝ γa−1e−bγ

118 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

Incorporating the priors, we replace the maximum likelihood objective with the joint likelihood

objective:

log P (E,h, θ | G) = log P (E,h | θ,G) + log P (θ | G)

To optimize this likelihood function w.r.t. h and θ, we perform piecewise optimization: In each

step we optimize part of the {h, θ} space, while keeping the rest of it fixed. The optimization is

done using an analytical solution when possible, and gradient ascent otherwise, depending on which

parameters are optimized. We call this approach the Max-Max algorithm.

A possible pitfall with the Max-Max approach is that we are optimizing over a high dimensional

space (the time profiles of the hidden regulators can extend to a few hundred time points in promoter

activity data). This is both costly in time and prone to have many local maxima. In addition, the pa-

rameters estimated in this approach are sensitive to the particular value of h that was reconstructed.

A more cautious approach is to maximize the likelihood of the observed data, which integrates over

all possible values of the regulator activity:

max
θ

log P (E, θ) = max
θ

log
∫

P (E,h, θ)dh

To optimize the likelihood, we use an Expectation-Maximization (EM) approach (Dempster et al.,

1977). In EM we alternate between computing the posteriors P (h | E, θ) (E-step) and optimizing

the parameters θ with respect to EP (h|E,θ) log P (E,h, θ) (M-step). It can be shown that each itera-

tion of applying these two steps increases the value of log P (E, θ). The posterior probabilities over

the hidden regulators of the E-step are needed to compute the expected sufficient statistics of each

parameter in θ. These sufficient statistics are then used in the M-step optimization. At the end of

the EM process we also have a posterior distribution over h from the last E-step. We can now take

the means of those posteriors as our estimate of h, and we can also put error bars on that estimate

using the standard deviations from the posteriors.

To avoid over fitting of the model to the data, we match the model complexity to the amount of

available data. When data is scarce, we fix some of the parameters in advance, whereas when the

amount of data grows, we attempt to learn more parameters. In the current study, we preset the α

parameters in the smaller studied systems to either 0 or 1, according to biological knowledge, keep-

ing the number of free parameters low. In the larger systems, where we have more observations, we

learn a single “leak” α parameter for each gene, to allow basal transcription levels in all “inactive”

binding states. The number of parameters optimized per each of the target gene is between 3 and 5

in our experiments. This number is much lower than the number of observations (T for each gene).

6.2.2 Structure Learning

Besides using our model for estimating parameters and hidden variables, we also want to answer

some model selection questions. These can be specific questions, such as “Which of the target

genes is regulated by another repressor?”, but also general structure selection tasks, like improving

6.2. TEMPORAL MODELING OF REGULATION 119

an initial network structure, or even learning one from scratch. Since we formulated our model as

a Bayesian network, we can perform model selection with the tools we described inChapter 2 and

Chapter 4.

In our framework we use the score based approach for structure selection, employing the BIC

score (see Section 2.4.3). For the smaller systems, we can use either exhaustive or standard greedy

search, depending on the number of variables involved. For the larger systems, this becomes pro-

hibitively expensive, since each score evaluation requires full parameter optimization as described

above. To overcome this obstacle we use the “Ideal Parent” method (described inSection 4.2) both

for speeding up standard structure search, and for introducing new regulators into the model.

6.2.3 Transcription Rates

As we stressed earlier, we want to use mRNA transcription rates (as opposed to transcript levels,

for example) in our regulation models. We now turn to the problem of extracting those rates from

time series of two current experimental methods: promoter activity measurements, and microarray

measurements.

Promoter Activity Data

In Section 1.2.2 we described the method of reporter plasmids in E. Coli to measure the promoter

activity of different operons. In this experimental setting two quantities are measured in each well:

The fluorescence level of GFP, which is indicative of total accumulated promoter activity for this

operon, and the optical density, which is indicative of the cell population size.

Denoting by G
(t)
k the GFP level for the promoter of operon k at time t, and by O

(t)
k the optical

density for the same plate, we are interested in the RNA transcription rate per cell. As we explained

in Section 1.2.2, we should have r
(t)
k = 1

O
(t)
k

d
dtG

(t)
k . Unfortunately, measurement noise for both

types of observations can lead to large fluctuations in numerical differentiation. This is particularly

true for small OD values. To deal with this problem, we follow Ronen et al. (2002), and perform

numerical smoothing of the measured GFP and OD levels before differentiating them. The resulting

rates are then smoothed. The smoothing is done using a simple 20%-mean filter with a small window

size. This procedure is good at removing high frequency oscillations in the gradient, but can suffer

from lower frequency noise.

Microarray Data

Microarray techniques are the dominant method for parallel measurements of expression today,

with many data sets available publicly, including time series data. The methods we describe here

can be equally applied to data from oligonucleotide chips and from cDNA microarrays, given that

we can extract transcript levels from them. For cDNA arrays, the measurements are of the form of

log ratios between the expression levels of two conditions M1 and M0. For time series data, M0 is

120 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

usually a common control. In this case, we can reconstruct the expression level up to a gene specific

multiplicative constant that involves the control level of the gene and probe-specific issues such as

hybridization efficiency. In oligonucleotide chips, the measurements usually signify raw expression

levels (see Section 1.2.1).

To recover transcription rates, we consider how the mRNA expression level depends on both

transcription and degradation, and use a simple gene-specific mRNA decay model:

d

dt
e
(t)
k = r

(t)
k − δke

(t)
k (6.13)

where e
(t)
k is the expression level of gene k at time t and δk is the mRNA decay rate of gene k.

We assume that mRNA decay rates may be gene-specific, but remain constant in time. Given the

decay rate δk, and the expression measurements, we recover r
(t)
k (up to a gene-specific multiplicative

factor) by solving the differential equation Eq. (6.13). Such actual decay rates have been measured

experimentally under specific conditions by several recent genome-wide studies (Holstege et al.,

1998; Wang et al., 2002).

We note that the same model can be used to estimate transcription rates in steady state data sets

(such as measurements under different conditions). In this case mRNA levels are assumed to be

stable, i.e. d
dte

(t)
k = 0, and so we get r

(t)
k = δke

(t)
k from our decay model, meaning the rates are

directly proportional to the measured transcript levels. Again, we assume the mRNA decay rates

remain unchanged in the different samples.

6.3 Results on Small-Scale Systems

To understand the power and limitations of our methods, we started by evaluation on data sets from

small-scale systems. In these experiments we try to assess how well our framework performs on

the basic tasks of parameter estimation, test set prediction, and simple model selection. We first

test these tasks on synthetic data sets, and then apply the method to two real data sets: a promoter

activity data set from E. Coli, and a cDNA microarray data set from yeast.

We generated several time series for two regulators H1 and H2 from distinct smooth positive

functions, including single and multiple modes. We then generated rates for 5 genes, using H1, H2

as either repressors or activators, depending on the experiment, and several distinct values of β and

γ, with additional white noise. The number of genes was so chosen as to have a sample of different

connectivity schemes and different parameterizations, yet still be able to analyze the results visually.

The length of each time series was chosen to be 100 points, to resemble real promoter activity data

sets (see Section 6.3.3). To simulate promoter activity measurements, Ok profiles were simulated

to resemble actual profiles from real data. G
(t)
k was calculated using r

(t)
k and O

(t)
k , and finally

“observed” series GFP and OD were generated by adding noise to G
(t)
k and O

(t)
k , respectively. From

these data sets, two types of datasets were generated: one containing the actual real rates r, and

the other with the observations of GFP and OD, to which we applied the pre-processing steps of

6.3. RESULTS ON SMALL-SCALE SYSTEMS 121

estimating rates, as described above, to get smoothed rates.

6.3.1 Parameter Learning and Hidden Regulator Recovery

First, we tested recovery of the kinetic parameters β and γ, and the hidden regulator activity profile,

h. The α activation levels were preset to 0 or 1 in these experiments. We compared our method to

the one suggested by Ronen et al. (2002). Their method is based on singular value decomposition

(SVD), and is directly applicable only to systems with a single repressor. We therefore compared

performance on such a system.

What accuracy should we expect to see when learning the model parameters? When we examine

the regulation function behaviour for different parameter ranges (Figure 6.2(b)), we see that for large

values of γ the function quickly saturates. Thus, in the high γ range the rate profile is less sensitive

to changes in γ’s value, and so we might expect the accuracy of parameter reconstruction to be

lower than in small values of γ. Note that the baseline rate parameter, β, does not have a similar

effect, since it only controls the scale of r.

To test this effect, we sampled γ parameters from different ranges. We then applied the different

learning methods, and examined the learned parameters. Two phenomena were observed for all

methods. First, the error in the learned parameters (both γ and β) correlates with the magnitude

of γ as predicted. Second, as one might expect, the parameter estimates from actual rates were

more accurate than estimates from rates that were reconstructed by smoothing the derivatives of

simulated measurements. The large errors, in the latter case, mostly reflect noise introduced into

the data by the smoothing process. The comparison shows that our generative models usually have

smaller errors, an effect that increases with the level of γ.

We also examined the quality of regulator profile recreation in those experiments by looking at

the correlation between learned and real h profiles. All methods, when applied to real rates, achieve

almost perfect correlation (0.98 and higher). This shows that estimation of h is robust to errors in

estimation of the kinetic parameters. However, when learning from smoothed rates, large values of

γ exert an effect through the deformations of those rates. Generally, we expect such problems to

diminish as the number of modeled target genes grows, since the major pre-processing noise is not

correlated between the different genes, and therefore its effect will be smoothed out.

6.3.2 Identifying an Additional Regulator

A key question we can ask in such small-scale, single regulator systems, is whether some of the

genes in the regulation module are affected by an additional, non-cooperative regulator. We would

like to be able to identify those genes, as well as reproduce the dynamics of the second regulator.

This is a specific model selection task, where the solution is constrained to a subset of all possible

models. To solve it, we consider different network architectures. For each one, we train parameters

and score it using the BIC score. We then select the architecture with the highest score (our tested

system is small enough that we can score all the allowed structures).

122 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

Table 6.1: Structure learning results for 6 different regulator pro-
files, using either Max-Max (MM) or EM for parameter learning.
Each column represents a different choice of genes regulated by
H2 in the true network. The figures given for each combination
are in the format correct/contained/missed, where correct means
the true structure received the highest score, contained means the
true connections are contained in the learned ones, and missed
means other connections were learned. The cases where the ex-
act complement set of connections was learned are counted in
parentheses.

{} {3} {2, 3}
MM 0/0/6 5/1/0 3(+3)/0/0
EM 5/0/1 0/6/0 1(+1)/4/0

Set 1 Set 2 Set 3 Set 4
MM > 1 0.15 0.15 0.24
EM 0.50 0.16 0.15 0.23
SVD > 1 0.16 0.17 0.24

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

(a) (b) SVD (c) MM

Figure 6.5: Test set prediction on E. Coli promoter activity data. (a) Average test set prediction
error on 4 promoter activity experiments of Ronen et al. (2002). (b) and (c) true rates (solid lines)
vs. predicted rates (thin lines) for 4 genes in test set 4 for two of the methods.

In Table 6.1 we report qualitative structure learning results on simulated data sets from 6 dif-

ferent regulator time profiles with 3 different network architectures. We observe that the correct set

of genes is almost always contained in the learned set, with some tendency to learn excessive con-

nections. We note, however, that in almost all the cases where spurious connections were learned,

their learned γ parameters were about an order of magnitude lower than those learned for the true

connections, implying a much weaker affect of H2 on those genes. Note that when the true set was

not chosen to be connected to H2, its complement set was (i.e. genes (1, 4, 5), when the true set is

(2, 3)), which allows the model exactly the same freedom to fit the data. This is an example where

the system does not have a unique solution, or is not identifiable. We discuss the identifiability

problem in Section 6.4.

6.3.3 Example I: Test Data Prediction in E. Coli SOS System

An important test for the validity of the learned models is their generalization ability, or predictive

power over new data sets. Basically, given enough flexibility, a model can fit exactly any training

set, but still not be able to perform predictions on new data. To perform this test, we used promoter

activity time series measurements of 8 operons from the SOS system of E. Coli, from an experiment

where a UV shock caused the activation of these genes by indirect cleavage of a repressor gene

lexA (Ronen et al., 2002). The time series are 100 time points long, with 3 minute intervals between

6.4. MODELING LARGER SYSTEMS: A NON-LINEAR DIMENSIONALITY REDUCTION123

measurements. We checked 4 experiments, where each experiment contains two repeats of the same

protocol. We used one repeat for training and the other as a test set. Figure 6.5(a) reports the mean

fractional error (MFE) averaged over all genes in each test data set, where MFE is defined as the

mean of |r(t)−r
(t)
pred|/r(t) over the whole time series. We can see that with the exception of one data

set, all test sets are predicted within 15 to 25 percent average error. Figure 6.5(b-c) show test set

predictions in set number 4, having 24% average error, for 4 representative genes. We can see that

the MFE estimate might be over-pessimistic as it is mostly affected by errors at low values of r(t).
Overall, the results suggest that the simple regulation model ofEq. (6.2) can capture the behavior

of the real dynamics of a gene circuit.

6.3.4 Example II: Yox1-Mcm1 Two Regulator System

Recent work (Pramila et al., 2002) shows that M phase-expressed genes in yeast can be distin-

guished into two sub-sets. A major set which is activated by Mcm1 and is expressed earlier in M

phase, and a minor set which is activated by Mcm1 and repressed by Yox1, with delayed expres-

sion in late M phase. To evaluate the dynamics of this system, we built a model of this network,

based on known Mcm1 and Yox1 targets (Pramila et al., 2002; Simon et al., 2001). We then used

the cell-cycle mRNA expression data ofSpellman et al. (1998) (see Section 5.2) and experimentally

derived decay rates (Wang et al., 2002), to estimate transcription rates for these genes. We applied

our parameter learning methods on each of the time series and learned activity profiles for the two

regulators. As seen in Figure 6.6, the reconstructed activity level of Yox1 peaks earlier than that of

Mcm1, consistent with its documented repressive role, and explaining the subsequent shift in the

peak transcription levels of its target genes compared to that of Mcm1-exclusive targets. Surpris-

ingly, Yox1’s reconstructed activity peak appears relatively early in the cell cycle, before M phase.

This novel finding was also obtained on a separate time series (data not shown) and is corroborated

by Yox1’s expression profile (Figure 6.6(b)). Note, that the regulator expression profiles themselves

are not used in the reconstruction. This allows us to recover the hidden activity levels of regula-

tors that are themselves not transcriptionaly regulated. For example, we accurately reconstruct the

activity profile of Mcm1, which is not transcriptionaly regulated, with a clear peak at M phase.

6.4 Modeling Larger Systems: A Non-Linear Dimensionality Reduc-

tion

Up to now we have concentrated on small systems with one or two regulators. The questions

there concentrated on recovery of unknown parameters and activity levels, as well as on specific

hypothesis regarding the regulation diagram.

A more ambitious goal is to apply this framework to a large system, comprised of several regu-

lators and many target genes. At its extreme, we would have liked to apply the method to the whole

124 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

t

(a) Mcm1

learned protein
activity

log(mRNA level)

target gene
transcription

rates
t

(b) Yox1

Figure 6.6: Regulator reconstruction in an activator-repressor system. (a) The learned activity for
Mcm1 (top), vs. its mRNA log expression levels (middle), and its target genes transcription rates
(bottom). Vertical lines denote cell cycle start points (end of M/G1 transition). (b) Same for the
repressor Yox1.

transcriptome of the cell. As the number of regulators is an order of magnitude smaller than the to-

tal number of genes, learning a model which describes the transcriptome using the dynamics of the

regulators and static affinity parameters would provide a realistic, biology-based dimensionality re-

duction. In a sense, we can leverage the model large scale structure for learning small scale details

an quantitative aspects: At one end, learning more accurate activity profiles and affinity parame-

ters due to the large number of observations. At the other end, correcting the regulatory network

structure by using the expression data fit to the model.

We note that in many cases, the size and variability of a regulation system make the inference

problem highly constrained, and so a unique solution might be imposed. This is in contrast to

smaller systems where, as we saw in Section 6.3.2, there can be multiple solutions with the same

expressive power. Liao et al. (2003) analyze this identifiability problem for a similar model with

linear interactions, and give formal conditions for the system to be identifiable up to arbitrary scal-

ing. These conditions require linear independence within the learned regulator profiles, and within

the regulator connectivity vectors (corresponding to our γ parameters). When the number of target

genes is much larger than the number of regulators and these targets have a variety of connectivity

patterns, these conditions are more easily met. In our non-linear interaction model such an algebraic

analysis does not apply, but we can use it as an approximation. As a matter of fact, the non-linearity

of our model makes the problem even more constrained, since each regulation function (Eq. (6.9))

contains products of all orders of the hidden quantities, making it harder to decompose in different

ways. For this reason, our system can be identifiable even in cases where in the linear model it is

not.

Modeling the whole cell transcriptome presents two problems: First, under most experimen-

tal conditions, the majority of the genes are either silent or active at a low basal level, rendering

them useless for learning a model. Second, the size of the system presents technical difficulties for

learning. We therefore choose a large subsystem, which is characterized by its activity in a specific

biological process. In here, we choose the yeast cell cycle system.

6.4. MODELING LARGER SYSTEMS 125

TF1

TF2

TF1

TF2

Learning

Expression
data

Expression
data

mRNA
decay
rates

Kinetic
parameters

+

Biological
Databases

+
ChIP location

transcription
rates

curated network

activity
profiles

Figure 6.7: Flow of suggested method (see text).

We first study a curated model of the complex regulatory network of the entire cell cycle, and

show that we can accurately identify activity levels of regulators based solely on our realistic model-

ing framework and the expression levels of their targets. We then employ the Ideal Parent structure

learning algorithm to learn a regulatory network ab initio, based solely on expression data, and

show the accuracy of both the resulting network topology and the reconstructed regulators’ activity

profiles. Finally, we combine the curated network and the structure learning algorithm, to try and

improve the known network.

6.4.1 Example III: yeast cell cycle system

To test our framework on the cell cycle regulatory system of yeast, we assembled and curated a reg-

ulatory network by hand. We first picked 9 known cell cycle regulators (Simon et al., 2001). Two of

these regulators are not DNA binding, and were therefore left out. We then looked for evidence of

regulatory connections between the remaining 7 regulators and genes whose expression behaviour

shows cell-cycle regulation (Spellman et al., 1998). As the source of data for regulatory connec-

tions, we used biological interaction databases (Costanzo et al., 2001) and data from DNA binding

location experiments (Lee et al., 2002). In this experimental method, the binding of a transcription

factor is measured in parallel for thousands of intergenic regions. When the method assigns high

confidence to the factor’s binding to a target gene’s promoter region, we assumed this factor reg-

ulates that gene. The list was curated for suspicious intergenic probes. From this list we selected

all genes regulated by one or two of the 7 factors. The resulting network contains 141 genes with

various regulatory connections to the cell cycle regulators. Following the literature, all regulators

126 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

M/G1

G1

S

S/G2

G2/M

(b) curated predictions(a) input rates

p
ar

am
et

er
s

0

2

1

0

2

1

regulator activities

(c) ab inito predictions

Figure 6.8: Predicted rates by curated and ab initio networks. (a) Input transcription rates for 141
genes, grouped by their peak expression cell-cycle phase. (b) Predicted rates in the curated model
after model learning. The learned regulator activity profiles are shown at the top. The learned γ
affinity parameters are shown on the left (darker color means stronger affinity). (c) Predicted rates
after ab initio model learning (see text).

were modeled as non-cooperative activators, except for Mcm1 and Fkh1/2 which were modeled

as cooperative activators (Boros et al., 2003; Simon et al., 2001). Using the alpha synchronization

expression time series (Spellman et al., 1998) and experimentally derived decay rates (Wang et al.,

2002), we estimated the transcription rates for the 141 genes. We then learned regulator activity

profiles and kinematic parameters for this complex network (using Max-Max optimization). The

flow of this experiment is shown in Figure 6.7.

One important aspect of model learning is the input data fit to the model. By plugging the

learned activity profiles and kinetic parameters into the regulation functions, we can get the tran-

scription rates that the model predicts, ignoring the noise component. The discrepancy between

these rates and the input rates measure how well the model describes the data. The higher this

discrepancy is, the higher the signal in the data which is attributed to noise. The predicted rates

we learned for the 141 genes are shown in Figure 6.8, as well as the learned activity profiles and

affinity parameters. We see we get a pretty good reconstruction of the 2397 data points, using

only 7 × 17 = 119 regulator activity points and 466 parameters. For all seven transcription fac-

tors, the algorithm learned cyclic activity levels. But does their behavior correspond to what we

expect biologically? Figure 6.9 shows the learned activity profiles for the 7 modeled regulators,

against their mRNA expression levels and their target genes behaviour. We first note that the reg-

ulator profiles are consistent with their known activity based on molecular or genetic studies. For

6.4. MODELING LARGER SYSTEMS 127

Fkh2 Swi4 Swi5 Mcm1

Fkh1 Mbp1 Ace2

Figure 6.9: Regulator activity profiles learned from the curated network diagram. Axis meanings
are as in Figure 6.6.

example, Swi5’s activity peaks at late M/G1 and early G1, consistent with its previously reported ac-

tivity (McBride et al., 1999); Mbp1 and Swi4’s activity levels peak at mid to late G1 consistent with

their role in G1/S gene expression (Baetz and Andrews, 1999); and Fkh1 and Fkh2 peak at late S/G2

and G2/M respectively, consistent with their reported effects in genetic studies (Hollenhorst et al.,

2000). Thus, in many cases (e.g., Swi5 and Swi4 or Fkh1 and Fkh2), the reconstructed activity lev-

els distinguish between relatively subtle but important differences in true biological activities, the

establishment of which has often required a large number of experiments. In some cases (e.g. Fkh2

or Swi5), our reconstructed activity profiles closely resemble the regulator’s expression profile. But

more importantly, since our reconstruction does not use the expression levels of the regulators, we

are able to accurately reconstruct their activity levels even if they are not regulated transcriptionaly

(e.g., Mcm1), or if their expression and activity profiles are shifted (e.g., Ace2), highlighting the

power of our approach.

The full power of our framework lies in its ability to learn not only accurate activity profiles and

kinematic parameters, but also the full network architecture ab initio. We therefore ran the Ideal

Parent structure learning algorithm on a naı̈ve network with the same 141 target genes all wired to a

single activator. We allowed the algorithm to add more regulators and change regulatory connections

until convergence. In this experiment we used simple correlation as the similarity measure between

profiles. Addition of a new regulator was applied only if no other modification was accepted. To

add a new regulator, we apply the CLUST algorithm (Ben-Dor et al., 1999) to find clusters of ideal

regulator profiles that are highly correlated (above 0.8), and may correspond to a new regulator of

the genes for which these ideal profiles were generated. We evaluate each proposed new regulator

by introducing it into the network, and then apply gradient ascent to find the best parameter values

and regulators activity profiles for the modified network. We then choose the new regulator that

leads to the biggest score improvement and add it and its target links to the current network. When

128 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

no such regulator offers a positive improvement, no action is taken.

The resulting networks in several runs had between 6 and 9 regulators, where the first 6 or 7 were

very similar between runs. Figure 6.8(c) shows predicted rates for one of those runs. As we can see,

the data fitting of the ab initio model is generally better than that of the curated model, especially

for genes peaking in S or M/G1 phase. The BIC score of the ab initio model was correspondingly

better, even though the number of parameters (461) is essentially the same.

To evaluate the quality of our ab initio reconstructed network and identify the reconstructed reg-

ulators, we compared the topology of the learned network to that of the curated one (Figure 6.10(a,b)),

and the learned activity profiles to those learned on the curated network (Figure 6.10(c)). In some

cases, such as inferred regulator H2 and the known regulator Swi5, the correspondence in both tar-

gets and activity levels is striking (Figure 6.10(d) and (b,c), second row). In others, a single inferred

regulator corresponds to two separate factors with similar activity patterns (e.g., regulator H1 and

the G1/S factors Mbp1 and Swi4). Overall, since in the known network some targets are regulated

by more than one factor and some factors have similar profiles, by combining both tests we can

roughly identify most of our inferred profiles (regulators 1, 2, 3, 5, 6 and 7) with known regulatory

activities (MBF/SBF, Swi5, the Fkh2/Mcm1 complex, Fkh1, Swi5/Ace2 activity, and Fkh1/Fkh2

activity). Thus, these tests indicate that the inferred regulators have both targets and activity levels

very similar to those in the known curated network, and highlight the success of our approach in

learning both correct structure and parameters in the most stringent challenge.

Finally, despite their impressive correspondence, both the ab initio learned network and the

curated model are likely only approximations of the true biological systems. Thus, we combined our

curated network and our structure learning approach, and used the curated network as a starting point

for the structure learning algorithm, trying to improve the known structure. Indeed, this yielded a

dramatic improvement in score (610 bits), by introducing changes in the connections for about 35

genes (despite not adding new regulators), primarily changing genes from SBF to MBF regulation

and from Fkh1 to Fkh2. These modifications suggest novel hypotheses, potentially extending our

partial biological knowledge.

6.5 Discussion

In this chapter, we examined the question of learning the dynamics of transcription networks, in

terms of the temporal behaviour of regulators, as well as the kinetic parameters governing their effect

on their targets. Our method provides a principled approach to handle a wide range of transcriptional

network architectures and regulation functions. Unlike previous methods based on probabilistic

models (Friedman et al., 2000; Kim et al., 2003; Ong et al., 2002; Pe’er et al., 2001), we addressed

the fact that the relevant quantities - transcription rates and regulator activity levels - are usually

not measured. Our DBN-based model to transcription rates and regulator activity levels allows us

to handle these biologically relevant quantities despite the indirect measurement of the former and

the lack of measurements of the latter. This is done by preprocessing steps to extract transcription

6.5. DISCUSSION 129

(a) Network structure

-7

-6

-5

-4

-3

-2

-1

0

A
ce

2

F
kh

1

F
kh

2

M
b

p
1

M
cm

1

S
w

i4

S
w

i5

H1

H2

H3

H4

H5

H6

H7

A
ce

2

F
kh

1

F
kh

2

M
b

p
1

M
cm

1

S
w

i4

S
w

i5

H1

H2

H3

H4

H5

H6

H7
0

0.2

0.4

0.6

0.8

1

(b) Target intersection (c) Profile correlation

0 20 40 60 80 100 1200 20 40 60 80 100 120

H2

SWI5

0 20 40 60 80 100 1200 20 40 60 80 100 120

H1

MBP1

0 20 40 60 80 100 1200 20 40 60 80 100 120

H3

FKH2

(d) (e) (f)

Figure 6.10: Comparison between the curated and ab initio learned models. (a) An integrated
representation of the two networks; Target genes are at the middle row, regulators for the curated
network are at the top, and regulators for the ab initio network are at the bottom. The solid red
arrows show regulator pairs with significant target overlap and correlated activity. The dotted orange
arrows show pairs with significant target overlap, but weakly correlated activity. (b) Log p-value of
target intersection groups between known and ab initio regulators. (c) Positive correlations between
learned activity profiles of known and ab initio regulators. (d-f) Three examples of highly correlated
learned profile pairs of known (red) and ab initio (blue) regulators.

130 CHAPTER 6. REALISTIC MODELS OF REGULATORY NETWORKS

rates, and by the use of hidden variables to account for unobserved regulator activity levels. Several

recent works (Battogtokh et al., 2002; Liao et al., 2003; Ronen et al., 2002) use a fixed regulation

diagram to reconstruct unobserved regulator activity profiles and parameters. This work is the first

to combine a network structure learning algorithm in this context. Our algorithm is based on the

notion of “ideal” regulators, and we demonstrated its power on the cell cycle regulatory network.

The framework we present here allows us to handle noise inherent to the biology and the mea-

surements in a principled way, and to learn both the parameters and the structure of the regulation

network. However, our model still abstracts away some of the explicit processes that generate the

actual observed expression data. A more explicit modeling of these will provide a more principled

treatment of different sources of noise in the data. Furthermore, our model does not handle directly

any of the upstream events that affect regulator activity. In fact, the current model is an open loop

system, such that the regulation of regulator activity is itself viewed as exogenous to the system.

By developing a richer modeling language we may capture more complex reaction models, model

the upstream regulation of activity levels, and learn systems that involve feedback mechanisms and

signaling. Finally, such extensions open the possibility of incorporating additional types of data,

such as binding sites models, transcription factor binding data or protein-protein interaction data.

These could serve not only as additional sources for initialization or validation of models, but also

as a primary source of observations for model learning, thus widening the molecular scope covered

by our framework.

Chapter 7

Discussion

7.1 Summary

In this dissertation we have developed several algorithms and model types in the Bayesian network

framework, towards modeling gene regulation networks. We then presented two approaches for

the analysis of such network from gene expression and other modes of data. We first introduced

a non-parametric representation for local dependencies in Bayesian networks, based on Gaussian

process priors, and showed its flexibility and power in detecting non-linear functional connections.

We then presented two novel methods for speeding up network structure search: The Sparse Can-

didate algorithm achieves speedup by iteratively reducing the structure space through the selection

of candidate parents. The Ideal Parent approach replaces exact and expensive scoring of candidate

parents with similarity measurements to a hypothetical “Ideal” parent profile, and also uses these

profiles for introducing new hidden variable into the network structure.

In the first application to regulatory network modeling, ensembles of learned Bayesian network

models were used to detect statistically strong structural features, like direct connections between

genes. In the second one, a realistic model of transcription regulation was formulated, and the

hidden levels of regulator active proteins, as well as the kinetic parameters of regulation, were

learned from gene expression and DNA binding location data. This framework was combined with

the Ideal Parent method to search for network structures ab-initio, as well as improve currently

known structures.

The two approaches we present for regulatory network analysis are quite different. Each of them

employs different modeling assumptions, and each captures different features. The first method

assumes that regulatory connections can be inferred from expression levels of the regulator and

target genes. This assumption holds in many cases, in particular in steady state situations, when

there is no advantage to the fast response of regulator protein activity modulation, and most of the

regulation is done at the transcriptional level. Even in dynamic scenarios, such as during the cell

cycle, some of the regulators are transcriptionaly regulated. By learning ensembles of networks from

perturbed data sets, our method was able to capture many known regulatory connections. Besides

131

132 CHAPTER 7. DISCUSSION

the yeast cell cycle system reported here, this method was successfully applied to other data sets,

including a compendium of yeast deletion strains (Pe’er, 2003).

The second method we presented uses more realistic assumptions on the nature of regulatory

pathways and on the relevant interacting sizes. It assumes nothing on the mechanisms regulating

the regulators themselves, and models the regulators as hidden quantities. By that the method lends

itself to any scenario of regulation, be it a steady state or a dynamic process, regardless of whether

the regulators themselves are transcriptionaly regulated. Moreover, this method produces quanti-

tative predictions, some of which can be experimentally verified, and not just qualitative wiring

predictions. We demonstrated the method on the dynamic DNA damage pathway in E. Coli and on

the yeast cell cycle system.

7.2 Related Work

Ever since the introduction of microarray measurement methods, a host of analysis approaches

have been applied to them, each one with a different objective in mind. In the introduction we

mentioned briefly some of the earlier approaches, including clustering methods and early network

reconstruction methods.

Clustering applications to gene expression data mostly aim at grouping together genes with

similar expression profiles, with the hope that they play a role in similar functional modules. Both

the clustering algorithm and the similarity measure used have a big influence on the outcome of the

clustering process. Moreover, the objective which the clustering algorithm tries to optimize often

cannot be defined without reference to the algorithm itself (as in hierarchical clustering). The most

common approach was first introduced in Eisen et al. (1998b), and uses hierarchical clustering with

a Pearson correlation similarity metric. Using this similarity measure implicitly assumes a linear

dependence between the genes. As we have shown in Chapter 6, in a realistic model of regulation

there are non-linear dependencies between regulator and target genes, which in turn induce non-

linear connections between the targets. In this sense the use of linear correlation is a simplification,

just like the use of linear Gaussian connections in our Bayesian network framework ofChapter 5.

Close relatives of clustering methods are the decomposition, or dimensionality reduction meth-

ods. In these methods one attempts to express the data using a small number of components and

parameters. Alter et al. (2000) first suggested the use of singular value decomposition (SVD) in

this context, decomposing the gene expression data matrix to a linear combination of “eigengenes”

and “eigenarrays”. One can then try to assign biological meaning to the different components. For

example, an eigengene might correspond to a specific regulator, but it can also represent a com-

bination of several regulatory activities. While this approach is elegant and simple, it again lacks

a biological basis. One useful application of such decompositions is in “pealing” off data compo-

nents which originate in noise or experimental artifacts. A more recent work byLiao et al. (2003)

introduces a method of recovering the regulatory network structure using biologically based de-

composition. Their approach is similar to the one we present in Chapter 6, however it is limited

7.2. RELATED WORK 133

to an all-activator, full cooperativity scenario and is based on approximations which require long

time intervals between measurements. Both our work and that of Liao et al. differ from the SVD

decomposition in the sparseness of connections, which makes them interpretable also as network

structure learning approaches.

Following the publication of our first Bayesian network based expression analysis method (Chapter 5),

many followed the use of probabilistic graphical modeling for this problem. For example,Hartemink et al.

(2001) use a model similar to that of Chapter 5, but additionally allow hidden variables to account

for unobserved quantities like specific protein levels, and annotate the network edges for interac-

tion sign (repression or activation). In a later work (Hartemink et al., 2002) they use DNA binding

location data for setting a prior over regulatory connections in such models. Imoto et al. (2003)

suggested the use of non-parametric regression for modeling local interactions within Bayesian net-

work models. The use of the simpler, deterministic models (like Boolean networks) have seen a

decrease in recent years. Linear interaction model methods have also acknowledged recently the

sparseness of regulatory networks, introducing different ways to limit the number of non-zero in-

teraction parameters (de Hoon et al., 2003). This renders their parameter optimization procedures

closer to structure learning methods we employ here. As pointed out byMurphy and Mian (1999),

both linear and non-linear models which optimize some error function while learning parameters

are actually equivalent to Bayesian network models such as Gaussian networks, even though they

are not presented explicitly as probabilistic models.

Several researchers have applied dynamic Bayesian networks to model time series expression

data, acknowledging the fact that static Bayesian networks are incapable of modeling feedback

cycles, and do not utilize the time dependence between samples in those data sets.Kim et al. (2004)

extend the non-parametric model of Imoto et al. (2003) to the dynamic case. Ong et al. (2002) use

hidden variables in this context to account for unknown operon structure in their bacterial data.

Two recent works are closely related to our dynamical modeling approach: Perrin et al. (2003) and

Rangel et al. (2004) both use dynamic models with hidden “regulation” states controlling observed

transcription levels. However, the hidden state does not correspond to protein activity levels, but

rather to mRNA levels and their derivatives (Perrin et al., 2003) or to an undefined “regulatory”

state (Rangel et al., 2004). Moreover, both works end up using a linear regulation model between

the hidden and observed variables, and a simple additive noise model. In this sense, they are not

as close to real biology as our realistic models, and so interpreting their results is harder. Their

modeling choices of course render these models much simpler to solve, borrowing from standard

techniques for linear dynamical systems. It would be interesting to compare the performance of our

methods against such simplified approaches.

Our realistic approach was motivated by a different path of research, which studies regula-

tory mechanisms using fine detailed realistic kinetic models, borrowing from a long tradition in

enzyme kinetics modeling. McAdams and Arkin (1997) give a detailed model of a single gene’s

expression pathway, accounting for different sources of stochasticity. Ronen et al. (2002) learn the

kinetic parameters for a single repressor regulation module in E. Coli using algebraic methods.

134 CHAPTER 7. DISCUSSION

Battogtokh et al. (2002) face a similar task using an ensemble method to estimate error bars over

the predicted parameters. These works base their interaction models on the biochemical processes,

resulting in non-linear regulatory connections. They do not try to learn the network’s structure,

however, and use an architecture known in advance from biological literature.

A related question to ours is that of transcription factor binding motif discovery. Since the

introduction of microarray methods, researchers used expression data sets to tackle this problem.

The first implementations used clustering of gene expression profiles, and then look for motifs

within each cluster (Tavazoie et al., 1999; Zhang, 1999). Bussemaker et al. (2001) circumvent the

need for clustering by using a model in which the log expression level results from a linear sum

of its upstream motifs. Pilpel et al. (2001) look for combinations of known motifs in promoters of

genes with a correlated expression pattern, obtaining new knowledge about combinatorial regulation

schemes.

In recent years, the combination of different data sources has become popular, leading to works

that integrate between questions of sequence motif finding and regulatory connection discovery. For

example, Tanay and Shamir (2004) explain transcription levels through a combination of regulator

affinities and regulator doses (activity levels) as we do in Chapter 6, using a sequence motif dis-

covery procedure to initialize the regulator levels and affinities. Their approach is somewhat more

simplified, as they model functions over discretized levels of activity and affinity, and as they use

the probabilistic score of a binding site as an approximation to its affinity level. Segal et al. (2002,

2003b) combine sequence motif models and expression profiles into a unified probabilistic graphical

model. They also employ DNA location data either as noisy sensors of regulator-target connections

(Segal et al., 2002) or as external validation for unknown regulator identities (Segal et al., 2003b).

In Segal et al. (2003a), expression and sequence data are combined to characterize expression mod-

ules in a different type of model. Unlike the more realistic models, these types of models capture

phenomena in the data without directly modeling the mechanisms that generate it. This might be

considered a strength, as they can make useful predictions without employing too strong assump-

tions on the modeled phenomena. However it is harder to make quantitative predictions in such

approaches. As we discuss in the final section, we hope to extend our realistic modeling framework

to account for different data sources as well.

7.3 Future Directions

We believe the analysis methods introduced in this thesis hold great promise for elucidating the

structure, parameters and eventually the dynamics of gene regulation networks. There are, however,

limitations to these methods which should be acknowledged, some of which point at promising

future research directions.

7.3. FUTURE DIRECTIONS 135

7.3.1 Closing the Loop

Our realistic regulation model currently does not account for the sources of regulator activity. In

particular, the connection between a regulator’s transcription rate at time t and its activity level at

time t + 1 is ignored. Though in many cases, as we pointed out, this connection does not carry any

information (e.g. when all the regulator’s control happens post-translationally), in some systems

(particularly in bacterial ones) this connection is sound and can be modeled in a principled way.

For example, when we expect no dynamic regulation at the post translational or degradation levels,

we can model the dependence of a gene’s protein levels on its mRNA levels using a simple protein

production rule:
d

dt
p
(t)
k = λke

(t)
k − δkp

(t)
k (7.1)

where pk and ek are the protein and mRNA levels of gene k at time t, respectively, λk is the gene’s

protein translation rate and δk is the protein degradation rate.

We can benefit a lot by modeling these connections whenever possible. First, they remove

artificial independencies present in the current model, and constrain the hidden protein activity

levels more correctly during the learning process. Moreover, by closing the loop between mRNA

and protein variables we can use the model to predict future dynamics in a better way. We can

then study the model’s dynamics, through simulation or analysis, getting an additional source for

verifying its learned parameters. For example, if the biological system contains feedback with some

known dynamic behavior (like cyclic oscillations, stabilizing effects or auto-catalytic behaviour), we

expect to obtain this behaviour when running a simulation of the model’s dynamics. This simulation

is not possible in our current open loop model, as the only dependence between time points in it

comes in the form of persistence edges.

7.3.2 Incorporating Different Data Sources

In our first approach we only use expression data as input. In the more realistic approach we also

use binding location data for an initial guess of the regulatory network structure. As today we face

a multitude of different data sources, from which data sets are accumulating every day, our models

can benefit greatly by incorporating different modes of data in a principled manner, much like the

heterogeneous-source methods we mentioned in the previous section do. For example, though our

use of location data is straightforward, it cannot be justified in the Bayesian framework. A more

principled approach would be to treat this data as some noisy sensor for gene regulation, as done

in Segal et al. (2002). By this we would treat location data and expression data on equal footing:

both are types of observations which are explained by our generative model. One benefit of such

an approach is that it obviates the question of how to weigh different types of data when learning a

model. The relevant term in the model score is simply the likelihood of all observed data given the

model, without any arbitrary weighting factors.

136 CHAPTER 7. DISCUSSION

Generative
model

G4

TF2TF1

G3G2G1 G5G4

TF2TF1

G3G2G1 G5

mRNA
expression

data

DNA
location

data

promoter
sequence

data

protein
levels
data

Observations

Figure 7.1: A possible approach for incorporating different data sources. A generative model,
consisting of regulation network topology and kinetic parameters, provides a description of how
observations of different types were generated. Expression, location and sequence data are today
commonly available. Protein data will become more common in the future.

Other modes of data can also be incorporated this way. One prevalent source is promoter se-

quence, or motif occurrence data. Other modes which may be more common in the future are

protein quantity measurements or protein activity measurements. Figure 7.1 illustrates the idea of

such a scheme. Of course, working out the details of combining these different data sources with

our realistic quantitative approach into a single coherent generative model is a challenging task.

7.3.3 Putting Things into Use

The major bulk of this thesis describes methods, approaches and algorithms by which one can gain

better understanding of regulatory networks. Far too often in the field of computational biology

researchers stop at the phase of demonstrating the power of a certain approach, without doing the

extra step of putting their methods into real use, thus producing some new knowledge on biology.

This step usually requires wet lab experimentation and can therefore be very time consuming. This

is, however, the only way we can translate our efforts to statements such as “The novel factor X

represses the group of genes A in the beginning of process P ” with confidence. Our major goal

now should be getting the methods we describe here to this stage. This requires application of

the methods to specific systems (such as the ones we describe in the experiments ofChapter 6),

generating testable predictions and collaborating with experimental labs to verify those predictions.

Doing this we can make our computational research in the field of biology fulfill its true aim.

Bibliography

Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI ’95). 1995.

Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96). 1996.

Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98). 1998.

Proc. Fifthteenth Conference on Uncertainty in Artificial Intelligence (UAI ’99). 1999.

Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, Mass., 2001.

Proc. Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI ’01). 2001.

H. Akaike. A new look at the statistical idetification model. IEEE Transactions on Automatic Control, 19:
716–723, 1974.

S. Akutsu, T. Kuhara, O. Maruyama, and S. Miyano. Indentification of gene regulatory networks by strategic
gene disruptions and gene over-expressions. In SODA. ACM-SIAM, 1998.

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran,
X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, Jr. Hudson, J., L. Lu, D. B. Lewis, R. Tibshirani,
G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, L. M. Staudt, and
et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403
(6769):503–11, 2000.

U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. PNAS, 96(12):6745–50, 1999.

O. Alter, P. O. Brown, and D. Botstein. Singular value decomposition for genome-wide expression data
processing and modeling. Proc Natl Acad Sci U S A, 97(18):10101–10106, Aug 2000.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acids Res., 25:
3389–3402, 1997.

H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In Proc. Fifth-
teenth Conference on Uncertainty in Artificial Intelligence (UAI ’99) uai (1999), pages 21–30.

K. Baetz and B. Andrews. Regulation of cell cycle transcription factor swi4 through auto-inhibition of dna
binding. Mol Cell Biol, 19(10):6729–41, 1999.

D. Battogtokh, D. K. Asch, M. E. Case, and J. Arnold. An ensemble method for identifying regulatory
circuits with special reference to the qa gene cluster of neurospora crassa. Proc Natl Acad Sci U S A, 99
(26):16904–9, 2002.

137

138 BIBLIOGRAPHY

I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system: A case study
with two probabilistic inference techniques for belief networks. In Proc. 2’nd European Conf. on AI and
Medicine. Springer-Verlag, Berlin, 1989.

A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini. Tissue classification with
gene expression profiles. Journal of Computational Biology, 7:559–584, 2000.

A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. J. Comp. Bio., 6(3-4):281–97,
1999.

A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno,
M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J.
Sugarbaker, and M. Meyerson. Classification of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A, 98(24):13790–13795, Nov 2001.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/\simmlearn/MLRepository.html.

T. Blumenthal. Gene clusters and polycistronic transcription in eukaryotes. Bioessays, pages 480–487, 1998.

Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993. URL
citeseer.ist.psu.edu/bodlaender93tourist.html.

Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Igor Privara and Peter Ruzicka,
editors, Proceedings 22nd International Symposium on Mathematical Foundations of Computer Science,
MFCS’97, Lecture Notes in Computer Science, volume 1295, pages 19–36, Berlin, 1997. Springer-Verlag.
URL citeseer.ist.psu.edu/bodlaender98treewidth.html.

J. Boros, F. L. Lim, Z. Darieva, A. Pic-Taylor, R. Harman, B. A. Morgan, and A. D. Sharrocks. Molecular
determinants of the cell-cycle regulated Mcm1p-Fkh2p transcription factor complex. Nucleic Acids Res,
31(9):2279–2288, May 2003.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian net-
works. In Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96) uai (1996).

X. Boyen, N. Friedman, and D. Koller. Learning the structure of complex dynamic systems. In Proc. Fifth-
teenth Conference on Uncertainty in Artificial Intelligence (UAI ’99) uai (1999).

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’98) uai (1998), pages 33–42.

H.J. Bussemaker, H. Li, and E.D. Siggia. Regulatory element detection using correlation with expression.
Nature Genetics, 27:167–71, 2001.

P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results. In Fayyad U., Piatesky-
Shapiro G., Smyth P., and Uthuruasmy R., editors, Advances in Knowledge Discovery and Data Mining,
pages 153–180. AAAI Press, Menlo Park, CA, 1995.

T. Chen, V. Filkov, and S. Skiena. Identifying gene regulatory networks from experimental data. In RECOMB
1999, 1999a.

T. Chen, H. L. He, and G. M. Church. Modeling gene expression with differential equations. Pac Symp
Biocomput, pages 29–40, 1999b.

http://www.ics.uci.edu/$sim $mlearn/MLRepository.html
citeseer.ist.psu.edu/bodlaender93tourist.html
citeseer.ist.psu.edu/bodlaender98treewidth.html

BIBLIOGRAPHY 139

J. Cheng, D.A. Bell, and W. Liu. An algorithm for bayesian belief network construction from data. In
Proceedings of AI & STAT, pages 83–90, Ft. Lauderdale, Florida, 1997.

J. Cheng, G. Grainer, J. Kelly, D.A. Bell, and W. Lius. Learning bayesian networks from data: An
information-theory based approach, 2001. URL citeseer.ist.psu.edu/628344.html.

D. M. Chickering. A transformational characterization of equivalent Bayesian network structures. In UAI ’95
uai (1995), pages 87–98.

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, editors, Learn-
ing from Data: Artificial Intelligence and Statistics V. Springer Verlag, 1996.

D. M. Chickering and D. Heckerman. Efficient approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29:181–212, 1997.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE
Trans. on Info. Theory, 14:462–467, 1968.

G. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data. In
Proc. Fifthteenth Conference on Uncertainty in Artificial Intelligence (UAI ’99) uai (1999), pages 116–
125.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42:393–405, 1990.

G.F. Cooper and C. Glymour. Computation, Causation, and Discovery. MIT Press, 1999.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Mass.,
1990.

M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen, L.S. Robertson, M.S. Skrzypek, B.R.
Braun, K.L. Hopkins, P. Kondu, C. Lengieza, J.E. Lew-Smith, M. Tillberg, and J.I. Garrels. Ypd, pombepd,
and wormpd: model organism volumes of the bioknowledge library, an integrated resource for protein
information. Nuc. Acids Res., 29:75–9, 2001.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, New York, 1991.

L. Csato and M. Opper. Sparse on-line gaussian processes. Neural Comput, 14(3):641–668, Mar 2002.

F. Cvrckova and K. Nasmyth. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud
formation. EMBO. J, 12:5277–5286, 1993.

P. Dagum and M. Luby. An optimal approximation algorithm for Baysian inference. Artificial Intelligence,
93(1–2):1–27, 1997.

M. J. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano. Inferring gene regulatory networks
from time-ordered gene expression. Pac Symp Biocomput, pages 17–28, 2003.

R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In Proc. Twelfth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’96) uai (1996).

M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, B 39:1–39, 1977.

J. DeRisi, V. Iyer, and P. Brown. Exploring the metabolic and genetic control of gene expression on a genomic
scale. Science, 282:699–705, 1997.

citeseer.ist.psu.edu/628344.html

140 BIBLIOGRAPHY

P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA expression levels during
CNS development and injury. Pac Symp Biocomput, pages 41–52, 1999.

A. Doucet, N. de Freitas, and N. Gordon (eds). Sequential Monte Carlo Methods in Practice. Springer-Verlag,
2001.

A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle filtering for dynamic
Bayesian networks. In Proc. Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI ’00),
pages 176–183, 2000a. URL citeseer.nj.nec.com/doucet00raoblackwellised.html.

A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering.
Statist. Comp, 10:197–208, 2000b.

M. A. Drebot, G. C. Johnston, J. D. Friesen, and R. A. Singer. An impaired RNA polymerase II activity in
saccharomyces cerevisiae causes cell-cycle inhibition at START. Mol. Gen. Genet., 241:327–334, 1993.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973.

R. Durrett. Probablity Theory and Examples. Wadsworth and Brooks, Cole, California, 1991.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, London, 1993.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide
expression patterns. PNAS, 95(25):14863–8, 1998a.

M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of genome-wide
expression patterns. PNAS, 95:14863–14868, 1998b.

G. Elidan and N. Friedman. The information bottleneck EM algorithm. In Proc. Nineteenth Conference on
Uncertainty in Artificial Intelligence (UAI ’03). 2003.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based approach.
In Advances in Neural Information Processing Systems 13 nip (2001).

K. J. Ezawa and T. Schuermann. Fraud/uncollectable debt detection using a Bayesian network based learning
system: A rare binary outcome with mixed data structures. In UAI ’95 uai (1995).

N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In ML ’97,
pages 125–133. 1997.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In Proc. Twelfth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’96) uai (1996).

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I. Jordan, editor,
Learning in Graphical Models, pages 421–460. Kluwer, Dordrecht, Netherlands, 1998.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap approach.
In Proc. UAI, pages 206–215, 1999.

N. Friedman and D. Koller. Being bayesian about network structure. In Proc. Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI ’00). 2000.

N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian approach to
structure discovery in Bayesian networks. Machine Learning, 50:95–126, 2003.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression data.
J. Comp. Bio., 7:601–620, 2000.

citeseer.nj.nec.com/doucet00raoblackwellised.html

BIBLIOGRAPHY 141

N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic probabilistic networks. In
Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98) uai (1998), pages 139–
147.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown.
Genomic expression program in the response of yeast cells to environmental changes. Mol. Bio. Cell, 11:
4241–4257, 2000.

D. Geiger and D. Heckerman. Learning gaussian networks. In UAI ’94, pages 235–243. 1994.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In IJCAI ’99.
1999.

M. N. Gibbs and D. J. C. MacKay. Efficient implementation of gaussian processes. 1997.

M. N. Gibbs and D. J. C. MacKay. Variational Gaussian process classifiers. Unpublished manuscripts,
available at http://wol.ra.phy.cam.ac.uk/mackay, 1997.

W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov Chain Monte Carlo Methods in Practice. CRC
Press, 1996.

V. Guacci, D. Koshland, and A. Strunnikov. A direct link between sister chromatid cohesion and chromosome
condensation revealed through the analysis of MCD1 in s. cerevisiae. Cell, 91(1):47–57, October 1997.

C. C. Guet, M. B. Elowitz, W. Hsing, and S. Leibler. Combinatorial synthesis of genetic networks. Science,
296(5572):1466–70, 2002.

F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press, NY, 1973.

A. Hartemink, D. Gifford, T. S. Jaakkola, and R. Young. Using graphical models and genomic expression
data to statistically validate models of genetic regulatory networks. In Pac. Symp. Biocomp. 6, 2001.

A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Combining location and expression data for
principled discovery of genetic regulatory network models. Pac Symp Biocomput, pages 437–449, 2002.

P. A. Haynes and J.R. 3rd Yates. Proteome profiling-pitfalls and progress. Yeast, 17(2):81–87, Jun 2000.

D. Heckerman and D. Geiger. Likelihoods and parameter priors for bayesian networks. Technical report,
1995. Technical Report MSR-TR-95-54, Microsoft Research.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20:197–243, 1995a.

D. Heckerman, A. Mamdani, and M. P. Wellman. Real-world applications of Bayesian networks. Communi-
cations of the ACM, 38, 1995b.

D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach to causal discovery. In Computation, Causa-
tion, and Discovery Cooper and Glymour (1999), pages 141–166.

A.V Hill. The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 7:471–
480, 1913.

R. Hofmann and V. Tresp. Discovering structure in continuous variables using bayesian networks. In Ad-
vances in Neural Information Processing Systems 9. MIT Press, Cambridge, Mass., 1996.

P. C. Hollenhorst, M. E. Bose, M. R. Mielke, and C. A. Fox. Forkhead genes in transcriptional silencing,
cell morphology and the cell cycle. overlapping and distinct functions for fkh1 and fkh2 in saccharomyces
cerevisiae. Genetics, 154(4):1533–48, 2000.

142 BIBLIOGRAPHY

F. C. Holstege, E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S.
Lander, and R. A. Young. Dissecting the regulatory circuitry of a eukaryotic genome. Cell, 95(5):717–28,
1998.

S. Imoto, S. Kim, T. Goto, S. Miyano, S. Aburatani, K. Tashiro, and S. Kuhara. Bayesian network and
nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinform Comput
Biol, 1(2):231–252, Jul 2003.

R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed. Summaries of Affymetrix
GeneChip probe level data. Nucleic Acids Res, 31(4):e15, Feb 2003.

F. V. Jensen. An introduction to Bayesian Networks. University College London Press, London, 1996.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal probabilistic networks by local
computations. Computational Statistics Quarterly, 5(4):269–282, 1990.

T. Jochims. A probabilistic analysis of the rocchio algorithm with tfidf for text categorization. In ICML,
1997.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational approximations
methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, Dordrecht,
Netherlands, 1998.

S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, MG. Surette, and U. Alon. Ordering
genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science, 292:2080–
2083, 2001.

S. A. Kauffmann. The Origins of Order. Oxford University Press, New York, 1993.

S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian network and nonparametric regression for nonlinear
modeling of gene networks from time series gene expression data. Biosystems, 75(1-3):57–65, Jul 2004.

S. Y. Kim, S. Imoto, and S. Miyano. Inferring gene networks from time series microarray data using dynamic
bayesian networks. Brief Bioinform, 4(3):228–35, 2003.

H. Kitano. Computational systems biology. Nature, 420(6912):206–10, 2002.

D. Koller, U. Lerner, and D. Angelov. A general algorithm for approxiamte inference and its application to
hybrud bayes nets. In Proc. Fifthteenth Conference on Uncertainty in Artificial Intelligence (UAI ’99) uai
(1999).

S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some of which are
qualitative and some quantitative. Annals of Statistics, 17:31–57, 1989.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: The informative vector
machine. In Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, Mass., 2003.

TI Lee, NJ Rinaldi, F Robert, DT Odom, Z Bar-Joseph, GK Gerber, NM Hannett, CT Harbison, CM Thomp-
son, I Simon, J Zeitlinger, EG Jennings, HL Murray, DB Gordon, B Ren, JJ Wyrick, JB Tagne, TL Volkert,
E Fraenkel, DK Gifford, and RA Young. Transcriptional regulatory networks in saccharomyces cerevisiae.
Science, 298:799–804, 2002.

U. Lerner, E. Segal, and D. Koller. Exact inference in networks with discrete children of continuous parents.
In Proc. Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI ’01) uai (2001).

U. N. Lerner. Hybrid Bayesian Networks for Reasoning about Complex Systems. PhD thesis, Dept. of
Computer Science, Stanford University, 2002.

BIBLIOGRAPHY 143

C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: expression index computation and
outlier detection. Proc Natl Acad Sci U S A, 98(1):31–36, Jan 2001.

S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse engineering algorithm for inference of
genetic network architectures. Pac Symp Biocomput, pages 18–29, 1998.

J. C. Liao, R. Boscolo, L. M. Tran, C. Sabatti, and V. P. Roychowdhury. Network component analysis:
reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A, 100(26):15522–7,
2003.

D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Want,
M. Kobayashi, H. Horton, and E. L. Brown. DNA expression monitoring by hybridization of high density
oligonucleotide arrays. Nature Biotechnology, 14:1675–1680, 1996.

D. J. C. MacKay. Introduction to Gaussian processes. Unpublished manuscripts, available at
http://wol.ra.phy.cam.ac.uk/mackay, 1998.

D. Madigan and E.E. Raftery. Model selection and accounting for model uncertainty in graphical models
using Occam’s window. Journal Americal Statistical Association, 89:1535–1546, 1994.

D. Madigan and J. York. Bayesian graphical models for discrete data. International statistical Review, 63:
215–232, 1995.

J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian networks. Tech-
nical report, Department of Computer Science, University of Pittsburgh, 1995.

H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A, 94(3):
814–9, 1997.

H. J. McBride, Y. Yu, and D. J. Stillman. Distinct regions of the swi5 and ace2 transcription factors are
required for specific gene activation. J Biol Chem, 274(30):21029–36, 1999.

P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1989.

W. G. McGregor. DNA repair, DNA replication, and UV mutagenesis. J. Investig. Dermatol. Symp. Proc., 4:
1–5, 1999.

G. S. Michaels and et al. Cluster analysis and data visualization for large scale gene expression data. In Pac.
Symp. Biocomputing, pages 42–53. 1998.

Thomas P. Minka. Pathologies of orthodox statistics. Available from
http://www.stat.cmu.edu/˜minka/papers/pathologies.html, 1998.

E. Mjolsness, D.H.Sharp, and J. Reinitz. A connectionist model of development. J. Theor. Biol., 152:429–
453, 1991.

A. W. Moore and M. S. Lee. Cached sufficient statistics for efficient machine learning with large datasets.
Journal of Artificial Intelligence Research, 8:67–91, 1997.

K. Murphy and S. Mian. Modeling gene expression data using dynamic bayesian networks. Technical report,
1999. Available at http://www.cs.berkeley.edu/ murphyk/publ.html.

K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An empirical study. In
Proc. Fifthteenth Conference on Uncertainty in Artificial Intelligence (UAI ’99) uai (1999).

K. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in dbns. In Proc. Seven-
teenth Conference on Uncertainty in Artificial Intelligence (UAI ’01) uai (2001), pages 378–385.

144 BIBLIOGRAPHY

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-
93-1, University of Toronto, 1993.

I.M. Ong, J.D. Glasner, and D. Page. Modelling regulatory pathways in e. coli from time series expression
profiles. Bioinformatics, 18(Suppl 1):S241–248, 2002.

E. Parzen. On the estimation of a probability density function and mode. Annals of Mathematical Statistics,
33:1065–1076, 1962.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, 2000.

J. Pearl and T. S. Verma. A theory of inferred causation. In KR ’91, pages 441–452. 1991.

D. Pe’er. From Gene Expression to Molecular Pathways. PhD thesis, School. of Computer Science and
Engineering, Hebrew University, 2003.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed expression profiles.
Bioinformatics, 17(Suppl 1):S215–24, 2001.

D Pe’er, A Regev, and A Tanay. Minreg: Inferring an active regulator set. Bioinformatics, 18 Suppl 1:
S258–S267, 2002.

B.E. Perrin, L Ralaivola, A Mazurie, S Bottani, J Mallet, and F. D’Alche-Buc. Gene networks inference using
dynamic bayesian networks. Bioinformatics, 19 Suppl 2:II138–II148, 2003.

Y. Pilpel, P. Sudarsanam, and G.M. Church. Identifying regulatory networks by combinatorial analysis of
promoter elements. Nature Genetics, 29:153–9, 2001.

T. Pramila, S. Miles, D. GuhaThakurta, D. Jemiolo, and L. L Breeden. Conserved homeodomain proteins
interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the
cell cycle. Genes Dev, 16(23):3034–45, 2002.

C. Rangel, J. Angus, Z. Ghahramani, M. Lioumi, E. Sotheran, A. Gaiba, D. L. Wild, and F. Falciani. Modeling
T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20(9):1361–1372,
Jun 2004.

C. E. Rasmussen. Evaluation of Gaussian Processes and other Methods for Non-Linear Regression. PhD
thesis, 1996.

J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, River Edge, NJ, 1989.

M. Ronen, R. Rosenberg, B. I. Shraiman, and U. Alon. Assigning numbers to the arrows: Parameterizing a
gene regulation network by using accurate expression kinetics. PNAS, 99(16):10555–10560, 2002. URL
http://www.pnas.org/cgi/content/abstract/99/16/10555.

F. Rosenblatt. Remarks on some nonparametric estimates of a density function. Annals of Mathematical
Statistics, 27:832–837, 1956.

M. Sahami. Learning limited dependence bayesian classifiers. pages 335–338, 1996.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. From promoter sequence to expression: A
probabilistic framekwork. In RECOMB’02. 2002.

http://www.pnas.org/cgi/content/abstract/99/16/10555

BIBLIOGRAPHY 145

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module networks:
identifying regulatory modules and their condition-specific regulators from gene expression data. Nat
Genet, 34(2):166–176, Jun 2003a.

E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcriptional modules from DNA sequence
and gene expression. Bioinformatics, 19 Suppl 1:i273–i282, 2003b.

SS Shen-Orr, R Milo, S Mangan, and U Alon. Network motifs in the transcriptional regulation network of
escherichia coli. Nature Genetics, 31:64–8, 2002.

I. Simon, J. Barnett, N. Hannett, C.T. Harbison, N.J. Rinaldi, T.L. Volkert, J.J. Wyrick, J. Zeitlinger, D.K.
Gifford, T.S. Jaakkola, and R.A. Young. Serial regulation of transcriptional regulators in the yeast cell
cycle. Cell, 106:697–708, 2001.

A. Smola and P. Bartlett. Sparse greedy gaussian process regression. In Advances in Neural Information
Processing Systems 13 nip (2001).

R. Somogyi, S. Fuhrman, M. Askenazi, and A. Wuensche. The gene expression matrix: Towards the extrac-
tion of genetic network architectures. In WCNA96, 1996.

E. L. Sonnhammer, S.R. Eddy, E. Birney, A. Bateman, and R. Durbin. Pfam: multiple sequence alignments
and hmm-profiles of protein domains. Nuc. Acids Res., 26:320–322, 1998.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein,
and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces
cerevisiae by microarray hybridization. Mol. Biol. Cell, 9(12):3273–97, 1998.

D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on directed graphical
structures. Networks, 20:579–605, 1990.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Springer Verlag, 1993.

P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent variables
and selection bias. In Computation, Causation, and Discovery Cooper and Glymour (1999), pages 211–
252.

A. Tanay and R. Shamir. Multilevel modeling and inference of transcription regulation. J Comput Biol, 11
(2-3):357–375, 2004.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination of genetic
network architecture. Nat Genet, 22(3):281–5, 1999.

B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learning mixtures of Bayesian networks. In
Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98) uai (1998).

S. Tornaletti and P. C. Hanawalt. Effect of DNA lesions on transcription elongation. Biochimie, 81:139–146,
1999.

V. Tresp. Mixtures of gaussian processes. In Advances in Neural Information Processing Systems 13 nip
(2001).

G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.

G. Wahba. Multivariate model building with additive, interaction, and tensor product thin plate splines. pages
491–504, 1991.

146 BIBLIOGRAPHY

G. Wahba. An introduction to model building with reproducing kernel hilbert spaces. Technical Report TR
1020, Univ. of Wisconsin, 2000.

Y. Wang, C. L. Liu, J. D Storey, R. J. Tibshirani, D. Herschlag, and P. O. Brown. Precision and functional
specificity in mRNA decay. Proc Natl Acad Sci U S A, 99(9):5860–5, 2002.

D. Weaver, C. Workman, and G. Stormo. Modeling regulatory networks with weight matrices. In Pac. Symp.
Biocomputing, pages 112–123, 1999.

X. Wen, S. Furhmann, G. S. Micheals, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi. Large-scale
temporal gene expression mapping of central nervous system development. PNAS, 95:334–339, 1998.

J. Wilkinson. The Algebric Eigenvalue Problem. Claderon Press, Oxford, 1965.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In Advances in Neural Information
Processing Systems 8. MIT Press, Cambridge, Mass., 1996.

C. K. I. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In Advances in
Neural Information Processing Systems 13 nip (2001).

L. Xu and M.I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neural
Computation, 8:129–151, 1996.

G. Yona, N. Linial, and M. Linial. Protomap - automated classification of all protein sequences: a hierarchy
of protein families, and local maps of the protein space. Proteins: Structure, Function, and Genetics, 37:
360–378, 1998.

M. Q. Zhang. Promoter analysis of co-regulated genes in the yeast genome. Comput Chem, 23(3-4):233–250,
Jun 1999.

N.L. Zhang. Hierarchical latent class models for cluster analysis. pages 230–237, 2002.

	1 Introduction
	1.1 The Biology of Gene Regulation
	1.2 Experimental Methods
	1.2.1 cDNA Microarrays
	1.2.2 Reporter Plasmid Assays
	1.2.3 Sources of Noise

	1.3 Previous Analysis Approaches
	1.4 Our Approach
	1.5 Outline

	2 Bayesian Networks
	2.1 Model Definition
	2.1.1 Equivalence Classes

	2.2 Representing Dependencies: the CPD
	2.2.1 Discrete Variables: multinomial CPDs
	2.2.2 Continuous Variables: Linear Gaussians and more
	2.2.3 Hybrid Families

	2.3 Inference
	2.4 Learning Bayesian Networks
	2.4.1 Parameter Learning
	2.4.2 Learning Structure
	2.4.3 Scoring a Structure
	2.4.4 Search Algorithms

	2.5 Assigning Causal Interpretations
	2.6 Modeling Time: Dynamic Bayesian Networks

	3 Gaussian Process Networks
	3.1 Background
	3.1.1 Why do we need non-parametric CPDs?

	3.2 Gaussian Process priors
	3.2.1 Prediction
	3.2.2 Covariance Functions

	3.3 Learning Networks with Gaussian Process priors
	3.4 Experimental Evaluation
	3.4.1 Real life data

	3.5 Discussion

	4 Structure Learning Methods for Bayesian Networks
	4.1 Learning from large domains: The ``Sparse Candidate'' Algorithm
	4.1.1 The ``Sparse Candidate'' Algorithm
	4.1.2 Choosing Candidate Sets
	4.1.3 Learning with Small Candidate Sets
	4.1.4 Experimental Evaluation
	4.1.5 Discussion

	4.2 Learning in Continuous Variable Networks: The ``Ideal Parent'' Method
	4.2.1 The ``Ideal Parent'' Concept
	4.2.2 Ideal Parents in Search
	4.2.3 Non-linear CPDs
	4.2.4 Other Noise Models
	4.2.5 Experimental Evaluation
	4.2.6 Discussion

	4.3 Discussion: Comparing the Two Methods

	5 Discrete and Linear Modeling of Regulatory Networks
	5.1 Analyzing Expression Data
	5.1.1 Representing Partial Models
	5.1.2 Estimating Statistical Confidence in Features
	5.1.3 Local Representations and Learning Algorithms

	5.2 Application to Cell Cycle Expression Patterns
	5.2.1 Robustness Analysis
	5.2.2 Biological Analysis

	5.3 Discussion and Future Work

	6 Realistic Models of Regulatory Networks
	6.1 Transcriptional Regulation Model
	6.1.1 Modeling Binding/Disassociation Events with state equations
	6.1.2 Computing the Equilibrium Distribution of Promoter States
	6.1.3 A Generic Regulation Function

	6.2 Temporal Regulation Modeling using Dynamic Bayesian Networks
	6.2.1 Parameter Estimation
	6.2.2 Structure Learning
	6.2.3 Transcription Rates

	6.3 Results on Small-Scale Systems
	6.3.1 Parameter Learning and Hidden Regulator Recovery
	6.3.2 Identifying an Additional Regulator
	6.3.3 Example I: Test Data Prediction in E. Coli SOS System
	6.3.4 Example II: Yox1-Mcm1 Two Regulator System

	6.4 Modeling Larger Systems: A Non-Linear Dimensionality Reduction
	6.4.1 Example III: yeast cell cycle system

	6.5 Discussion

	7 Discussion
	7.1 Summary
	7.2 Related Work
	7.3 Future Directions
	7.3.1 Closing the Loop
	7.3.2 Incorporating Different Data Sources
	7.3.3 Putting Things into Use

	Bibliography

