Learning Symmetric Relational Markov
Random Fields

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

by

Ofer Meshi

Supervised by Prof. Nir Friedman

December 2007

The School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

Relational Markov Random FieldgMRF’s) are a general and flexible framework for rea-
soning about the joint distribution over attributes of a large number of irttagaentities,
such as graphs, social networks or gene networks. When modelihgasuetwork using
an rMRF one of the major problems is choosing the set of features to inclilde model
and setting their weights. The main computational difficulty in learning such mérdets
evidence is that the estimation of each set of features requires the ugatraeter es-
timation procedure. Even when dealing with complete data, where one can samma
large domain by sufficient statistics, parameter estimation requires one to theex-
pectation of the sufficient statistics given different parameter choidds.rieans that we
run inference in the network for each step in the iterative algorithm usquhfameter es-
timation. Since exact inference is usually intractable, the typical solution torthtidégm is
to resort to approximate inference procedures, sudbogey belief propagationAlthough
these procedures are quite efficient, they still require computation thathe @nder of the
number of interactions (or features) in the model. When learning a largerelamodel
over a complex domain even such approximations require unrealistic rutimiag

In this work we show that for a particular class of rIMRFs, which haverigmesymme-
try, we can perform the inference needed for learning procedwiag a liftedtemplate-
level belief propagation. This procedure’s running time is proportional to thedizhe
relational model rather than the size of the domain. Moreover, we showhisatom-
putational procedure is equivalent to synchronous loopy belief gatdjmn. This yields a
dramatic speedup in inference time. We use this speedup to learn such symiBffis
from evidence in an efficient way. This enables us to explore problemaais which were
impossible to handle with existing methods.

Chapter 1

Introduction

1. Motivation

Complex networks are ubiquitous in many fields of science.ifpeeing the network of
interactions underlying the functionality of systems asheol® is a great challenge. If we
succeed in doing so, then we might gain new insights to thesbehof such complex sys-
tems and better understand how individual nodes intergagtfiorm complex tasks. This
challenge is common to a plethora of domains including pmotgeraction networks (Fig-
ure 1.1), the Web, social networks, gene networks, powelsgrnformation processing
networks, and many more. One approach in this field atterogdiad local rules of inter-
actions between relatively small units that govern the g@llsbructure of the network. One
of the main problems in handling such networks is their ugualge size. For example,
in the Protein-Protein interactiometwork of budding yeast there axe6000 proteins with
~ 18,000, 000 possible interactions.

A notable work that tries to meet this challengeNstwork Motifsby Milo et al.
[Milo et al. 2002]. They search the network for basic unitBezhmotifs, which are over-
represented subgraphs. To determine which subgraphs ereepresented the abundance
of each subgraph in the real network is compared to its amagda a random ensemble of
networks. Other approaches to this problem emphasize th@tance of measurable quan-
tities of the network, such as the degrees of individual sdBarabasi and Albert 1999],
shortest paths between nodes, and others. Each of thesedséids its shortcomings (we
give some more details in Chapter 7).

We take a different approach that usePrababilistic Graphical Modeiin order to
model the complex network of interactions (see also [Jaiatoet al. 2006]). This is a
generativeapproach in which we learn a model that describes the compdéxork at
hand. We believe this approach is more elegant and overceares of the limitations
of existing methods. More specifically, we use a sub-claggabhical models callere-
lational Markov Random Field§@MRFs) which are suitable for reasoning about complex
networks of interactions. This framework is natural for atésng complex relations be-
tween entities, in which the same local rules repeat througthe model. In practice,
such probabilistic models give a compact representatidheojoint distribution of random

3

Figure 1.1: Example for an protein interaction network. Adopted from Hdes.al. Nature 411,41
2001

variables that describe properties of entities and theant®ns between them. This repre-
sentation assumes that the overall joint distribution eadéscribed in terms of local, small
joint distributions over groups of random variables in thed®l. Hence it is natural to use
rMRFs in order to look for local rules governing the global pedies of the network.

In the remaining of this chapter we explain about Markov Ramdtaelds and rMRFs,
then we show why running probabilistic inference on such @®i$ both essential for our
goal and difficult, and finally we talk about our contributiand related work.

2. Markov Random Fields

Markov Random Field¢MRFs), also known adarkov Networksare a general way to
model the joint probability of a group of random variablés= { X, ..., X,,}. Such mod-
els were first introduced in the field of statistical mechamamodel certain physical phe-
nomena and today they are used in a wide range of applicatiolsling computer vision,
natural language, computational biology and digital comitations. MRFs provide a
compact representation of the distribution in terms of lgedaentialsor factorswhich are
defined over subsets of variables. These potential furctoe defined as. : *. — R
and can be viewed as representing preferences over lodajeations (otto be confused
with marginal probabilities). Such compact representatsoachieved byactorizingthe
joint distribution into a product of the local factors. Ofwse, not every distribution can
be factorized this way, but this family is still very expries An MRF is strongly related
to an undirected grapfi = (V, E') where each vertex € V' is associated with a random
variableX; € X and each factor is associated with a maximal cliquen G.

Formally, the joint distribution represented by an MRF isegi\by:
1
P(X =x) =]:[wc(xc) (1.1)

whereZ is a normalization constant known as fPartition Functionand defined by:

Z = Z H Te(xe)

ze) ¢

where() is the set of all legal assignments 4. This constant ensures that the model
describes a legal probability distribution - all entriesmsio 1.

A distribution of this form is called &ibbs distribution

It is often more convenient to specify potentials slightiffedently and use the repre-
sentation of a log-linear model:

P(X =x) = exp {Z Gif@-(x)} (12)

and:

Z=Y exp {Z eifz-<w>} (1.3)

z€Q

The log-linear model has a set of local feature functigns(? — IR for each clique, and
the parameters of the log-linear model are weigtgsich that eacH; € IR corresponds to
a featuref;. If, for example, the potentials are represented as taR&rs, then each entry
in the table is associated with one featyfend its value is exactlg;.

There exists an important connection between the strudtfuitee undirected grap8
and conditional independence in the probability distidmutdefined by the random field.
Specifically, each group of variablés C X is independent of all other variablg¢s;
X\ X} given their neighbors in the graph - also called thdarkov blanket Formally:
(X L X\ X|Nx), and we say that’ islocally Markovwith respect t@;. The Hammersley-
Clifford theorem [Hammersley and Clifford 1971] states thiatX; p(X; = x;) > 0 and
X is locally Markov with respect te7, thenp(X') factorizes with respect t6& (Eq. (1.1)).
And the other direction is also true.

In this work we focus on MRFs for structured domains, that atirally represented
under the Entity-Relation paradigm [Getoor et al. 2001; dirian et al. 1999]. These
Probabilistic Relational Model¢PRMSs), also callediemplate Modelsspecify a recipe
with which a concrete MRF can be constructed for a specificfemttgies. Such relational
MRFs (rMRFs) may reuse the same potential function for manypfadn the instantiated
model. This means that the model usésred parameterthat allow reasoning about a
set of variables as a group. rMRFs are used to model many typksrains like the web
[Taskar et al. 2004], gene expression measurements [SegaP@03] and protein-protein

5

interaction networks [Jaimovich et al. 2006]. In these dimsie¢hey can be used for diverse
tasks, such as prediction of missing values given some wdtgams [Jaimovich et al. 2006],
classification [Taskar et al. 2004], and model selectiog@bet al. 2003]. All of these tasks
require the ability to perform inference in these modelsthia work we build on the fact
that such models contain many repetitions of the same |danatare in the instantiated
level. We use it to devise an extremely efficient approxinvaerence algorithm that takes
advantage of this symmetry. Furthermore, we use the sanpegyoto perform model
selection tasks much more efficiently.

3. Model Selection

In the task of learning an MRF from empirical evidence we akemia set of training
samplesD = {x[l],...,x[M]}, each is an assignment to the variabkqIn this work
we focus on the case of fully observed data, which means nhetch sample values are
assigned to all the variables). Our goal is to learn an appropriate set of features
F ={fi,..., fr} (Feature Selectionand their corresponding parametérs- {6, ..., 0;}
(Parameter Estimation In other words, we want to construct the best generativdaino
for the given evidence. This task turns out to be very diffiaglthe number of the feature
sets we have to consider is usually prohibitively large, eveh if we have the correct set
of features finding values for their parameters cannot be @dfiectively in general [Parise
and Welling 2005]. Instead, we normally have to resort tatige methods for optimizing
over parameter space. Unfortunately, every step in thatieralgorithm requires that we
run inference on the model. So, inference turns out to be tie computational bottleneck
in the learning procedure.

4. Inference in MRFs

Inference in MRFs is the computation needed to answer pritabgueries about the joint
distribution defined by the model. Notable queries includdifig the marginal probability
or the most probable assignment of a subset of the variaptessiply given the values
of other variables). A naive solution to such queries is el by summing over some
(or all) of the possible assignments, which generally nexgucomputational time that is
exponential in the number of variables. This makes exaetrémice infeasible in most
interesting cases. In fact, the problem of inference in surobabilistic models istP —
complete. Instead, a common practice is to trade-off accuracy fosibélety and resort to
approximate inference methods.

One approach to the design of approximate inference usestieions to all or some
of the variables. This approach involves a stochastic p&ich abarkov Chain Monte
Carlo (MCMC) [Geman and Geman 1984], to produce the instantiatiwas) which the
joint distribution can be approximated. In another apphotr approximate inference,
termed Variational MethodgJordan et al. 1998], we attempt to approximate the target
distribution P by a simpler distributiord). In practice we define a family of simpler distri-

butionsQ and look for a particular instancg € Q that best approximateB. This simpli-
fication is achieved by expanding the problem to include tamithl parameters, known as
variational parametersGenerally speaking, the algorithms in this class can beeadeas
optimizing a target function that measures the quality efdapproximation. In this work
we focus on one variational method callBdlief Propagation

5. Our Contribution

In this work we show how to perform model selection in a sddg@e of rMRFs that have
inherent symmetry properties. In such tasks we have to riemeince for many different
models. Our basic observation is that when the model hassunmetry properties it is
possible to run approximate inference very efficiently. dmtigular, we show that many of
the intermediate results of approximate inference pro@sjwsuch as loopy belief propa-
gation, are identical. Thus, instead of recalculating traes terms over and over, we can
perform inference at the template level. We define formalbrge class of relational mod-
els that have these symmetry properties, show how we carhaseto perform efficient
approximate inference and compare our results with othénads. This is, to the best of
our knowledge, the firdtfted approximate inference algorithm that works on the template
level of the model. Using the efficient inference algorithm perform model selection for
both synthetic and real-life problems. The efficient leagprocedure allows us to explore
domains that were intractable using previous methods.

6. Related Work

Other works attempted to exploit relational structure farenefficient inference. For ex-
ample, Pfefferet al. [Pfeffer et al. 1999] used the relational structure to cadpeated
computations of intermediate terms that are identical ffedint instances of the same
template. Several recent works derive rules as to whenblargimination can be per-
formed at the template level rather than the instance lew@h saves duplicate compu-
tations [Poole 2003; de Salvo Braz et al. 2005]. These metfomis on speeding exact
inference, and are relevant in models where the intermeedatulations of exact inference
have tractable representations. These approaches canapplied to models, such as the
ones we consider, where intermediate results of varialpl@redtion are exponential. In
contrast, our method focuses on template level inferenckfted approximate inference
in such intractable models.

This document is organized as follows: in Chapter 2 we definass ©f rMRFs and the
way to construct them. In Chapter 3 we show how symmetry ptigseof such models
can be used for efficient inference. In the following chaptee study model selection
for these kind of models, including parameter estimatiorafiiér 4) and feature selection
(Chapter 5). Then in Chapter 6 we use our efficient algorithnedorn a generative model
for a large scale real-life problem from the Protein-Proteiteraction domain. Finally, we
conclude with a discussion.

Chapter 2

Symmetric relational models

In this chapter we define a class of rMRFs. We will later show bowxploit symmetry
properties of models in this class in order to run extrem#élgient approximate inference
algorithm.

As mentioned in Chapter Rrobabilistic Relational Model¢§PRMs) provide a lan-
guage for defining how to construct models from reoccurrimgrsomponents [Friedman
et al. 1999; Getoor et al. 2001; Taskar et al. 2002; Poole R@&pending on the specific
instantiation these sub-components are duplicated to create the actimalplistic model.
We are interested in models that can be applied for reas@fingt the relations between
entities. Our motivating example will be reasoning aboet $tructure of interaction net-
works. We now define a class of relational models that will bevenient for reasoning
about these domains. We use a language that is similar tqpoe@susly defined [Richard-
son and Domingos 2006], but also somewhat different, inraimenake our claims in the
following chapter more simple and clear.

As with most relational models in the literature we distirsiuthetemplate-leveinodel
that describes the types of objects and components of thelraod how they can be ap-
plied, from theinstantiation-levethat describes a particular model which is an instantiation
of the template to a specific set of entities.

To define a template-level model we first set up the diffengme$ of entities we reason
about in the model. We distinguidtasic entity typeshat describe atomic entities from
complex typethat describe composite entities.

Definition 1 Given a sey,.si. = (T4, ..., T,) of basic entity typesve define two kinds of
complex types

o IfTy,... T, are basic types, theh; x - - - x T}, denotes the type ajrdered tuplesf
entities of these types.df, . . ., e, are entities of type%;, . .., Ti, respectively, then
(e1,...,ex) isOf typeTy x -+ x Ty.

e If T'is a basic type, thei* denotes the type afnordered tuplesf entities of typd’.
If e1,. .., e are entities of typd’, thenle,, ..., e;] is of typeT*. When considering
unordered tuples, permutations of the basic elementgstdl to the same complex

8

entity. Thus, ife;, e; are of typeT’, then bothle;, es] and [es, e1] refer to the same
complex entity of typ@?.

For example, suppose we want to reason about undirectedgyriipve define a typ#,
for vertices then an undirected edge is of type= 72 since an edge is a composite object
that consists of two vertices. Note that we use unorderel@sugince the edge does not
have a direction. That is, both,, vo] and v, v4] refer to the same relationship between
the two vertices. If we want to model directed edges, we neagdason about ordered
tuplesT, = T, x T,. Now (vy,v,) and (vy, v;) refer to two distinct edges. This forms
a rich language which enables the representation of contumains. For example, We
can consider social networks, where vertices corresponetople. Now we might also
add a typel; of physical locations. In order to reason about relatiopshietween vertices
(people) and locations we need to define pairs of @pe= T, x 7;. Note that tuples that
relate between different types are by definition ordered.

Once we define the template-level set of tyfflesver some set of basic typ&g.i., we
can consider particular instantiations in terms of erditie

Definition 2 An entity instantiation Z for (7y.s., 7) consists of a set dbasic entities
and a mapping : £ — 7Ty« that assigns a basic type to each basic enfity.

Based on an instantiation, we create all possible instamtsbf each type irT:

o if T € Thasic thenZ(T) = {ee€ E:0(e) =T}
o fT=T, x---xTthenZ(T) = Z(T) x --- x Z(T}).

o If T =TFthenZ(T) = {le1,...,ex] 1 €1,...ex €I(T}),e1 < -+ < e, } Where< is
some (arbitrary) order oveér(T) 1.

Once we define a set of basic entities, we assume that allgp@ssimplex entities of the
given type are defined (see Figure 2.1 for an instantiatidheofindirected graph example).

The basic and complex entities define the structure of ouradtoof interest. Our goal,
however, is to reason about the properties of these entitesrefer to these properties as
attributes Again, we start by the definition at the template level, aratped to examine
their application to a specific instantiation:

Definition 3 Atemplate attribute A(7") defines a property of entities of tyfpe The set of
values the attribute can take is denoted }A(T')). 1

1. For example, considering undirected edges again, wk diifv;, v2] and|[vs, v1] as two different names
of the same entity. Our definition ensures that only one aféhte/o objects is in the set of entities and
we view the other as an alternative reference to the santy.enti

Figure 2.1: An instantiation of an undirected graph scheme over a domaireefitartices.

A template attribute denotes a specific property we expett ebject of the given type
to have. In general, we can consider attributes of basicctsjar attributes of complex
objects. In our example, we can reason about the color oftexydsy having an attribute
Color(T,). We can also create an attribibest(7,) that denotes whether the edge between
two vertices exists. We can consider other attributes sa¢heaweight of an edge and so
on. All these template attributes are defined at the levdh@stheme and we will denote
by A the set of template attributes in our model.

Given a concrete entity instan@ewe consider all the attributes of each instantiated
type. We view the attributes of objects as random variablésis, each template attribute
in A defines a set of random variables:

Xr(A(T)) ={Xa(e) : e € Z(T)}

We defineX; = UarrcaXz(A(T)) to be the set of all random variables that are defined
over the instantiatio. For example, if we consider the attribut@slor over vertices and
Exist over unordered pairs of vertices, and suppose &hat {v,,v,,v3} are all of type
T, then we have three random variablestifColor(T;,)) which areXcolor (v1), Xcolor(v2),
Xcolor(v3), and three random variablesAi(Exist(7,)) which areXgyis: ([v1, v2]), Xexist ([v1, v3])
andXEXist([Ug, Ug]).

Given a set of types, their attributes and an instantiatndefined a universe of dis-
course, which is the sét; of random variables. Aattribute instantiationv (or just instan-
tiation) is an assignment of values to all random varialte&s. We use bothw(Xa(e))
andza(e) to refer to the assigned value to the attribAtef the entitye.

We now turn to the final component of our relational model. &birte a log-linear
model over the random variablés, we need to introduckeatureghat capture preferences
for specific configurations of values to small groups of edatandom variables. In our
graph example, we can introduce a univariate feature foe®titat describes the potential
for the existence of an edge in the graph. A more complex featan describe preferences
over triplets of interactionse(g, prefer triangles over open chains).

We start by defining template level features as a recipe thbevassigned to a large
number of specific sets of random variables in the instadtiatodel. Intuitively, a template
feature defines a function that can be applied to a set obat&$s of related entities. To
do so, we need to provide a mechanism to capture sets of atitiyutes with particular
relationships. For example, to put a feature over a triaofgzlges, we want a feature over

10

Arguments | Formal | Attr. | Function
entities

Fe (€1, &) [€1,&] | Exist | f5(2) = I{z = 1}
(T, Ty) T,

Fi | (&1,&2,83) [€1,82] | Exist | f3(z1,22,23) =
[§1,§3] Exist .’ﬂ.{(21 = 1) A
[52,53] Exist (ZQ = 1) A\
<TU,TU,TU> T, T, T, (z3=1) }

Table 2.1: Example of two template-level features for a graph model. Thasfiessfeature over
single edges, and the second is one over triplets of coincident edgaglésn

the variablesXgyist ([v1, va]), Xexist([v1, v3]), @and Xgys ([v2, v3)) for every choice of three
verticeswvy, v9, andwvz. The actual definition, thus involves entities that we qiiaraver
(e.g.,v1,v9, andus), the complex entities over these arguments we examing [@.gv.|,
[v1, v3], and[v, v3]), the attributes of these entities, and the actual feature.

Definition 4 A Template Feature F is defined by four components:

e Atuple ofargumentssy, . . ., &) with a corresponding list ofype signaturd?y, ..., T},
such that; denotes an entity of basic tyfi¢.

e A list of formal entitiessy, ..., ¢;, with corresponding typeflf, e ,ij such that
each formal entity is either one of the arguments, or a complex entity constaict
from the arguments. (For technical reasons, we require thahél entities refer to
each argument at most once.)

o Alist of attributesA, (1Y), ..., A;(T).
o Afunctionf : Val(Ay(T{)) x -+ x Val(A;(T)) — R.

For example, Table 2.1 shows such a formalization for a graptel with two such
template level features.

We view a template-level feature as a recipe for generatinigjpre instance-level fea-
tures by applying differerhindingsof objects to the arguments. For example, in our three
vertices instantiation, we could create instances of theeifeF, such asfs(Xgyist ([v1, v2]))
and fs(Xgxist ([v1, v3])). We now formally define this process.

Definition 5 Let F be a template feature with components as in Definition 4, and ke
an entity instantiation. Ainding of F is an ordered tuple of entitiesg = (e;,...,ex)
such that; € Z(T). A binding islegalif each entity in the binding is unique. We define

Bindings(F) = {fe€Z(T}) x--- x Z(T}) : Bis legal for F}

11

Given a bindingd = (ey, ..., e;) € Bindings(F), we define the entity,|; to be the entity
corresponding ta; when we assign; to the argument;. Finally, we define thground
featureF|; to be the function over:

Fla(w) = f (w(Xa,(e1]p)), -, w(Xa,(g5l8))
|

For example, consider the bindifg;, v2, v3) for F; of Table 2.1. This binding is legal
since all three entities are of the proper type and are éiffsirom each other. This binding
defines the ground feature

~/T;f|<vl,v2,v3> (w) = fS(IExist([Uh U2D, xExist([Ula 03]), wExist([UQ, 713]))

That is, F| (v, v..0) (w) = 1 iff there is a triangle of edges between the verticgsy, and
v3. Note that each binding defines a ground feature. Howevperiéng on the choice of
feature function, some of these ground features might bevaegut. In our last example,
the binding(v, v3, v2) creates the same feature. While this creates a redundaniogst
not impact the usefulness of the language. We now have atidhmgponents in place.

Definition 6 A Relational MRF schemeS is defined by a set of typds, their attributes
A and a set of template featurgs = {Fi, ..., Fr}. Amodelis a scheme combined with
a vector ofparameterd = (0;,...,6x) € IR*. Given an entity instantiatiof a scheme
uniquely defines the universe of discoufse Using a log-linear representation we can
define the joint distribution of a full assignmengs:

k
Pw:S8,7,0) = Z(Ql 7 expzeiﬁ(w) (2.1)

where (with slight abuse of notation)

Fw= Y Filsw)

B€Bindings(F;)

is the total weight of all groundings of the featufg, and Z is the normalizing constant,
also called thepartition function i

This definition of a joint distribution is similar to standdog-linear models, except that
all groundings of a template feature share the same parajDetéa Pietra et al. 1997]. No-
tice that this means features are not necessarily binarghwaill influence the complexity
of the learning task (more details will follow in Chapter 4).

Now that we have defined the class of models of interest, weeaigty to address the
problem of inference in such models.

12

Chapter 3

Compact Approximate Inference

As mentioned eatrlier, variational methods are a broad daapproximate inference al-
gorithms. Here we show the application of our idedompy belief propagatiofMurphy
et al. 1999; Yedidia et al. 2002], which is one of the most cammpproaches in this field.
At the end of this chapter We make a note on applying the saesetaa broader class of
variational methods calle@eneralized Belief Propagatidivedidia et al. 2002].

1. Belief Propagation

In the Belief Propagation algorithm we introduce (variaéibrvariables which can natu-
rally be understood asiessagebetween nodes in the graph about the state they should
be in [Pearl 1988]. It is sometimes convenient to view thiscpss as operating on a data
structure calledractor Graph[Kschischang et al. 2001] (more details will follow bellaw)
The belief of a group of nodes is obtained by the product of its local ke and all
messages coming into it (Eq. (3.5)). The algorithm uses arsa@ message update rule
defined bellow in Eqg. (3.3) and Eq. (3.4).

The belief propagation algorithm updates messages of ihésuatil they converge to
some value. If the graph is a tree, this recursive algorithrguaranteed to converge to
the correct marginal probabilities (in a single iteratibmhie order is chosen right). Sur-
prisingly, the same algorithm turns out to work well in mamglems in which the graph
structure contains loops [Murphy et al. 1999]. To undemdtéris success we turn to the
concept ofEnergy FunctiongYedidia et al. 2002].

1.1 Free Energies

As mentioned in Chapter 1, we are looking for a distributipthat is both simple (so we
could run inference efficiently) and close to our targetrdistion P. A natural measure
of distance between distributions is the Kullback-Leilderergence (KL), also known as
therelative entropydefined by:D (Q||P) = >, ¢(z)In ﬂ; So we have an optimization

p(z
problem where we are looking fargming D (Q||P).

13

If we assume thab factorizes as in Eqg. (1.1) then:

DE@IIP) = Y qle)n T

= Zq) Ing(z ZQ(@ZIHWC@C) +InZ

= —H(() —U(q(z))) +nZ
= InZ- F[P,Q] (3.1)

Where we denote the entropy@fby H (¢(x)), U (¢(x))) is called theaverage energyand
FIP, Q] =U (q(x))) +H (q(z)) is theenergy functionaWhich is related to concepts from
statistical mechanics.

This result has important ramifications. First, sihae/ does not depend ofy, min-
imizing D (Q||P) is equivalent to maximizind’[P, Q]. Second, sincé® (Q||P) > 0 for
any two distributions we have that Z > F'[P,)], which means that the energy functional
gives a lower bound on the logarithm of the partition funatio

By the properties of KL divergence we know that there existsigue optimal solution
to this optimization problem in which)) = P, D (Q||P) = 0 andF[P,Q] = In Z. How-
ever, optimizingF'| P, Q)] directly is computationally expensive, as expected. bdteve
can try to find the optimum of an approximation&oP, @)]. Surprisingly, It has been shown
[Yedidia et al. 2002] that the BP algorithm can be viewed agwping an approximation
to the energy functional called tiBethe approximatiofBethe 1935].

This approximation is defined as:

Fpene[P, Q] = ZZb (ze) In(m.(z.)) +ZHWC =) (di - DHA (X)) (3:2)

7

whereb(z.) are our approximations t@(x) marginal probabilities, and; = |{c : X, €
scope(c)}| is the number of cliques containing the variable in their scope. Note that
in this approximation we sum over variable and cluster pgaénso(is a rather simple
distribution to handle.

We can now formulate the revised optimization problem as:

Find Q:{ﬂ'iICiEH}U{MZ"j3Ci—C]’E/€}
That mazximizes Fpepe| P, Q)]
Subject to /Li,j[si,j} = Zci_sij Wi[ci] V<CZ — CJ) € H,VSZ'J‘ c Val(Si,j)

ZCZ' TFZ'[CZ‘] =1 VCZ €K

where C are cliques in the graph (denoted &) andyx;; can be viewed as messages
between cliques. The constraints are introduced to enkatertarginal probabilities over

14

cliques are calibrated through messages, and that thebetiafs are legal distributions
(they should sum to 1).

Using Lagrange multipliers we can characterize the fixedtpaf the optimum of this
constrained optimization problem by a set of equations.s@tegjuations can be reformu-
lated, in turn, to yield an iterative approach for optimgithe parameters af (b(z.)).
This iterative procedure can be viewed as message passimg gnaph associated with the
model, exactly as done in belief propagation.

2. Factor Graphs

To describe loopy belief propagation we consider the datatsire of a Factor Graph
[Kschischang et al. 2001]. A factor graph is a bi-partitepgréhat consists of two layers.
In the first layer, we have for each random variable in the doraaariable nodeX. In
the second layer we havactor nodegsee Figure 3.1(a)). Each factor nadés associated
with a setC,, of random variables and a featurg. If X € C,, then we connect the
variable nodeX to the factor node).

A factor graph isfaithful to a log-linear model if each feature is assigned to a node
whose scope contains the scope of the feature. Combininigesietfeatures multiplied by
their parameters defines for each factor ngda potential functionr,[c,] that assigns a
real value for each value df,. For example, if the potential has the form of a tabular
CPD, then each entry in the table is a multiplication of altfie@s that are consistent with
the assignment of that entry and their parameters (therfeatay not include all variable
in the potential’s scope). There is usually a lot of flextlilin defining the set of factor
nodes. For simplicity, we focus now on factor graphs wherdaxe a factor node for each
ground feature.

For example, let us consider a model over an undirected gvaphe we also depict the
colors of the vertices. We create for each vertea variable nodeX ¢, o (v;) and for each
pair of verticegv;, v;] a variable nodeXg,t([v;, v;]). We consider two template features -
the triangle feature we described earlier, and a co-c@baam feature that describes a pref-
erence of two vertices that are connected by an edge to haxgathe color. To instantiate
the triangle feature, we consider all undirected tupleshoée vertices? = [v;, v;, vi] €
Bmdmgs(]—"t) and defineﬂg with SCOp@ﬁ = {XExist<[Uz’7 Uj]), XExist([UzH ’Uk]), XExist([ij Uk])}
To instantiate the co-colorization feature, we considdugles of two vertice§ = [v;, v;] €
Bindings(F.) and define)s with scopeCs = { Xexist ([vi, v5]), Xcolor (Vi) Xcolor (v5) }. Se€
Figure 3.1(a) for such a factor graph instantiated dvwegrtices. This factor graph is faith-
ful since each ground feature is assigned to a dedicatearéeabde.

Loopy belief propagation over a factor graph is defined asatguly updating messages
of the following form:

mx—y(r) — T me—x@ (3.3)
WX EC,, Wb

15

md)_g((l’) — Z (W¢[C¢] H mX/_,d,(ZL‘/)) (34)

wherec,, (X) is the value ofX in the assignment of values to C,,. When these messages
converge, we can define beliefs about nodes in the factohgrap

by(cy) o myla] T] mx—u(cp(X") (3.5)

where the beliefs ove’,, are normalized to sum tb These beliefs are the approximation
of the marginal probability over the variables@, [Yedidia et al. 2002].

Trying to reason about a network ovEI00 vertices with features over univariat&,)
and triangle §;) that we described earlier, will produ¢é)2°0) variable nodes (one for each
edge), and'%") triplet feature. Unfortunately, building the factor grafain this problem
and performing loopy belief propagation with it is extregngime consuming. However,
our main insight is that we can exploit some special proeertif this model for much
efficient representation and inference. The basic observat that the factor graphs for
the class of models we defined satisfy basic symmetry priegert

Specifically, consider the structure of the factor graph wet flescribed. An instantia-
tion of graph vertices defines both the list of random vagdalzsind of features that will be
created. Each feature node represents a ground featureritiatites from a legal bind-
ing to a template feature. Each grounding of an edge vari@abén edge featureA|z)
spans two vertices, while the groundings of the tripletde&(*;|;) cover three vertices.
Since we are considering all legal bindinge (all 2-mers and 3-mers of vertices) while
spanning the factor graph, each edge variable node willddaded in the scope df edge
feature node andh — 2) triplet feature nodes. More importantly, since all the edge-
ables have the sanh@cal neighborhoogthey will also compute the same messages during
belief propagation over and over again.

3. Compact Belief Propagation

We now formalize this idea and show we can use it to enablaesificepresentation and
inference.

Definition 7 We say that two nodes in the factor graph have the seype if they were
instantiated from the same template attribute or templatdure. We say that a factor
graph has thdocal neighborhoodproperty if every two nodes in the factor graph having
the same type are connected to the same number of nodes df/padh

In the example above, each variable node of type edgérhas2) neighbors of type

triplet and each factor node of type triplet tsaseighbors of type edge.
Given this definition, we can present our main claim formally

16

Theorem 3.1: If a factor graph has the local neighborhood property theevaty stage

t of synchronouselief propagation that is initiated with uniform messagés;, v, are

a two factor graph nodes from the same type and ajsg are from the same type then

ml, ., (x) = ml,_, ().

Proof: The proofis by induction over the stage of the belief propagaalgorithm. For =

0 the equality holds since all messages are uniform. Now letssame thamf;ivj(m) =
t—1

my 1, (x). We consider two cases: eithey v, are variable nodes ang, v, are factor

nodes, or vice versa. In the first case, we use the inductstergstion and the local neigh-
borhood property to get:

mf)ﬁvj () = H mfﬁ_/ivi (z)
@Z)/:viGCw/ ,w’;évj

g €C Y #up

= My ()
And similarly for the second case:
mfji—mj (.I') = Z 7TU¢ [CU«L} H mtX_’l—w (xl)
Cy,; (vj)=1 vj#X'€Cy;
= T, [Coy] H mfx_,ivk (x)
Cuy (V)= v #X'€Cy,
= mzk—ﬂ)l <x>

And this concludes the inductive stdp.

The requirement that a factor graph has the local neighloorippoperty might seem
too restrictive. However, it turns out that many interegfimoblems obey this requirement.
Specifically, we can show that if we build a model accordin®#&sinition 6 over all legal
bindings, then the resulting factor graph has the desiredgsty. In this work we focus
on such models, but other interesting problems, such asridugped-around-grid, also fall
into this category.

We now prove the first claim:

Lemma 8 In a model created according to Definition 6 over all legatings, if two nodes
in the factor graph have the same type, then they have the Isaaleneighborhood. That
is, they have the same number of neighbors of each type.

Proof: If v; andv; are factor nodes, then since they are of the same type, teegsian-
tiations of the same template feature. From Definition 4 arfiiliion 5 we can see that

17

this means that they are defined over variables from the sgpee Since each feature is
connected only to the variables in its scope, this provesckaim. However, ifv; andv;
are variable nodes, it suffices to show that they take pahdrsame types of features, and
in the same number of features of each such type. For sirtyphee will assume that; is
instantiated from the attribute of some basic typéhe proof in case it is a complex type
is similar). We need to compute how many ground featuresagont in their scope, and
do not contairv;. From Definition 5 we can see that all the legal bindings thaluidev;
and do not include, are legal also if we replace with v;. i

After showing that many calculations are done over and ogainawe now show how
we can use a more efficient representation to enable mudr faftrence.

Definition 9 A template factor graph over a template log-linear model is a bi-partite
graph, with one level corresponding to attributes and theeottorresponding to template
features.

e Each template attributd@ that corresponds to a formal entity in some template fea-
ture F is mapped to demplate attribute node on one side of the graph. And each
template feature is mapped taeanplate feature nodeon the other side of the graph.
Each template attribute node is connected with an edge tdalteémplate feature
nodes that contain this attribute in their scope.

e Afeature node needs to distinguish between its neighborse siach message carries
information about a different variable. Hence, in the teatplfactor graph we term
an association to a variable inside a template feature nosipat . If a factor
contains more than one variable of the same type, the carreipg edge splits to
the corresponding ports when arriving to the factor node.

e In addition, each ground variable node takes part in manyuess that were instan-
tiated by the same template feature with different bindirgsnce, each edge from
a template feature node to a template attribute node in thptate factor graph is
assigned with acardinality indicating the number of repetitions it has in the full
factor graph.

Figure 3.1(b) shows such a template factor graph for thengjl&aColorization example.
Running loopy belief propagation on this template factorpbras straightforward.

The algorithm is similar to the standard belief propagataty that when an edge in the
template-graph represents many edges in the instandefdeter graph, we interpret this
by raising the message to the appropriate power. The nunfleges in the instance-
level factor graph (cardinality) is obtained by a simple domatorical computation. Since
Theorem 3.1 shows that at all stages in the standard syrmisdoelief propagation the
messages between nodes of the same type are similar, ruoglie§ propagation on the
template factor graph is equivalent to running synchrormigf propagation on the full
factor graph. However, we reduced the cost of representatial inference from being

18

=
Ei4 Ei2E13E23
Ez3 Ei2Ez24E14
E24 E13Es4Ers
— B, Eix
(A} J.!
Es4 E23E24E34 N’ Eix

(a) Full factor graph (b) Compact factor graph

Figure 3.1: Shown are the full (a) and template (b) factor graphs modelauipaed graph. We

have basic types for colors and vertices, and a complex type for edgesonsider two template
features - the triangle feature and a co-colorization feature. For claiitys: ([v;, v;]) is shown as

E; j and Xcoior (v;) is shown ag’;. Orange edges show the edges connected to edge variables and
green edges are connected to color varialégstands for the number of vertices in the graph.

proportional to the size of the instantiated model, to bepprbonal to the size of the
template-level scheme. Specifically, this representataes not depend on the size of the
instantiations and can deal with a huge number of variables.

4. Experimental Results

To evaluate our method in inference tasks we built a teryiéstel model which includes
univariate (£,.) and closed-triangleX;) features (as described in the previous section), and
then perform inference with various combinations of par@mealues. We compare results
of other inference methods such as exact inference, MCMC HBeamd Geman 1984],
and standard asynchronous belief propagation [Pearl 1888jose of our compact belief
propagation (CBP). First we consider small models where anéatence is feasible, and
then we move to larger domains were we can only compare MCMQC&#RI We compare
inference results in two different ways. In the first we comgpaarginal beliefs over some
region, and in the second we compare estimates of the parfitnction.

Figure 3.2 shows a comparison of the marginal distributiover edge variables for
different parameter settings and different inference wath We observe that in small
graphs the marginal beliefs are very similar for all inferenmethods. To quantify the
similarity we calculate the relative deviation from thedrmarginals. We find that on
average MCMC deviates by.0118 from the true marginal (stdev).0159), while both
belief propagation methods deviate on averag8.by43 (stdev:0.0817) and are virtually
indistinguishable. However, in the graph over 7 verticeswo#ce that the two loopy belief

19

Exact

MCMC

BP

CBP

3 vertices 5 vertices 7 vertices

Figure 3.2: Comparison of inference methods via marginal beliefs. Eaw#l psualizes the the
probability of an interaction when we vary two parametdts: the univariate potential for interac-
tion (y-axis) and the potenti#, - over closed triplet{-axis). The color indicates probability where
blue means probability closer thand red means probability closer to The first row of panels
shows exact computation, the second MCMC, the third standard asymtisrbelief propagation,
and at the bottom row is our compact belief propagation.

propagation methods (BP and CBP) are slightly different froenréhst in the case where
the univariate parameter is small and the triplet parametarge (lower right corner).

An alternative measurement of inference quality is thevest# of the partition function.
This is especially important for learning applications,tls quantity serves to compute
the likelihood function. When performing loopy belief prgaéion we can approximate
the log-partition function using the Bethe approximatioq.(83.2)). As seen in Figure 3.3,
the estimate of the log partition function by belief prop@wa closely tracks the exact
solution. Moreover, as in the marginal belief test, the &mntl compact variants are almost
indistinguishable.

It is important to note that running times are substantidifferent between the meth-
ods. For example, using exact inference with the 7 verticaplg(.e., one pixel in the
matrices shown in Figure 3.2) tak&g seconds on a 2.4 GHz Dual Core AMD based ma-
chine. Approximating the marginal probability using MCMOés 0.3 seconds, standard
BP takesl2 seconds, and compact BP take$7 seconds.

20

Exact

BP

CBP

3 vertices 5 vertices 7 vertices

Figure 3.3: Comparison of inference methods for computing the log-partitioetibn. Each panel
visualizes the log-partition function (or its approximation) for differentgmaeter settings (as in
Figure 3.2). In the belief propagation methods, the log-partition function psoxpmated using
the Bethe free energy approximation. On the first row is the exact compytétie second row
shows standard asynchronous belief propagation, and the bottomhmves ®ur compact belief
propagation.

On larger models, where exact inference and standard Ipetiphgation are infeasible,
we compare only compact belief propagation and MCMC (seer&igut). While there are
some differences in marginal beliefs, we see again thatreigé there is good agreement
between the two inference procedures. As the graph becarges lthe gain in run-time
increases. Since the mixing time of MCMC should depend on ittee &f the model (if
accuracy is to be conserved), running MCMC inference on arif@f® graph was set to
5 minutes. Note that in the region of low parameter values MCNM@ghigh estimates
of the marginal probability. This indicates that we shouddtdnactually run the procedure
for a longer time to get better marginals. As expected, campB® still runs for only
0.07 seconds as it depends on the size of the scheme which rerhaigarhe. For protein-
protein interaction networks over hundreds of vertices (Seapter 6) all inference methods
become infeasible except for compact belief propagation.

5. A Note on Generalized Belief Propagation

A broader class of variational algorithms, of which BP is acsglecase, is calleGeneral-
ized Belief PropagatiofiGBP) [Yedidia et al. 2002]. In these methods a slightly défe
approximation to the energy functional is used, which idecBKikuchi approximation
[Kikuchi 1951]. The Bethe approximation is a special casehef Kikuchi approxima-
tion. A similar derivation, which characterizes the fixedntef the approximate energy

21

MCMC

CBP

20 vertlces 50 vertlces 721010 \;eriicés

Figure 3.4: Comparison of approximate inference methods on larger grsjaimces. As before,
we show the probability of an interaction as a function of parameter settingghedfirst row is
MCMC and the second row shows our compact belief propagation.

functional under the constraints, shows that this appration can be achieved by passing
messages on a graph structure. In the case of GBP such graptadladRegion Graphs

In many cases GBP has considerably outperformed BP [Yedidia2002], and there-
fore it would be natural to try to apply our main idea to GBP adl.wecall that we view
BP as an algorithm operating on a factor graph. In a similar, @BP can be viewed as
operating on a region graph. In a factor graph each factoe codresponds to a potential
in the model. A region graph is more flexible, allowing to defiegions over arbitrary
subsets of nodes, as long as each potential is contained sttpe of at least one region.
Unlike the factor graph, the region graph is not necessarlypartite graph so messages
between regions do not have to pass through single variaglesnand can therefore be
more informative about the joint distributions of their idales. Thecounting number’s
of each regionR is set in a way that ensures that we count every variable atehpal
exactly once. See Figure 3.5(a) for an example.

The approximate free energy in this case, tertdgaichi Free Energyas the form:

FriruenilP,Q1 = > Y blazg) In(nh(zr)) + ZCRHWR Xg) (3.6)

ReTop xr

whereT op is the set of largest regions (which are not contained inrejhe, is the product

of all factors contained in regioR, andCr are the counting numbers. Notice that this def-
inition differs from Eq. (3.2) in the Entropy term, which @antical when the region graph
is actually a factor graph. The Entropy term will play an irtpat role in the following
analysis.

We can show that the main idea we presented above appliesoal§&BP. In other
words, we can build demplate Region Grapfior an example see Figure 3.5(b)) and run
compact message passing on it in a similar way we did for taetaghctor graphs.

However, when trying to run GBP in our template-level setang comparing approx-
imate marginal probabilities and likelihood results to @x@omputation (not shown), we

22

Eij

Eix

Eij Eil

Eij Eik Eik
Eix Eu
Exl

(o

Eis E12E13E23

G

E12E24E14 E12F13E14
E13E34E14 BesBasf

m

B16]¢

Eij
Eix
Eu

E23E24E34

Eik
Rl Eil
Exl

(a) Full region graph (b) Template region graph

Figure 3.5: Shown are the full (a) and template (b) region graphs modeiingpdirected graph.
This region graph has 3 types of regions: regions over variablesithracted edgesf; ;), regions
over triplets of edges defined by triplets of vertices in the graph, andnegieer6-mers of edges
defined by quadruples of graph vertices. Note that potentials might beeddtir univariate edges
and triplets but not for quadruples. The ports and edge cardinalityrailarsto those defined for a
template factor graph.

get that for some parameter values the approximation is gdolé for other parameter
combinations it is rather poor (much worse than the BP appration). It turns out that
the accuracy of GBP is highly dependent on the way the set ainegs chosen [Welling
2004]. Specifically, we noted before that the entropy teraygla central role in the ap-
proximation of the free energy functional. An approximatis calledmaxent-normaif the
region-based entropf z(br) achieves its maximum when all beligfg(zz) are uniform.
Unfortunately, as we now show, when we build a simple andtiaéutemplate region graph
for our domain, the resulting region-based approximasamit maxent-normal and we end
up with a poor approximation.

To see this we follow a similar argument from Yedidiaal. [Yedidia et al. 2004] and
use thecluster variation methotb define a region graph. In this approach we begin with a
set of large regions and repeatedly intersect regions to fayers of smaller regions until
we reach single variables. If we take our previous exampbnaindirected graph ovey
vertices and define regions ovevertices we get regions ovéredges (the full graph over
4 nodes), regions ovey vertices - each comes from the intersection of two largeioreg
and finally regions over pairs of vertices (edges in the wutigd graph). Figure 3.5(b)
depicts such region graph. The maximum entropy in this casebe calculated for the
uniform distribution over()) binary variables (one for each edge), so we get:

N
Hpor = <2)ln2

We now compare this to the entropy induced by the region gvapllefined. There are
(Y]) “quadruple” regions with counting numbél;, = 1. There arg(}) “triplet” regions
each having counting numbét;, = 1 — (N — 3) = 4 — N (since each triplet is contained

23

250

—uniform beliefs
—bimodal beliefs

2007

150

H/In2

100

501

2 4 6 8
number of nodes

Figure 3.6: Comparison of the region-based entropy for a bimodal distniband maximum en-
tropy for increasing graph sizes. Regions are defined over quadrugplets and pairs of graph
vertices using the cluster variation method. We see that when the grapinsantae than 6 nodes
it is no longer maxent-normal and therefore unlikely to give a good ajxpition.

in NV — 3 quadruples). Finally, there af€) edge regions with counting number@f,, =
1— (N =2)Cr, — ("?)Ch,.

Next we examine the bimodal beliefs which allow either thik guaph or the empty
one with equal probability (2&). For these marginal beliefs the entropy of each region is
exactly/n2 so the overall entropy is the sum of counting numbers:

N N N
Hregion = ln2((4)CR4 + (3)CR3 + (Q)CRl)

Finally, we getthati, . ., > H,nq. fOr every N > 6 and our approximation is not maxent-
normal (see Figure 3.6). Therefore, we conclude that coctstig intuitive template region
graphs for symmetric domains in an automated manner cotlldenexpected to work well
in general.

24

Chapter 4

Parameter Estimation

We now address the task of learning the paraméters 6, . . . 6;) assuming that the set of
template feature$ = {Fi, ..., Fx} is known.

1. Maximum Likelihood Estimator

To learn such parameters from evidence we can usdthemum Likelihood Estimator
(MLE) [Della Pietra et al. 1997]. In this method we look foretiparameters that best
explain the data in the sense that they find:

OMEE = argmax,. o P(D|6)

Since there is no closed form for finding the MLE parametera tdg-linear model,
various optimization techniques can be employed to find @nceqmate solution. Before
we delve into this optimization problem we stop to make a ménadoout its relation to
another prominent concept, thatdBximum Entropy

In many works the problem of model selection by empiricatievice is viewed from
another intuitive direction [Della Pietra et al. 1997; Dkidt al. 2007]. Instead of looking
for 9MLE one might want to find a distribution that satisfies the caists imposed by the
training data but has no additional information. Sinceamyrcan be viewed as the inverse
of information we should search for the distribution witlgthest entropy. This, in turn, is
equivalent to finding a distribution that minimizes the Kualtk-Leibler (KL) divergence
with respect to the empirical distribution of the trainingtal. Surprisingly, it turns out that
the Gibbs distribution defined by a log-linear model withgraeterg) ~¥ is exactly the
distribution of maximum entropy (or minimum KL). In fact,éltwo problems are convex
duals of each other.

We now return to the optimization problem involved in findig“~. Instead of work-
ing with the likelihood function, it is more convenient to vkawith the log-likelihood:

(D) =InP(D|f) =) (Z (Fi(z[m)])6;) — In Z) (4.1)

m i

25

whereD = z[1],...,z[M] is the set of training samples atiflis the partition function.

To calculate log-likelihood} . (F;(z[m])6;) is easily obtained when learning from fully
observed evidence, and the partition functidican be approximated efficiently using our
inference algorithm by the Bethe approximation. To see tbesli from Eqg. (3.1) that:
InZ = F[P,Q] + D(Q||P), so if we assume the approximation is good, then we can
ignore D (Q||P) and approximate the log-partition function byZ ~ Fp.i [P, Q] (using

Eq. (3.2)).

The log-likelihood is a concave function of the parametans| since there is no closed
form for M LF we resort to a greedy search. Unfortunately, since we onlg ha approx-
imation to the log-likelihood, we cannot assume concawty our greedy search is not
guaranteed to converge to the global optimum. Instead,dsfanlocal maximum of the
log-likelihood function. In such greedy approach an effitiealculation of the gradient is
often needed.

The partial derivative of the log-likelihood D) with respect to a parametéy that
corresponds to a template featdfecan be described as:

9(D)

56~ Ep |[F;| — MEy|F,) (4.2)

Where Ep [F;] is the number of instances of the template feattyén D, and Ey [F;]

is the number of times we expect to see groundings of the smfdatureF; according
to 0 [Della Pietra et al. 1997]. This expression has an intuititerpretation: the gradient
attempts to make the expected counts of a feature relativetmodel equal to the counts
of that feature in the empirical data. Again, the first termeigitively easy to compute in
case we learn from fully observed instances, since it is lsitfyg count of each feature in
D, and the second term can be approximated efficiently by derance algorithm.

We tried several optimization techniques to find paramékertsachieve high likelihood
values. Some of them use only log-likelihood estimates,esoge only gradient estimates,
and some use both function and derivative information foapeeter search (more details
bellow).

2. Regularization

Unfortunately, maximum likelihood estimation is prone teeditting to the training data.
One way to overcome this is by introducing a prior distribatover the model parameters
[Williams 1995; Chen and Rosenfeld 2000; Lee et al. 2007]. Tammonly used priors
are the Gaussian prior and the Laplacian prior.

The Gaussian prior takes the form:

| o2
PGaussian (0|0-) = H E exXp {_20_2 }

26

Figure 4.1: Approximate log-likelihood (a), gradient (b) and normalizedlignt (c) landscape for

a model of 7-node graph with features over univarigfg) @nd closed-trianglesA;). In all panels
values ofd; andd. are shown on the andy axes respectively. The bright asterisk shows the original
parameter values that were used to generate the evidence. The middishmavethe direction of
the derivative as well as its size while the right panel shows only theatadvdirection as it is
normalized.

and the Laplacian prior has the form:

PLaplacian (6‘6) = % €xp {_%}
Combining the prior with the log-likelihood function givese to a penalty term. In the
Gaussian case this term has the form;L; >, 67, whereas in the Laplacian case we
get: —% >, 16:|. The first is calledL,-regularization term and the second is called
regularization term. Applying the regularization termsdg-likelihood derivative, we get
—% in the Gaussian case andziﬁsz'gn(ej) in the Laplacian case. In both, and L, we
penalize the magnitude of the parameters. This penaltyiges\a continued incentive for
parameters to shrink and therefore the learned models tebd sparser, especially with
L, (since thel, penalty diminishes as the parameters get close to 0) [Taoshi996]. We
will use this consequence for feature selection in Chaptémportantly, bothZ; and L,
regularization terms are concave so the penalized logjHib@d is also concave and we can
therefore use the same optimization techniques as in thenatiped case.

3. Experimental Results

Using our efficient inference approximation we can reevalule log-likelihood and its
derivative for many parameter values and thereby gain areeedented view of the likeli-
hood landscape of the model. We continue with our toy modil features over univariate
(F.) and closed-trianglesA;) and show in Figure 4.1 the log-likelihood and gradients cal
culated for a grid of parameter values. For this we start tbdehwith some parameter
values ¢. = 0.5, 6, = —0.5) and use a Gibbs sampler to produce evidence (10K samples).
We then run CBP which uses the Bethe approximation of the marfitinction to calculate
log-likelihood for multiple combinations of parameter was.

27

4. Optimization Problem

As mentioned, since there is no closed form solution for figdi’“*, we use greedy
search methods. In order to find the MLE parameters we nowy stenderal optimization
techniques. These techniques rely on likelihood funct&timeations, gradient estimation,
or combine information of both in order to find regions in pasder space with high like-
lihood values.

Figure 4.2 shows learning traces of the various optimipatiéchniques that we survey
bellow.

Conjugate Gradient One widely used optimization technique @njugate Gradient
(CG). In this method the function is evaluated along the dimacof the gradient and the
point of maximal value is chosen as the starting point forrikgt iteration. The next
line search is performed in the direction of the conjugatedtion to that of the previous
step (CG methods differ in the way they define the conjugatection). The step size
is increased or decreased according to whether the lasivsteguccessful in improving
function value. This strategy has been shown to converderfédsan a simple steepest
ascent algorithm [Fletcher 1987]. We tested two CG variamthiding: Fletcher-Reeves
algorithm (CG-FR) and Polak-Ribiere algorithm (CG-PR) (for mdegails see [Fletcher
1987]).

Quasi-Newton We also tried a Quasi-Newton algorithm of Broyden-FletaBetdfarb-
Shanno (BFGS) which attempts to estimate the second deeuaging first derivative es-
timates in multiple locations [Fletcher 1987].

Both CG and BFGS prove effective in finding the MLE, however thabjem of using
them is their assumption that the function is concave albegsearch line. In some sce-
narios sensitivity to small fluctuations in function esttesmcauses the search to terminate
prematurely. We tried to alleviate this problem by replgdime function and gradient eval-
uations in the current point of the search with an averagdede quantities for several
points in the close vicinity of the current point. This actioas the effect of smoothing the
likelihood landscape and thus we hoped to overcome thetséysio small fluctuations.
Although this solution did help us get better results from @@lid not solve the prob-
lem entirely. Moreover, it is not scalable since the numideneaghboring points should
grow exponentially in the number of parameters if we want gormain the quality of the
smoothing.

Clustering Another optimization technique we explored uses only l&glihood estima-

tions for multiple points in parameter space. This techaigtarts from covering a large
region and gradually narrows the search to regions of higfitiood (for more background
see [Torn and Zilinskas 1989]). In our case we define a stppimint and an initial region

size and approximate the log-likelihood for a grid of partan&alues around the starting
point. We then filter the points leaving only a fractiand, 0.1) of the samples that have
the highest function values. In the next iteration we loothatlusterof selected samples,
set the new center to the center of mass of this cluster, @&etlion of interest is narrowed

28

-1 1 2 -2

Gradient Cluster _Steepest
Figure 4.2: Learning trace for various optimization techniques. In eactl mge show 10 paths of
the steps taken by the parameter estimation algorithm corresponding to Dorratatting points.
The bright squares point to the final parameters returned by each iteoétive procedure.

(e.g, 0.85 of its previous size). When the region becomes smallgimave terminate the
search and return the last center of mass. Of course, thelim#gtion of this technique is
its lack of scalability since the number of sampled pointaiad the center grows exponen-
tially in the number of parameters involved in the searchalleviate this we can decide
to sample a fixed number of points around the center but theequhlity of our coverage
would deteriorate as the number of parameters grows.

Gradient Size Another approach for this optimization problem has beeandly Sharon
and Segal [Sharon and Segal 2007]. They use solely gradiéntations to find optimal
parameters. The idea is to proceed in the direction of thdigma and find parameter
values for which the norm of the gradient is minimal. We findttthis approach suffers
from problems of premature stopping of the search resuitirsgib-optimal parameters.

Steepest Ascent Finally, we use a simple steepest-ascent algorithm thduates the
gradient in each point and takes a step in that directiorpsSteat result in better function
estimates cause the step size to grow, while bad steps hesstep size to some small
initial quantity. Function values are recorded along thth@and the best value seen is
returned at the end. This procedure applies a TABU-likedesgraand terminates when the
best function value could not be improved for a predefinedamof steps. This simple
approach overcomes problems of previous methods as ithssoatable and less sensitive
to deviations in function and gradient estimates.

To choose the best optimization technique for our problenusesl the same toy model
as before and conducted a series of experiments in which areesich technique from

29

No . B

regular- ' B

ization: - .

- i -j -i
6=1 —001 —()()05 6 =0.001

LZ: -5

-iz
3
4
5

o =0.05 =001

&

X 10° x 10°
2 2
-2 -2
E -3
1 3 1
* -4 * -4
0 -5 0
6 -6
Bl ~ - -
-2 - -2
-2 -1 o 1 2 -2 -1 o 1 2

Figure 4.3: Log-likelihood landscape with different regularization ternamel visualize the log-
likelihood minus regularization term when we vary two parametérgy-axis) andd; (z-axis).

many (500) random points in parameter space and let it cgavédVe compare the num-
ber of times the global optimum was found, the variance inl fo@@ameter values, and
running times of the various algorithms (results not showiese experiments show that
the clustering technique (based solely on likelihood eataduns) and the simple steepest
ascent algorithm return the optimal parameters most ofterhave smaller variance than
the other methods. The Conjugate Gradient and Quasi-Newsthaas run much faster
than the other methods, but as mentioned they suffer fromaige termination. To con-
clude, since the clustering approach is not scalable waldddb use the steepest ascent
method for the model selection experiments presentedviaelitihough this method is less
efficient than the CG methods, we chose it because it achieuel better results and is
scalable.

As mentioned earlier, MLE can lead to overfitting and rega&tion is one attempt
to alleviate this problem. We now explore the effectsigf and L,-regularization on
the likelihood function. We use the same model as before atzllate log-likelihood
with CBP using the Bethe approximation. Figure 4.3 shows lkglhood landscapes for
different regularization constants. We can see that asathdarization constant becomes
smaller, the penalty term becomes dominant in the regelddizg-likelihood and its peak
moves closer to.

To evaluate the performance of our parameter estimatiocepkoe we need a way to
compare the final parameters returned by the learning #hgotio the original parameters
used to generate the evidence. We can of course simply centiparparameter values

30

2r 0.2p

15 8
: < 015}
@
g il % 0.1
S g
5 0.5r 8
= <
kS \L < 0.05f
< O =
|
[e2}
-05 e O
S
-1 . — —=a -0.05— — — —=
N O S Q QO N L
S e S S $ e £ S
Number of samples Number of samples

Figure 4.4: Learning curves for parameter estimation. The left plot shdwdivergence of
marginal probabilities as a function of the training sample size, and the righshbws the same
for difference in log-likelihood of a test set averaged over the numbtrsh samples. The mean
and standard deviation (shown in error bars) are obtained over athptar estimation trials. KL
was measured between estimates of marginal probabilities of the full fastaramivariate, triplets
and quadruplets of variables. We see nicely how as the humber of sampleswge learn a model
that is closer to the original model.

to each other, however often different parameters induoéasi probability distributions.
Therefore, what we are really interested in is comparingdib&ibutions that the param-
eters induce. Two ways of doing so are comparing margindigbitities and comparing
likelihood estimates for a test set. To compare marginabgdities we have to measure
the distance between two estimates of the joint probaldlitpome subsets of variables.
This is naturally done using the Kullback-Leibler diverger{KL), where good parameters
should return small KL distance. Here we look at the marggmababilities defined for:
(2) all assignments fas variables overl graph nodes; (2) all assignments fovariables
over 3 graph nodes; and (3) the belief over univariate edge. To eoenjog-likelihood
estimates we use a Gibbs sampler to generate evidence &irsztén addition to the train-
ing set. We then calculate approximate log-likelihood for test evidence using both the
original parameters and the learned ones, and examinefteedce. Here we expect good
parameters to have likelihood almost as high as that caémlifar the original parameters.
Figure 4.4 shows the learning curves for both measurements.

31

Chapter 5

Feature Selection

In the previous section we assumed that the set of templaterés is given and focused
on parameter estimation. We now drop this assumption amdéuhe problem of finding
a set of features for a template model given evidence.

1. The Optimization Problem

We view the task of feature selection as an optimization lprab This means that we
take a score-based approach in which we define an objectietida for different models
and then search for a high-scoring model. This approach éeas lised extensively before
[Della Pietra et al. 1997], and here we make the necessangtaagnts to make it suitable
for symmetric relational MRFs. To formalize this we defigthe universe of all possible
relational MRF schemes;. Given a set of type§ and their attributest, S; is defined by
a set of template feature®& = {Fi,..., F,} over these types and attributes. Our goal,
given an objective functiolJ is to find:
S§* = max U(S;)
S; €S

The straightforward objective function is the likelihootlitbe training data. Unfor-
tunately, a pure likelihood score is not appropriate hemeesmore complex models will
always have higher likelihood. In particular,s, C Fs, thenUr.(Si) < Ulire(S;)
[Della Pietra et al. 1997]. Therefore, if we want to use thellhood function we would
have to add further restrictions. There are several wayhdose an appropriate objective
functionU and here we focus on three options:

o Ulike(8i> — Inaxy (E(D . SZ', 9))
o Upre(S)) = maxy <€(D . S0, 0) — %Dim[&])
o UL(S) = max (((D 1 8:,0) = 55 52, 164])

whereDim[S;] is the degree of freedom defined by the number of features. ddeuat
for redundancy as sometimes adding a feature does not cti@mdegree of freedom. For

32

example, in case we have features for all assignments toup grbvariables we know
the same distribution can be described by excluding any btieedeatures. In such case
we reduceDim|[S;] by 1. Of course, there might be more complex dependencies betwee
features, but we do not handle such cases here.

All scores rely on the log-likelihood function possibly awigla penalty term. The BIC
score Ugic(S;)) penalizes each degree of freedom by a fixed amount therémsdhe
search towards schemes having fewer features [Schwar3.1B[i8 score is an approxi-
mation to the Bayesian score for model schemes defined as:

/P(D[M,H)P(G\M)de (5.1)

in which we account for our uncertainty about parameterssoyga Bayesian prior. Notice
that the BIC penalty grows only logarithmically in the numbésamples whereas the log-
likelihood term grows linearly in that number. This meankas the desired property of
inflicting a relatively small penalty when we learn from magmples, reflecting the fact
that we trust the value of the likelihood term in that case.

As discussed in Chapter 4, tlig objective function U, (S;)) has the effect of nullify-
ing parameter values which in turn drives the search tongpdsser models. In addition, as
we mentioned in Chapter 4, this objective function has a wngjabal optimum as it adds
a linear term to the concave log-likelihood function. THere, we can, in theory, entirely
avoid the combinatorial problem of feature selection bypymntroducing all possible
features into the scheme and optimize the parametersveetatihe; objective function.
The sparsifying effect of.; will drive parameters of “weaker” features to O, practigall
excluding them from the scheme. Unfortunately this is galhenot a good idea for two
reasons. First, it might not be feasible in practice sinéerénce on the model constructed
over all features might be intractable, and second, evdreiket of all features is not too
large (in template models this is more likely to happen)s known that the quality of ap-
proximation drops as the number of features increases [Lek 2007]. However, thé,
objective function has several benefits including: thetit@ieof previously added features,
reduced sensitivity to the order of introduction of featyr@nd a natural stopping criterion
(see bellow).

33

Algorithm 1: findLocalMaximum§,, D, U)
Data: Initial scheme §;), datasetD, score functiorlJ
Result S; = local — maximum(U(S;| D))
S =38,
improved = true ;
while improveddo

improved=false ;

S = getNeighbors(S;) ;

forall S; € Sdo

if compareScores{, S;) then
T Y5
improved = true ;
break;
end

end

end

return S; ;

One issue to consider when usitfy, (S;) is how to set the meta parametér This
meta parameter should reflect our preference for sparselsnoder dense ones. It is
obvious that if we takes to bee too small then the penalty term becomes dominant and
we end up learning the empty scheme. On the other hand, if keeitdo bee too large
then the penalty term becomes negligible so we actuallyutatleU ;.. (S;), which leads
to the inclusion of all features in the scheme. Valueg afi between these two extremes
are interesting. We follow the approach of Lekeal. [Lee et al. 2007] and utilize an
annealing schedule fgt. This means that we stastfrom a very small value, leading to
sparse schemes, and gradually increase it to allow “wedg&atlres into the scheme. We
use cross-validation in order to determine when to stopiegal - we stop when the test
likelihood ceases to improve. Of course, this approachappnopriate when we want to
learn from just a few samples. Unfortunately, this is theeci@ms many interesting real-
life problems (see Chapter 6), so in such cases we would havseteithefU;;.(S;) or
Ugrc(S;), or find another way to set a value fér

Having selected an objective function for our model schememains to address the
optimization problem. Since the universe of all possiBfs is exponentially large in the
number of features we are willing to consider, we need tosgesome efficient way to
explore it. A common solution is to use some greedy hill-bling search in the universe
of schemes. We can describe a search in the space of all |gossliemes by starting
from an initial stateS, defined by an initial set of template featutgs. Now we consider
transitions to other schemes by various changes to the sesitoires, and this procedure is
repeated until some termination condition is met (see Aflgor 1).

34

No. Nodes| No. Variables Features

1 0 0

Figure 5.1: The set of feature® used in feature selection experiments. The rows contain features
with increasing levels of complexity. A broken edge has assigntémit exists) while a full edge
as assignmerit (exists).

2. Incremental Feature Introduction

As mentioned, the size of the search space we are considerimarmally prohibitively
large so we must apply some heuristic in order to explorehie $implest approach is to
include a feature introduction component which gradualtyoduces new features to the
model. In this approach we maintain two groups of features acive set and an idle
set. At every iteration all features from the idle set aresidered for introduction and we
move the one which yields the largest gain in score to theastt. Once we decide to
add a feature it will never be excluded from the active setis Bpproach has been used
successfully before [Della Pietra et al. 1997].

An alternative approach follows from the fact that each tewefeature is defined over
a set of entities and a list of attributes associated witmtfeee Definition 4). Thus, we can
allow transition between schemes by moving from schemessmuall features to schemes
over more complex features. This can be done by adding opeo$teomplexity to the
template feature, either by enlarging the list of attrisubeer the same set of entities, or
by increasing the number of entities. Practically, in thppr@ach we start from an empty
scheme and try to add candidate template features withasicrg complexity (in terms of
their entities and attributes). Every row in Figure 5.1 eimg features from another level
of complexity.

35

3. Stopping Conditions

Both Ug;c(S;) andUy, (S;) give us a convenient stopping criterion for our search algo-
rithm - we can simply stop the search when no feature intrbolmenove is beneficial. In
the case olU, (S;) taking this approach guarantees convergence to the glqbiaham
as this is a convex optimization problem. As we mentionedigefU,;..(S;) can only
increase when we introduce new features, so we cannot apglyciterion. A common
approach in this case is simply to halt the search when theowement in score does not
exceed a certain threshold. Here we take a slightly diffeapproach to this problem and
use a statistical test to decide when to terminate the se@odie more specific, we utilize a
statistical test calletlikelihood-Ratio Tesio determine if the improvement in likelihood is
statistically significant. To understand this we notice titahe end of every feature intro-
duction step we need to compare the likelihoods of the pusvmd current schemes. If the
two schemes are defined s, andZ s, such thatZFs, C s, then the likelihood-ratio
test is based on the differende= U,;;..(S;) — Ujire(S;) (notice that for exact calculation
A < 0). As the number of samples approacheshe test statistie-2A will be asymptot-
ically y? distributed with degree of freedom equal to the differemcdimension between
S; andS; (| Fs,| — | Fs,|). For finite sample size the distribution is only approxietat
x?2, but we can still use this approximation to set a stoppinggdan based on the P-value
of the likelihood-ratio statistic. The null hypothesis md test is thalZF s, is a better model
for the given evidence tha#s;, meaning that it would be a mistake to move frainto
S;. In other words, the Likelihood-Ratio statistic indicateBether the improvement in
likelihood is caused by noise in the data or really significan

4. Parameter Estimation for Feature Selection

Recall that each feature selection step involves param&tieragion. Several strategies can
be employed to handle this and we now consider some of them.

e AtOnceZero: A simple parameter estimation scheme is to fidth* starting from
6 = 0 using one of the optimization algorithms described in Chagtdn this case
all parameters are allowed to move freely until convergenceother words, for
each candidate feature we start a new search in parametsr 8y does not use
information from previous iterations.

e AddPrev: An alternative approach is to start parameters from thevipusly learned
values and start only the parameter associated with theynetbduced candidate
feature from0. This approach assumes that parameters learned for simles
els can serve as a good starting point when learning paresrfetremore complex
models.

e AddFix/Free: In a variant of this approach we fix previously learned pastars to
their learned values and allow only the néw to converge freely. We can either
terminate hereAddFix) or use the recent parameter values as a starting point for a

36

2r 0.31
—— params only — params only
150 — features and params 0.2l — features and params

0.1y

KL divergence
o
o
avg log-likelihood difference
o

-1 L L L L L L L L L L L
o o S N o SEOEN
N S @ PN ,@Q 6;00 S &Q Q S O & \90 %QQ \90 (19Q
Number of samples Number of samples

Figure 5.2: Learning curves for parameter estimation when the correof $eatures is known
vs. complete model learning which includes both feature selection and paeragsémation. As
before, The left plot shows KL-divergence of marginal probabilitiesadunction of the training
sample size, and the right plot shows the same for difference in log-likelibba test set averaged
over the number of test samples.

new search where all parameters are free to convétdeéHree) [Della Pietra et al.
1997].

5. Experimental Results

To evaluate our feature selection approach we use a synswdtip similar to the one we
used for parameter estimation in Chapter 4. We take our sitoglenodel with features
over univariate f.) and closed-trianglesH,), and set its parameters to some arbitrary val-
ues (. = 0.5, 6, = —0.5). We use a Gibbs sampler to produce train and test evidemnte an
use the train evidence to learn a template model (featutpamameters). Here we define
JF to consist of all template features over ugtgraph vertices (Figure 5.1). Finally, we
compare the learned model to the original one using KL of sorakginal probabilities and
test-set likelihood as we discussed above. We stress dgdisuch large-scale experiments
require hundreds of thousands of inference steps and aefdhe only possible when the
inference calculation is extremely efficient, as in our alion.

We begin the evaluation by comparing the learning curve cdipater estimation alone
(assuming we have the correct set of features) and compledelntearning. Figure 5.2
shows the two learning curves for KL divergence over matginababilities and difference
in log-likelihood on a test set. Encouragingly, the reshtss that we can learn the feature
set from evidence in a satisfying way as the learning curdeatture selection is not worse
than that of parameter estimation alone.

Recall that we use two measures to evaluate the learned mHKtledivergence of
some marginals and difference in log-likelihood of testlevice. Unfortunately, the second
measure we described, namely the difference in log-likelth is solely dependent on the
approximation of the partition function (in case we learonfr fully observed data). It
is common knowledge in the field that the approximation ofghgition function is less

37

1l — Log-likelihood
—BIC
L
0.8} 1
[}
g
© 0.6
2
2
_5 04’
-
X 0.2f il
1T
S o P LS
O L S§ \90 %QQ \90 (190

Number of samples

Figure 5.3: Comparison of the three objective functions used for featlextion: Uj;x.(S;),
UB[C(SZ‘) andULl (Sz)

reliable than the approximation of the marginals. Spedificen Figure 5.2 it can be seen
that the approximate log-likelihood calculated for thegoral model (which was used to
generate the train and test data) is lower than the appreégifikelihood of the model
that we learned. Calculating the exact log-likelihood fas tbase verified that the log-
likelihood approximation for the learned model was in fawddcurate. This inaccuracy
was also present for standard asynchronous BP so it was neotifacteof our algorithm
but rather a shortcoming of the Bethe approximation. Theedfom here on we show only
learning curves based on KL divergence between margindlsnake a note to address this
issue in future work (see Chapter 7).

In Figure 5.3 we show a comparison of the three objectivetfans. One can see that
for a small sample siz&;, (S;) using an annealing schedule for the meta parameter
gives the best results. The other objective functiddg.(S;) andUg;c(S;), have very
close learning curves. Since the likelihood term in all ssagrows linearly in the number
of samples, for large samples this term becomes dominaniwvendffectively compute
Uyire(S;) for all scores. This is evident in the plot as we get similaredor all3 methods.

Figure 5.4 shows a comparison between the two approacheseussed for incremen-
tal feature introduction. As expected, the flat search, e/ler consider all idle features at
every step, performs better. This is not surprising sinceiitains the search by levels as
a special case. Of course, the running time of the flat seanctuch longer than the levels
variant, so there is a trade-off here between computatie &nd quality of solution.

Figure 5.5 shows the performance of the various parameisrasn schemes. We see
that for large sample size all methods perform equally wdfiije for small sample size it
seems better to start parameter estimation fiomithout using information from previous
steps. Fixing values of learned features without settiegtiree later seems as the worse
choice.

38

=
N

—Flat

1r — By levels
o 0.8
Q
3
© 0.6
()
=
T 041
-
¥4

0.2}
ot k‘
o o P S P
O SO S§ ,\90 %QQ \90 (]90

NhmalhAar Af ~AAanAanlAa~

Figure 5.4: Comparison of learning curves for the two variants of therfe&ttroduction compo-
nent. The “Flat” curve shows the result when we consider all idle fesforeaddition at every step,
while “By levels” shows results when we only consider introduction of festof a certain level of

complexity.

4r
— AtOnceZero
I — AddPrev
3 AddFree
§ AddFix
& 2f
>
g
S 1r
2, 1
ol e
_1Q L S 00 00\ QQ\ QQ‘QQQ‘QQQ‘
> LN N %Q'& AN

Number of samples

Figure 5.5: Comparison of the various ways to initialize parameter values &ketliening of a
feature selection step. “AtOnceZero” means we initialize all parameters@ram‘AddPrev” we
use the recent learned values as starting point for the new searcdf&xée” we initially freeze
values of learned parameters letting only the new parameter convergeeafndetall to converge
from that point. Lastly, in “AddFix” we do not allow the second step of “/Adee”.

From these results we conclude that the best performantedaynthetic example we
have chosen is achieved with the likelihood-gain metidg.() searching in the flat set of
idle features and starting the parameters ffbat every iteration. We now conduct further
experiments to better understand the learning process.

It is interesting to see in which order features are addetidastheme and how close
the final model is to the original one. We use the saffieas before and then follow the

39

-13.8 T T " / i T 1 —train BIC
—test BIC
-13.9 / 14}
<
3 -14 2 o
2 7 §-142
£ -141 < @ :
£ 05 & ©
142 1 o-144
>
2-143 £ ©
s 1
= -14.6¢
-14.4 —test log-likelihood 01 "
—train log-likelihood [0.05
M, 3 4 s 6 7 8 9 148 :
umber of added features Number of added features
(a) (b)

Figure 5.6: Figure (a) shows the change in log-likelihood (averagedtbeenumber of samples)
when gradually introducing more features into the scheme. Figure (b)sstie@rchange in BIC
score as a function of the number of added features.

Original Learned
Model Model
F. with6, = 0.3 F. with 6, = 0.18
Fi with (915 =—-0.6 Fi with Gt = —0.195
fstmng with estarz = —0.116

Table 5.1: Original vs. learned model in synthetic experiment.

feature selection procedure to see which feature is addaaeat step and how it effects the
objective function and the likelihood of the test evidend use a training set consisting of
10 samples and a test set consisting &f samples. Figure 5.6 (a) shows that as the gain in
likelihood reduces, the Likelihood-Ratio statistic is nagder significant{ 0.05). We can
also see in Figure 5.6 (b) how the BIC score reduces when wedachore features in the
scheme. This does not happen in the test score since thetesttain$ X samples so the
penalty term inflicted by BIC becomes small relative to thelikglihood term. We note
that the feature introduction scheme we use, in which atufea are eventually included
in the learned model, is guaranteed to lead to over-par&aattm, which means that some
features can be excluded as they can be described by a cdimbiobother features. Since
this is done for a didactic purpose we ignore this issue here.

We note that we expected the average log-likelihood of teeget to drop when too
many features are added to the model, reflecting overfitbrthe training data. Surpris-
ingly we see that the likelihood of the test set remains attrae level even though the
model becomes more and more complex. One possible exmarfatithis might be that it
is another reflection of the problem in the approximatiorhef likelihood.

40

From this experiment we see that although we used Dfdgtures in the original model
(F. andF; with 6, = 0.3 andd, = —0.6), we actually end up learning a model consisting of
3 features. If we look at the order of feature addition we firat IR, is the first feature to be
admitted to the scheme since its improvement over the emptiehis the largest. Second,
we addF;, and finally we add the “star2” feature which is composed af @édges having
a mutual vertex in the undirected graph (rightmost featorseicond row of Figure 5.1).
So we have that the first two features we include in the modetres ones we used in the
original model. Table 5.1 compares the original and leamedels.

41

Chapter 6

Learning with Real-life Evidence

To demonstrate the power of our method We now proceed toitepan model over a
real-life domain of interactions between proteins (PPIg bild on a simplified version
of the model described in Jaimoviat al. [Jaimovich et al. 2006] for protein-protein
interactions. This model is analogous to our running examwhere the vertices of the
graph are proteins and the edges are interactions. We deérsasic typd, for proteins
and the complex typ&; = [I,,T,] for interactions between proteins. As with edges,
we consider the template attribute(7;) that equals one if the two proteins interact and
zero otherwise. We reason about an instantiation for a set3proteins related to DNA
transcription and repair [Collins et al. 2007b]. We collecstatistics over interactions
between these proteins from various experiments [Mewek &088; Gavin et al. 2006;
Krogan et al. 2006; Collins et al. 2007a].

Using the methods described above we learn a generative ridiRRi§ PPI network.
The set of features we consider here consists of all featlgfsed over upta proteins
which are connected and have “all-1” assignment. FiguresBdws all9 features. Our
objective function for feature selection §;;,., and we use the Likelihood-Ratio test as
a stopping criterion. We use the “Flat” variant of featur&raduction, meaning that at
every step we consider all idle feature for introduction ahdose the one with highest
likelihood gain. Finally, we start every parameter estiorarun fromé = 0 and let all
parameter move freely until convergence.

Table 6.1 shows the learned model at the end of every feattragluction step. We see
that the first feature to be admitted to the model is the stirgkraction feature (“Pair”),
which is added with a large negative parameter since theanktef interactions is rather
sparse (1672 interactions). The second feature to join tbéeimis the ring of sizel
(“Ring4”), which is added with a small negative parameterilevfip,;. becomes positive.
According to the Likelihood-Ratio test we should have stapfiee search then. Instead,
we let it run some more and check what are the next models peadoy the search. We
see that the next feature to be included is “Triangle”, buivassaid the improvement in
likelihood is no longer significant (P-value 0.05). It seems as the parametgy;,, 4 re-
mains unchanged whilé,;, is split in two and shared with the newly added feature. At

42

Pair Star2 Triangle Star3 Chain3 Leash Ring4 Pent Full4

e A A A eeee e 7 N 0K
1672 19256 1669 168316 199421 69042 10116 13971 1479

Figure 6.1: The set of featureé® used in feature selection for the PPl network. We show the name
we assign to the feature, its graphical representation, and the nhumbecwfences it has in the
PPI evidence.

Feature | Added | Parameter Likelihood- Log-
selection| feature | values Ratio Likelihood
step statistic
1 —. Opgir = —5.28 0 -10504.8
2 3T | Opair =0.414 0 -1.04421

O Rings = —0.009

3 A | Opar = 0.209 0.16 | -0.0606451
O Rings = —0.009
HTriangle =0.207

4 R | Opair = 0.306 1 -0.592723
ORings = —0.00137
eTriangle = 0.269
Opuis = —0.029

Table 6.1: First steps of model selection for the PPI problem.

the next step the “Full4” feature is added, but here the apmprate likelihood no longer
improves (due to the approximation it is actually lower) tlse remaining of the search is
less interesting to follow.

We defer the interpretation of these results for future warll proceed to discuss sev-
eral points that arise from this work.

43

Chapter 7

Discussion

1. Contribution

We have presented a powerful method for learning probé#bilisodels for structured re-
lational domains. This method relies on a lifted inferenlg@athm that operates in the
template-level of the relational model. Specifically, wednahown how we exploit sym-
metry in relational MRFs to perform lifted approximate irdace at the template-level
model. This results in an extremely efficient approximafterience procedure. We have
shown that this procedure is equivalent to synchronougtbptopagation in the ground
model. We have also empirically shown that on small graphsierence algorithm
approximates the true marginal probability very well. Rertnore, other approximation
methods, such as MCMC yield inference results that are gialaurs on larger graphs.
Note that other works show that synchronous and asynchsdoelief propagation are not
always equivalent [Elidan et al. 06]. The key limitation afr@rocedure is that it relies
on the lack of evidence. Once we introduce evidence the symnsedisrupted and our
method does not apply. While this seems to be a serious liontatve notice that infer-
ence without evidence is the main computational step imiegrsuch models from fully
observed data. We showed how this procedure enables usltwittedearning problems
in large relational models that were otherwise infeasible.

We mentioned that previous works on lifted inference foduse exact inference via
variable elimination or caching intermediate calculasidor ground entities to be used by
other entities originating from the same template-leveitgifPoole 2003; de Salvo Braz
et al. 2005; Pfeffer et al. 1999]. In many practical casesemwthe tree-width is large,
exact inference is infeasible even in the template level i®ethod is the first to provide
template-level approximate inference with run-time tisaihdependent on the size of the
instantiated model.

Using the efficiency of our method we are able to repeat thmileg procedure many
times. We use this advantage to conduct a survey of diffaeshiniques for the various
stages involved in model selection. Specifically, we comgaeveral optimization algo-
rithms for parameter estimation, we compared two strasefgiefeature introduction, we
compared different ways to initialize parameters in feagelection, and we compared sev-

44

eral model scoring functions to be optimized in the sear¢te main insight we gain from
this survey is that commonly used optimization techniqires play an important role in
the search fo9™ =¥ such as Conjugate Gradient and BFGS, encounter difficultiesw
tackling the log-likelihood landscape. In particular,cgrthis landscape tends to have long
and narrow ridges many of the common techniques halt thels@aematurely with sub-
optimal parameters. We find that utilizing a TABU-like stespascent algorithm achieves
much better results as it is able to cross such ridges in masgsc

For the first time in this context, we employ a statisticat tesbe used as a stopping
condition for the likelihood based score for model selattiGpecifically, we show in
synthetic experiments that using the Likelihood-Ratio iesiseful for stopping the search
after the important features have been included in the mamutbefore the model overfits
the training data.

2. Limitations

Some of our empirical experiments indicate that our appnaxion of the log-likelihood
function might be inaccurate. Specifically, we get that tb&t-set likelihood using the
learned model is higher than that of the original model thas wsed to produce the data.
Comparing to exact likelihood calculation on a small graphvesfy that, indeed, the log-
likelihood calculated for the learned model is very diffegr&om the exact log-likelihood
of this model. Moreover, we made sure that this inaccuracy ma& introduced by our
algorithm, but rather was a limitation of the standard BP apionation. We note that our
method for model selection relies heavily on the likelihdadction and that we should
address this issue in future work. An alternative objechivection that might be suitable
in this case is pseudo-likelihood [Besag 1975].

Trying to apply our compact approximate inference to Gdirsa Belief Propagation
yields poor results. A short investigation revealed thattdmplate region graph we have
built was not maxent-normal, meaning that it assigned highé&ropy to non-uniform as-
signments than to the uniform one. Such graphs have beemgbr@wiously to give poor
approximations [Yedidia et al. 2004]. Therefore, we deditiefocus on standard Belief
Propagation in this work. Alternatively, we can try to thioka way to build template
region graphs that are maxent-normal and therefore maeby lik perform well.

As mentioned earlier, our method is not applicable whenexaé is provided. Rea-
soning with partial evidence is an important inference tasdt it would be very useful to
handle it in a lifted inference framework. Unfortunatelye Wwave yet to advance in this
direction.

3. Other Issues

The Hessian matrix is the matrix of second derivatives. éndbntext of MRFs this matrix
plays a role in several aspects of the learning problemt, Firsan be used for parameter
estimation with Newton’s method instead of the first densat Second, it is used in the

45

penalty term of the Laplace score for model selection. Th@dae score is another way to
approximate the Bayesian score (Eq. (5.1)).

It can be easily shown that the second derivative of theilagi#hood function is given
by the Covariance matrix:

0((D)
00,00,

= —MCOV@[E;:F]']
= —M (E¢[F.F;] — Eg | F| Eq [F}])

By the way, this proves the concavity of the likelihood funatsince the Covariance matrix
is positive semi definite.

To compute the Hessian we must calculate the joint expeatafiall pairs of features.
In general this is a very expensive task and often intraetddadwever, in symmetric rMRFs
such as the ones we study it can be much cheaper as we can dbeattemplate level -
considering pairs of template features (and their numbeftén not too large). We have
yet to address this issue, but it seems an interesting giresince we might find a better
parameter estimation method or a better objective funétomodel selection.

In this work we applied our approach to BP and GBP. It might besidesto apply the
same idea to other approximate inference methods. We hawbaamht about this thor-
oughly yet, but the variational methodsMean Field[Jordan et al. 1998] anBxpectation
Propagation[Minka 2001] seem like good candidates for starting thisaggmon.

4. Applications

To conclude this section we now discuss possible applicsidd our new method. The im-
mediate application we intend to try is learning generatigglels for a variety of networks
from different domains. In this work we have shown its usedqrotein interaction net-

work, and the same methodology can be applied to other wtddeetworks. In addition,

we plan to handle in a similar manner several directed nétsvarhe models we learn can
shed new light on the characteristics of these networkgatewg local rules that govern
their global structure.

As mentioned in Chapter 1, one of the prominent works in thid feNetwork Motifs
that looks for overly abundant subgraphs [Milo et al. 208} call that such subgraphs are
found to be over-represented with respect to a random ernsanbetworks that preserves
some of the properties of the original network. Howevess tpproach has been criticized
since over-representation turns out to be highly depenaletite qualities that are chosen
to be preserved in the random ensemble [Artzy-Randrup eD8#]2 We believe that our
approach is more elegant as we assume less about the stratthe underlying network.
Furthermore, since rMRFs are very expressive we can leanerrimodels. Such models
can incorporate additional information about nodes anéggdand we can even use Chain
Networks models that combine undirected and directed patsrinstead of MRFs, as
suggested in Jaimovicat al. [Jaimovich et al. 2006]. This way we could go beyond bare
networks and find more complex rules that apply in large damai

46

Finally, since our approach is applicable whenever thefagptaph has the local neigh-
borhood property we can use it in other domains that obeyctimstraint. Specifically, we
already mentioned that the square-wrapped-arounddatas this property, and the same
is true for infinite MRFs that are defined by repeated localies [Singla and Domingos
07]. In such infinite models our method is a natural choice esindependent on the size
of the ground model, but only on the template-level scheme.

All of these applications could bring us one step closer tawauccessful modeling of
complex networks using relational probabilistic models.

47

Acknowledgements

| am grateful to Nir Friedman and Ariel Jaimovich for coming with the idea behind
this work, and for guiding me paitently through the long wayook to make it work in
practice. | am also grateful to the members of Nir's group tizae devoted time in several
occasions to hear and comment about my research (althoutjtewlreally care about is
biology :). Specifically, | want to thank Tommy Kaplan, Naorabib, Moran Yassour, Tal
El-Hai and Matan Ninio. | also acknowledge Chen Yanover, TlaH&y and Gal Elidan
for their useful comments on previous versions of this manps In addition, | want to
thank Nir for his generous funding and also the Rudin Foundaind the Liss Fellowship
for their vital financial support. And most of all | would like thank Avital for helping me
get through all this and for not dumping me despite my longkivay hours.

48

Bibliography

Y. Artzy-Randrup, S. J. Fleishman, N. Ben-Tal, and L.Stone. @ent on “network mo-
tifs: Simple building blocks of complex networks” and “sufagnilies of evolved and
designed networks"Science305:1107, 2004.

A. L. Barabasi and R. Albert. Emergence of scaling in randonwvorks. Science 286:
509-512, 1999.

J. E. Besag. Statistical analysis of non-latice datae Statistician24:179-195, 1975.
H. A. Bethe. Statistical theory of superlatticé&oc. Roy. Soc. Londoi50:552, 1935.

S. F. Chen and R. Rosenfeld. A survey of smoothing techniquesiéomodels. IEEE
Trans. on Speech and Audio Processi&@7-50, 2000.

S. R. Coallins, P. Kemmeren, X. C. Zhao, J. F. Greenblatt, F. SpeRcC. Holstege, J. S.
Weissman, and N. J. Krogan. Towards a comprehensive atthe physical interactome
of saccharomyces cerevisiddol Cell Proteomics2007a.

S. R. Collins, K. M. Miller, N. L. Maas, A. Rogueyv, J. Fillingha@, S. Chu, M. Schuldiner,
M. Gebbia, J. Recht, M. Shales, H. Ding, H. Xu, J. Han, K. Ingdattir, B. Cheng,
B. Andrews, C. Boone, S. L. Berger, P. Hieter, Z. Zhang, G. W. Bro@nJ. Ingles,
A. Emili, C. D. Allis, D. P. Toczyski, J. S. Weissman, J. F. Gibktt, and N. J. Krogan.
Functional dissection of protein complexes involved instedromosome biology using
a genetic interaction mafNature 2007b.

R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order proltiabc inference. INJCAI
'05, pages 1319-1325, 2005.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Induciegtures of random fieldsEEE
Trans. on Pattern Analysis and Machine Intelligent®(4):380-393, 1997.

M. Dudik, S. J. Phillips, and R. E. Schapire. Maximum entropyslty estimation with
generalized regularization and an application to spedsslmlition modeling.Journal
of Machine Learning ResearcB:1217-1260, 2007.

49

G. Elidan, 1. McGraw, and D. Koller. Residual belief propagat Informed scheduling
for asynchronous message passingPioc. Twenty Second Conference on Uncertainty
in Artificial Intelligence (UAI '06) 06.

R. Fletcher.Practical Methods of Optimization (Second EditiomYiley, 1987.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learningbpabilistic relational models.
In IJCAI '99, pages 1300-1309. 1999.

A. C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzio€. Rau, L. J.
Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M. A. HeytleHoffman, C. Hoe-
fert, K. Klein, M. Hudak, A. M. Michon, M. Schelder, M. Schil M. Remor, T. Rudi,
S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, Gh&ar, J. M. Rick,
B. Kuster, P. Bork, R. B. Russell, and G. Superti-Furga. Proteamey reveals modu-
larity of the yeast cell machinerjNature 440(7084):631-636, Mar 2006.

S. Geman and D. Geman. Stochastic relaxation, gibbs distis, and the bayesian
restoration of imagedEEE Trans. on Pattern Analysis and Machine Intelligerages
721-741, 1984.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learninghadoilistic models of rela-
tional structure. IrEighteenth International Conference on Machine Learnir@@ML).
2001.

J. Hammersley and P. Clifford. Markov fields on finite graphd Eattices. Unpublished
manuscript, 1971.

A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman. Tod&&an integrated protein-
protein interaction network: a relational Markov netwogpeoach.J. Comut. Biol. 13:
145-164, 2006.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. Aroituction to variational ap-
proximations methods for graphical models. In M. I. Jordatitor,Learning in Graph-
ical Models Kluwer, Dordrecht, Netherlands, 1998.

R. Kikuchi. A theory of cooperative phenomerizhys. Rey.81:988-1003, 1951.

N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchedka.i, S. Pu, N. Datta,
A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. ShaksZhang, M. Davey, M. D.
Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. RaRis, V. Canadien,
A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. bas, S. Wu, C. Orsi,
S. R. Callins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. dmison, G. Musso,
P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, Qarkaya, A. Shilatifard,
E. O’'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkivs Gerstein, S. J.
Wodak, A. Emili, and J. F. Greenblatt. Global landscape otgin complexes in the
yeast Saccharomyces cerevisiblature 440(7084):637—643, Mar 2006.

50

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor gragid the sum-product
algorithm. IEEE Transactions on Information Theo#7, 2001.

S. Lee, V. Ganapathi, and D. Koller. Efficient structure teag of markov networks using
l,-regularization. IPAdvances in Neural Information Processing System€&aénbridge,
Mass., 2007. MIT Press.

HW Mewes, J Hani, F Pfeiffer, and D Frishman. MIPS: a dataf@sgenomes and protein
sequenceducleic Acids Resear¢c6:33—37, 1998.

R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, antbA U. Network motifs:
simple building blocks of complex networkScience298:824—7, 2002.

T. P. Minka. Expectation propagation for approximate Bayesnference. IProc. Sev-
enteenth Conference on Uncertainty in Artificial Intelliger{UAI '01), pages 362—-369,
2001.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propéaga for approximate in-
ference: an empirical study. FProc. Fifthteenth Conference on Uncertainty in Artificial
Intelligence (UAI '99)?.

S. Parise and M. Welling. Learning in markov random fields:efmpirical study. InJoint
Statistical Meeting2005.

J. Pearl.Probabilistic Reasoning in Intelligent SystenMorgan Kaufmann, 1988.

A. Pfeffer, D. Koller, B. Milch, and K. TakusagawasPook A system for probabilistic
object-oriented knowledge representation. Pioc. Fifthteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI '99)?, pages 541-550.

D. Poole. First-order probabilistic inference.lICAI '03, pages 985-991, 2003.
M. Richardson and P. Domingos. Markov logic networkt., 62:107-136, 2006.

G. Schwarz. Estimating the dimension of a mod€he Annals of Statistic$:461-464,
1978.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Kped N. Friedman. Module
networks: identifying regulatory modules and their coioaitspecific regulators from
gene expression dathlat Genet34(2):166—176, Jun 2003.

E. Sharon and E. Segal. A feature-based approach to mogeimein-dna interactions.
In Eleventh Inter. Conf. on Research in Computational MolecBlatogy (RECOMB)
2007.

P. Singla and P. Domingos. Markov logic in infinite domaing Proc. Twenty Third
Conference on Uncertainty in Artificial Intelligence (UAI7Y) 07.

51

B. Taskar, A. Pieter Abbeel, and D. Koller. Discriminativeopabilistic models for re-
lational data. InProc. Eighteenth Conference on Uncertainty in Artificialdiigence
(UAI’02), pages 485492, 2002.

B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link predictim relational data. In
Advances in Neural Information Processing SystemsCHnbridge, Mass., 2004. MIT
Press.

R. Tibshirani. Regression shrinkage and selection via themlak Royal. Statist. Soc,B
1996.

A. A. Torn and A. Zilinskas Global optimization, Lecture Notes in Computer Science 350
Springer-Verlag, 1989.

M. Welling. On the choice of regions for generalized beliefgagation. IrfProc. Twentieth
Conference on Uncertainty in Artificial Intelligence (UAKY) 2004.

P. M. Williams. Bayesian regularization and pruning usingdce priorNeural Compu-
tation, 7:117-143, 1995.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free gregpgroximations and gener-
alized belief propagation algorithms. Technical Report TR235, Mitsubishi Electric
Research Labaratories, 2002.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free gregpgroximations and gener-
alized belief propagation algorithms. Technical Report TR4040, Mitsubishi Elec-
tric Research Labaratories, 2004.

52

