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Abstract 
All cells of a living organism share the same DNA. Yet, they differ in structure, 

activities and interactions. These differences arise through a tight regulatory system 

which activates different genes and pathways to fit the cell’s specialization, condition, 

and requirements. Deciphering the regulatory mechanisms underlying a living cell is 

one of the fundamental challenges in biology. Such knowledge will allow us to better 

understand how cells work, how they respond to external stimuli, what goes wrong in 

diseases like cancer (which often involves disruption of gene regulation), and how it 

can be fought. In my PhD, I focus on regulation of gene expression from three 

perspectives. First, I present an innovative algorithm for identifying the target genes 

of novel transcription factors, based on their protein sequence (Chapter 1). Second, I 

consider how several transcription factors cooperate to process external stimuli and 

alter the behavior of the cell (Chapter 2). Finally, I study how the genomic position of 

nucleosomes and their covalent modifications modulate the accessibility of DNA to 

transcription factors, thus adding a fascinating dimension to transcriptional regulation 

(Chapters 3 and 4). 

To understand transcriptional regulation, one should first reconstruct the architecture 

of the cell’s regulatory map, thus identifying which genes are regulated by which 

transcription factors (TFs). As the experimental approaches for mapping protein-DNA 

interactions are expensive and laborious, they are often accompanied by 

computational algorithms. These complementary approaches analyze the 

experimentally verified target genes of a TF, identify short sequence elements in their 

DNA regulatory regions, and represent them using a probabilistic model (DNA 

motif). Finally, this motif is used to scan the regulatory DNA regions of additional 

genes, and identify putative binding sites. Such methods were shown useful, mainly 

for TFs with enough experimental data to accurately characterize the DNA binding 

preferences. But what about all the transcription factors with no such extensive data? 

In my dissertation, I developed a novel structure-based approach applicable also to 

transcription factors with no prior binding data (Chapter 1). This approach combines 

sequence data with structural information to identify the residues that directly contact 

with the DNA, and estimates their nucleotide recognition preferences. Given the 

sequence of a novel protein from the same structural family, we identify the DNA-

binding residues and then use the recognition preferences to construct a probabilistic 



model of the DNA sequences it binds. I demonstrated this approach on the C2H2 Zinc 

Finger protein family, showing high compatibility between the learned DNA-

recognition preferences and experimental results. I then predicted the DNA motifs of 

29 Drosophila melanogaster C2H2 transcription factors, and performed a genome-

wide scan for their putative target genes. By analyzing the predicted targets for each 

TF, along with gene annotation and gene expression data, I showed how the function 

and activity levels of these proteins can be automatically inferred. 

Alternatively, high-throughput experimental assays can be applied to directly map 

TFs and their target genes on a genomic scale. Together with the experimental group 

of Erin O'Shea (HHMI/Harvard), I developed a novel analytical approach where the 

expression level of genes is compared between wild-type and mutant yeast strains 

(Chapter 2). Our method quantifies the exact contribution each TF has on every target 

gene in several environmental conditions. We applied our method to gain insights into 

the mechanistic structure of a prototypical example of transcriptional regulatory 

networks. We focused on the well-studied HOG signaling network, which controls the 

response of budding yeast to hyper-osmotic stress. In brief, following external 

signaling, the MAP kinase Hog1 is imported into the nucleus, where it phosphorylates 

(and activates) several downstream transcription factors. We reconstructed an 

accurate and quantitative model of the HOG pathway, and analyzed how it interacts 

with the general stress (Msn2/4) pathway. This study resulted with a regulatory map, 

based on the expression level of genes in wild-type and mutant strains. In addition, we 

reconstructed two complementary regulatory maps. We used chromatin 

immunoprecipitation assays coupled with high-resolution DNA microarrays, to probe 

the in vivo location of transcription factors along the DNA. To analyze these data, I 

developed a model-based computational algorithm for identifying the exact position 

and affinity of genomic binding events. The third regulatory map identifies putative 

target genes of HOG-related factors by computationally scanning promoter regions 

for their known DNA motifs. As my analysis shows, all three regulatory maps (based 

on gene expression, on physical binding, and on motif analysis) coincide in a 

statistically significant manner - most promoters that contained the DNA motif of a 

factor were indeed physically bound by it, and their gene expression levels affected by 

its presence. Yet, we found many additional examples of latent binding sites which 

are not occupied, as well as other sites occupied but non-functional. These 

discrepancies suggest that additional higher-order mechanisms are involved in 



transcriptional regulation, including the packaging of DNA onto chromatin. 

Furthermore, it paves the way to identifying and characterizing the role of signal 

processing in gene regulatory networks through combinatorial regulation of gene 

expression. 

To understand the role of chromatin in transcriptional regulation, I focused on the 

information stored in the packaging of DNA per se. This includes the position of 

nucleosomes along the DNA, as well as their covalent modifications (e.g., by 

acetylation and methylation). Both these mechanisms, together with the methylation 

of DNA, were shown to be involved in the occlusion of DNA sites for transcriptional 

factors, resulting in various degrees of repression of gene expression. 

To directly assay the chromatin state in living cells, I collaborated with the 

experimental group of Oliver Rando (Harvard/UMass). We used high-resolution tiling 

arrays to investigate the occurrence of 12 histone modifications on thousands of 

nucleosomes in the budding yeast (Chapter 3). We found that the 12 histone 

modifications can be roughly split into two groups of co-occurring (or redundant) 

modifications. While the first group of modifications was found to be independent of 

transcription and marks the two nucleosomes surrounding transcription start sites, the 

other group occurs in gradients through the coding regions of genes, and is strongly 

associated with their transcription level. Our results oppose the ''histone code'' 

hypothesis, and show that histone modifications do not follow a simple and discrete 

code as previously thought. Nonetheless, my analysis does indicate that the state of 

chromatin encodes valuable information regarding the relative position and 

expression levels of underlying genes. 

It is also intriguing to reveal what happens when the internal or external state of the 

cell changes. It was showed that the chromatin alters its state within minutes, as if to 

match the new transcriptional program needed upon the change. Such alterations can 

be achieved by recruiting specific chromatin modifying enzymes (such as histone 

acetylases and histone methylases) to directly modify the chromatin state, or by 

replacing the old nucleosomes by newer ones altogether. Turnover of nucleosomes 

was known to exist during replication, when about half the nucleosomes are evicted 

and transferred to the daughter cell, but does it also happen in a replication-

independent manner? To directly examine this, I continued the collaboration with the 

Rando lab. We designed a pulse experiment using tagged histones, and measured the 



ratio of old to new nucleosomes along the genome in a time-series. To analyze these 

data, I developed a mathematical model based on rate equations, and a simple 

algorithm to estimate the turnover rate at each genomic position (Chapter 4). 

Surprisingly, we found that nucleosomes are indeed replaced both during and 

independent of DNA replication, in a wide variety of rates. We showed that this can 

be partially explained by transcription, as turnover rates correlate with polymerase 

density over coding regions. Nonetheless, our most important and surprising result is 

showing that the highest turnover rates are found at promoters and regulatory regions, 

rather than in the coding regions. We believe these high turnover rates reflect a 

cellular mechanism to constantly update the chromatin state of regulatory regions, and 

act as barriers that prevent the spreading of chromatin states between neighboring 

genes. 
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Introduction  
All cells of a living organism share the same DNA. Yet, they manifest tremendous 

variability in their structure, activities and interactions. These differences arise 

through the differential deployment of the cells' common genetic toolkit, whose basic 

principles are simple (Figure 1). Specialized proteins (called transcription factors) 

bind regulatory DNA elements in a sequence-specific manner and, once bound, 

modulate the expression of neighboring genes (1995; Ptashne and Gann, 2002). As 

straightforward as this may sound, years after sequencing the first genome, we still 

know very little about how this regulatory information is actually encoded in the 

genome. 

Deciphering the basic principles of regulation underlying a living cell is a major 

challenge in biology. Such knowledge would allow us to better understand how cells 

work, how they respond to external stimuli, what goes wrong in diseases like cancer 

(which often involves disruption of gene regulation), and how they can be fought. 

Also, accumulating evidence suggests that much of the phenotypic variability within 

the human population arises from sequence variations that alter gene expression 

(Levy et al., 2007).  Recognizing and predicting the consequences of this variation 

have the potential to revolutionize medicine by allowing the personalization of 

preventative and therapeutic measures (Sadee and Dai, 2005; Hoffman, 2007; 

Wheeler et al., 2008).  

1. Overview 
In my PhD I developed and utilized computational, mathematical and statistical 

methodologies, and analyzed a wide range of biological data to study different aspects 

of eukaryotic transcriptional regulation. 

In Chapter 1, I present an innovative algorithm to identify the binding sites of 

transcription factors based on their sequence (Kaplan et al., 2005). In this work, I 

showed how information about the DNA binding residues of a protein, together with 

learned binding preferences between its amino acids and DNA bases, can be used to 

predict the binding sites of novel transcription factors of the same structural family. 

This opens the way to automatically identify putative target genes of a transcription 

factor, providing valuable information regarding its function and activity. 
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In the second part of my research, presented in Chapter 2, I collaborated with the 

experimental lab of Erin O'Shea (HHMI/Harvard), to understand how external stimuli 

are processed and integrated by multiple transcription factors. In this study, we also 

addressed fundamental questions regarding the involvement of chromatin in 

regulation of gene expression in eukaryotes. 

These higher order aspects of transcriptional regulation are further analyzed in the 

third part of my thesis, presented in Chapters 3 and 4. I have collaborated with the 

experimental group of Oliver Rando (Harvard/UMass) in two pioneering studies on 

the role of chromatin in transcriptional regulation and its temporal dynamics (Liu et 

al., 2005; Dion et al., 2007). For the first time, we were able to characterize the 

covalent modification patters of thousands of nucleosomes at a single-nucleosome 

resolution (Liu et al., 2005). This unique exciting data allowed us to address the first 

principles of the “epigenetic code”, thought to control the state of the chromatin 

(Strahl and Allis, 2000). Our results were further supported by additional studies with 

similar results in yeast (Pokholok et al., 2005) and higher organisms (Bernstein et al., 

2005; Barski et al., 2007; Bernstein et al., 2007; Mikkelsen et al., 2007). Finally, I 

continued my collaboration with the Rando lab, now focusing on the dynamics of 

nucleosome exchange (Dion et al., 2007). We designed a pulse experiment to study 

the locus-specific incorporation rates of tagged nucleosomes in replication-coupled 

and replication-independent manners. I developed a mathematical model based on 

rate equations in non-homogenous Poisson processes, and analyzed the time series 

experimental data. Our results revealed that nucleosomes are replaced in both 

replication-coupled and replication-independent manners. Furthermore, we showed 

 

Figure 1. The basics of transcriptional regulation  

Regulatory regions of DNA (or promoters; orange) are typically found upstream to the DNA 

sequence of a gene (purple). Transcription factors can then bind sequence-specific sites within the 

promoter (shown in green/red), recruit the transcriptional machinery and RNA polymerase II (blue) 

to the transcription start site (TSS), and bring upon the transcription of multiple mRNA copies of 

the gene. 
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that nucleosome exchange occurs in higher rates than previously thought, and 

suggested possible functionalities for this striking phenomenon. Our results were 

further supported by additional studies in yeast (Jamai et al., 2007; Rufiange et al., 

2007) and fruit fly (Mito et al., 2007). 

2. Understanding eukaryotic transcriptional regulation 
The basic principles of transcriptional regulation in eukaryotic cells are quite simple. 

The DNA sequence of genes is preceded by a regulatory region of DNA (often called 

promoter) to which specialized proteins called transcription factors (TFs) bind. Each 

transcription factor typically binds a relatively short sequence-specific DNA site (~6-

20bp). Once bound, these factors can recruit the general transcriptional machinery and 

bring upon the transcription of multiple mRNA copies of the gene (Figure 1). 

Alternatively, transcription factors can act as transcriptional repressors, by binding to 

the promoter region and inhibiting the expression of the gene. 

To shed light on the tight transcriptional control governing the expression levels of 

genes in an eukaryotic cell, one must first reconstruct a transcriptional blueprint (or a 

regulatory map), specifying which genes are being regulated by which transcription 

factors. A common practice in identifying protein-DNA interactions is through 

experimental assays, including biochemical and molecular assays and genetic 

manipulations of regulatory DNA regions (Latchman, 1995). As reliable and accurate 

as such direct experimental approaches usually are, they involve laborious 

experimental work, and are limited to low throughput.  

2.1 Modeling and identifying regulatory elements 
The recent availability of complete genomic sequences motivated attempts to 

accompany these experimental methods by complementary computational studies, 

which will identify protein-DNA interactions through in silico analyses. The idea was 

to build a DNA motif (or a binding site model) for each transcription factor, 

specifying its DNA-binding preference using a probabilistic model (Stormo, 2000). 

Then, these descriptive models can be used to scan regulatory regions and identify 

additional genes targeted by the same factor. 

Toward this goal, experimentally verified transcription factor binding sites were 

extracted from databases such as TRANSFAC (Wingender et al., 2001) or JASPAR 
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(Sandelin et al., 2004). These sites were then aligned and described by either a 

consensus motif or by descriptive probabilistic models which specify the relative 

abundance of each nucleotide at each position (Figure 2) (Stormo, 2000). Once the 

binding sites of a transcription factor are described by such a model, it can be further 

used to scan regulatory regions of other genes, thus identifying additional binding 

sites and putative target genes of the same factor (Quandt et al., 1995; Bailey and 

Gribskov, 1998; Barash et al., 2005). 

Such models (often referred to as position-specific scoring matrix, or PSSM), 

inherently assume that positions within the binding site are independent. While this 

may be true in some cases, experimental results show that for several structural 

families of transcription factors, inner-dependencies of positions within binding sites 

exist (Benos et al., 2002; Bulyk et al., 2002). As we and other showed, the 

probabilistic representations of DNA motifs can be extended to capture such inner 

dependencies. For most transcription factors, these enhanced models allow for higher 

accuracy in modeling their binding site, resulting with a better in silico reconstruction 

of transcriptional regulatory maps (Barash et al., 2003; King and Roth, 2003; Zhou 

and Wong, 2004; Ben-Gal et al., 2005; Sharon and Segal, 2007). 

 

Figure 2. Modeling binding sites  

The aligned set of binding sites (left) can be described using a variety of computational models, 

from a consensus sequence (top right), through a positional count matrix which specifies the 

abundance of each nucleotide at each position (also visualized as a sequence logo, below), to a 

dependency model which captures the probabilistic dependencies between positions in the binding 

sites (bottom). 
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2.2 Using high-throughput experimental data 
In the previous sections, I described how regulatory maps of protein-DNA 

interactions can be reconstructed using low-throughput experimental assays and 

complementary in silico approaches. Although useful, this strategy was limited by the 

rate in which experimentally verified binding sites could be collected, to characterize 

the DNA motif for each TF. 

About a decade ago, technological advances revolutionized biology by allowing high-

throughput assays for sequencing (e.g., the budding yeast Saccharomyces cerevisiae 

genome; (Clayton et al., 1997)), for simultaneously measuring the expression level of 

thousand of genes using DNA microarrays (DeRisi et al., 1997; Holstege et al., 1998; 

Spellman et al., 1998; Gasch et al., 2000; Hughes et al., 2000) or their in vivo binding 

by regulatory proteins using genomic chromatin immunoprecipitation (ChIP) studies 

(Ren et al., 2000; Iyer et al., 2001; Simon et al., 2001). Suddenly, it was possible to 

identify which genes alter their expression levels following deletions of transcription 

factors, and which genes are physically bound by a transcription factor. 

To distinguish between direct and indirect target genes, and to overcome experimental 

noise, the promoter regions of these genes were computationally scanned to identify 

occurrences of the regulator’s DNA motif. This was done by statistical methods 

which recognized over-represented motifs in the regulatory regions of putative co-

regulated sets of genes, in comparison to a control set of genes (Figure 3) (Bailey and 

 
Figure 3. Over-representative motifs in the regulatory sequences of co-regulated genes 

High-throughput gene-expression or chromatin immunoprecipitation (ChIP) studies allow the 

identification of co-expressed and co-regulated genes, respectively (top genes). Statistical and 

computational algorithms were then developed to identify short motifs (blue) enriched among the 

promoters of those groups, in comparison to a control set of genes (bottom). 
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Elkan, 1994; Hertz and Stormo, 1999; Barash et al., 2001; Liu et al., 2001; Barash et 

al., 2003; Osada et al., 2004).  

Such methods were applied to reconstruct the transcriptional regulatory map of the 

cell in a wide range of organisms, including E. coli, yeast, and higher eukaryotes such 

as worm, fly, and human (Hughes et al., 2000; Lee et al., 2002; Harbison et al., 2004; 

MacIsaac et al., 2006).  

2.3 Ab initio prediction of target genes using structural knowledge 
As valuable as such high-throughput experiments are in directly mapping protein-

DNA interactions, their applications are still limited due to the extensive labor, costly 

reagents and expensive microarrays required. It was therefore suggested to apply 

complementary studies which rely on structural knowledge regarding transcription 

factors, and their DNA binding preferences. Each factor tends to bind sequence-

specific sites, according to its structural family and the specific residues through 

which protein-DNA contacts are accomplished. In general, every amino acid can bind 

different nucleotides, based on its physic-chemical characteristics. For example, 

analysis of solved protein-DNA complexes revealed a strong tendency for Arginine 

and Lysine to interact with Guanine, whereas Glutamic acid tends to interact with 

Cytosine (Mandel-Gutfreund et al., 1995; Kono and Sarai, 1999). This concept was 

suggested as a gateway for predicting the DNA motifs of novel proteins, based on 

their sequence (Kono and Sarai, 1999; Mandel-Gutfreund et al., 2001). In more 

details, the protein sequence of a query protein can be threaded, using the solved 

structure of another transcription factor used as a structural template. This offers a 

fast and easy way for identifying which residues in the query protein interact with 

which positions along the DNA. Finally, the physicochemical properties of the amino 

acids located at these DNA-binding positions are used to predict its DNA motif (Kono 

and Sarai, 1999; Luscombe et al., 2001; Mandel-Gutfreund et al., 2001; Benos et al., 

2002; Benos et al., 2002; Endres et al., 2004; Havranek et al., 2004). Additional 

studies focused on specific structural families, and showed that the same amino acid 

may have different binding preferences depending on its positional context (Choo and 

Klug, 1994; Choo and Klug, 1994; Kono and Sarai, 1999). We found it only natural to 

further develop such structure-based approaches to predict the DNA motif of 

transcription factors based on their sequence, while allowing for context-specific 

amino acid-nucleotide interactions (Chapter 1). Unfortunately, such specific binding 
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preferences involve many parameters, and could not have been accurately estimated 

from the limited number of solved protein-DNA complexes. Instead, I applied 

machine learning algorithms to automatically predict the structural alignment of 

transcription factors and their natural DNA sites, as taken from public databases 

(Wingender et al., 2001; Sandelin et al., 2004). 

3. Experimental studies of transcriptional regulation - 

Lessons from the HOG pathway 
In the previous section I focused on computational and experimental strategies for 

identifying the target genes of each transcription factor, thus reconstructing 

transcriptional regulatory maps. I now wish to examine the activity of transcription 

factors in a broader context, focusing on their role as combinatorial processing units. 

According to this view, signaling pathways propagate intra- and extra-cellular 

information regarding the state of the cell and its environment into the eukaryotic 

nucleus. Then, this information is processed by a network of transcription factors that 

regulate the expression of genes accordingly (Barrett and Palsson, 2006; Davidson, 

2006). For several pathways, detailed circuit diagrams were constructed, showing 

how signals influence the activity and expression levels of transcription factors, and 

how these changes are translated to changes in the mRNA expression levels of their 

target genes (Ben-Tabou de-Leon and Davidson, 2007). For example, regulatory 

diagrams were constructed for the flagella gene network in E. coli (Kalir and Alon, 

2004) or for small portions of developmental pathways in higher organisms 

(Davidson et al., 2002; Levine and Davidson, 2005; Stathopoulos and Levine, 2005). 

3.1 Cellular processing of external signals by the HOG pathway 
To address this goal, and study how a transcriptional network of several transcription 

factors processes external signaling and regulate the expression levels of hundreds of 

genes, we decided to focus on one prototypical pathway as a model system. One of 

the most studied transcriptional networks is the HOG pathway in budding yeast, 

controlling the cellular response to hyper-osmotic stress (Figure 4). When yeast cells 

are exposed to high levels of extra-cellular osmolyte (e.g., salt), they undergo a rapid 

transcriptional reprogramming, involving hundreds of genes. This facilitates the 

stimulation of various cellular actions, including glycolysis to enhance the production 

of glycerol as a compatible solute, diminishing cellular translation levels and cell 
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cycle arrest, repairing the cell wall damage caused by cell shrinkage, as well as a 

general response to stress (Hohmann et al., 2007). This dramatic switch was shown to 

be orchestrated by the mitogen-activated protein kinase (MAPK) Hog1, with partial 

involvement of the paralogous general stress factors Msn2 and Msn4 (Posas et al., 

2000; Rep et al., 2000; Yale and Bohnert, 2001; O'Rourke and Herskowitz, 2004). 

Following activation, Hog1 is imported into the nucleus, where it phosphorylates 

several downstream transcription factors, which in turn modulate the expression of 

their specific target genes (Proft and Serrano, 1999; Rep et al., 1999; Rep et al., 2000; 

Alepuz et al., 2001; Rep et al., 2001; de Nadal et al., 2002; Proft and Struhl, 2002; 

Alepuz et al., 2003; Proft et al., 2005). Despite intense efforts, our understanding of 

the transcriptional mechanisms through which the HOG pathway acts, is still rather 

limited. Gene expression assays in mutant strains suggested that the target genes of 

these Hog1-regulared factors, as well as the Msn2/4, significantly overlap (Rep et al., 

1999; Rep et al., 2000; Alepuz et al., 2001). The extent of this combinatorial control 

of gene expression, and the mechanisms through which it is achieved, are still 

unknown.  

 

Figure 4. The yeast HOG signaling pathway  

Upon induction of extra-cellular turgor pressure, the osmosensors Sho1, Sln1 and Msb2 initiate a 

signaling cascade which results in phosphorylating the MAP-kinase-kinase Pbs2, which in turn 

phosphorylates Hog1. The phosphorylated Hog1 is transported into the nucleus, where in activates 

several TFs. 
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3.2 Strategies for analyzing high-throughput ChIP-chip and gene 

expression data 
To address these questions, and to dissect the hyperosmotic-induced transcriptional 

response of the cell into the specific components controlled by each TF, I collaborated 

with the lab of Erin O'Shea (HHMI/Harvard). We decided to build a more complete 

model of the HOG pathway by comparing the expression levels of genes in a wide 

range of genetic and environmental conditions using DNA microarrays (DeRisi et al., 

1997; Holstege et al., 1998; Spellman et al., 1998; Gasch et al., 2000; Hughes et al., 

2000). We designed a web of multiple partially-overlapping experiments, and 

measured the expression of yeast genes prior to and following hyper-osmotic stress at 

a range of mutant strains, including the single and double deletions of the HOG 

pathway key players (Hog1, Msn2/4, Sko1, and Hot1). To analyze these data and 

estimate the contribution of each HOG-related TF to the expression level of each 

gene, I developed a statistical-based regression algorithm (see Methods). 

To further validate these expression-based data, which might also include some 

indirect effects, we decided to directly map the in vivo binding of HOG-regulated 

proteins using chromatin immunoprecipitation coupled with hybridization to DNA 

microarrays (ChIP-chip; Figure 5). The original ChIP-chip assays (Ren et al., 2000; 

Iyer et al., 2001; Simon et al., 2001; Lee et al., 2002; Harbison et al., 2004) relied on 

promoter arrays, and were therefore limited in their resolution to ~1Kb. These arrays 

allowed to identify which promoters are bound by the TF and which are not, but did 

not facilitate the exact identification of binding locations. The recent development of 

high-resolution tiling arrays, allowed for more accurate genome-wide ChIP-chip 

assays (Cawley et al., 2004; Kim et al., 2005; Pokholok et al., 2005; Qi et al., 2006; 

Kim et al., 2007; Li et al., 2008) or analysis tools (Buck et al., 2005; Gibbons et al., 

2005; Li et al., 2005; Qi et al., 2006). We therefore directly tested the in vivo protein-

DNA interactions using high-resolution genome wide ChIP-chip assays. To identify 

the location and affinity of binding events, I developed a computational model-based 

algorithm for the analysis of high-resolution ChIP-chip data (see Methods). For 

compatibility, our gene expression and ChIP-chip measurements were done for the 

same strains and conditions. 

Both these assays aimed to quantitatively identify where HOG-related factors bind, 

and what are their transcriptional effects. To complement this view, we also analyzed 
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the genomic sequence of yeast, identifying the positions these TF could bind. Toward 

this end, we developed and applied several computational algorithms to characterize 

and identify HOG-related binding sites (Bailey and Elkan, 1994; Hughes et al., 2000; 

Liu et al., 2001; Harbison et al., 2004; Barash et al., 2005; Gordon et al., 2005; Habib 

et al., 2008). All these results are reported in Chapter 2.  

3.3 Discrepancies between latent, silent and functional binding 

sites - Higher order aspects of transcriptional regulation 
When the number of genes regulated by a single transcription factor is estimated 

based on gene expression data, on sequence analysis, or on in vivo binding, we come 

across a very puzzling phenomenon. On the one hand, experimental studies that rely 

on gene expression data usually estimate the number of targets between 50 and 500 

(Holstege et al., 1998; Hughes et al., 2000). On the other hand, computational 

sequence-based algorithms that scan the regulatory regions of genes for occurrences 

of known DNA regulatory motifs, typically find thousands of putative target genes for 

 

Figure 5. Chromatin immunoprecipitation (ChIP) combined with DNA microarrays (ChIP-

chip) or high-throughput sequencing (ChIP-Seq)  

(A) Modified nucleosomes are immunoprecipitated using modification-specific antibodies (shown 

in green and purple). (B) DNA is amplified, color-labeled and hybridized to a DNA microarray. 

(C) Alternatively to (B), high-throughput sequencing methods (e.g. Illumina’s Solexa), purify the 

DNA, ligate adapters, bind the DNA to a flow cell, amplify, and sequence DNA ends.  (Adapted 

from Zhao et al., 2008) 
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each TF (Kaplan et al., 2005; MacIsaac and Fraenkel, 2006; MacIsaac et al., 2006; 

Yang et al., 2006). When directly measuring the in vivo protein-DNA interactions 

using ChIP-chip, the typical number of bound promoters usually varies between 100 

to 1000 (Chapter 2) (Lee et al., 2002; Cawley et al., 2004; Harbison et al., 2004; Wei 

et al., 2006; Zeitlinger et al., 2007; Li et al., 2008). Yet, the overlap between all these 

sets of putative targets is only partial (Yang et al., 2006), as illustrated in Figure 6. It 

is therefore of great interest to understand why DNA regions that contain bona fide 

binding sites are not bound (or latent), and why other binding sites are bound with no 

observed change in expression level of nearby genes (hence non-functional). Usually 

these discrepancies are too substantial to be simply justified as experimental noise, or 

to be explained due to technical aspects (such as the computational representation of 

DNA motifs or the thresholds used for identifying target genes). Instead, there are a 

growing number of evidences that link such cases to higher-order mechanisms of 

transcription regulation. In the next sections, I will address one such mechanism, by 

reviewing the roles of DNA packaging in transcriptional regulation. 

4. The role of chromatin in transcriptional regulation 

4.1 Chromatin: DNA packaging, histones & nucleosomes 
In eukaryotic cells the DNA is wrapped around nucleosomes, globular complexes of 

histone proteins, to form the tightly packed chromatin (Figure 7) (Luger et al., 1997). 

This packaging plays a crucial role in fitting the long chromosomes into the small 

nuclei and in protecting the DNA from physical damage. Chromatin also plays a 

 

Figure 6. Discrepancies between sequence, ChIP and expression  

Putative target genes of a transcription factor, according to gene expression analyses (Expression), 

in vivo binding (ChIP) and motif analysis (Motif) 
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functional role in transcriptional regulation, by modulating the affinity of DNA to the 

transcriptional machinery. On one hand, the occlusion of binding sites for 

transcription factors was shown to result in transcriptional repression (Venter et al., 

1994; Bernstein et al., 2004; Buck and Lieb, 2006). Alternatively, nucleosomes can 

activate transcription through displacement in spatial juxtaposition of transcription 

factor binding sites (Stunkel et al., 1997; Workman, 2006; Lam et al., 2008), as if to 

create a transcriptional funnel (Nemeth and Langst, 2004; Kolesov et al., 2007; 

Narlikar et al., 2007). This plasticity in nucleosome positioning was shown to be 

related to ATP-dependent chromatin remodeling enzymes, such as the SWI/SNF and 

ISWI complexes (Figure 8) (Wu and Winston, 1997; Workman and Kingston, 1998; 

Vignali et al., 2000; Lusser and Kadonaga, 2003; Langst and Becker, 2004; Cairns, 

2005; Whitehouse et al., 2007). 

In addition to the exact positioning of nucleosomes, transcription is controlled by 

covalent modification of the histones. Several residues in the highly-conserved 

histone proteins are subject to multiple types of covalent modification, including 

methylation, acetylation, phosphorylation, ubiquitylation, Sumoylation, and ADP-

ribosylation (Strahl and Allis, 2000; Turner, 2000; Berger, 2002; Schreiber and 

Bernstein, 2002; Turner, 2002; Kurdistani and Grunstein, 2003; Kurdistani et al., 

2004; Bannister et al., 2005; Bernstein et al., 2005; Liu et al., 2005; Pokholok et al., 

2005; Vakoc et al., 2005; Millar and Grunstein, 2006; Nathan et al., 2006; 

Kouzarides, 2007). 

To better understand transcriptional regulation, one must therefore consider the 

epigenetic context of the DNA sequence, as reflected by the information stored in its 

packaging. 

4.2 Characterization of nucleosome positions 
Once the positions of enough nucleosomes were established, several studies identified 

conserved sequence features that characterize nucleosomal DNA relatively to linker 

DNA, and suggested sequence-based algorithms for identifying nucleosome positions 

along genomic regions (Ioshikhes et al., 1996; Ioshikhes et al., 2006; Segal et al., 

2006; Peckham et al., 2007; Yuan and Liu, 2008). Although such in silico methods 

are tempting, their accuracy is arguable, with only a small improvement over random 

positioning (Segal, 2008; Valouev et al., 2008; Yuan and Liu, 2008). Moreover, 

recent genome-wide studies showed that the position of nucleosomes strongly 
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depends on chromatin remodeling enzymes (Whitehouse et al., 2007) and 

dynamically changes to reflect reprogramming of the transcriptional program in 

changing environmental conditions (Schones et al., 2008; Shivaswamy et al., 2008).  

High-throughput methods for determining the positioning of nucleosomes usually 

involve the breaking of genomic DNA (e.g., by sonication) followed by nucleosomal 

chromatin immunoprecipitation (ChIP) coupled with dense tiling DNA microarrays 

(Pokholok et al., 2005; Schones and Zhao, 2008). For more accurate results, 

nucleosomal DNA can be better purified by linker DNA digestion with micrococcal 

nuclease (MNase) (Raisner et al., 2005; Yuan et al., 2005; Lee et al., 2007; 

Whitehouse et al., 2007). Alternatively, massive sequencing techniques such as 

Roche's 454 or Illumina's Solexa 1G sequencers, were harnessed to replace the use of 

tiling arrays (ChIP-Seq) (Albert et al., 2007; Barski et al., 2007; Mikkelsen et al., 

2007; Mavrich et al., 2008; Shivaswamy and Iyer, 2008). Nucleosomal positions, and 

 
Figure 7. DNA packaging  

Various packaging degrees of the DNA (left). The double-stranded DNA is wrapped around 

nucleosomes - globular complexes of histone proteins (top right). This initial packaging (often 

referred to as “beads on a string”, bottom right) can be further packed in additional layers, to 

produce the condensed chromosomes. 
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in some cases, nucleosomal occupancies, can then be inferred by analyzing these data 

(Yuan et al., 2005; Ozsolak et al., 2007; Schones et al., 2008; Yassour et al., 2008). 

4.3 Mapping histone modifications 
To date, over 60 different histone residues are known to be covalently modified, and 

the actual number of modifications taking place in chromatin further exceeds this. 

Methylation of lysines or arginines may take several forms (e.g., mono-, di-, or tri-

methylation of lysines), whereas some positions can be both acetylated and 

methylated (Figure 9) (Berger, 2002; Turner, 2002; Peterson and Laniel, 2004; 

Kouzarides, 2007). 

These modifications were shown to involve a wide range of enzymes, including 

histone acetyltransferases and deacetylases (Sterner and Berger, 2000), 

methyltransferases and demethylases (Zhang and Reinberg, 2001) and more. 

Although the “division of labor” between histone modifiers and their target residues is 

not yet well characterized, the complex regulation of histone modifications and their 

relation to transcription factors (both sequence-specific and general) is now beginning 

to be revealed (Strahl and Allis, 2000; Guo et al., 2006; Kouzarides, 2007; Pham et 

al., 2007; Steinfeld et al., 2007). Unique patterns of chromatin modifications were 

shown to be connected to various processes along the DNA. DNA repair damage 

involves the H2A variant H2AX, the phosphorylation of H2AS129 and H4S1, the 

 

Figure 8. ATP-dependent chromatin remodeling  

The ISWI sub-family complex (top) is an ATP-dependent DNA-translocating enzyme that 

disrupts the nucleosome-DNA contact to allow reestablishment at a different position relative to 

the DNA. In contrary, the Swi/Snf complex (bottom) rearranges one superhelical turn of 

nucleosomal DNA, causing the other superhelical turn of DNA to be displaced from the 

nucleosome (Lusser & Kadonaga, 2003) 
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methylation of H4K20, and the acetylation of H3K56 (Kouzarides, 2007). During 

replication, the acetylation of specific residues at the N-terminus of histones H3 (K4) 

and H4 (K5, 8, and 12) is related to the activation of origins of replications 

(Kouzarides, 2007). Moreover, studies in animal cells showed how different 

chromatin states are associated with different chromosome condensation and 

replication times (Zhang et al., 2002; Hashimshony et al., 2003; Lin et al., 2003; 

Fischle et al., 2005; Wu et al., 2005), mostly through the methylation of H3K9 and of 

the DNA. 

Yet, the most studied aspect of the chromatin state is in transcription control, where it 

modulates the availability of DNA and the expression of underlying genes through 

several mechanisms (Shilatifard, 2006; Workman, 2006; Li et al., 2007). For 

example, acetylation of lysines neutralizes their positive charge, thus weakening their 

affinity to the negatively charged DNA (Hong et al., 1993) and to neighboring 

nucleosomes (Luger et al., 1997). In addition, acetylated lysines can be bound by 

bromodomain transcription factors (Dhalluin et al., 1999; Peterson and Laniel, 2004). 

While methylation of lysines does not affect their charge, it is recognized by the 

chromodomain transcription factors (Bannister et al., 2001; Lachner et al., 2001). 

Moreover, histone modifications offer an unprecedented platform for epigenetic 

memory. Few examples include tri-methylation of H3K4 by Set1 histone methylase 

which marks active promoters even after the transcriptional inactivation (Ng et al., 

 

Figure 9. Histone modifications 

Various residues along the histone tail domains are subject to covalent modifications, including 

acetylated lysine, methylated arginine, methylated lysine, phosphorylated serine, and ubiquitinated 

lysine (Turner, 2002). 

21



2003), or the well ordered activation of the HO promoter in the yeast cell-cycle, by a 

combination of chromatin remodeling enzymes (Cosma et al., 1999). 

It was therefore hypothesized that different modifications (or combinations of such) 

are associated with distinct transcriptional contexts (Figure 10) (Strahl and Allis, 

2000). This hypothesis, known as the “histone code hypothesis”, was characterized in 

several theoretical studies (Turner, 2000; Berger, 2002; Turner, 2002). Technological 

advances allowed experimental testing of this hypothesis in a high-throughput 

manner, using immunoprecipitation of modified nucleosomes. The first genomic 

studies used promoter-based DNA microarrays, with relatively long probes (~1Kb). 

This resulted with low resolution data, typically the average modification patterns 

over ~5-6 neighboring nucleosomes (Bernstein et al., 2002; Robyr et al., 2002; Robyr 

and Grunstein, 2003; Kurdistani et al., 2004; Schubeler et al., 2004). Later studies 

allowed the characterization of histones modifications in higher resolution. For 

example, Pokholok  et al., (2005) used tiling microarrays of the entire yeast genome, 

allowing a resolution of ~4 nucleosomes. In the study presented in Chapter 3 (Liu et 

al., 2005), we used a combination of accurate linker DNA digestion with much denser 

arrays to achieve single-nucleosome characterization of nucleosome modification. 

Our analysis showed that the packaging of DNA encodes a fair amount of information 

regarding the transcription level of underlying genes and the position of nucleosomes 

with regard to the transcription start site. Yet, we found no evidence of a discrete 

'histone code', as proposed before (Liu et al., 2005). Instead, the acetylation and 

methylation patterns of nucleosomes were found to be relatively smooth and 

redundant, changing gradually along the promoters and coding regions of genes, with 

several differences between active and silenced genes (Liu et al., 2005; Millar et al., 

2006; Yuan et al., 2006; Li et al., 2007; Rando, 2007; Steinfeld et al., 2007). 

These findings were further supported by recent studies in mammalian models, which 

used chromatin immunoprecipitation followed by dense tiling arrays (Bernstein et al., 

2005; Koch et al., 2007) or by massive sequencing (Barski et al., 2007; Mikkelsen et 

al., 2007). Yet, the exact characterization of chromatin modifications and their roles 

in transcriptional regulation are still under intense scrutiny and dispute. 
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4.4 Dynamics in chromatin 
Chromatin packaging of DNA and its relation to almost every process that takes place 

along the DNA raises questions regarding the temporal dynamics of chromatin. On 

one hand, the tight connection to transcriptional activity suggests high plasticity of 

chromatin, both in terms of nucleosome positioning and the covalent modification of 

histones. Indeed, histone acetylation was shown to be rapidly reversible within 

minutes (Vogelauer et al., 2000; Waterborg, 2001) and to reflect transcriptional 

reprogramming of the cell (Berger, 2002; Krebs, 2007; Schones et al., 2008; 

Shivaswamy et al., 2008). On the other hand, histone modifications are involved in 

forming stable epigenetic marks which persist over multiple cycles of replication 

(Kouzarides, 2007). Such mechanisms involve additional aspects of chromatin, such 

as the methylation of DNA, or the formation of higher-order heterochromatic 

structures (Rea et al., 2000; Noma et al., 2001; Peters et al., 2002; Rice et al., 2003; 

Grewal and Rice, 2004; Lande-Diner and Cedar, 2005).  

To address the mechanisms involved in such a wide range of time scales, the 

dynamics of nucleosome exchange in living cells should be directly probed. 

 

 

Figure 10. The histone code hypothesis 

Histone modifications at selected residues were hypothesized to be related to biological events in a 

combinatorial code. (Strahl & Allis, 2000) 
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Photobleaching studies of fluorescent histones showed that the core histone H3-H4 

tetramers are relatively stable, whereas the H2A-H2B dimers are replaced during 

transcription. These studies also characterized the dynamics of additional histone 

variants such as H3.3 or H2A.Z (Kimura and Cook, 2001; Kimura, 2005). Yet, such 

microscopical studies examine the behavior of the chromatin in bulk, and were soon 

followed by locus-specific assays that suggested that nucleosomes are evicted upon 

activation of their underlying genes and are reassembled in trans upon repression 

(Boeger et al., 2003; Reinke and Horz, 2003; Bernstein et al., 2004; Kristjuhan and 

Svejstrup, 2004; Lee et al., 2004; Schwabish and Struhl, 2004; Shivaswamy and Iyer, 

2008). 

Those assays showed that specific histones are sometimes exchanged, and that 

nucleosomal occupancy is related to passages of the transcriptional machinery. Yet, 

the question of nucleosome turnover remained. In replication, about half of the 

nucleosomes are passed to the daughter cell, and are replaced by novel newly 

synthesized nucleosomes. It was not clear whether nucleosomes are also exchanged in 

a replication-independent manner. Recent studies used chromatin immuno-

precipitation of epitope-tagged histone variants, to show that indeed there is 

replication-independent turnover of nucleosomes in eukaryotes, ranging from the 

budding yeast Saccharomyces cerevisiae to the fruit fly Drosophila melanogaster 

(See Chapter 4) (Linger and Tyler, 2006; Dion et al., 2007; Jamai et al., 2007; Mito et 

al., 2007; Rufiange et al., 2007). These studies also highlighted the functional context 

of nucleosome turnover, and suggested its involvement in several processes, including 

DNA damage checkpoints following replication, transcriptional control through 

binding site occlusion, transcriptional insulation via chromatin barriers, and a 

mechanism for resetting outdated histone modification patterns. 

Goals of Research 
In my research I aimed to learn about the various mechanisms that control the 

expression of genes in eukaryotes. Toward this end, I developed and utilized 

computational tools to integrate various types of genome-scale experimental data. 

My first goal was to reconstruct regulatory transcriptional networks from 

heterogeneous experimental and genomic data. This required that the direct 
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interactions between transcription factors and their target genes were identified. 

Toward this end, and to accompany experimental high-throughput data of protein-

DNA interactions, I developed a computational method based on sequence and 

structural information. I aimed to use solved protein-DNA complexes as structural 

templates for novel proteins, thus identifying their DNA-binding positions. I then 

intended to learn the DNA binding preferences of each residue, and predict the DNA 

binding preferences of each TF. Moreover, to achieve higher accuracy I planned to 

learn four different sets of binding preferences, depending on the residue’s position 

within the DNA binding domain. Unfortunately, such a detailed model could not have 

been accurately learned using structural information, due to the limited number of 

solved protein-DNA complexes. I therefore sought alternative sources of data, and 

eventually employed annotated sets of transcription factors and their cognate DNA 

sites (Wingender et al., 2001; Sandelin et al., 2004). To pinpoint the exact binding 

position of each pair, I developed a machine learning strategy and aligned the protein-

DNA pairs. This allowed me to estimate context-specific amino acid-nucleotide 

binding preferences, to predict the DNA binding preferences of novel TFs, and to 

identify putative target genes of these TFs (Chapter 1). 

I then focused on another aspect of gene regulation, the processing of stimuli by a 

combinatorial network of transcription factors. I aimed to understand how external 

information is being processed and integrated by the cell, and how decisions are being 

made and executed to reprogram the transcriptional response to external stimuli. To 

answer these questions, we applied genetic manipulations and measured the 

expression of genes in the absence of key regulators. Unfortunately, such experiments 

are somewhat inconclusive, since they cannot distinguish if a gene is being regulated 

by the transcription factor solely, or through the combinatorial interactions with 

additional regulators. To overcome this, we decided to dissect the transcriptional 

response of each gene into more specific components (including the expression level 

of the gene due to TFA, due to TFB, or due to their cooperative effect per se). In this 

project, I collaborated with the laboratory of Prof. Erin O’Shea (HHMI/Harvard), who 

measured the gene expression data in a range of additional mutant strains. My goal 

was to analyze these data and estimate the transcriptional components of each gene. 

Toward this end, I developed a statistical-based algorithm. Finally, to support these 

results from a mechanistic view, we wished to verify that genes supposedly regulated 

by a certain TF (according to our expression-based algorithm) also contain its DNA 
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motif, and are bound by it in vivo. Toward this end, I developed a model-based 

algorithm to identify and characterize binding events using chromatin 

immunoprecipitation data we collected and measured using dense tiling arrays 

(Methods & Chapter 2). 

My final goal was to shift from the naïve conception of DNA as a linear sequence, 

and focus on the packaging of DNA into chromatin and its relation to transcription. 

Specifically, I wished to accompany the recent mapping of nucleosome positioning in 

yeast cells by some experimental characterization of their epigenetic “state”. Toward 

this end, I collaborated with the laboratory of Oliver Rando (Harvard/UMass), who 

directly measured the covalent modification pattern of thousands of nucleosomes. 

Given these unique data, my goal was to find the basic principles that govern the 

modification patterns of nucleosomes. First, I intended to identify how many different 

“types” of nucleosome exists. By applying computational algorithms to automatically 

cluster the modification data, I was hoping to find a clear partition of the nucleosomes 

to several groups based on their modification patterns. Second, I wished to identify 

combinatorial interactions between specific modifications. I then aimed to link the 

modification pattern of a nucleosome to its genomic location and the transcriptional 

state of its underlying gene. Does a promoter nucleosome look different than a 

nucleosome over the coding region? Are the nucleosomes over repressed genes 

marked differently than those over active genes? Using statistical algorithms, I 

showed that indeed this was the case. These results led us to additional questions. If 

the state of nucleosomes is tightly linked to the transcriptional activity levels of 

underlying genes, what happens when the cell undergoes a transcriptional 

reprogramming? There should be some mechanisms to allow dynamic changes in the 

state of chromatin. Toward this end, we designed a series of measurements to test 

whether nucleosomes are exchanged, both during and independent of DNA 

replication. I developed an analytical model to analyze these measurements and 

estimate the turnover rates of nucleosomes, in minutes (Methods, Chapter 4). 
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Methodology 

Mathematical modeling of nucleosomes turnover  
To analyze the data presented in Chapter 4, I developed a mathematical model which 

interprets the time-series measurements of the Flag- and Myc-tagged histones, based 

on the estimation of turnover rate parameters (in 1/minutes) for each nucleosome 

(Figure 11). 

The model consists of several components: 

• M(t) – the amount of Myc-H3 molecules in the free histone pool at time t. 

• F(t) – the amount of Flag-H3 molecules in the free histone pool at time t. 

• Pl (t) – the probability that a specific nucleosome at locus l at time t contains Flag-

H3.  

• Rl (t) – the predicted Flag to Myc log-ratio measured at locus l at time t. 

 

In the model, the amount of Myc-H3 and Flag-H3 molecules is determined by the 

production rate and degradation rate of each type of protein. Thus, 

d
dt

M(t) = αM − βM M(t)

d
dt

F(t) = αF (t) − βF F (t)
  

where αM, βM, αF(t), and βF, are the production and degradation rates of Myc-H3 and 

Flag-H3, respectively. We assume that the production and degradation rate of the 

Myc-H3 production are constant. Thus, its levels reach steady state equilibrium 

M(t)= αM

βM

. 

Similarly, we assume a fixed degradation rate for Flag- H3. Its production rate, 

however, is assumed to be zero up a particular time point t0, where the response to 

galactose has been completed, from which it is produced at some fixed rate αF. 

αF (t) =
0 t < t0

αF t ≥ t0

⎧ 
⎨ 
⎩ 
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Solving the dynamical system under this assumption results in the following solution: 

F(t) =
0 t < t0
αF

βF

1− e−β F ( t− t0 )( ) t ≥ t0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

We assume that the H3 protein recruited to the DNA at time t is Flag-H3 with 

probability 
F(t)

F(t) + M(t)
, which is the relative proportion of Flag- H3 in the free 

histone pool at time t, according to the model.  

We model turnover events at a particular locus as a Poisson processes. The rate of the 

process determines the frequency of turnover events. We assume that each turnover 

event samples a random H3 protein from the free pool. We also assume that the 

turnover rate does not depend on the particular H3 variant present at the location. We 

model the turnover rate at a specific genomic location l by the rate parameter λl . Thus, 

the distribution of durations between turnover events is p(Δ) =
1
λl

e−λl Δ . These 

assumptions imply that the change in Pl(t) (the probability that a H3 protein at locus l 

is Flag-H3) depends on the rate of new turnover events at that locus and on the 

probability of sampling Flag-H3 at that time. 

 

Figure 11. Mathematical model of replication-independent nucleosomes turnover               

Shown are the Flag/Myc ratios (in log2) for three genomic loci, over a time-series of measurements. 

These data were fitted by our model, resulting with the turnover rates of: a fast nucleosome (red, 

constantly replaced), a medium one (black, replaced every half hour on average), and a slow one 

(green, replaced every four hours, on average). 
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d
dt

Pl (t) = λl
F(t)

F(t) + M(t)
− Pl (t)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

The initial condition for this equation is Pl(t) = 0 since there are no Flag-H3 proteins 

at the initialization of the experiment. For a given choice of λl  and trajectories F(t) 

and M(t) we solve this equation numerically using ODE45 function in MATLAB 7.0 

(rel 14). 

Assuming that this probability describes how each nucleosome at location l behaves 

in all the cells, the predicted Flag to Myc log-ratio at this location is then

 log2
Pl (t)

1− Pl (t)
. The microarray protocol implies that an equal amount of Flag- 

and Myc-tagged sequences will be hybridized. This implies that when there is a 

disproportional amount of one of the tags in the cell, the ratios will be normalized by 

the ratio of two tags in the system. Thus, the expected normalized log-ratio is  

Rl (t) = log2
Pl (t)

1− Pl (t)
− N(t) 

where N(t) is a time-dependent normalizing factor.  

To recap, given the parameters t0, αM, βM, αF(t), and βF, we construct a dynamic 

model of the Flag to Myc ratio in the free histone pool at each time point. Given these 

we can fit a rate parameter λl  for each location and a global normalizing factor N(t) 

for each measured time point. We jointly fit these parameters by minimizing the root 

mean squared error (RMSD) between the measured log-ratios and the predicted 

normalized log-ratios. To fit the global parameters (t0, αM, βM, αF(t), and βF), we 

apply the fitting procedures for different values on a predetermined range and choose 

the one resulting in the smallest RMSD fit.  

To apply this model to results from printed tiling arrays, we first transformed the 

measured ratios at each probe to nucleosome level measurements (as described 

above). To apply the model to Agilent arrays, we assume each probe represents a 

separate nucleosome and thus treated each probe as a locus. 
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Introduction

Specific binding of transcription factors to cis-regulatory
elements is a crucial component of transcriptional regula-
tion. Previous studies have used both experimental and
computational approaches to determine the relationships
between transcription factors and their targets. In particular,
probabilistic models were employed to characterize the
binding preferences of transcription factors, and to identify
their putative sites in genomic sequences [1,2]. This approach
is useful when binding data are available, but cannot be
applied to proteins without extensive experimental binding
studies. This difficulty is particularly emphasized in view of
the genome projects, where new proteins are classified as
DNA-binding according to their sequence, yet there is no
information about the genes they regulate.

To address the challenge of profiling the binding sites of
novel proteins, we propose a family-wise approach that
builds on structural information and on the known binding
sites of other proteins from the same family. We use solved
protein–DNA complexes [3] to determine the exact archi-
tecture of interactions between nucleotides and amino acids
at the DNA-binding domain. Although sharing the same
structure, different proteins from a structural family have
different binding specificities because of the presence of
different residues at the DNA-binding positions. To predict
their binding site motif, we need to identify the residues
at these positions and understand their DNA-binding
preferences.

In previous studies, we used the empirical frequencies of
amino acid–nucleotide interactions [4,5] in solved complexes
(from various protein families) to build a set of ‘‘DNA-
recognition preferences.’’ This approach assumed similar
DNA-binding preferences of the amino acids for all
structural domains and at all binding positions. However,
there are clear experimental indications that this assumption
is not always valid: a particular amino acid may have different
binding preferences depending on its positional context [6–
8]. To estimate these context-specific DNA-recognition
preferences, we need to determine the appropriate context

of each residue, which may depend on its relative position
and orientation with respect to the nucleotide. Then, we
need to collect statistics about the DNA-binding preferences
in this context. This can be achieved from an ensemble of
solved protein–DNA complexes from the same family.
Unfortunately, sufficient data of this type are currently
unavailable.
To overcome this obstacle, we propose to estimate context-

specific DNA-recognition preferences from available se-
quence data using statistical estimation procedures. The
input of our method is a set of pairs of transcription factors
and their target DNA sequences [2]. We then identify the
residues and nucleotides that participate in protein–DNA
interaction, and collect statistics about the DNA-binding
preferences of residues under different contexts of the
binding domain. These are then used to discover the binding
site of other transcription factors from the same family, for
which no targets are known.
We apply our approach to the Cys2His2 Zinc Finger DNA-

binding family. This family is the largest known DNA-binding
family in multicellular organisms [9] and has been studied
extensively [10]. Members of this family bind DNA targets
according to a stringent binding model [11,12], which maps
the exact interactions between specific residues in the DNA-
binding domain with nucleotides at the DNA site (Figure 1).
We use many Zinc Finger proteins together with their native
DNA targets (extracted from the TRANSFAC database [2]),
and apply an iterative expectation maximization (EM)
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algorithm [13] to estimate position-specific DNA-recognition
preferences (Figure 2). These are used in turn for predicting
the DNA binding site motifs of novel proteins in the family
(Figure 3), and for performing a genome-wide scan for
putative targets.

Results

In Silico Reconstruction of DNA-Recognition Preferences
In order to estimate the context-specific DNA-recognition

preferences of the Cys2His2 Zinc Finger DNA-binding family
we used the canonical binding model learned from the solved
protein–DNA complex of Egr-1 [11,12]. According to this
model, the binding specificity of each Zinc Finger domain is
determined by residues at four key positions (see Figure 1).
We aimed to learn a different set of DNA-recognition
preferences for each of the four key positions. These sets
should express the probability of every amino acid to
interact with each nucleotide. Since the number of solved
protein–DNA complexes is insufficient to estimate these

preferences directly, we resorted to sequence data of
proteins and their DNA targets. We extracted 455 protein–
DNA pairs from the TRANSFAC 7.3 database [2] (see
Materials and Methods). Unfortunately, the exact binding
locations of these DNA targets are not pinpointed, and thus
we employed statistical tools to infer them (see Figure 2;
Materials and Methods). We then used the protein–DNA
binding model to identify the interacting residues and
nucleotides, and collect statistics on their binding prefer-
ences (see Materials and Methods). Based on these we esti-
mated four sets of DNA-recognition preferences (Figure 4;
Tables S1 and S2), showing both context-independent
preferences (such as the preference of lysine for guanine)
and context-dependent ones (e.g., the preference of aspartic
acid for cytosine). Table S3 shows the 10%–90% confidence
intervals of the estimated probabilities.

Learned Recognition Preferences Are Consistent with
Experimental Results
We evaluated the four reconstructed sets of DNA-recog-

nition preferences by comparing them with experimental
data. First, we compared the derived preferences with
qualitative preferences based on phage-display experiments
[10] and found the two to be consistent (data not shown).
Second, we predicted binding site models for Egr-1 variants
for which experimental binding data were available [14],
using their sequences and our estimated preferences. These
models were used to score the binding of Egr-1 variants to
a set of DNA targets that were tested in the experimental

Figure 2. Estimating DNA-Recognition Preferences

The DNA-recognition preferences are estimated from unaligned pairs of
transcription factors and their DNA targets [2] (above). The EM algorithm
[13] is used to simultaneously assess the exact binding positions of each
protein–DNA pair (bottom right), and to estimate four sets of position-
specific DNA-recognition preferences (bottom left).
DOI: 10.1371/journal.pcbi.0010001.g002

Figure 1. The Canonical Cys2His2 Zinc Finger DNA Binding Model

Residues at positions 6, 3, 2, and�1 (relative to the beginning of the a-
helix) at each finger interact with adjacent nucleotides in the DNA
molecule (interactions shown with arrows). (Figure adapted from a figure
by Prof. Aaron Klug, with permission.)
DOI: 10.1371/journal.pcbi.0010001.g001
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Synopsis

Cells respond to dynamic changes in their environment by invoking
various cellular processes, coordinated by a complex regulatory
program. A main component of this program is the regulation of
transcription, which is mainly accomplished by transcription factors
that bind the DNA in the vicinity of genes. To better understand
transcriptional regulation, advanced computational approaches are
needed for linking between transcription factors and their targets.
The authors describe a novel approach by which the binding site of
a given transcription factor can be characterized without previous
experimental binding data. This approach involves learning a set of
context-specific amino acid–nucleotide recognition preferences
that, when combined with the sequence and structure of the
protein, can predict its specific binding preferences. Applying this
approach to the Cys2His2 Zinc Finger protein family demonstrated
its genome-wide potential by automatically predicting the direct
targets of 29 regulators in the genome of the fruit fly Drosophila
melanogaster. At present, with the availability of many genome
sequences, there are numerous proteins annotated as transcription
factors based on their sequence alone. This approach offers a
promising direction for revealing the targets of these factors and for
understanding their roles in the cellular network.
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study. We found that our predictions were highly correlated
with the experimentally measured binding affinities [14]
(Table S4).

Next, we evaluated the ability of the estimated recognition
preferences to identify binding sites within genomic sequen-
ces. We compiled a dataset of binding sites of ten Cys2His2
transcription factors. These involved 43 experimentally
verified binding sites within natural genomic promoter
sequences with a total length of 14,534 bp (Table S5). Using
the recognition preferences, we predicted the binding site
models of the ten transcription factors and used them to scan
the respective promoter regions for putative binding sites
(Figure 5A and 5B; see Materials and Methods). To prevent
bias by known sites in our training data, we applied a ‘‘leave
protein out’’ cross-validation analysis, and predicted the DNA
binding model of a protein using DNA-recognition prefer-
ences that were learned from a reduced dataset, from which
all its binding sites were removed. Our method marked
30 locations as putative binding sites, out of which 21
matched experimental knowledge (sensitivity of 49% and
specificity of 70%, p , 10�48; see Table S6).

Benos et al. [15] proposed a method (SAMIE) to estimate
Cys2His2 Zinc Finger position-specific binding preferences
from in vitro SELEX binding experiments. We compared the
predictions of the known binding sites within promoter
regions provided by our position-specific recognition pref-
erences to those of Benos et al. [15] and of Mandel-
Gutfreund et al. [5] (Figure 5C; Table S7). These results
suggest that predictions based on our recognition prefer-
ences out-perform the predictions based on the other
methods.

To further evaluate our predictions, we used the binding
locations of Sp1 along human Chromosomes 21 and 22, as
mapped by genome-wide chromatin immunoprecipita-
tion [16]. We compiled two datasets of 1-kb-long sequences:

one dataset included sequences that exhibited highly
significant binding, and the other dataset included sequen-
ces that showed no binding at all (to be used as a control;
see Materials and Methods). We used the DNA-recognition
preferences to predict a binding site model for Sp1, and
scanned the genomic sequences with it. We identified Sp1
binding sites in 45% of the experimentally bound se-
quences, and in only 5% of the control sequences
(Figure 5D).

Ab Initio Genome-Wide Prediction of Transcription Factor
Binding Sites
In the past few years many genomes were solved, yielding

sequences of thousands of putative transcription factors.
However, only little is currently known about the binding
specificities of these factors and about their target genes. To
address this problem, we applied our predictive scheme to
the Drosophila melanogaster genome in a fully automated
manner. We first scanned the sequences of 16,201 putative
gene products and identified 29 canonical Cys2His2 Zinc
Finger transcription factors with three or four fingers (see
Materials and Methods). We then used their sequences and
the estimated DNA-recognition preferences to compile a
binding site model for each transcription factor, as in Fig-
ure 3 (see Figure S1 and Table S8 for detailed models).
Finally, we used these binding site models to scan the
upstream promoter regions of 15,665 D. melanogaster genes.
Multiple putative direct targets were predicted for each
Zinc Finger, as detailed at http://compbio.cs.huji.ac.il/Zinc.
The number of putative direct target genes for each
transcription factor and the overlap between targets of
different factors are shown in Figures S2 and S3. Interest-
ingly, several Zinc Fingers have similar residues at the DNA-
binding positions, and are therefore predicted to bind
similar sites and to have mutual predicted targets (see

Figure 3. Predicting the DNA Binding Site Motifs of Novel Transcription Factors

The protein’s DNA-binding domains are identified using the Cys2His2 conserved pattern (top left). The residues at the key positions (6, 3, 2 and�1) of
each finger (marked in red in the bottom left panel) are then assigned onto the canonical binding model (bottom right), and the sets of position-specific
DNA-recognition preferences (top right panel) are used to construct a probabilistic model of the DNA binding site. For example, the lysine at the sixth
position of the third finger faces the first position of the binding site (dotted blue arrow). We predict the nucleotide probabilities at this position using
the appropriate recognition preferences (dotted black arrow).
DOI: 10.1371/journal.pcbi.0010001.g003
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Figures S1 and S3). In D. melanogaster, this phenomenon has
been reported for at least some transcription factors (e.g.,
Sp1 and Btd) [17].

To infer the function of the 29 transcription factors, we
employed the functional annotations of their predicted target
genes (based on the Gene Ontology [GO] terms [18]). The
target sets of most transcription factors (21 out of 29) were
found to be significantly enriched with at least one GO term
(Figure 6A). For some of the transcription factors, the
enriched GO terms match prior biological knowledge. For
example, the putative targets of Glass were found to be
enriched with terms related to photoreceptor cell develop-
ment, consistent with previous studies that linked the Glass
transcription factor with eye photoreceptor development [19].
Similarly, the putative targets of Btd and Sp1 were enriched
with developmental terms, such as neurogenesis, development,
and organogenesis. Indeed these regulators are known to play
essential roles in mechanosensory development [17]. Further-
more, our analysis suggests possible functions for unknown
proteins, as well as new annotations for some of the already
known regulators (see Figure S4 for complete results).

We further evaluated the function and activity of the 29
transcription factors based on the mRNA expression profiles
of their target genes (Figure 6B). We used expression data
from early embryogenesis [20], as well as data from the entire
life cycle of D. melanogaster [21]. In each experiment and for
each transcription factor, we tested whether its putative
targets showed similarity in their expression patterns and
differed from the rest of the genes (see Materials and
Methods). Such coherent expression supports the suggested
relationship between the factor and the genes it is predicted
to regulate. Out of the 29 transcription factors we examined,
21 showed such significant associations in at least one
embryogenesis experiment, suggesting their active roles
throughout early developmental stages (Figure 6B). These
transcription factors include many known developmental
regulators that are active during embryonic development
(e.g., Btd, Sp1, Glass, Odd-skipped, and Stripe) [18,22], as well
as other proteins, whose function is currently unknown.
Similar results were obtained using the full life cycle gene
expression data [21], mapping putative time points at which
each regulator is predicted to be active (Figure 6B).
Note that the expression profiles are based on whole

embryos, and therefore ignore spatially differential expres-
sion patterns. Thus, the correct function of some tissue-
specific Zinc Finger proteins may be obscured in these data.
Additional insight may be gained by focusing on expression
data in homogeneous regions. Specifically, Butler et al. [23]
compared gene expression in two homogeneous parts of the
Drosophila imaginal wing disc—the body wall and the hinge-
wing pouch. In our analysis we used the ratios between the
expression levels in the two regions, and examined putative
targets for enrichment in one of the regions. We then
inferred the regulatory role of a transcription factor
(activator or repressor) using its own expression pattern.
For example, the putative targets of Stripe show higher
expression levels in the body wall than the rest of the genes
(enrichment p-value � 0.0002). Stripe itself is enriched more
than 9-fold in the body wall, relative to the wing-hinge
region. This suggests that Stripe functions mainly in the
body-wall region, where it activates its target genes. Indeed,
this is consistent with the known role of Stripe as an
activator of epidermal muscle attachment genes [24]. Using
the same reasoning, we inferred the regulatory roles of four
additional D. melanogaster transcription factors within the
imaginal wing disc, three of which were previously unchar-
acterized (Table 1).

Discussion

In this paper we propose a general framework for predicting
the DNA binding site sequence of novel transcription factors
from known families. Our framework combines structural
information about a specific DNA-binding domain with
examples of binding sites for proteins in the family. We apply
a statistical estimation algorithm to the canonical Cys2His2
Zinc Finger DNA-binding family, and derive a set of DNA-
recognition preferences for each residue at each interacting
position in the Zinc Finger DNA-binding domain.
We apply these preferences and predict the binding site

models of novel proteins from the same family. Finally, we use
the predicted models in genome-wide scans and identify the
proteins’ putative direct target genes.

Figure 4. Four Sets of Position-Specific DNA-Recognition Preferences in

Zinc Fingers

The estimated sets of DNA-recognition preferences for the DNA-binding
residues at positions 6, 3, 2, and�1 of the Zinc Finger domain are displayed
as sequence logos. At each position, the associated distribution of nucleo-
tides is displayed for each amino acid. The total height of letters represents
the information content (in bits) of the position, and the relative height of
each letter represents its probability. Color intensity indicates the level of
confidence for a given amino acid at a certain position (where paler colors
indicate lower confidence due to low occurrences of the amino acid at the
specific position in the training data) (see Tables S1 and S2 for full data).
Some of the DNA binding preferences are general, regardless of the
residue’s position within the zinc finger (e.g., lysine’s tendency to bind
guanine), while others are position-dependent (e.g., the tendency of
phenylalanine to bind cytosine only when in position 2).
DOI: 10.1371/journal.pcbi.0010001.g004
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Structure-based approaches for prediction of transcription
factor binding sites have recently gained much interest
[5,8,15,25–29]. Most of the current structural approaches
define a binding model based on solved protein–DNA
complexes, and attempt to identify DNA subsequences that
best fit the amino acids that are determined as interacting
with the DNA. Previous studies [4,8] used ensembles of solved
protein–DNA complexes (from all DNA-binding domains) to
extract general parameters for amino acid–base recognition.
Some studies used only the counts of amino acid–nucleotide
pairs to derive these parameters [4], whereas others also
considered the spatial arrangements [8]. However, for fine
grained definition of such potentials, a much larger set of
solved protein–DNA complexes is needed than is currently
available. An alternative approach to estimate DNA-recog-
nition preferences is to extract them separately for each
DNA-binding domain. However, here again, the data of
solved complexes are insufficient to allow such derivation.
In a recent study, Benos et al. [15] assigned position-specific

DNA-recognition preferences for the Cys2His2 Zinc Finger
family. The model they used is similar to ours, with two
significant differences. First, they relied on data from in vitro
selection assays, such as SELEX and phage display, to train
their recognition preferences. Second, their assays screened
artificial sequences, both artificial proteins and artificial DNA
targets. In contrast, we rely on previously published informa-
tion of natural binding sites. Our approach does not require
specialized experiments, and more importantly, it captures
the specificity of natural proteins to DNA sequences. As we
showed, our preferences are consistent with independent
experimental results [6,7,10] and are superior to such
preferences derived by the other computational approaches
[5,15]. In addition, previous studies showed that there are
discrepancies between SELEX-derived motifs and those
derived from natural binding sites [30,31]. Indeed, our
method yielded inferior predictions when information on
artificial binding sequences was included in our training data.
Figure 4C shows that our set of recognition preferences is
superior to previous models in identifying genomic binding
sites. When comparing the predictions by the various
recognition preferences to measured affinities of DNA
artificial sequences [14], we report results similar to those
of Benos et al. (see Table S4).

Analysis of the Estimated DNA-Recognition Preferences
Analysis of the estimated recognition preferences suggests

that the protein–DNA recognition code is not deterministic,
but rather spans a range of preferences. Moreover, our

Figure 5. Validation of DNA-Recognition Preferences

(A) The predicted binding site model of human Sp1 protein is compared
to its known site (matrix V$SP1_Q6 from TRANSFAC [2], based on 108
aligned binding sites). To prevent bias by known Sp1 sites in our training
data, the set of DNA-recognition preferences was estimated from the
TRANSFAC data after removing all Sp1 sites.
(B) Scanning the 300-bp-long promoter of human dihydrofolate
reductase (DHFR) by the predicted Sp1 binding model. The p-value of
each potential binding site is shown (y-axis). Four positions achieved a

significant p-value (higher than the horizontal red line), out of which
three are known Sp1 binding sites [41] (arrows).
(C) A summary of in silico binding experiments for 21 pairs of Zinc Finger
transcription factors and their target promoters. Shown is the tradeoff
between false positive rate (x-axis) and true positive rate (y-axis) as the
significance threshold for putative binding sites is changed. For every
threshold point, our set of recognition preferences (EM) achieves better
accuracy than the preferences of Mandel-Gutfreund et al. [5] (M-G) and
Benos et al. [15] (SAMIE). Interestingly, when the DNA-recognition prefer-
ences were estimated from training data expanded to include TRANSFAC’s
artificial sequences, inferior results were obtained (dotted red line).
(D) Cumulative distribution of Sp1 scores among the sequences of targets/
non-targets of unbiased chromatin immunoprecipitation scans of human
Chromosomes 21 and 22 [16]. The predicted Sp1 motif appears in 45% of the
experimentally bound sequences but in only 5% of the control sequences.
DOI: 10.1371/journal.pcbi.0010001.g005
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analyses show that a residue may have different nucleotide
preferences depending on its context. For some amino acids,
the qualitative preferences remain the same across various
positions, while the quantitative preferences vary (e.g.,

arginine; see Figure 4). The DNA-binding preferences of
other residues change across various positions. For example,
histidine at position 3 tends to interact with guanine, while it
shows no preference to any nucleotide at all other positions.
Another example is the tendency of alanine at position 6 to
face guanine. This preference, which was revealed automati-
cally by our analysis, is not consistent with the chemical
nature of alanine’s side chain nor with general examinations
of amino acid–nucleotide interactions [5,8]. We suspect that
it is affected by the large number of Sp1 targets in our
dataset. This potential interaction was implied before in Sp1
binding sites [32] and may reflect an interaction between the
residue at position 2 with the complementary cytosine.

The Protein–DNA Binding Model
In this work, we use a binding model that is based on solved

protein–DNA complexes. The model presents a rigid and
simplistic representation of the amino acid–base interactions
at the Zinc Finger domains. Only some of the Zinc Finger
domains (termed ‘‘canonical’’ in this work) use this model for
binding, while others maintain more complex interactions.
As our results show, by using this model, we manage to
recover most of the DNA-binding specificities of amino acids,
and use them to predict the binding site models of novel
proteins. We believe that this model offers a fair tradeoff
between complexity (and number of parameters) and
accuracy.

Inter-Position Dependencies in the Binding Site
The Cys2His2 binding model inherently assumes that all

positions within the binding site are independent of each
other. This assumption is used in most computational ap-
proaches that model binding sites. Two recent papers [33,34]
discuss this issue in the context of the Cys2His2 Zinc Finger
domain. Their analyses of binding affinity measurements sug-
gest that weak dependencies do exist among some positions of
the binding sites of Egr-1. Nonetheless, a reasonable approx-
imation of the binding specificities is obtained even when
ignoring these dependencies. In another recent study [35], we
evaluated probabilistic models that are capable of capturing
inter-position dependencies within binding sites. Our results
show that dependencies can be found in the binding sites of
many proteins from various DNA-binding domains (especially
from the helix-turn-helix and the homeo domains). However,
our results also suggest that such models of dependencies do
not lead to significant improvements in modeling the binding
sites of Zinc Finger proteins. Thus, we believe that the
Cys2His2 binding model we use here is indeed a reasonable
approximation of the actual binding.

Genome-Wide Predictions of Binding Sites and Target
Genes
In the current era there is a growing gap between the

number of known protein sequences and the number of
experimentally verified binding sites. To better understand
regulatory mechanisms in newly solved genomes, it is crucial
to identify the direct target genes of novel DNA-binding
proteins. Our method opens the way for such genome-wide
assays. Here we apply it to the Cys2His2 Zinc Finger DNA-
binding family. By predicting the binding site models of
regulatory proteins, one can classify genes into those that
contain significant binding sites at their regulatory promoter

Figure 6. Inferring the Function and Activity of Zinc Finger Transcription

Factors in D. melanogaster

(A) Similar gene annotation enrichment among the putative target sets
of 29 transcription factors in D. melanogaster. Blue cells correspond to
significant overabundance of a GO term (row) among the predicted
targets of a protein (column), using a hyper-geometric test. The binding
sites of most factors show enrichment in at least one GO term. For some
of the regulators, the enriched GO terms match prior biological
knowledge. For example, the putative targets of Glass (gl) were found
to be enriched with terms related to photoreceptor cell development
(red circle 1). Similarly, the putative targets of Buttonhead (btd) and Sp1
were enriched with developmental terms such as neurogenesis,
development, and organogenesis (red circle 2). Closely related GO
annotations are not shown; see Figure S4 for full results.
(B) Deducing the activity of the 29 transcription factors using gene
expression patterns. Expression data from early (0–12 h) embryogenesis
[20] and data from the entire Drosophila life cycle [21] are used to test
whether the putative direct targets of a regulator are expressed
differently than the rest of the genes in a given experiment. Red cells
correspond to significant enrichment of overexpressed targets using a
Kolmogorov-Smirnov test, while green cells correspond to enrichment of
underexpressed targets. For most of the regulators the analysis resulted
in at least one significant embryogenesis experiment, suggesting an
active role in early developmental stages (above). Similar results were
obtained using the full life cycle gene expression data (below).
DOI: 10.1371/journal.pcbi.0010001.g006
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regions (hence, putative target genes) and those that do not.
As we showed, our approach can scale up to such genome-
wide scans and successfully predict the target genes of many
novel Zinc Finger proteins in higher eukaryotes. Further-
more, by integrating data from external sources, such as gene
expression and GO annotations, it is possible to infer the
cellular function and activity of these novel proteins.

Applications to Other DNA-Binding Domains
Theoretically, our approach can be extended to handle

other structural families, such as the basic leucine zipper, the
homeodomain, and the basic helix-loop-helix, for which
enough binding data already exist (1,191, 505, and 201
binding sites per family, respectively). This extension requires
that the various proteins in the family show a common DNA
binding model, which can be used further for other family
members. For such families, our approach should suffice. For
other families, where the binding models are more complex
and flexible (including other Zinc Finger domains, such as
CCCC, CCHC, or even the non-canonical Cys2His2), more
advanced models and learning techniques will be needed. In
spite of these possible difficulties, we believe that structural
approaches, such as the one we show here, open promising
directions, leading to successful predictions of binding site
models and, following that, to accurate identification of the
target genes of novel proteins, even on genome-wide scales.
Eventually, such approaches will be utilized to reconstruct
larger and larger portions of the transcriptional regulatory
networks that control the living cell.

Materials and Methods

Sequences of Zinc Finger proteins and their binding sites. We
trained a profile hidden Markov model [36] on 31 experimentally
determined canonical domains [37], and used it to classify the
remaining Cys2His2 Zinc Finger domains in TRANSFAC [2] as
canonical or non-canonical. From these, we selected proteins with
two to four properly spaced canonical fingers. This resulted in
61 canonical Cys2His2 Zinc Finger proteins, and 455 protein–binding
site pairs. We used these pairs as our training data in subsequent
steps. The total number of fingers in this dataset was 1,320, and the
total length of all binding sites was 9,761 bp (average length of 21 bp
per site).

Identification of DNA-binding residues. The interacting residues in
each finger are located at positions 6, 3, 2, and �1 relative to the
beginning of the a-helix (see Figure 1). We identify these positions
using their relative positioning in the Cys2His2 conserved pattern:
CX(2–4)CX(11–13)HX(3–5)H. Although, theoretically there can be
204 different combinations of amino acids at the interacting

positions, we found only 80 different combinations among the
1,320 fingers in our database. Figures S5 and S6 show the abundance
of amino acids at the different DNA-binding positions.

The probabilistic model. We describe the binding preferences of a
protein using a probabilistic model. For a canonical Egr-1-like Zinc
Finger protein, we denote by A¼ fAi,p : i¼ f1,. . ., kg, p 2 f�1,2,3,6gg
the set of interacting residues in the different four positions of the
k fingers (ordered from the N- to the C-terminus). Let N1,. . ., NL be a
target DNA sequence. The conditional probability of an interaction
with a DNA subsequence, starting from the jth position in the DNA is

PðNj;... ;Njþ3kði�1ÞjAÞ ¼

P
k

i¼1
P6ðNjþ3ði�1ÞjAkþ1�i;6ÞP3ðNjþ3ði�1Þþ1jAkþ1�i;3ÞP�1ðNjþ3ði�1Þþ2jAkþ1�i;�1Þ

ð1Þ

where Pp(NjA) is the conditional probability of nucleotide N given
amino acid A at position p. These probabilities are the parameters of
the model. For each of the four interacting positions there is a matrix
of the conditional probabilities of the four nucleotides given all
20 residues. We call these matrices the DNA-recognition preferences.

The model, as described above, does not account for the inter-
actions by the amino acid in position 2 in each finger. According to
the canonical binding model (see Figure 1), the amino acid at
position 2 interacts with the nucleotide that is complementary to the
nucleotide interacting with position 6 of the previous finger. Thus,
when we have a base pair interacting with two amino acids, we replace
the term P6(Njþ3( i�1)jAkþ1�i ,6) with the term

aP6ðNjþ3ði�1ÞjAkþ1�i;6Þ þ ð1� aÞP2ðNjþ3ði�1ÞjAkþ2�i;2Þ ð2Þ

for i. 1, where a is a weighting coefficient that depends on the number
of examples we have seen while estimating the recognition preferences
at each position. Moreover, we add the term P2(Njþ3(i�1)jAkþ2�i ,2), for
i ¼ k þ 1, to capture the last nucleotide, which is in interaction with
position 2 of the first finger.

Estimating DNA-recognition preferences. We searched for the
DNA-recognition preferences that maximized the likelihood of the
DNA sites given the binding proteins. The DNA sequences in our
databasewere reported as containing the binding sites [2], yet the exact
binding locations were not pinpointed. Thus, we simultaneously
identified the exact binding locations and maximum likelihood
recognition preferences using the iterative EM algorithm [13]. Starting
with an initial choice of DNA-recognition preferences (possible
choices are discussed below), the algorithm proceeds iteratively, by
carryingout two steps. In the E-step, the expectedposteriorprobability
of binding locations is computed for every protein–DNA pair. This is
done using the current sets of preferences. In the M-step, the DNA-
recognition preferences are updated tomaximize the likelihood of the
current binding positions for all protein–DNA pairs based on the
distribution of possible binding locations computed in the E-step.

Each iteration of these two steps increases the likelihood of the
data until reaching a convergence point [13]. Although the EM
algorithm is proved to converge, it does not ensure that the final
DNA-recognition preferences are the optimal ones, because of
suboptimal local maxima of the likelihood function. This can be
overcome by using promising starting points or applying the EM
procedure with multiple random starting points (see Figure S7). An
additional potential pitfall is over-fitting the recognition preferences

Table 1. Analysis of Differential Expression in D. melanogaster Imaginal Wing Disc

Transcription Factor Targets Transcription Factor Role

Name Body/Wing ratioa Body/Wing Enriched Kolmogorov-Smirnov p-Valueb Body/Wing Enriched Inferred Function Known Function

Stripe 9.113 Body 1.32 3 10�4 Body Activator Activator

EP2237 2.059 Body 5.48 3 10�4 Body Activator Activator

CG10309 0.321 Wing 2.00 3 10�4 Body Repressor —

CG9895 0.380 Wing 8.45 3 10�3 Body Repressor —

CG14655 0.302 Wing 3.47 3 10�2 Wing Activator —

Butler et al. [23] measured the gene expression levels at two parts of the imaginal wing disc—the body wall and hinge-wing pouch, and computed the ratios between the two. The regulatory functions of transcription factors are analyzed by

comparing their ratio with the ratios of their targets. Activators are expected to have the same directional enrichment as their targets, while repressors are expected to have opposite effects. Each group of targets is assigned a p-value using a

two-tailed Kolmogorov-Smirnov test that compares the ratios in the target group to those of the rest of the genes.
aRatio between the transcription factor’s mRNA expression levels at the body wall and the wing-hinge pouch.
bp-Value of targets’ enrichment using a Kolmogorov-Smirnov test.

DOI: 10.1371/journal.pcbi.0010001.t001
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of rare residues. To address this problem and ensure that the
estimated recognition preferences for rare amino acids are close to
uniform distribution (i.e., uninformative), we use a standard method
of ‘‘pseudo-counts.’’ We do so by adding a constant (0.7 in the results
above) to each amino acid–nucleotide count computed at the end of
the E-step. This is equivalent to using a Dirichlet prior on the
parameters, and then performing a maximum a posteriori estimation
rather than maximum likelihood estimation.

We evaluated the robustness and convergence rate of the EM proce-
dure using a 10-fold cross-validation procedure. In each round, we
removed a part of the data, trained on the remaining pairs, and tested
the likelihood of the held-out protein–DNA pairs. We used this
procedure to test various initialization options. Our evaluation shows
that the EM algorithm performs best when initialized with the general
recognition preferences of Mandel-Gutfreund et al. [5], converging
within a few iterations. Similar results were obtained using random ini-
tialization points, although the convergence rate was somewhat slower
(see Figure S7). Also, in Figure S8 we demonstrate the correlation
between the size of the training dataset and the likelihood of test data.

Predicting the binding sites of novel proteins. Given the sequence
of a novel Cys2His2 Zinc Finger protein, we identified the four key
residues at each DNA-binding domain, and utilized the appropriate
set of DNA-recognition preferences to construct a probabilistic
model of the binding site (see Figure 3).

In silico binding experiments. We used the predicted binding site
models to scan genomic sequences for putative binding sites. We
scored each possible binding position using the log of the ratio
between the probability assigned to it by the model and the
background probability (log-odds score). We then estimated the p-
value of these scores and applied a Bonferroni correction to account
for multiple tests within the same promoter region [38]. Sites with a
significant p-value (�0.05 after Bonferroni correction) were marked
as putative binding sites (see Figure 4B).

Comparison with other computational approaches. In a similar
manner, we generated probabilistic binding site models for these
transcription factors using the recognition preferences of Mandel-
Gutfreund et al. [5] and SAMIE [15]. We then scanned the
corresponding promoter regions using these models.

Ab initio genome-wide prediction of binding sites. Wedownloaded
genomic sequences of theD. melanogaster from FlyBase [22], release 3–1.
These include 2-kb regulatory regionsupstreamfrom15,664 genes, and
the sequences of 16,201 putative gene products. We scanned the
proteins for canonical Zinc Finger domains using the Cys2His2
conserved pattern and our profile-HMM model (available at http://
compbio.cs.huji.ac.il/Zinc). We found 29 proteins with properly spaced
three or four fingers (with distances of 28–31 residues between the
beginnings of Zinc Finger domains). We then used the learned sets of
DNA-recognition preferences to predict probabilistic binding site
models for these putative Zinc Finger transcription factors. Finally, we
performed in silico binding experiments by scanning each gene’s 2-kb
upstream region for two significant binding sites (p � 0.05 after
Bonferroni correction). The matched genes were marked as putative
direct targets of the transcription factor.

Enrichment of GO annotations among the target genes. FlyBase
GO annotations [18,22] were downloaded from the Gene Ontology
Consortium (http://www.geneontology.org) in October 2003. The en-
richment p-values were calculated by GeneXPress (http://genexpress.
stanford.edu), using a hyper-geometric test that compares the
abundance of similarly annotated genes among the putative targets
to the rest of the genome. We then applied an FDR correction for
multiple hypotheses using a false rate of 0.05 [39], and only significant
factors/terms are shown.

Inference of activity/function using gene expression data. We
downloaded genome-wide gene expression data from early embryo-
genesis stages [20] (available from FlyBase; http://www.fruitfly.org/
cgi-bin/ex/insitu.pl). The expression level of each gene in each array
was transformed to log (base 2) of the ratio of expression to the
geometric average of the expression of the gene in all arrays. In
addition, we downloaded expression data from along the Drosophila
life cycle [21] (available from Stanford Microarray Database; http://
genome-www5.stanford.edu). These expression data are represented
as log (base 2) of expression compared to a reference sample
representing all stages of the life cycle.

For each protein and in each experiment, we used a Kolmogorov-
Smirnov test to evaluatewhether the expressionpattern of the putative
direct target genes was different from the expression of the rest of the
genome. We then corrected the results for multiple hypotheses using
an FDR correction [39] (false rate of 0.05). Similarly, we used
differential gene expression data from D. melanogaster imaginal wing
disc [23]. For each gene, we computed the ratio of its expression in the

body wall to its expression in the hinge-wing pouch, and performed a
two-tailed version of the Kolmogorov-Smirnov test to compare these
ratios among the putative targets and the rest of the genome.
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Chapter 2 – Additional results 

Structure and function of a transcriptional network 

activated by the MAPK Hog1 
 

This chapter summarizes my results from a joint project with the laboratories of Erin 

O’Shea (HHMI/Harvard) and Aviv Regev (Broad/MIT). In this project, Andrew 

Capaldi (O’Shea laboratory) was in charge of the experimental side and conducted 

most of the experiments. I conducted the analytical side leading to the results 

described here. The project involved frequent interactive discussions between 

Andrew, myself, and the PIs, leading to a tight cycle between the experiments and 

their analysis. Additional collaborators include Naomi Habib (Hebrew University) 

and Ying Liu (Harvard).  

ABSTRACT 

Cells regulate gene expression using a complex network of transcription factors and 

promoters.  To gain insight into the structure and function of these networks, I 

developed a computational algorithm to analyze gene expression in both single and 

multiple mutant strains. This allowed me to build a quantitative model of the Hog1 

MAPK-dependent osmotic stress response in budding yeast. My model reveals that 

Hog1 and the general stress transcription factors (Msn2/4) interact, at both the 

signaling and promoter level, to process external stimuli, and create a context-

dependent response. To support these findings, I developed a model-based algorithm 

and analyzed high-resolution in vivo chromatin immunoprecipitation data. This study 

lays out a path to identifying and characterizing the role of combinatorial processing 

in transcriptional regulation. 

INTRODUCTION 

A full understanding of gene regulation will require the construction of detailed 

circuit diagrams that describe how signals influence transcription factor (TF) activity 

and how these TFs cooperate to regulate mRNA levels (Davidson, 2006). However, 

current experimental approaches used to examine these networks, such as chromatin 

immunoprecipitation (ChIP) and microarray analysis of strains with a single network 
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component deleted (Harbison et al., 2004; Boyer et al., 2005; Hu et al., 2007), 

provide only a limited view of their structure and function. For example, when a 

single mutant analysis is used, an interaction between two network components is 

inferred if they regulate overlapping gene-sets (e.g. HΔ and MΔ, Figure 1a).  

However, it is not possible to tell from single-mutant data if two factors act fully 

cooperatively, independently, or partially cooperatively to regulate gene expression 

(Potential Mechanisms, Figure 1a).  Moreover, the nature of the interaction could vary 

from one target gene to another. As a result, network models derived from such data 

are incomplete and likely inaccurate.  

To overcome this problem, and distinguish between possible regulatory mechanisms, 

double mutant (or epistasis) analysis can be applied (Avery and Wasserman, 1992). 

Here, if two network components H and M act cooperatively to regulate a gene, then 

the single mutants (HΔ and MΔ) and double mutants (HΔMΔ) will have identical 

expression defects (Cooperative Mechanism, Figure 1b).  By contrast, if H and M act 

independently, then the expression defect in the double mutant will be the sum of the 

defects found in the single mutants (Independent Mechanism, Figure 1b).  In 

mechanisms with partial cooperativity, the observed behavior will lie between that 

found for cooperative and independent mechanisms (Partially Cooperative 

Mechanism, Figure 1b).  This approach has been used previously in conjunction with 

microarrays to examine regulatory mechanisms and pathway interactions at a coarse-

grained or qualitative level (Lee et al., 2000; Roberts et al., 2000; O'Rourke and 

Herskowitz, 2004; Van Driessche et al., 2005; Hu et al., 2007).  

Here I show that double mutant analysis can be used to build a detailed and 

quantitative model of transcriptional regulation, including the strength and type of 

each edge in the network and the logic gate at each node (in a given condition).  To 

achieve this goal, I developed a microarray-based strategy that allows us to overcome 

the significant noise in microarray measurements and accurately quantify the 

influence and interaction of network factors at individual genes.  To do this, my 

collaborators measured the expression levels of genes in a range of mutant strains, and 

I calculated the value of what we termed the expression components for each gene.  In 

the example of the interacting factors H and M, there are three such expression 

components (Shown in Figure 1b, “Expression Components” column): the 

transcriptional activation by the transcription factor H alone (H component), the 
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activation from M alone (M component), and the activation that results from the 

interaction between H and M (Co component). To determine these values, my 

algorithm considers the expression in the wild-type, single, and double mutant strains 

(Figure 2a, arrays C-F). The expression component values for each gene are then 

regressed using the equations shown in Figure 2a, describing which expression 

components are measured by each microarray (Figure 2a, equations).  Finally, I 

developed a statistical significance score, which estimates the p-value of each 

expression component per gene. 

To evaluate this strategy, I applied it a well-studied prototypical example of 

transcriptional regulatory network. We focused on the HOG signaling network, which 

controls the response of budding yeast to hyper-osmotic stress. In brief, following 

external signaling, the MAP kinase Hog1 is imported into the nucleus, where it 

phosphorylates (and activates) several downstream transcription factors. 

In osmotic stress, the mitogen activated protein kinase (MAPK) Hog1 and the two 

paralogous general-stress TFs Msn2 and Msn4 are transported into the nucleus 

(Roberts et al., 2000) where, together, they activate a transcriptional program 

involving hundreds of genes (Fig. 1a, Venn diagram, Rep et al., 2000; O'Rourke and 

Herskowitz, 2004). Studies of strains lacking Hog1 or Msn2/4 have led to a model in 

which Msn2 and Msn4 function downstream of Hog1 in the osmotic stress response 

(Rep et al., 2000).  However, it is unclear if Hog1 and Msn2/4 act independently, 

cooperatively, or partially cooperatively to control the expression level of the HOG 

pathway, and what type of interaction between Hog1 and Msn2/4 occurs in the 

various target genes.   

 

MATERIAL AND METHODS 

Regression of Expression Data using the Mutant Cycle Approach 
For each gene, I analyzed the expression data from several mutant strains, and 

dissected its expression levels to basic components contributed by its regulating 

transcriptional factors (Hog1, Msn2/4 and additional TFs). As described in Figure 2a, 

to dissect the interaction between Hog1 and Msn2/4, I compared the gene expression 
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of four strains: wt, hog1Δ, msn2/4Δ, and hog1Δmsn2/4Δ using DNA microarrays 

(measured in triplicates by my collaborators): 

• B = wt vs hog1Δmsn2/4Δ 

• C = wt vs hog1Δ  

• D = wt vs msn2/4Δ 

• E = msn2/4Δ vs hog1ΔMsn2/4Δ 

• F = hog1Δ vs hog1Δmsn2/4Δ 

For each gene, I described these measurements (in log scale) as the (noisy) sum of 

three underlying components: H (the influence of Hog1 alone on expression), M (the 

influence of Msn2/4 alone on expression), and Co (the effect of the interaction 

between Hog1 and Msn2/4).  This allowed me to rewrite the equations above as: 

• B = H+M+Co (as all three components are present in the wt strain and absent 

from the double-delete strain hog1Δmsn2/4Δ) 

• C = H+Co (again, the wt stains contains all three components, whereas hog1Δ 

lacks H and Co and contains only the M component) 

• D = M+Co (symmetric to C; only the H component exists in msn2/4Δ) 

• E = H (msn2/4Δ contains the H component alone, while the double-delete 

strains lacks all three) 

• F = M (hog1Δ contains only the M component, while the double-delete strains 

lacks all three) 

This system of equations can be formulated as the following matrix multiplication: 

wt  vs  hog1 Δmsn2/4 Δ
wt  vs  hog1 Δ

wt  vs  msn2/4 Δ
msn2/4 Δ  vs  hog1 Δmsn2/4 Δ

hog1 Δ  vs  hog1 Δmsn2/4 Δ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

1 1 1
1 0 1
0 1 1
1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

x
H
M
Co

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥  

or written as Y = X * β + ε, where Y are the measured values, X is the design matrix 

(specifying which components are present or absent for each array) , β is the actual 

contribution of the three components to the expression of the gene, and ε is the noise. 

For every gene, my goal was to find the three values in β which minimizes the errors 

ε.  
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To solve this linear model, we applied a multiple linear regression algorithm which 

minimizes the least squares fit of X*β, assuming a zero-mean Normal distribution of 

the errors ε. To solve this equation and regress the values of β, the equation above X * 

β = Y is multiplied (from the left) by XT, to get: XT * X * β = XT * Y.  In this case, the 

matrix XT *X is non-singular, and so we invert XT *X and use it to multiply the 

equation (from left), and obtain a unique solution for the vector of regression 

coefficient β = (XT * X)-1 * XT * Y. It is assumed that all the coefficients in β have a 

zero-centered normal distribution, and so we can estimate their variance and 

covariance values. Specifically, Cov(β) = σ2 * (XT * X)-1, where σ2 is the variance of 

the fit. These properties pave the way for testing hypotheses about the estimated 

values of regression coefficients β. It should be noted that since Y was actually 

measured in triplicate, we concatenated the 3 sets of values so that n=|Y|= 15. We also 

replicated the design matrix X to match. This allowed for more accurate regression, 

by estimating the error in each array separately. Calculations were performed based 

on the REGRESS function of MATLAB, (version 7.0 R14), and following (DeGroot 

and Schervish, 2002). The actual expression measurements and resulting β 

components I regressed are shown for few examples in Figure 2b, with the regressed 

values for all HOG pathway genes in Figure 2c (see Results for more details. Analysis 

of the regression quality is shown on Figure S1a). 

The same approach was applied to dissect the pair-wise interactions between 

additional two transcription factors, which are controlled by Hog1 (Sko1 and Hot1; 

See Results), and the general stress regulators Msn2/4Δ (See Figures 3 and S1b).  

Specifically, I determined the values of three components (SH for the expression 

component related to Sko1Hot1, M for the Msn2/4 effect, and SHM for the effect of 

their interaction) by comparing gene expression in the wt strain, msn2/4Δ, 

sko1Δhot1Δ and sko1Δhot1Δmsn2/4Δ, using the matrix below 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ΔΔΔΔΔ
ΔΔΔΔ

Δ
ΔΔ

SHM
M

SH

010
001
110
101

  vs  
  vs  

  vs  wt
  vs  wt

x

msn2/4hot1sko1hot1sko1
msn2/4hot1sko1msn2/4

msn2/4
hot1sko1

 

In addition, we extended the Mutant Cycle approach to examine the three-way 

interaction between Sko1, Hot1 and Msn2/4. For this we used the following 

experiments: 
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• wt vs msn2/4Δ 

• wt vs sko1Δhot1Δ 

• sko1Δhot1Δ vs sko1Δhot1Δmsn2/4Δ 

• msn2/4Δ vs sko1Δhot1Δmsn2/4Δ 

• wt vs hot1Δ 

• hot1Δ vs hot1Δmsn2/4Δ 

• msn2/4Δ vs hot1Δmsn2/4Δ 

• wt vs sko1Δ 

• sko1Δ vs sko1Δmsn2/4Δ 

• msn2/4Δ vs sko1Δmsn2/4Δ 

Here, we decomposed these measurements into the sum of ten components, reflecting 

the effect of each factor: Sko1, Hot1, Msn24, and each combination of two or three 

factors: Sko1Hot1, Sko1Msn24, Hot1Msn24, and Sko1Hot1Msn24. 

As before, we formulated the measurements as a noisy matrix multiplication: 

wt vs msn2/4 Δ
wt vs sko1Δhot1Δ

sko1Δhot1Δ vs sko1Δhot1Δmsn2/4 Δ
msn2/4 Δ vs sko1Δhot1Δmsn2/4 Δ

wt vs hot1Δ
hot1Δ vs hot1Δmsn2/4 Δ

msn2/4 Δ vs hot1Δmsn2/4 Δ
wt vs sko1Δ

sko1Δ vs sko1Δmsn2/4 Δ
msn2/4 Δ vs sko1Δmsn2/4 Δ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

0 0 1 0 1 1 1
1 1 0 1 1 1 1
0 0 1 0 0 0 0
1 1 0 1 0 0 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 0 1 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

x

Sko1
Hot1

Msn2/4
Sko1Hot1

Sko1Msn2/4
Hot1Msn2/4

Sko1Hot1Msn2/4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

and found a β which minimizes the system errors. 

Statistical significance. To assign a statistical significance value for each expression 

components β, I developed a statistical procedure. According to the null hypothesis 

H0, which suggests that the gene is not being regulated by none of the TFs (nor by 

their combinations), each regression coefficient βj should equal zero. In this case, the 

ratio βj / std(βj) distributes according to a t-distribution with (n-p) degrees of freedom, 

where n is the number of experiments in the cycle (15 in the case of Hog1Msn2/4), 

and p is the dimension of β (3 in the case of Hog1Msn2/4) (DeGroot and Schervish, 

2002). As shown above, Cov(β) = σ2 * (XT * X)-1 and so std(βj) is the squared root of 

the jth value along the diagonal of the covariance matrix Cov(β). By computing the 
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cumulative distribution function of the t distribution, I estimated the likelihood of βi 

under H0. This estimation approximates the probability of seeing such a value (or 

larger) at random, thus serves as a “p-value” for βj (DeGroot and Schervish, 2002). I 

actually expanded this approach to compute additional critical values. For example, a 

more interesting hypothesis H0 would allow some minimum regulation by each TF 

(hence, replace the zero by some activation threshold thr). We defined thr to account 

for a non-marginal expression component (above 1.5-fold), and used a similar 

approach to test if the contribution of some factor is significantly above the threshold 

(for H and M, which are assumed to be positive) or non-marginal (two-tailed version, 

for Co, which could be either positive or negative). In this case, we assumed that 

under the null assumption H0, the mean value of βj is smaller than thr, and so (βj - thr) 

/ std(βj) should has a t-distribution with (n-p) degrees of freedom. 

Accuracy of the Approach 

To ensure that the expression components fully and accurately account for the raw 

microarray data we compared the data predicted from the fitted component values 

back to the raw data used to calculate these values (Figure S1).  These plots 

demonstrate that the expression components determined in the global fit to the array 

data accurately and completely describe the expression changes found in the 

individual mutant strains.   

Model-Based Analysis of Genome-wide High-resolution ChIP Data  
To further support the expression components which were regressed from gene 

expression data using the method above, we decided to measure the in vivo physical 

binding of the same transcription factors to DNA (see Results). The experimental 

procedure included chromatin immunoprecipitation (ChIP) data, coupled with 

hybridization to dense tiling microarrays. To analyze these data, I developed a 

computational algorithm, based on a concrete physical model which describes how 

the signal of each binding event is “smeared” at the ChIP signal (due to the length of 

the IP’ed DNA fragments). This algorithm allowed me to robustly identify the exact 

position and strength of protein-DNA binding events. 

Estimated Shape of a Binding Site 

Due to the typical length of the sheared DNA fragments, a binding event at position x 

results in high enrichment of IP’ed DNA at the surrounding probes (Figure S2). This 

46



effect decays as the distance between the probe and the binding position increases. In 

general, the probability of a probe, located Δx bases away from the binding location, 

to report is proportional to the integration over all fragment lengths (of length Δx or 

longer), multiplied by the number of possible alignments of the DNA fragments that 

allow both the binding of the fragment by the target transcription factor and its 

hybridization to the reporting probe, times the relative abundance of DNA fragments 

of such length, denoted by c(l). Thus, the estimate for a peak’s shape is given in the 

following equation: 

F (Δ x ) ∝ (l − Δ x )c(l)dl
l= Δ x

∞
∫  

The distribution of sheared fragment lengths C(l) depends on the sonication protocol. 

My collaborators measured the fragment length distribution created by our protocol 

using an agarose gel and found a broad distribution of fragment lengths (200-2000 bp) 

that is well described by a Gamma distribution. This distribution has two parameters 

that control the mean and standard deviation of fragment length.  In subsequent 

experiments I used these two parameters to define the entire fragment length 

distribution c(l). 

The Peak Fitting Algorithm 

I developed an iterative algorithm to identify all significant binding events that appear 

in the probes (Figure S2).  Briefly, this is done by identifying stretches of enriched 

probes and attempting to explain (at least part of) their values using the peak model.  

My algorithm chooses the most probable values for center position and peak height, 

and computes the statistical significance of this peak. If its p-value falls below 0.01 

(see below), and its height exceeds 1.5, it is classified as a binding event, and its 

expected shape (i.e. predicted enrichments for the probes in S) is subtracted from the 

actual ratios. This enables us to identify overlapping peaks one at a time (starting 

from the strongest one), until the remaining data cannot be distinguished from noise. 

My model-based approach also allows us to naturally integrate data from different 

replicates, computing the likelihood of the peak based on all enrichment values of its 

probes.  I now describe in more details the relevant steps. 

Optimization of Peak Parameters 

Once a window S of consecutive probes with enriched values is found, my algorithm 

searches for optimal peak parameters to fit the enrichment rations in S in a two-step 
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manner. First it enumerates over the peak center point x in a 10 bases resolution, then, 

for each position, it estimates the optimal height α which minimizes the sum of 

squared deviations between the log (base 2) of the measured enrichments and ones 

predicted by peak’s shape (Figure S2, the enrichments measured by each probe are 

shown in red, and the predicted shape of the peak plotted in blue). This is done using 

Brent’s method for one-dimensional minimization. Finally, we report the position x 

and height α whose fit was the optimal. 

Estimating the statistical significance of binding events 

The statistical significance of a binding event is estimated by computing an empirical 

log-likelihood ratio (LLR) p-value.  Specifically, the likelihood of the enrichments 

measured using the set of probes S surrounding the binding event, can be computed 

using a null model L0. According to this model, there are no binding events, and so all 

enrichment values originate from noise. To model this, I used a Normal distribution 

whose mean and variance were estimated from the DNA microarray.  I then computed 

the likelihood of the same probes given my model. As before, I used a Normal 

distribution, only now the distribution mean value was set according to the expected 

shape of the peak. Finally, each binding event was scored according to the log-

likelihood-ratio (LLR) based on my model vs the null model Lpeak/L0. To assign each 

score a p-value, I computed 1000 shuffling-based LLR scores in the following way: 

First I replaced the values of all the measured probes in S with randomly-sampled 

values from the array. Then I re-estimated the optimal height at this position (now 

consisting of random enrichment values), and calculate the log-likelihood-ratio score 

for this shuffled set.  The p-value of each binding event is then calculated by 

comparing the true LLR score to those of the randomly-shuffled sets. 

Computing a Bayesian Confidence Interval around a binding event 

In addition to estimating the peak’s center position and height, I also compute a 99%-

confidence interval around the binding position of each peak. This is done by 

considering the likelihood Lpeak(x) of the peak’s probes S, when centered at position 

x. I then use Bayes’ rule to compute the posterior probability of the center being at 

each position x, and define the Bayesian Confidence Interval as the region covering 

99% of the posterior probabilities. 

The entire peak fitting process is sketched in the algorithm below: 
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Algorithm: 

1. Estimate shape of a peak F(Δx) 

2. Initialize enrichment ratio threshold T to 10 

3. Set cooling factor K to 0.99 

4. Let B be the set of binding events 

5. Begin main loop: 

1. For every consecutive set S of probes above threshold T 

a) Add flanking probes (up to 2.5Kb away) into set S 

b) Find center position x and height of peak α to fit S best. 

c) Calculate likelihood-based p-value of peak 

d) If peak is significant, and its estimated height is above 1.5: 

I. Calculate 99% Bayesian Confidence Interval 

II. Add peak into set of binding events B 

III. Predict values for probes in S using B, and subtract from data 

2. Update the enrichment threshold T = T * cooling factor K 

3. Repeat main loop until no new significant binding events are found 

Definition of Yeast Promoters 

Promoter regulatory sequences were defined using sequences and annotations from 

the UCSC genome browser (sacCer1). For genuine genes (UCSC track sgdGene), 

promoters were defined as the regions upstream to the translation start site, up to 1 Kb 

or up to the coding regions of upstream genes. As for pseudo and dubious genes 

(UCSC track sgdOther), I defined the regulatory regions as 500-bp upstream to the 

translation start site, regardless of overlapping coding regions. 

Genome-Wide Analysis of Bound Genes 

Once the genome-wide ChIP data were analyzed and binding events (or peaks) were 

identified, the overall IP-based enrichment of each gene was estimated by summing 

the enrichment values of all binding events occurring over its promoter region. 

To distinguish between bound and unbound genes, I set a threshold corresponding to 

5% false positive rate over a control group of non-target genes (genes outside of the 

Hog1 network) 
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RESULTS 
 
A quantitative model of the Hog1-Msn2/4 Network 

To examine the interaction between Hog1 and Msn2/4 in detail, I used the mutant 

cycle approach (Figure 2a) and determined the value of the three expression 

components in the system: H, M and Co.  Gene expression was examined 20 min after 

induction of stress (0.4 M KCl) since this is near the peak of the transient response 

(O'Rourke and Herskowitz, 2004) but is early enough to avoid monitoring secondary 

effects in the mutant strains (Hog1 and Msn2/4 are transcriptionally inactive in pre-

stress conditions).  To my surprise, even within the HOG pathway, the influence and 

interaction of Hog1 and Msn2/4 varied dramatically from gene to gene (Figure 2b). 

The genes were divided into eight distinct regulatory modes, based on the 

combination of statistically significant expression components at genes induced in 

osmotic stress (Figure 2c).  From these data it is clear that: (i) Hog1 and Msn2/4 

interact, since 190 of the 273 genes in the network have a statistically significant Co 

component (Groups 1, 2, 5, 7, 8; Figure 2c); and (ii) that both Hog1 and Msn2/4 are 

activated and enhance the expression of their target genes separately, since significant 

H or M components are found at 112 (Groups 4-8; Figure 2c) and 64 genes (Groups 

2,3, 6-8; Figure 2c), respectively.   

It is not possible to translate these interaction data directly into a mechanistic network 

wiring diagram, specifying which genes are regulated by which transcription factors 

(or their combinations), and to which extent. This is because the cooperative 

interaction between Hog1 and Msn2/4 could be established either at the promoter 

level (Hog1 and Msn2/4 interacting on the DNA itself) or at the signaling level (e.g. 

the nuclear activity level of Msn2/4 regulated by Hog1, see Figure 1a, bottom part). 

We surmised that the interaction between Hog1 and Msn2/4 is likely to be 

established, at least in part, at the signaling level, since Hog1 is a protein kinase and is 

required for full expression of almost all Msn2/4-dependent genes (190/203; Groups 

1, 2, 5-7; Figure 2c).  Therefore, to test for activation of Msn2/4 by Hog1, my 

collaborators monitored the stress-induced import of Msn2/4 into the nucleus in wild-

type and hog1Δ mutant strains containing GFP-tagged Msn2 or Msn4 and a nuclear 

marker. In brief, their microscopy analysis showed that Hog1 is imported into the 

nucleus upon KCl stress and that it contributes to the nuclear localization of Msn2 
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(two-fold change in nuclear levels of Msn2 in wt and hog1Δ strains), although Msn2 

is imported into the nucleus by some other pathway. 

Given these connections at the signaling level, the data from the Hog1-Msn2/4 mutant 

cycle (Figure 2c) can be explained by a simple wiring diagram (Figure 3a) in which 

the Co component is assigned to Hog1-dependent gene activation through Msn2/4 

while the H and M components are due to direct activation by Hog1 and Msn2/4, 

respectively. This Hog1-Msn2/4 network model defines only three classes of genes 

(Figure 3a): (I) genes regulated by Hog1 alone; (II) genes regulated primarily by 

Hog1 through Msn2/4 (3 genes by Msn2/4 only); and (III) genes regulated by Hog1 

both through Msn2/4 and independently of Msn2/4 (mixed regulation).  However, the 

genes in Classes II (Groups 1-3) and III (Groups 5-8) show distinct behavior in 

deletion mutants, resulting in several groups in the expression component analysis 

(Figure 2c).  This can be explained if different groups of genes within a given class 

have different thresholds for gene activation by Msn2/4: high, low or intermediate. 

For example, genes in Groups 1 (Co) and 5 (H+Co) appear to have a high threshold 

for activation by Msn2/4 as they are insensitive to the low levels of nuclear Msn2/4 

found in the absence of Hog1 (Figure 2c; no M component). In contrast, genes in 

Groups 3 (M) and 6 (H+M) appear to have a low threshold for activation by Msn2/4 

as they are fully activated at the low levels of nuclear Msn2/4 found in the absence of 

Hog1 (Figure 2c; M but no Co component).  Finally, genes in Groups 2 (M+Co) and 7 

(H+M+Co) appear to have an intermediate threshold for activation as they are 

partially activated at the low nuclear level of Msn2/4 (Figure 2c; M and Co 

component).  

Incorporation of Sko1 and Hot1 into the Network Model  

To explain how Hog1 activates genes independently of Msn2/4 (112 genes with an H 

component, Groups 4-8 Figure 2c), we focused on the transcription factors activated 

by Hog1 following salt induction. Hog1 was shown to phosphorylate, activate and/or 

bind to the TFs, Msn1, Smp1, Sko1, Hot1 and Cin5, but few target genes have been 

identified for these factors (Proft and Serrano, 1999; Rep et al., 1999; de Nadal et al., 

2003; Nevitt et al., 2004). It was previously suggested that Sko1 acts as a 

transcriptional repressor in the absence of stress, switches to act as a transcriptional 

activator following osmotic stress (Proft and Serrano, 1999; Proft and Struhl, 2002). 

My collaborators measured the expression levels of strains lacking one or more of 
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these factors, and found that only Sko1 and Hot1 play a significant role in the osmotic 

stress response. 

To incorporate these factors into the network model, we applied the mutant cycle 

approach and dissected the influence of, and interaction between, Sko1/Hot1 

(together) and Msn2/4 (Figure 3b, red cycle). Interestingly, my analysis found only 

few genes with positive interaction (AND-like) between these factors (Figure 3c), 

opposed to a much larger number of genes with negative interaction (OR-like). Most 

of these genes are weakly affected by Sko1/ Hot1 in the presence of Msn2/4, but 

induce transcription up to 100-fold in the absence of Msn2/4 (Figure 3c, bottom). My 

analysis also indicates that additional 10 genes are activated by Sko1/Hot1 and 

Msn2/4 independently (i.e. with no significant cooperativity). I found a striking 

correlation (R=0.90, Figure 3d) between the original H component (as determined by 

the Hog1-Msn2/4, Figure 2a) and its representation by the sum of the Sko1/Hot1 

component (Figure 3b, red cycle) plus the extent of transcriptional repression by Sko1 

prior to induction. This analysis suggests that Msn2/4-independent gene induction by 

Hog1 occurs almost entirely through Sko1 and Hot1. My collaborators further 

addressed this point directly by measuring the transcriptional effect of deleting Hog1 

in the absence of Sko1, Hot1 and Msn2/4. 

Detailed transcriptional dissection of Hog1 transcriptional network 

To further examine the influence that Sko1, Hot1 and Msn2/4 have on gene 

expression individually, and quantify the interaction between Sko1-Msn2/4, Hot1-

Msn2/4, Sko1-Hot1 and Sko1-Hot1-Msn2/4, I extended the mutant cycle algorithm to 

look at three-way interactions (black and red cycles and black components, Figure 

3b). This allowed me to fully dissect transcriptional regulatory interactions at gene 

promoters and accurately measure the influence of Hot1 and Sko1 separately, even 

where they act redundantly with Msn2/4. These expression components were used to 

expand our initial Hog1-Msn2/4 network model (shown in Figure 3a) into a detailed 

model of the Hog1 transcriptional network in salt-induced osmotic stress (Figure 3e). 

Analysis of genome-wide in vivo binding of Sko1 and Hot1 

To validate our network model, and gain insight into its structure, my collaborators 

used genome-wide chromatin immunoprecipitation assays (Ren et al., 2000; Iyer et 

al., 2001), followed by hybridization to dense tiling array of the yeast genome. 
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Specifically, we measured the in vivo binding locations of Sko1 and Hot1, both prior 

to and following KCl-induced hyper-osmotic stress. To analyze these data, I 

developed a model-based algorithm to identify the exact location of binding sites, and 

their relative enrichment. As opposed to algorithms presented in parallel studies 

(Buck et al., 2005; Gibbons et al., 2005; Kim et al., 2005; Li et al., 2005; Qi et al., 

2006), my model is based on the typical peak-shaped signal of each binding event, 

caused by the variation in the length and binding position among the 

immunoprecipitated DNA fragments (see Methods). This analysis dramatically 

reduced the number of false positive calls due to noisy probes, since each binding 

event is actually characterized using 8-12 of its neighboring probes (see Methods, 

Figures 4a and S2a). Moreover, due to the iterative nature of my algorithm, it 

facilitates the identification of several binding events in vicinity of each other (Figure 

S2b-c). 

Analysis of the ChIP-chip data revealed that most Sko1 and Hot1 binding events 

occur inside promoter regions (80% of the 100 peaks with an enrichment ratio >5 in 

KCl).  I then identified all promoter binding events and estimated their statistical 

significance. I used the conservative assumption that all binding events in the 

promoter regions of ~6000 genes outside of the Hog1 network (273 genes in Figure 

2c) are spurious, and can be treated as a background reference (see Methods). 

This analysis revealed an excellent agreement with the Sko1/Hot1 target genes 

identified through gene expression analysis (Groups I and II of Figure 3a): 65-80% of 

the genes repressed by Sko1 (27 total), activated by Sko1 (52 total), or activated by 

Hot1 (15 total) were found to be significantly bound by the factor in the appropriate 

condition (Figure 4b).  I also found higher than expected binding of Sko1 and Hot1 at 

other genes within the Hog1 network.  In fact, 42 additional Sko1 target genes and 23 

additional Hot1 target genes were identified based on ChIP-chip analysis (Figures 4c 

and d).  While some of these bound genes were missed by the expression-based 

analysis due to barely significant p-values, most of these binding sites are in fact 

latent binding sites (24/42 Sko1 and 17/23 Hot1), with negligible expression 

components (p-value>0.80). 

The ChIP analysis provides additional insight into the dual function of Sko1 in 

transcriptional regulation. There are three classes of Sko1 binding behavior within the 

Hog1 transcriptional network: (i) Sko1 binds to the promoter in pre-stress conditions 
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(YEPD), but is released within 5 min of KCl stress (6 genes in total, including FSH1 

and HXT4 shown in details in Figure 4a); (ii) Sko1 is constitutively bound to the 

promoter (45 genes in total, including YHR033W, HXT1 and HXT5 from Figure 4a); 

(iii)  Sko1 is only recruited to the promoter following stress treatment (37 genes, 

including YHR087W in Figure 4a). This variable behavior of Sko1 is functionally 

important due to the dual roles of Sko1 as both a transcriptional repressor (in YEPD) 

and activator (in KCl). Indeed, these three binding modes are reflected by the 

resulting expression components of Sko1, with typical activation for genes bound by 

Sko1 in KCl (Figure 4c, bars, top), as opposed to a combination of repression and 

activation for genes constantly bound (Figure 4c, bars, bottom). Analysis of the Hot1 

bound promoters reveal a slightly simpler picture, mixing constitutive (7 genes) and 

inducible (28 genes, including YHR087W and HXT1 shown in Figure 4a, right 

panel).  

To summarize, using Sko1 and Hot1, Hog1 can control the expression levels of its 

target genes in five distinct combinations: constitutive Sko1 binding with/without 

Hot1; inducible Sko1 binding with/without Hot1; and pre-stress only binding of Sko1. 

These results highlight the accuracy of our two methods for identifying the target 

genes of HOG related transcription factors – using the mutant cycle approach and the 

model-based analysis of high-resolution ChIP-chip data.  

Signal Integration in the Hog1 Network 

Taken together, these data provide a detailed model of the Hog1 transcriptional 

network in KCl-induced osmotic stress (Figure 3e).  Examination of this network 

reveals that the external stimuli sent through Hog1 and the general stress (Msn2/4) 

pathways are integrated at two levels.  At the cellular signaling level, Hog1 further 

activates Msn2/4 by mediating its nuclear import.  At the promoter level, activation of 

Hog1 is transmitted via Sko1 and Hot1, which cooperates with Msn2/4 in a variety of 

distinct modes (Figure 3e). 
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DISCUSSION 

Previous analysis of the Hog1-dependent stress response led to a coarse-grained 

model of Hog1 function where the MAP-kinase Hog1 regulates gene expression 

through three independent paths: activation of Msn2/4, activation of Hot1, and de-

repression of Sko1, with Sko1/Hot1 acting at only 12 genes (Rep et al., 2000; 

Hohmann et al., 2007).  Using a detailed analysis of gene expression in wt, single and 

multiple mutant strains, we converted this incomplete and qualitative description into 

a quantitative and nearly complete network model (Figure 3e).  This model shows that 

the signal from Hog1 is spread out to several transcription factors and then 

recombined in several distinct structures at the promoters of HOG-related genes 

(Figure 3e). This network architecture allows stress signals transmitted through Hog1 

to enhance the general stress program via Msn2/4, and to fine-tune this reaction using 

additional transcription factors (Sko1 and Hot1). Overall, our model of the Hog1 

network provides insight into the way a signal can create a context-dependent gene 

expression program using a limited number of transcription factors.  

Beyond establishing the structure and function of the Hog1 transcriptional network, 

these results demonstrate the utility of double mutant analysis, and the overall strategy 

taken here, for dissecting gene regulatory systems. I have shown that, starting with 

two or more known/putative network components, it is possible to build a quantitative 

genome-wide network model and to identify the genes regulated by missing 

components. By performing a screen for the factors that act on these genes (using 

computational and experimental means), it is possible to identify the missing 

components and integrate them into the network model. This approach has immediate 

application to studying conditionally activated pathways (and drug-pathway 

interactions) using gene KOs, and can be extended to other systems through the use of 

RNAi and chemical inhibitors.   

55



  

 

 

 
Figure 1. Single and double mutant analysis of gene expression. (A) Venn diagram summarizing the overlap in the 

number of genes with a >2-fold defect in gene expression in the hog1Δ (HΔ) and msn2Δ msn4Δ (MΔ) mutants, 

following salt induction. Wiring diagrams indicate the possible ways factors H and M can interact to regulate 

expression of overlapping sets of genes. (B) Schematic illustrating the application of the double mutant approach to 

analyzing transcriptional network structure and function (see text for details). 
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Figure 2. Role of Hog1 and Msn2/4 in osmotic stress-dependent gene induction. (A) Schema describing the 

experiments and equations used to break the influence of Hog1 and Msn2/4 into components. Each arrow represents a 

single microarray (measured in triplicate) comparing gene expression in two strains. The equations listed below the 

diagram describe the relationship between the data from each measurement and the underlying expression components.  

Note here that expression is in Log terms (thus additive) and so an OR-like gate is represented as a negative 

cooperative component equal to the H or M component (such that H=M=H+M+Co). (B) Sample data for four genes 

showing the errors associated with the microarray measurements and expression component values. (C) Heat map 

showing the regressed value of the expression components (red/green), and their statistical significance (yellow/blue), 

for all HOG-pathway genes (defined by up-regulation in response to hyper-osmotic stress, either by Hog1 (≥3-fold) or 

by Msn2/4 (≥2-fold).  Each row of six columns shows the data for a single gene.  Genes were clustered into groups (1-

8) and labeled according to the statistical significance of the various expression components that influence their 

induction (using a p-value threshold of 0.05; AND = +Co; OR = -Co).  
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Figure 3.  Mechanism of Hog1-dependent gene activation. (A) Model of the Hog1 transcriptional network, 

explaining the expression component data found in Figure 2. (B) Schema describing the experiments and equations 

used to dissect the expression components of Sko1, Hot1 and Msn2/4. (C) Interaction between Sko1/Hot1 and 

Msn2/4.  Heat map showing the regressed expression components, and their statistical significance. Only shown are 

genes with a statistically significant components by Sko1/Hot1 and Msn2/4 (p-value<0.01).  The bars show the 

transcriptional effect of raw data for the sko1Δhot1Δ vs. wt (denoted wt) and sko1Δhot1Δmsn2Δmsn4Δ 

/msn2Δmsn4Δ (denoted msn2/4Δ) data for 11/13 OR gate genes where Sko1/Hot1 activity is redundant in the wild-

type strain.  Gene names highlighted by a star are activated by both Sko1 and Hot1 (in some cases redundantly), other 

genes are just activated by Sko1. (D) Correlation between the level of induction measured for Hog1 alone (H 

component, Figure 2) and its decomposition to regressed Msn2/4-independent expression components, equals the sum 

of join effect of Sko1/Hot1 in the absence of Msn2/4 (Sko1/Hot1 component, red cycle part Figure 3b) plus the extent 

of Sko1 repression in YEPD. (E) Structure of the transcriptional network activated by the MAPK Hog1. Genes are 

grouped based on common regulatory mechanisms (denoted by a box with the names of two sample genes) and only 

shown if two or more genes have the same connections as determined by expression and confirmed by ChIP.  Broken 

lines indicate interactions that that exist for only part of a group.  The number in each box refers to the number of 

genes in a group based on expression data alone. To simplify the figure latent binding events are not shown and there 

is no representation of cooperativity at the promoter level. 
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Figure 4. ChIP analysis of Sko1 and Hot1 binding sites (A) Sample raw data for Sko1 (upper panel) and Hot1 (right 

panel) for a region of chromosome 8 (shown ~1% of the genome). Each data point shows the enrichment ratio as 

measured by one probe on the microarray.  The inset shows a typical example of a binding event. The measured 

enrichment values are shown by circles, while its optimal fit by a model-derived peak shape , used to analyze the data 

(see Methods) is shown in blue. The vertical solid line shows the optimal binding position, while the dotted lines 

show the 99% confidence interval. (B) Overlap of ChIP and expression data. The target genes for Sko1, Hot1 and 

Msn2/4 alone (p<0.05) were compared to the bound genes identified by the ChIP analysis from the peak fitting 

(p<0.05). (C) Venn diagram showing the overlap between ChIP data (p<0.05) and expression data (p<0.058) for 

Sko1. The number of binding sites at genes without significant Sko1 induction and/or repression was adjusted for the 

expected number of false positives. The bar graphs show the number of genes that are repressed (R), repressed and 

activated (R+A) or just activated, for genes where there is both significant binding and expression data.  (D) Venn 

diagram showing the overlap between ChIP data (p<0.05) and expression data (p<0.05) for Hot1. Again here the 

number of binding sites at genes without significant Hot1 induction is corrected for the number of false positives 

expected. 
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Figure S1. (A) Goodness of fit: Hog1 vs Msn2/4 cycle. The data from each microarray experiment B-F in Figure 2a 

are plotted vs. their reconstruction as combinations of the three regressed values (H, M, and Co). Each point shows 

the measured (X-axis) vs. regressed (Y-axis) log2 fold-change for a single gene, colored red if included in the Hog1 

pathway genes (273 genes in total), or blue if outside of the network. The last panel shows the percent of total 

variance explained by the fit (color coded as above).  For each gene, I computed the variance (V) of expression (over 

the expression measurements, B-F). The percent of variance explained by the regression is given by 100*(V-R)/V, 

where R is the variance of the residual data. In general, Hog1 related genes (shown in red) present a high variance, 

due to significant expression components, and are well fitted. Other genes present low variance (few transcriptional 

changes). (B) Goodness of fit: Sko1/Hot1 vs Msn2/4 cycle.  Same as (A), except that the arrays and fitted 

components are for Figure 3b (red cycle). 
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Figure S2. Model-based analysis of genome-wide high-resolution ChIP data. (A) In the chromatin 

immunoprecipitation procedure, TFs (green) are crosslinked to DNA fragments (pink), which are then purified and 

hybridized to densely tiled genomic microarray (green). The red bars correspond to the relative enrichment of IP’ed 

DNA, fitted by a model-based estimation of the shape of a binding event (blue). (B-C) Iterative steps of the peak 

fitting algorithm allow the exact identification of several binding events in close proximity. Shown are the fit of two 

statistically significant binding events by Sko1 in the promoter regions of CIN5 (YOR028C; shown in B) and 

YLR412C-A (C). 
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Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription
to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications
occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the
combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of
modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray
with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on
thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur
independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a
sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose
occurrence does not correlate with transcription levels. The other group consists of modifications occurring in
gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a
deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish
nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 39 ends of
coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple
modifications share the same role.

Citation: Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, et al. (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10): e328.

Introduction

Nucleosomes play many roles in transcriptional regulation,
ranging from repression through occlusion of binding sites
for transcription factors [1], to activation through spatial
juxtaposition of transcription factor-binding sites [2]. There
are two main ways in which cells modulate nucleosomal
influences on gene expression. One way is through chromatin
remodelling, using the energy of adenosine triphosphate
hydrolysis to modulate nucleosomal structure, often resulting
in changed nucleosomal location [3]. Alternatively, covalent
histone modifications have many effects on transcription.
Histone proteins have highly conserved tails, which are
subject to multiple types of covalent modification, including
acetylation, methylation, phosphorylation, ubiquitination,
sumoylation, and adenosine-diphosphate ribosylation [4–9].

Histone acetylation has been the subject of decades of
research, whereas histone methylation has come under
intense scrutiny more recently. Lysine acetylation neutralizes
lysine’s positive charge, and can influence gene expression in
at least two ways. Firstly, charge neutralization can affect
contacts between the positively charged histone tail and
negatively charged neighbouring molecules, such as adjacent
linker DNA [10], or acidic patches on histones in nucleosomes
[11]. Alternatively, acetyl-lysine is bound by the bromodo-
main, a protein domain found in many transcriptional
regulators; thus, acetylation might affect recruitment of
protein complexes [12]. Histone acetylation is rapidly
reversible, and acetyl groups turn over rapidly in vivo, with
half-lives on the order of minutes [13], allowing for rapid

gene expression changes in response to signals [14]. Acetyla-
tion of histone lysines has been associated with both
transcriptional activation and transcriptional repression
[15–17]. The outcome of acetylation depends on which lysine
is acetylated and the location of the modified nucleosome. A
recent genome-scale study of histone acetylation in yeast
revealed a complicated relationship between histone mod-
ification and transcriptional output [18].
Histone methylation has been best characterized by histone

3-lysine 4 (H3K4), wherein methylation is associated with
active transcription in multiple organisms, ranging from
Saccharomyces cerevisiae to mammals. Lysine can be mono-, di-,
or tri-methylated, and none of these methylation states will
alter lysine’s positive charge (under conditions of standard
lysine pKa and physiological pH). As a result, it is unlikely
that charge–charge interactions are modulated by methyl-
ation, which appears instead to affect cellular processes
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through binding of methyl-lysine–binding proteins. Indeed,
methyl-lysine is bound by at least one domain type—the
chromodomain [19,20]. In contrast to histone acetylation,
histone methylation is long-lived. Although a histone-lysine
demethylase (termed LSD1) was recently identified in
metazoans. S. cerevisiae does not have a homolog of this
protein. Even in metazoans, the proposed enzymatic mech-
anism allows for demethylation of mono- and di-methylated
lysine, but not of tri-methylated lysine [21]. Whether or not
enzymatic demethylation of tri-methyl-lysine occurs, and
whatever other mechanisms allow for replacement of tri-
methylated histones (such as histone replacement—[22]), in
yeast, H3K4 tri-methylation is associated with active tran-
scription. The histone tri-methylation persists for over an
hour after transcription ceases, providing a memory of recent
transcription [23].

The discovery of multiple modification types and modified
residues suggested that different combinations of histone
modifications might lead to distinctive transcriptional out-
comes. According to the ‘‘histone code’’ hypothesis, ‘‘distinct
histone modifications, on one or more tails, act sequentially
or in combination to form a ‘histone code’ that is read by
other proteins to bring about distinct downstream events’’
[6].

This hypothesis has been the subject of much debate, much
of it concerning the requirements for histone modifications
to form a ‘‘code’’ [4–9]. In this study, we focused on the
combinatorial complexity of histone modification patterns.
Insights into this complexity require an understanding of
which combinations of modifications occur in vivo, and the
functional consequences of these combinations. Mutagenesis
of histone tails has demonstrated that not all combinations of
histone modifications lead to distinct transcriptional states
[24]. In addition, genome-wide localization studies of histone
modifications in yeast, flies, and mammals have demonstrated
that not all possible histone-modification patterns occur in
vivo [18,25,26].

A major confounding effect in the interpretation of
previous genome-wide studies of histone modifications in
vivo is the low resolution of the measurements (;500–1,000
base pairs [bp]) relative to the size of the nucleosome (;146
bp). Thus, the measured ratio for a given spot represents an
aggregate that is actually an average of information from
several nucleosomes, which complicates analysis. Further-
more, in some studies, acetylation patterns at intergenic and
coding regions were measured using different microarrays,
precluding a common reference point. Finally, whole
genomic DNA has typically been used as the reference DNA
in these microarray studies, thereby confounding the
measurements of histone modification with underlying
variation in nucleosome density [27,28].

To overcome these limitations, we made use of a recently
developed, high-density oligonucleotide microarray with
;20-bp resolution. We recently used this microarray to
map nucleosome positions across almost half a megabase of
the yeast genome [29]. In this study, we use this microarray to
measure the levels of 12 different histone modifications in
individual nucleosomes. We find that modifications do not
occur independently of each other and that a small number
of distinct combinations occur in vivo. Different modification
patterns are enriched at specific locations in gene or
promoter regions, and these patterns are predictive of the

transcription level of the underlying gene. Sharp transitions
in histone modifications mostly occur near the transcription
start site (TSS). Together these results provide a simpler view
of histone modification, and suggest that there is little
combinatorial information encoded in the histone tails.

Results

High-Resolution Measurement of Histone Modifications
Using Tiled Microarrays
Chromatin immunoprecipitation (ChIP) using modifica-

tion-specific antibodies [30,31] was used to map histone
modifications in actively growing yeast cultures. We used a
standard ChIP protocol, with one major modification (Figure
1A). In our protocol, formaldehyde-fixed yeast were lysed
gently by spheroplasting and osmotic lysis rather than by glass
beads, and DNA was digested to mononucleosomes using
micrococcal nuclease (rather than sheared to ;500 bp by
sonication) (Figure S1). This allowed us to map modifications
at nucleosomal resolution. We used antibodies specific to 12
individual modifications, including mono-, di-, and tri-
methylation of histone H3K4, as well as acetylation of various
lysines on all four histones. Immunoprecipitated DNA was
isolated, linearly amplified [32], and labelled with Cy5
fluorescent dye, while mononucleosomal DNA treated under
identical conditions was used as the ‘‘input’’ and labelled with
Cy3. This choice of input served to control for nucleosomal
occupancy differences (to prevent highly modified, low-
occupancy nucleosomes from appearing to be poorly
modified nucleosomes), as it has been shown that nucleo-
somes are not always present in every cell in a population
[33,34]. Mixtures were hybridized to a tiled microarray
covering half a megabase of yeast genomic sequence,
including almost all of Chromosome III as well as 230
additional 1-kb promoter regions [29]. This represents
approximately 4% of the yeast genome, and includes a total
of 356 promoter regions. Finally, to measure active tran-
scription (while avoiding effects of mRNA instability that
influence mRNA abundance measurements), we also immu-
noprecipitated DNA associated with RNA polymerase II (this
DNA was sheared by sonication rather than cut with micro-
coccal nuclease) [35].

A Chromosomal View of Histone Modifications
The resulting data provide a rich view of histone

modification over half a megabase of yeast sequence,
demonstrating several prominent features (Figure 1B shows
a sample stretch). First, histone modifications generally occur
in broad domains, and there are few examples of nucleo-
somes whose modification pattern was significantly different
from that of their adjacent nucleosomes. This was not due to
limitations in the experimental technique, as we did find
multiple examples of punctate nucleosomes that occurred in
expected locations (see below). Second, modifications were
generally homogeneous for all the probes within a given
nucleosome. Third, correlations could be observed between a
nucleosome’s position relative to coding regions and its
modification pattern. For example, most of the open reading
frames shown in Figure 1B exhibit a striking pattern of
histone H3K4 methylation, with tri-methylation occurring at
the 59 end of the coding region, shifting to di-methylation,
and then to mono-methylation. This pattern is clear over
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most expressed open reading frames on Chromosome III, and
is consistent with reports that Set1 association with RNA
polymerase is responsible for methylation of this lysine
[23,36]. Finally, we noticed broad domains of low acetylation
occurring over heterochromatic regions on our array—
subtelomeric sequences and the silent mating type loci [37]
(Figure S2).

Coupling of Modifications to Organization of

Transcriptional Units

To analyze the relationship of different modifications to
the underlying sequence, we aligned all genes (and their
promoters) by their start codon. For example, Figure 2A
shows data for histone H4K16 acetylation on aligned genes

Figure 1. Overview

(A) Nucleosomes are first cross-linked to DNA using formaldehyde. Cross-linked chromatin is digested to mononucleosomes with micrococcal nuclease.
Mononucleosomal digests are immunoprecipitated using an antibody specific to a particular histone modification, and immunoprecipitated DNA is
isolated and labelled with Cy5. DNA is also isolated from the same nuclease titration step prior to immunoprecipitation, labelled with Cy3, and mixed
with Cy5-labeled immunoprecipitated DNA. Labelled DNA is then hybridized to a tiled microarray covering half a megabase of yeast genome.
(B) Example of raw data. Data are shown for all modifications tested, along with PolII data. Red (green) indicates enrichment (depletion), while grey
indicates missing data. Data from probes found in linker regions are not shown. Each row represents median data from multiple replicates with one
antibody, as indicated (PanAc refers to a nonspecific antibody to acetyl-lysine, which we used to measure bulk acetylation). ‘‘Nucleosomes’’ shows
positions of nucleosomes previously described [29], with dark brown for well-positioned nucleosomes, very light brown for linkers, and intermediate
brown for delocalized nucleosomes. ‘‘ORFs’’ shows locations of annotated genes. Data shown are for Chromosome III coordinates 58,900 to 72,100.
DOI: 10.1371/journal.pbio.0030328.g001
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that were clustered to highlight patterns (see Materials and
Methods). Clearly notable in this representation is a hypo-
acetylated domain adjacent to most start codons. We have
recently discovered that TSSs are found in long nucleosome-
free regions [29]. By aligning genes by the location of the first
nucleosome following the TSS, a clear domain of two hypo-
acetylated nucleosomes can be observed at most PolII
promoters (Figure 2B). This alignment, therefore, provides a
highly informative view of the relationship of histone
modifications to the underlying structure of the genome
(see Figure S3 for the remaining modifications).

To explore the relationship of these modifications to
transcription, we separated genes into ‘‘bins’’ of varying
transcriptional activity (see Materials and Methods) and
averaged the enrichment data for all aligned genes in each
bin (Figures 2C and S4). Several previously identified features
of yeast chromatin are apparent. First, histone H3K4
methylation enrichment correlates with transcription levels,
and occurs in a 59 to 39 gradient (as also seen in Figure 1B)
with tri-methyl enrichment at the 59 end of genes, shifting to
di-methyl and then mono-methyl. Histone H3K4 is methy-
lated by Set1, which is associated with elongating RNA
polymerase [23,36], and, as noted above, this gradient
presumably reflects the kinetics of dissociation of Set1 from
the polymerase, convoluted with the ensemble-average
location of polymerase. Second, we reproduced previous
observations that histone H3K9/K14 acetylation is enriched
over the 59 ends of coding regions [26,38].

Figure 2C also reveals novel locations of particular histone
modification patterns. In particular, the two-nucleosome
hypo-acetylation domain described above for H4K16 acety-
lation is surprisingly general, and a nearly identical pattern is
also seen for acetylation of H4K8 and of H2B K16 (Figures S3
and 2C). This hypo-acetyl domain does not correlate with
transcription levels (as measured by either PolII occupancy or
by mRNA abundance [Figures 2C and S4]). Also, the
acetylation of these residues at the middle and 39 ends of
coding regions is either uncorrelated (H2BK16) or anticorre-
lated (H4K8 and K16) with transcription (Figure 2C). We will
therefore refer to this group of modifications as the
transcription-independent modifications, for convenience (and
to emphasize the stereotyped promoter-deacetyl domain). A
two-nucleosome hypo-acetylation domain is also present at a
smaller subset of promoters for the remaining acetylation
states, and is generally found preferentially in poorly
expressed genes (Figures S3 and 2C). However, the acetylation
of these lysines is found at the 59 end of coding regions,
whereas acetylation of the transcription-independent group
is largely excluded from 59 coding regions. We will refer to
this 59-directed group of modifications as the transcription-
dependent modifications. Acetylation of H2A K7 is an
interesting case, as its pattern appears to be a mixture of

the two types of patterns described. However, we have
recently found that the H2A isoform Htz1 is enriched in a
pattern that dramatically parallels the hypo-acetylation
domain observed for the transcription-independent modifi-
cations (unpublished data), so H2A is expected to be depleted
in this region. This, coupled with the 59-enrichment of
acetylation seen for H2A K7, in highly transcribed genes,
leads us to include this modification in the transcription-
dependent group.

Low Dimensionality of Nucleosome Modification Patterns
The analysis presented above is highly informative, but is

based on aggregated data for many promoters, and thus may
obscure interesting underlying phenomena. A more infor-
mative approach would be to examine the distinct modifica-
tion patterns at individual nucleosomes. We defined the
modification pattern of each nucleosome as the median
hybridization value, for each measured antibody, of the
probes associated with the nucleosome (usually between six
and 15 probes; see Materials and Methods). In addition, we
classified nucleosomes according to their positions relative to
genome annotations (Figure 3A; see Materials and Methods).
We used nine annotation categories that represent nucleo-
somes in promoter regions, transcribed regions, and other
regions (tRNA genes and autonomously replicating sequences
(ARSs). These classifications are discussed further below.
Nucleosomes were clustered by modification pattern, using

a probabilistic hierarchical agglomerative clustering proce-
dure (see Materials and Methods). As is readily apparent from
this clustering (Figure 3B), histone modification patterns span
the full possible range of overall modification level, from
hypo-acetylated to hyper-acetylated. Nevertheless, a striking
aspect of this clustering is the limited range of observed
modification patterns. Visual inspection suggests that, as
previously noted [18], histone modifications are not inde-
pendent of each other. Indeed, the matrix of correlations
between the 12 modifications shows that there are two groups
of strongly correlated acetylations (Figure 3C).
To better understand the effective number of degrees of

freedom among the 12 dimensions available, we performed a
principal component analysis (see Materials and Methods).
Principal component analysis is a technique used to trans-
form a large number of possibly correlated variables to a
smaller number of uncorrelated variables, and thereby
identify the number of independent dimensions in a dataset.
As suggested by the observation above, 81% of the variance in
histone modification patterns is captured by the first two
principal components (Figure 3D). Moreover, if we examine
only the nine acetylations, we can explain 90% of the
variance using two components (unpublished data). The first
principal component corresponds to overall level of histone
modification (Figure S5). The second principal component

Figure 2. Broad Patterns of Histone Modifications

(A) H4K16Ac aligned by ATG. In this representation, the horizontal axis represents location relative to the downstream gene’s start codon, and each
horizontal line represents one PolII-driven gene. Each cell in the resulting matrix corresponds to the acetylation level at a given microarray probe for one
tail position. Red (green) cells mark hyper-acetylated (hypo-acetylated) probes. Non-nucleosomal probes are blackened. We clustered the promoters
using a probabilistic agglomerative clustering algorithm (see Materials and Methods). Arrow indicates annotated ATG.
(B) H4K16 aligned by transcriptional start site, as in (A), except that arrow indicates TSS (identified in [29]) and data before and after the TSS are aligned
by the first nucleosome in that direction.
(C) Relationship of histone modification patterns to transcription level. Genes were split into three groups based on PolII enrichment, and averaged data
for these groups are shown as indicated, aligned as in (B). Transcription level is indicated by red triangles to the left of each set of three rows.
DOI: 10.1371/journal.pbio.0030328.g002
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Figure 3. Nucleosome Modification Patterns

(A) Schematic of annotation scheme for nucleosomes based on their position relative to transcribed units. Intergenic nucleosomes were assigned to the
following categories: promoter region (anything upstream of a coding region), nucleosome immediately upstream to the TSS (‘‘distal’’), and the
nucleosome immediately downstream of the TSS (‘‘proximal’’). Transcribed regions were separated into 59, middle, and 39 CDSs. Finally, to capture
features of chromatin not associated with PolII genes, we independently classified nucleosomes associated with ARS sequences, tRNA genes, and Null
(any other intergenic region).
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corresponds to the relative levels of the two groups of histone
modifications—the transcription-associated modifications
that occur in 59 to 39 gradients over coding regions, and the
group of acetylations characterized by short hypo-acetyl
domains surrounding TSS (Figure S5). By projecting each
nucleosome to a point in the plane spanned by the first two
principal components (Figure 3E), we can visualize the range
of observed modifications. There is a large region of
allowable modifications that is spanned continuously by
different nucleosomes. These results suggest that, at the level
of cell populations, there are no discrete states for nucleo-
some modifications. Instead, nucleosome modification pat-
terns occur continuously over a large range of possible space,
though this two-dimensional space is dramatically simplified
compared to the 12 dimensions available. In other words,
nucleosomes have continuous variation, both in the total level
of acetylation, and in the relative ratio of the two groups of
modifications, but they do not show much complexity beyond
these two axes.

Specific Chromosomal Locations Are Associated with
Characteristic Histone Modifications

Notable in Figure 3B is an association of particular
modification patterns with specific genomic locations. For
example, Cluster 2 consists of hypo-acetylated nucleosomes
that are predominantly located within promoter regions and
at the 39 ends of coding regions. We systematically explored
these correlations by testing the modification data for
statistically significant, location-specific differences in the
levels of each modification type (Figure 4A). For example,
promoter nucleosomes are globally hypo-acetylated in
residues H2A K7 (presumably due to the enrichment of
Htz1), H2B K16, and H4K8 and K16 (and, to a lesser extent,
H3K18), and are depleted of mono- and di-methylated H3K4.
Nucleosomes at 59 ends of coding regions are enriched for
H3K4Me3, as well as H3K18Ac, H4K12Ac, H3K9Ac,
H3K14Ac, H4K5Ac, and H2AK7Ac. When we examine the
modification patterns of individual nucleosomes in the two-
dimensional principal component plot, we can clearly
distinguish nucleosomes in promoter regions from those in
transcribed regions (Figure 4B). Moreover, of the nucleo-
somes in transcribed regions, we can distinguish among
nucleosomes in the 59 end, the middle, and the 39 end of the
transcribed region (Figures 4C and S6).

These results show that specific genomic regions are

characterized by distinct modification patterns, with little
overlap in modification types between the different regions.
We conclude that the histone modification patterns are
highly informative about the location of nucleosomes along
the chromosome, and suggest that, in yeast, nucleosome
modification patterns, like nucleosome positioning, exhibit
local variation around a basic stereotype that is determined
by the chromosomal location.

Variation in Modifications Occurring over Transcribed
Regions is Predictive of Transcription Levels
While nucleosomes at different locations are associated

with statistically different modification patterns, the correla-
tions are imperfect, as a given nucleosome modification
pattern can clearly be found in multiple locations (Figure 4B
and 4C). This imperfect association might be due to differ-
ences in expression level of the coding regions examined. We
therefore separated nucleosome locations (59 coding, etc.)
into bins according to the PolII activity level of the associated
transcription unit. Figure 5A shows the modification pattern
of each of five nucleosomes (defined by position) for highly
PolII-enriched genes, while Figure 5B shows this pattern for
PolII-depleted genes. This view emphasizes both the distinc-
tion between nucleosomes at various genomic locations (as
seen in aggregate in Figure 4) and the transcription-
associated variation in the modification pattern at a given
location. Figure 5C shows a cartoon of the chromatin
structure of an arbitrary yeast gene.
To further explore the relationship between transcription

activity and modification pattern at a given location, we
tested each location for modifications that were significantly
associated with high or low transcription. For example, we
consider the nucleosomes near the 59 ends of those genes with
extreme levels of PolII enrichment or depletion (Figure 6A).
Consistent with results shown in Figures 2C and 5A and 5B,
we see that levels of mono- and tri-methylation of H3K4, as
well as the acetylation level of H3K9, H3K14, H2A K7, H4K5,
and H4K12 have significant differences between these two
classes of 59 coding region nucleosomes (p , 0.01 using t-test).
We trained a classification method that examines these
modifications and predicts whether the nucleosome is part
of an expressed coding region or not. We evaluated this
classifier using leave-one-out cross-validation (see Materials
and Methods) to estimate its accuracy on unseen examples.
This evaluation shows that the classifier is correct on 75.4%

(B) Hierarchical clustering of 2,288 nucleosomes. Left panel: each row corresponds to a single nucleosome, and each column to a particular
modification. Red (green) denotes hyper-acetylation (hypo-acetylation) in the first nine columns and relative level of methylation in the last three
columns. Rows are sorted according to the dendogram built during clustering. PolII shows the PolII occupancy of the gene associated with the
nucleosome in question. Right panel: each row corresponds to a nucleosome (matching the left panel), and each column corresponds to an annotation
of the nucleosome according to the scheme of (A). A blue cell denotes a positive annotation of the nucleosome with the appropriate column label.
Numbers indicate examples of clusters, as follows: (1) nucleosomes enriched for H3K9Ac, H3K14Ac, and H3K4Me3 that are mostly upstream of
transcribed regions; (2) strongly hypo-acetylated nucleosomes, mostly at upstream regions or 39 of coding regions; (3) nucleosomes acetylated at H4K8
and K16, and H2B K16 that are almost exclusively at the middle and 39-ends of coding regions; and (4) hyper-acetylated and methylated nucleosomes
that are mostly found at the 59-end of coding regions.
(C) The Pearson correlations of the 12 modification levels between different probes show that there are two tightly correlated groups of acetylations at
specific residues. The first group consists of H2A K7; H3K9, K14, and K18; and H4K5 and K12. The second group consists of H2B K16; and H4K8 and K16.
Mono- and di-methylation of H3K4 are correlated with the second group, while tri-methylation of H3K4 is correlated with the first group.
(D) The percent of variance captured by using different number of components. The x-axis denotes the number of components, and the y-axis denotes
the percent of the variance in the data explained by each components (blue bars) as well as the cumulative percentage explained (red bars).
(E) Representation of all nucleosomes in two-dimensional modification space. In the left panel, each point represents a nucleosome plotted according
to the relative level of the first principal component (x-axis) and second principal component (y-axis) for the modification pattern. The right panel is a
three-dimensional plot showing density of points along the plane.
DOI: 10.1371/journal.pbio.0030328.g003
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Figure 4. Nucleosome Modifications Relate to Nucleosome Position

(A) Analysis of differential modification for each class of nucleosomes. Rows correspond to specific modifications, and columns correspond to genomic
locations. Each cell is coloured by the average modification level of nucleosomes with this annotation. Non-significant (using false discovery rate of 95%
on t-test p-values) cells are blackened.
(B) Promoter nucleosomes (orange) significantly differ from coding region nucleosomes (pink) in their histone modifications pattern. The left panel
shows the two types of nucleosomes as points in the plane, where the x-axis represents the level of the first principal component, and the y-axis
represents the second principal component. The right panel shows the density within each class.
(C) Distinction between nucleosomes in transcribed regions. Colours denote 59-end (red), middle (green), and 39- end (blue) nucleosomes. Visualization
is as described in (B).
DOI: 10.1371/journal.pbio.0030328.g004
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of the nucleosomes in the training set (compared to 60.1%
when nucleosomes labels are randomly permuted; p ,

0.0001). Thus, although expression values are not perfectly
encoded by histone modifications, they are clearly reflected
in them. We see a similar pattern if we examine nucleosomes
in the middle of coding regions (Figure S7). In this case the
accuracy is 82.7% (compared to 61.3% by chance; p ,

0.0001). Notably, the set of significant modifications in this

case is different, and in fact two of the transcription-
independent modifications, H4K8 and K16, are both slightly
anticorrelated with transcription here.
These results indicate that over coding regions, variation in

histone modification patterns is associated with transcription
level. For example, the transcription-associated modifications
are globally enriched at the 59 ends of genes, and the level of
these modifications is correlated with transcription level. To

Figure 5. Nucleosome Modifications Partitioned by Location and by Transcription Level

(A) Modification patterns of nucleosomes associated with actively transcribed genes. Genes with high levels of PolII occupancy were grouped, and the
modification data for the indicated nucleosome types were averaged.
(B) Modification patterns of nucleosomes associated with poorly transcribed genes, grouped as in (A), except that genes with low levels of PolII were
selected.
(C) Schematic view of yeast chromatin architecture. Cartoon view showing chromatin structure of an arbitrary yeast gene. Yeast genes are typically
characterized by an upstream nucleosome-free region, which serves as the transcriptional start site [29]. Surrounding this nucleosome-free region are
two nucleosomes that exhibit low levels of acetylation at H2BK16, H4K8, and H4K16, and that carry Htz1 in place of the canonical H2A (unpublished
data). The remaining acetylations occur in a gradient from 59 to 39 over actively transcribed genes. Similarly, actively transcribed genes exhibit a
gradient of H3K4 methylation, with trimethylation occurring at the 59- ends of genes, and di- and mono-methylation occurring over the middle of the
coding region. Nucleosomes are coloured to emphasize the different average modification patterns at each indicated location.
DOI: 10.1371/journal.pbio.0030328.g005
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explore whether these results hold true for nucleosomes that
are not found over transcribed regions, and to thereby test
the idea that upstream histone modifications control gene
expression, we repeated the classification analysis for
nucleosomes surrounding the TSS (Figure 6B and 6C), which
are modified in similar ways (Figure 4A) with the exception

that the gene-proximal nucleosome is associated with DNA
passaged by RNA polymerase, while the gene-distal nucleo-
some is not. Here, we found that the gene-proximal
nucleosome indeed carries information about transcription
level—a classification method tested using this nucleosome
correctly identified 72.8% of gene expression patterns (as

Figure 6. Nucleosome Modifications Relate to Transcription Level

(A) Classification plot of nucleosomes in 59-coding regions according to PolII occupancy. A classifier was trained to distinguish between nucleosomes
with high and low PolII occupancy, and evaluated using leave-one-out cross-validation. Each row corresponds to one nucleosome. Nucleosomes are
split into three groups associated with genes corresponding to high, intermediate, and low PolII occupancy level (from top to bottom, respectively). The
left 12 columns denote modification patterns of each nucleosome. Modifications with significant differences between high and low nucleosomes are
marked with the p-value determined by t-test. Colours denote relative acetylation/methylation levels. The rightmost three columns correspond to the
classifier’s prediction of transcription, the expression level (mRNA abundance; see Materials and Methods) and the PolII occupancy of genes. The
average accuracy of random classification was 60.71%, with a standard deviation of 4.3%. Accuracy of classifier was 75.38% (p , 0.0001).
(B) Classification plot of TSS proximal nucleosomes, labelled as in (A). The average accuracy of random classification was 62.45%, with a standard
deviation of 4.75%. Accuracy of classifier was 72.8% (p ¼ 0.0004).
(C) Classification plot of TSS distal nucleosomes; as in (A). The average accuracy of random classification was 65.79%, with a standard deviation of 4.22%.
Accuracy of classifier was 58.4% (p¼ 0.9333).
DOI: 10.1371/journal.pbio.0030328.g006
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compared with 62.4% by chance; p¼ 0.0004). In contrast, the
gene-distal nucleosome, which is not subjected to the passage
of RNA polymerase and associated modifying enzymes, fails
to accurately classify transcription levels (58.4%, as compared
with 65.7% expected by chance), demonstrating that mod-
ification patterns associated with transcribed regions provide
a much better predictor of transcription levels than do
upstream modification patterns.

Modifications Associated with Transcriptional Regulators
The observed modifications at the two TSS nucleosomes

might be either a prerequisite for PolII recruitment or a
consequence of this step. Since we measure modification in a
single condition, we cannot directly resolve this question.
However, we can gain additional insight by examining
nucleosomes in promoters reported to be bound by specific
chromatin remodelers or by specific transcription factors.
Using the results of several recent ChIP studies [39–41], we
compiled a set of target promoters for each factor (see
Materials andMethods). We then tested for distinct patterns in
the promoter nucleosomes. In addition, we analyzed nucleo-
somes around putative transcription factor binding sites [42]
(see Materials and Methods). Our results highlight specific
factors that are significantly associated with specific modifi-
cations (Figure 7). For instance, we see that promoters of genes
bound by the repressor Ume6 are significantly hypo-acety-
lated at most positions. This finding correlates with previous
observations demonstrating recruitment of the HDAC Rpd3
by Ume6 [43,44]. Another interesting example is the signifi-
cant hyper-acetylation of several positions among the targets
of the Rsc remodeling complex. These include H3K9 and, to a
lesser extent, H4K12, H3K14, and H4K5. Recently, mutants in
the Rsc complex were shown to interact genetically with K14
mutations, a finding supported by binding of the complex to
K14-acetylated H3-tail peptides [45].

Modification Boundaries Occur Near Transcriptional Start
Sites

The availability of histone modification data at single
nucleosome resolution allows analysis of the extent to which
modification patterns occur discretely or in broad domains.
As noted above and previously reported [44], histones can be

deacetylated in a localized manner. However, visual inspec-
tion reveals that at locations farther away from the TSS, most
histone modifications occur in broad domains. To further
investigate this, we searched for sharp boundaries to histone
modification domains by identifying pairs of nucleosomes
between which a dramatic change occurs (increase or decrease
of two standard deviations at one of the tail positions). We
found ;100 boundaries for each modification (from 82 to
108). We then examined the locations of these boundaries,
finding that most were located adjacent to TSSs. For example,
boundaries for modifications associated with transcription,
such as H3K4 tri-methyl, occurred across the TSS. This is
visualized in Figure 8A, a scatterplot of K4 tri-methylation for
adjacent nucleosomes (x-axis shows tri-methylation for nucle-
osome N, y-axis shows tri-methylation of N-1). The majority of
nucleosomes show high correlation for this modification
between adjacent nucleosomes, though there are two small
groups of anticorrelated nucleosomes, indicating methylation
boundaries. Pairs of nucleosomes that fall to either side of the
TSS were plotted separately (grouped according to which
strand the gene falls on), showing that most of the K4 tri-
methyl boundaries occur at the TSSs, as expected.
We also examined ‘‘punctate’’ nucleosomes—those differ-

ing significantly in modification type from the two nucleo-
somes to either side. We found 44 nucleosomes with a
punctate pattern of at least one of the 12 modifications in this
study. Examples of punctate nucleosome are shown in Figure
8B and 8C. Most nucleosomes that exhibit this characteristic
are found upstream of the TSS. In many cases, this is clearly
due to the location of the nucleosome between two TSSs,
leading to a single nucleosome exhibiting no transcription-
associated modifications, surrounded by nucleosomes with
the characteristic transcriptional modifications.

Discussion

Profiling Histone Modification at the Mononucleosome
Level
We have mapped, at single-nucleosome resolution, 12

histone modifications in actively dividing cultures of S.
cerevisiae. This, along with the translational positioning of
nucleosomes described previously [29] and location studies

Figure 7. Histone Modifiers

Analysis of differential modification of nucleosomes associated with various transcriptional regulators. Promoter nucleosomes located near binding sites
of the indicated factors were tested for enrichment of all modifications relative to the overall promoter modification pattern. Each cell is coloured by the
average modification level of nucleosomes with this annotation. Non-significant cells (using false discovery rate of 95% on t-test p-values) are
blackened. Localization data are taken from the indicated studies [39–42].
DOI: 10.1371/journal.pbio.0030328.g007
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on the H2A isoform Htz1 (unpublished data), provides a draft
sequence (see below) of the primary structure of half a
megabase of yeast chromatin. We wish to stress the
importance of the high resolution of our method for
deconvoluting the results of previous studies on histone
modification. The use of ;1-kb intergenic and coding probes
in standard microarray studies reports on mixtures of

multiple nucleosomes. For example, we show that the two
nucleosomes immediately adjacent to the TSS are generally
deacetylated at H4K16, whereas surrounding nucleosomes
are often highly acetylated (Figure 2B). As a result, the
acetylation level measured in standard microarray studies will
depend on the length of the 59 untranslated region (which is
especially confounding, as this correlates with functional
classifications of the encoded genes [46]); the length of the
entire intergenic region probed; and the nature of the
intergenic region (divergent or parallel genes), as the deacetyl
signals from the TSS will be diluted by these additional
nucleosomes in a complicated way. Furthermore, the ;300–
500-bp standard shear size used in microarray studies results
in some sampling of additional nearby nucleosomes outside
the borders of the microarray spot. Our methodology
eliminates all these confounding variables and also controls
for local variation in nucleosome density, thus dramatically
simplifying modification mapping.
We note, however, that our study is subject to the same

issues with antibody specificity that remain a crucial
limitation of ChIP studies—the epitope accuracy of any ChIP
study is determined by the specificity of the antibodies used.
We used the state-of-the-art in antibodies (see Materials and
Methods), but improvements in antibody specificity may
improve the fidelity of these experiments. In addition,
ensemble measurements such as those presented here
necessarily provide population averages, and we cannot rule
out the possibility that small subpopulations of cells in
different phases of the cell cycle, or in different epigenetic
states, might be characterized by modification patterns that
are obscured in the population average. Finally, this study
does not provide a complete sequence of chromatin’s
primary structure in our tiled region. A complete view of
the primary structure requires the addition of all additional
modifications, including core domain modifications, and,
ideally, the conformations of the nucleosomes studied.

Histone Tail Modifications Occur in Two Groups that Vary
Quantitatively
This mapping has allowed us to investigate combinatorial

questions raised by the framing of histone modifications as a
‘‘code.’’ Most importantly, we have shown that many histone
modifications are highly correlated with one another,
resulting in few discrete histone modification patterns.
However, we cannot say whether these modifications occur
in the same nucleosome or whether the correlations are due
to a mixture of partially modified nucleosomes at a given
location. Some modified residues may be correlated because
histone-modifying enzymes are not strongly residue-specific
[8,47], whereas other correlations may be due to histone-
modifying enzymes that are either recruited to chromatin by
association with other types of modification, or preferentially
act on tails carrying another modification [48–50]. Still other
modifications may be correlated because the relevant
modifying enzymes may be targeted by association with
similar complexes, such as RNA polymerase [23,51]. These
correlations suggest a high level of redundancy in yeast
histone modification, implying that the code is extremely
simple, carrying only a tiny fraction of the maximum possible
amount of information. Indeed, as principal component
analysis shows, we can compress the 12-dimensional space of

Figure 8. Modification Boundaries

(A) H3K4Me3 boundaries occur across TSSs. The x-axis represents the
level of H3K4Me3 for a given nucleosome, and the y-axis represents the
level of this modification for the preceding nucleosome. Pairs of
nucleosomes flanking the TSS for a gene on the W strand are plotted
as blue squares, and pairs flanking TSSs for genes on the C strand are
plotted as red squares. Remaining nucleosome pairs are plotted as grey
circles.
(B) Example of a punctate nucleosome. Histone modification plotted as
in Figure 1B for a subset of histone modifications. Arrow indicates a
nucleosome whose modification pattern differs significantly for
H3K4Me3 from nucleosomes to either side. Gene names are as labelled.
(C) Example of a punctate nucleosome, labelled as in (B).
DOI: 10.1371/journal.pbio.0030328.g008
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possible modification patterns onto two main axes, with only
a minor loss of accuracy.

This raises the important question of why so many
different modifications occur in the cell, yet such a small
subset of combinations is used. We suggest only a few possible
answers. First, the loss of a positive charge that occurs with
lysine acetylation should reduce the free energy of inter-
action with a negative charge by approximately 1–3 kcal/mol.
Thus, loss of multiple positive charges could lead to much
greater free energy changes in an interaction, and to a much
more pronounced change in interactions than would be
caused by a single acetylation. Furthermore, we note that at
any given nucleosome location the quantitative level of
acetylation varies, allowing for the possibility of ‘‘rheostat’’-
like control of transcription levels. This is consistent with
recent mutagenesis studies showing that transcriptional
response to H4K!R mutations is largely continuous and
analogue, rather than discrete and digital [24]. Second, it is
possible that multiple modifications occur together in order
to cause several distinct required events to occur, whether
they be co-occurring structural changes in the nucleosome or
the 30-nm fibre, or recruitment of protein complexes that
function together. This has been observed at the human
interferon-b promoter, wherein activation of the promoter
causes Gcn5-dependent acetylation of H3K9/14 and H4K8,
whose acetylation recruits TFIID and hSWI/SNF, respectively
[52]. If these protein complexes tend to function together,
then the recruiting modifications will be correlated. Third, if
modifications that occur together at steady-state do not occur
simultaneously, but rather in a temporal cascade [6], this
enables the possibility of complex signal filtering behaviour.
For example, if one histone acetylase were to acetylate a
single lysine, and that acetyl-lysine were to recruit a distinct
histone acetylase that acetylated another lysine, then a
requirement for both acetylations for transcription to occur
would produce a low-pass filter. This filter would reject
transient spikes in signalling pathways and allow transcrip-
tional outcomes only in response to sustained signalling. A
careful examination of the temporal response of histone
modifications to signalling will help determine if this might
occur for the correlated modifications. Finally, if one
modification recruits enzymes that modify the remaining
residues, then having multiple modifications allows for
switch-like behaviour [53,54].

Stereotyped Promoter Architecture
One of the two groups of histone modifications exhibits a

striking, stereotyped pattern in promoter regions. Nucleo-
somes immediately adjacent to the TSS are hypo-acetylated at
H2BK16, H4K8, and H4K16. This hypo-acetylation does not
correlate with transcription levels, and the inability of the
histone modification pattern at the gene-distal TSS-adjacent
nucleosome to accurately reflect transcriptional activity of
the associated gene (Figure 6C) does not support the idea that
upstream modifications are causal for transcription.

In separate work, we have identified this di-nucleosomal
domain that flanks the TSS as highly enriched for the H2A
isoform Htz1 (demonstrating that these nucleosomes do not
appear deacetylated due to some artifactual difficulty with
immunoprecipitation). Also, this enrichment is independent
of transcription (unpublished data). In other words, the
majority of promoter nucleosome-free regions in yeast are

surrounded on either side by nucleosomes with hypo-
acetylated H2BK16, hypo-acetylated H4K8 and K16, and
Htz1 in place of H2A. These results raise two questions: how
does this domain arise, and what is its functional role in
transcription?
Previous reports have shown that Rpd3 deacetylates one to

three nucleosomes when recruited to promoters [44],
consistent with the width of this deacetylation domain.
However, the generality of the pattern observed here suggests
that multiple distinct deacetylases function in this localized
manner, because Rpd3 is present at only a subset of the
promoters analyzed [31,43]. Alternatively, it is possible that
these nucleosomes turn over rapidly (due to the presence of
some assembly of chromatin-remodelling activities at pro-
moters), and that the histone isoform and modification
pattern exhibited reflects the composition of free histones
in the nucleoplasm. In either case, the function of this
domain remains elusive at present.

Relationship of Histone Modifications to Transcription
We have described a group of histone modifications that co-

occur, and that are preferentially found at the 59 ends of
actively transcribed genes. This relationship between histone
modification patterns, location relative to coding regions, and
transcript abundance, would be expected if histone modifica-
tion played a largely passive, rather than instructive, role in
transcription, with nucleosomes being modified by various
enzymes associated with RNA polymerase. This is clearly the
case, for example, for PolII-associated Set1, which is respon-
sible for the correlation between H3K4 tri-methylation over
the 59 end of coding regions and corresponding transcription
levels. A similar type of mechanism appears to hold for the
Set2-mediated tri-methylation of H3K36, which occurs over
transcribed genes [55]. However, mutant studies have shown
abundant transcriptional defects associated with mutations in
histone-modifying enzymes [56,57]. These studies cannot
determine whether histone modification is instructive or
permissive for transcription—in other words, whether histone
modifications initiate a chain of events that result in tran-
scription, or whether that gene is associated with a non-
permissive chromatin structure that must be antagonized
using the modification in question. We suggest that the
transcription-associated modifications play a permissive role
in gene expression, and that the transcriptional defects in
histone-modification mutants result from a partial inability of
RNA polymerase to transit unmodified nucleosomes [58,59],
or to a failure to recruit factors required for efficient
transcription [60]. However, we do not rule out the possibility
that histone modifications play both roles, with an initial mark
that is causal for a transcription pattern subsequently ‘‘erased’’
by modifications occurring with the resultant transcription.

The Histone Code
Taken together, these results do not support a model for

the histone code in which a vast set of widely varying
modification combinations play complicated instructive roles
in transcriptional regulation. Instead, these results further
extend genome-wide studies in Drosophila, which show that
histone modifications occur in few independent combina-
tions [25], and suggest that these patterns are often the result,
rather than the cause, of transcription. These results there-
fore emphasize a role for modifications of the histone tails as
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facilitators of transcription. It will be of great interest in
future studies to assay the dynamic nature of histone
modifications during changes in transcription, and the
establishment of histone modification patterns during DNA
replication.

Materials and Methods

Yeast culture. An aliquot of 450 ml of BY4741 bar1D cells was
grown to an A600 OD of 0.9 in 2-L flasks shaking at 200 rpm in a 28 8C
water bath. Formaldehyde (37%) was added to a 1% final concen-
tration, and the cells were incubated for 15 min at 25 8C, shaking, at
90 rpm. Then, 2.5 M glycine was added to a final concentration of 125
mM, to quench the formaldehyde. The cells were inverted and let to
stand at 25 8C for 5 min. The cells were spun down at 3,0003 g for 5
min at 4 8C and washed twice, each time with an equal volume of ice-
cold sterile water.

Micrococcal nuclease digestion. The cell pellets were resuspended
in 39 ml Buffer Z (1 M sorbitol, 50 mM Tris-Cl [pH 7.4]), 28 ll of b-ME
(14.3 M, final concentration 10 mM) was added, and cells were
vortexed to resuspend. Then, 1 ml of zymolyase solution (10 mg/ml in
Buffer Z; Seikagaku America, Falmouth, Massachusetts, United States)
was added, and the cells were incubated at 28 8C, shaking at 200 rpm,
in 50-ml conical tubes, to digest cell walls. Spheroplasts were then
spun at 3,000 3 g, 10 min, at 4 8C. Spheroplast pellets were
resuspended and split into aliquots of 600 ll of NP-S buffer (0.5
mM spermidine, 1 mM b-ME, 0.075% NP-40, 50 mM NaCl, 10 mM
Tris [pH 7.4], 5 mM MgCl2, 1 mM CaCl2) per 90-ml cell culture
equivalent. Forty units of micrococcal nuclease (Worthington
Biochemical, Lakewood, New Jersey, United States) were added, and
the spheroplasts were incubated at 37 8C for 20 min—this was
determined in initial titrations to yield . 80% mononucleosomal
DNA (see Figure S1), but to repeat these results an independent
titration should be carried out as a preliminary study. The digestion
was halted by shifting the reactions to 4 8C and adding 0.5 M EDTA to
a final concentration of 10 mM.

ChIP. All steps were done at 4 8C unless otherwise indicated. For
each aliquot, Buffer L (50 mM Hepes-KOH [pH 7.5], 140 mM NaCl, 1
mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate) compo-
nents were added from concentrated stocks (10–203) for a total
volume of 800 ll per aliquot. Each aliquot was incubated with 80–100
ll of 50% Sepharose Protein A Fast-Flow bead slurry (Sigma, St.
Louis, Missouri, United States) equilibrated in Buffer L for 1 h on a
tube rotisserie rotator. The beads were pelleted with a 1-min spin at
3,000 3 g, and approximately 2.5%–5% of the supernatant was set
aside as ChIP input material. With the remainder, antibodies were
added to each aliquot (20% of a 450-ml cell culture) in the following
volumes: 25 ll anti-H3K4Me1 Ab (affinity purified; Abcam, Cam-
bridge, Massachusetts, United States), 6 ll anti-H3K4Me2 Ab (affinity
purified; Abcam), 6 ll anti-H3K4Me3 Ab (affinity purified; Abcam), 4
ll anti-H4K16Ac Ab (whole antiserum; Abcam), 9 ll anti-H4K5Ac Ab
(whole antiserum; Abcam), 3 ll anti-H3K14Ac Ab (whole antiserum;
Upstate Cell Signaling Solutions, Charlottesville, Virginia, United
States), 3 ll anti-H2AK7Ac Ab (whole antiserum; Upstate), 2 ll, anti-
H4K8Ac Ab (whole antiserum; Abcam), 15 ll, anti-H4K12Ac Ab
(whole antiserum; Abcam), 25 ll anti-Ac Ab (whole antiserum;
Abcam), 16 ll anti-H3K9Ac Ab (affinity purified; Abcam), 25 ll
anti-H2BK16Ac (L) (whole antiserum; Abcam), and 3 ll anti-
H3K18Ac Ab (whole antiserum; gift of M. Grunstein). We also used
3 ll of a distinct antibody to H4K16Ac (whole antiserum; gift of M.
Grunstein) to assess specificity of different sources of antibody.
Replicates using this antibody were as correlated with each other as
they were with replicates using the Abcam antibody.

These were incubated, rotating, overnight (;16 h), after which the
sample was transferred to a tube containing 80–100 ll of 50% Protein
A bead slurry. The sample was incubated with the beads for 1 h for
the immunoprecipitation, after which the beads were pelleted by a 1-
min spin at 3,000 3 g. After removal of the supernatant, the beads
were washed with a series of buffers in the following manner: 1 ml of
the buffer would be added, and the sample rotated on the tube
rotisserie for 5 min, after which the beads would be pelleted in a 30-s
spin at 3,000 3 g and the supernatant removed. The washes were
performed twice for each buffer in the following order: Buffer L,
Buffer W1 (Buffer L with 500 mM NaCl), Buffer W2 (10 mM Tris-HCl
[pH 8.0], 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1mM
EDTA), and 13 TE (10 mM Tris, 1 mM EDTA [pH 8.0]). After the last
wash, 125 ll of elution buffer (TE [pH 8.0] with 1% SDS, 150 mM
NaCl, and 5 mM dithiothreitol) was added to each sample, and the

beads were incubated at 65 8C for 10 min, with frequent mixing. The
beads were spun for 2 min at 10,000 3 g, and the supernatant was
removed and retained. The elution process was repeated once for a
total volume of 250 ll of eluate. For the ChIP input material set aside,
elution buffer was added for a total volume of 250 ll. After overlaying
the samples with mineral oil, the samples were incubated overnight at
65 8C to reverse cross-links.

Antibody specificity. A significant concern with ChIP studies is the
epitope specificity of the antibodies used. High correlations between
different modifications could arise if two antibodies cross-reacted.
We note four reasons that this is unlikely to be a major problem for
this study. First, if antibodies did indeed cross-react, then the
resulting profiles should look like some weighted average (depending
on relative affinities of the two antibodies) of the two ‘‘pure’’ profiles.
If there were a third modification pattern (besides what we term the
transcription-dependent and transcription-independent patterns), then the
two antibodies in question would be expected to show a third mixed
pattern, distinct from the two patterns described, and this was not
observed. On the other hand, if only two true patterns do exist but
there is cross-reactivity for antibodies, the mixed profile is expected
to show a 59 gradient of acetylation, along with two deacetyl
nucleosomes adjacent to the TSS. This pattern was seen for H2AK7,
but, as we note, this is likely due to the replacement of H2A with Htz1
at the TSS-adjacent nucleosomes. Furthermore, this pattern was not
seen for the H3K14 antibody, which recognizes lysine in the context
of a similar site to that of H2AK7 (GGKA). So we do not believe that
these antibodies are cross-reacting.

Second, we repeated experiments for one of the epitopes in this
study (H4K16) with two distinct antibodies, and the results were
indistinguishable. One of these antibodies, from the Grunstein lab,
was previously tested for cross-reactivity by attempting ChIP from
strains carrying the H4K16R mutation [37].

Third, there are two pairs of antibodies for which cross-reaction is
most likely to be a concern: H4K5 and K12 (both lysines occur in the
context of GKGG), and H2AK7 and H3K14 (both occur in the context
of GGKA). However, within each pair, the two antibodies are more
highly correlated with other antibodies in their group than with the
other antibody with a similar recognition site (see Figure 3C). If these
antibodies had cross-reacted, then their profiles should be the most
highly correlated. In addition, technical literature from Upstate
shows that both the H2AK7 and H3K14 acetylation antibodies fail to
immunoprecipitate DNA from yeast strains carrying the appropri-
ately mutated recognition site.

Finally, it is worth noting that even if a pair or two of antibodies
cross-reacted, the point that histone modifications occur at reduced
dimensionality would still hold. Instead of 12 dimensions reducing to
two dimensions, we would say, for example, that 10 dimensions
reduce to two. This is not, to our thinking, a significant change in the
central message of this study. In addition, it would not challenge the
other main points of the manuscript, that the two TSS-adjacent
nucleosomes exhibit a stereotyped modification pattern and that
most of the histone modification that correlates with transcription
levels occurs over coding regions.

Protein degradation and DNA purification. After cooling the
samples down to room temperature, each sample was incubated with
an equal volume of proteinase K solution (13 TE with 0.4 mg/ml
glycogen, and 1 mg/ml proteinase K) at 37 8C for 2 h. Each sample was
then extracted twice with an equal volume of phenol and once with
an equal volume of 25:1 chloroform:isoamyl alcohol. Phase-lock gel
tubes were used to separate the phases (light gel for phenol, heavy gel
for chloroform:isoamyl alcohol). Afterwards, 0.1 volume 3.0 M sodium
acetate [pH 5.3] and 2.5 volumes of 100% ice-cold ethanol were
added, and the DNA was allowed to precipitate overnight at �20 8C.
The DNA was pelleted by centrifugation at 14,0003 g for 15 min at 4
8C, washed once with cold 70% ethanol, and spun at 14,000 3 g for 5
min at 4 8C. After removing the supernatant, the pellets were allowed
to dry and then were resuspended in 20 ll 10 mM Tris-Cl, 1 mM
EDTA [pH 8.0], and 0.5 lg of RNase A was added. The samples were
incubated at 37 8C for 1 h, and then treated with 7.5 units of calf
intestinal alkaline phosphatase in a 30-ll volume supplemented with
NEB Buffer 3 (103 concentration of 100 mM NaCl, 50 mM Tris-HCl
[pH 7.9], 10 mM MgCl2, 1 mM dithiothreitol). The samples were then
incubated for a further 1 h at 37 8C and then cleaned up with the
Qiagen MinElute Reaction Cleanup Kit (Qiagen, Valencia, California,
United States), following manufacturer’s directions, except with an
elution volume of 20 ll.

Linear amplification of DNA. The samples were amplified, with a
starting amount of 125 ng for ChIP input materials and up to 75 ng
for ChIP samples, using the DNA linear amplification method
described in BMC Genomics 4:19 [32].
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Microarray hybridization. RNA produced from the linear ampli-
fication (3 lg) was used to label probe via the amino-allyl method as
described at http://www.microarrays.org. Labelled probes were
hybridized onto a yeast tiled oligonucleotide microarray [29] at 65
8C for 16 h, and washed as described at http://www.microarrays.org.
The arrays were scanned at 5-lm resolution with an Axon
Laboratories (Sunnyvale, California, United States) GenePix 4000B
scanner running GenePix 5.1.

Image analysis and data processing. Array features were filtered
using the autoflagging feature of GenePix 5.1 with the following
criteria defining features to be discarded: [Flags]¼ [Bad], or [Flags]¼
[Absent], or [Flags] ¼ [Not Found], or LCase([ID]) ¼ ‘‘empty’’, or
LCase([ID]) ¼ ‘‘blank’’, or ([SNR 635] , 3 and [SNR 532] , 3), or [F
Pixels] , 100, or ([F Pixels] , 150 and [Circularity] , 75).

The remaining features for each array were then block-normalized
by calculating the average net signal intensity for each channel in a
given block, and then taking the product of this average and the net
signal intensity for each filtered array feature in the block.
Afterwards, all block-normalized array features were normalized
using a global average net signal intensity as the normalization factor.

Each histone tail modification epitope was chromatin-immuno-
precipitated in three to six biological replicates, with additional
technical replicates of the microarray hybridizations. Outlying
replicates were removed (with a minimum remainder of three
replicates), and the median was calculated and used for subsequent
data analysis.

Normalization of modification and PolII data. Each assay was
repeated three to six times, and median values per probe were
calculated. Measurements for each antibody were first log (base 2)
transformed and then normalized (to mean of zero and variance of
one).

Data availability. Data can be viewed at http://compbio.cs.huji.ac.il/
Nucs. Data are downloadable at http://www.cgr.harvard.edu/
chromatin, and have been deposited in GEO.

Clustering of aligned genes. The genes were clustered using
PCluster, a probabilistic hierarchical clustering algorithm [61].
Probes at locations relative to gene reference point, either beginning
of coding sequence (CDS) (Figure 2A) or TSS (Figure 2B), are used as
attributes of the gene. Linker probes (based on the nucleosome
locations of [29]) were discarded and treated as missing values.

Splitting genes into transcriptional groups. Each gene was assigned
a transcription activity value based on the average enrichment of
PolII along CDS probes. Genes with less than five CDS probes were
removed to reduce noise. We then used thresholds of 0.75 and�0.75
to classify genes as highly, mid-, and untranscribed. This resulted in
75 highly transcribed genes, 192 intermediate genes, and 57 poorly
transcribed genes. We also repeated the analysis presented in Figure
2C using mRNA abundance rather than PolII occupancy to bin genes
(Figure S4), and the results were qualitatively indistinguishable.

Averaging probes into nucleosomal-based data. A total of 24,947
probes were assigned to 2,288 nucleosomes using a four-probe
minimum size cutoff [29]. We used the hand-called set of nucleosome
positions (these were generated by inspection and adjustment of the
automated hidden Markov model calls; these positions are provided
in the dataset associated with [29]), as that set covered a slightly
greater fraction of the genome. Results are qualitatively unchanged
when only HMM calls are used (unpublished data). For each antibody,
the nucleosomal values were set by the median levels of relevant
probes.

Genomic classification of nucleosomes. Nucleosomes were anno-
tated based on their relative position to nearby genes. Nucleosomes
in the first (or last) 500 bp of annotated genes were annotated as 59
CDS (or 39 CDS) nucleosome. Other CDS nucleosomes were
annotated as mid-CDS. The two TSS adjacent nucleosomes were
annotated as TSS distal (59) and proximal (39) nucleosomes.
Nucleosomes upstream (up to 1 kb or closer to non-dubious CDSs)
were annotated as promoter nucleosomes. Nucleosomes around
tRNA genes (200 bp from each side) or ARS elements (200 bp from
each side) were annotated as tRNA or ARS nucleosomes. Other
nucleosomes were annotated as null. In certain cases, we allowed
more than one annotation per nucleosome; for instance, a
nucleosome between two divergent genes can be annotated as TSS-
proximal for one gene, and a promoter nucleosome for another one.

Single nucleosome clustering. Nucleosomes were clustered using
PCluster [61], treating each nucleosome as a vector of 12 values.

Principal component analysis. Principal component analysis was
applied to the nucleosomal modification data of 2,288 nucleosomes
versus 12 modifications using MATLAB 6.5 (rel 13) procedure
‘‘princomp.’’ Density visualization was done using Parzen windows

density estimator with Gaussian kernels (with standard deviation of
0.3) .

Genomic enrichment of modifications. We compared the mod-
ifications of nucleosomes affiliated with each genomic location
(promoter, TSS distal, etc.) to all other nucleosomes, using a standard
two-tail t-test. To correct for multiple hypotheses, we used a 5% false
discovery rate procedure [62]. The average change was then
calculated for , modification, genomic location . pairs with
significant p-values.

Transcription-specific modifications. To identify specific modifi-
cations at genomic locations with significant correlations to
expression levels of nearby genes, we trained a classification method
to predict whether a nucleosome was associated with genes enriched
or depleted for PolII. To prevent biased results, we applied a leave-
one-out cross-validation procedure in which the tested nucleosome
was removed from the training set, and a classifier was trained on the
rest of the nucleosomes and used to predict the held-out nucleosome
label. We used a Naive Bayes classifier [63] using the implementation
described [64]. We then classified the held-out nucleosome, based on
the probability of its modification pattern under each of the classes.
We computed the overall accuracy of classification and a p-value by
repeating the same leave-one-out procedure with randomly re-
shuffled nucleosome labels.

Functional classification of nucleosomes. We used recent genomic
studies [39–41] and compiled a set of target promoters for each
factor. We then tested the promoter and TSS-distal and TSS-
proximal nucleosomes of these genes for enrichment of specific
modifications. In addition, we created a subset of the target
nucleosomes of Harbison et al., by restricting the nucleosomes to
those up to 100 bp away from putative binding sites bound in rich
growth conditions [42]. As described earlier, we compared the
‘‘bound’’ nucleosomes to all other promoter/TSS nucleosomes, and
used a false discovery rate-corrected two-tail t-test.

Supporting Information

Dataset S1. Complete Dataset

Individual worksheets contain data for all individual replicates before
range normalization, for combined median data organized by
epitope, and for combined median data after range normalization.

Found at DOI: 10.1371/journal.pbio.0030328.sd001 (48 MB XLS).

Dataset S2. Replicate Reproducibility

Data contain correlations between individual experiments for each
antibody.

Found at DOI: 10.1371/journal.pbio.0030328.sd002 (24 KB XLS).

Figure S1. Digestion of Chromatin to Mononucleosomes before
Immunoprecipitation

Gels show micrococcal nuclease-digested DNA from multiple
independent cultures used for the immunoprecipitations reported
here. Molecular markers are as indicated. Blue dots indicate
nucleosomal DNA used for immunoprecipitations, while green dots
show sonicated DNA from the same culture. Digested DNA used for
immunoprecipitation was typically . 80% mononucleosome.

Found at DOI: 10.1371/journal.pbio.0030328.sg001 (674 KB PDF).

Figure S2. Low Levels of Histone Modification over Heterochromatin

Data are plotted as in Figure 1B. Chromosome III coordinates are
shown above the modification data. Three panels show data for a
portion of (from left to right) TelIIIL, HML, and TelIIIR. Only partial
regions of the three are shown, as the remainder was not tiled due to
cross-hybridization concerns [29].

Found at DOI: 10.1371/journal.pbio.0030328.sg002 (551 KB PDF).

Figure S3. Broad Patterns of Histone Modifications

Data are aligned by the TSS, and plotted as in Figure 2B for all
remaining modifications, as indicated.

Found at DOI: 10.1371/journal.pbio.0030328.sg003 (1.8 MB PDF).

Figure S4. Relationship of Histone Modifications to mRNA Abun-
dance

Genes were grouped into low, medium, and high mRNA abundance
classes using data from competitive hybridizations of mRNA versus
genomic DNA on cDNA microarrays (CLL and SLS, unpublished
data). Low-abundance mRNAs were defined as those with log(2) ratios
less than �1, while high-abundance mRNAs were defined as those
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exhibiting log(2) ratios greater than 1. Histone modification data are
averaged and displayed as in Figure 2C, and results are qualitatively
indistinguishable from those generated using PolII occupancy to
classify genes.

Found at DOI: 10.1371/journal.pbio.0030328.sg004 (676 KB PDF).

Figure S5. Representation of the First Two Principal Components

The first component (left panel) consists of all positive coefficients
(plotted on the y-axis), and therefore captures the global magnitude
of modification (both acetylation and methylation). The second
component differentiates between the two groups of correlated
modifications (see Figure 3C). Bars indicate different epitopes as
indicated.

Found at DOI: 10.1371/journal.pbio.0030328.sg005 (512 KB PDF).

Figure S6. Principal Component Analysis of Nucleosome Modifica-
tions

Data plotted as in Figure 4B and 4C, right panels.

Found at DOI: 10.1371/journal.pbio.0030328.sg006 (580 KB PDF).

Figure S7. Nucleosome Modifications Relate to Transcription Level

Classification plot as described in Figure 5, using mid-CDS
nucleosomes. The average accuracy of random classification was
61.27%, with a standard deviation of 5.76%. Accuracy of classifier was
82.65% (p , 0.0001).

Found at DOI: 10.1371/journal.pbio.0030328.sg007 (397 KB PDF).

Accession Numbers

The Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo) accession numbers for the experiments described here are
GSM64526–GSM64587, GSM64591, and GSM64592, and are part of
series accession number GSE2954.
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II acceptor adjacent to the proposed donor site,
with the 4-OH end available for interaction with
both E114 and C1 of the donor sugar. This
position of lipid II is comparable to that of
subsites +1 and +2 of the substrate in lL (15),
with the prereaction GT51 substrates similar to
the postreaction lysozyme products.

We propose that E114 is a Brønsted base
and acts to directly abstract a proton from the
4-OH group of the lipid II acceptor. The de-
protonated form of E114 may be stabilized by
the adjacent R249 residue, strictly conserved as
part of motif V. The proton abstraction step prob-
ably occurs concomitantly with the electrophilic
migration of the donor C1 toward the acceptor
4-OH group (Fig. 4, A and B). In the moenomy-
cin complex, the conserved E171 residue lies
closer to the glyceric acid moiety than the
phosphate-sugar linkage (the b phosphate in
our substrate model), which in combination with
pH activity profiles of the E. coli PBP1b enzyme
(16) casts some doubt on whether E171 proton-
ates the sugar-phosphate linkage to assist catal-
ysis. Furthermore, mutants of this residue in
E. coli PBP1b retain some residual activity,
whereas those of our predicted Brønsted base,
E114, do not (9). If E171 does not act to proton-
ate the substrate, then we propose that it helps to
coordinate the pyrophosphate group of the donor,
either directly or via a divalent metal cation. The
variable pH optima and divalent cation require-
ments of the GT51 family of enzymes (17–19)
may result from varying local environments of
the E171 residue. The SN2-like reaction occurs
between donor and acceptor, causing inversion at
the donor C1 anomeric carbon and formation of

the b1,4-linked product. The lipid-pyrophosphate
leaving group of the donor is then free to diffuse
away and be recycled in lipid II synthesis. We
propose that translocation of the newly formed
product to the donor site is assisted by a higher
affinity for the pyrophosphate moiety in the
donor site than in the acceptor site, with the con-
served positively charged K155, K163, R167,
and K168 residues located near the donor
pyrophosphate region of the active site (Fig. 4C).
This model is again reminiscent of the lysozyme
active site, where the +1 and +2 subsites that
match the modeled GT51 acceptor sugars possess
the lowest substrate affinity of all the subsites.
These two structures now provide a basis for
addressing further questions about the mecha-
nism of this important family of enzymes and for
the design of new antibacterials. This work also
opens the door for understanding structure and
function relationships in other clinically impor-
tant families of lipid-sugar GTs.
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Dynamics of Replication-Independent
Histone Turnover in Budding Yeast
Michael F. Dion,1*† Tommy Kaplan,2,3* Minkyu Kim,4 Stephen Buratowski,4
Nir Friedman,2 Oliver J. Rando1†‡

Chromatin plays roles in processes governed by different time scales. To assay the dynamic
behavior of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover
in G1-arrested Saccharomyces cerevisiae at single-nucleosome resolution over 4% of the
genome, and at lower (~265 base pair) resolution over the entire genome. We find that
nucleosomes at promoters are replaced more rapidly than at coding regions and that replacement
rates over coding regions correlate with polymerase density. In addition, rapid histone turnover is
found at known chromatin boundary elements. These results suggest that rapid histone turnover
serves to functionally separate chromatin domains and prevent spread of histone states.

Characterizing the dynamic behavior of
nucleosomes is key to understanding the
diversity of biological roles of chromatin.

Nucleosomes are evicted at many yeast pro-
moters during gene activation (1–4) and are
reassembled in trans upon repression (5). In
Drosophila, active transcription leads to replace-
ment of histone H3 by the variant isoform H3.3
(6, 7), whereas in budding yeast (whose only H3

is an H3.3 homolog), passage of RNA polymer-
ase II (Pol II) results in eviction of nucleosomes
from some (8), but not all (9), coding regions. In
contrast, studies in Physarum polycephalum sug-
gest that H3 is not replaced during Pol II
transcription (10). Furthermore, recent results in
yeast suggest that H4 deposition is independent
of transcription status (11). The disagreement
between these studies leads us to map the locus-

specific turnover rate of histone H3 at genomic
scale so as to address two questions. First, is there
evidence for general transcription-dependent H3
turnover? Second, are there additional mecha-
nisms for histone turnover?

To measure turnover rates, we used yeast
carrying constitutively expressed Myc-tagged
histone H3, as well as an inducible Flag-tagged
H3 (5) (fig. S1). Flag-H3 was induced in G1-
arrested cells for varying amounts of time,
chromatin was cross-linked and digested to
mononucleosomes (12), and Myc- and Flag-
tagged histones were immunoprecipitated sepa-
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rately. Amplified DNAs were competitively
hybridized to a 20–base pair (bp) resolution
microarray covering 4% of the genome (13),
yielding Flag/Myc ratios at each time point for
each nucleosome on our array (Fig. 1A).We then
estimated the turnover rate (number of H3
replacement events per unit of time) of each
nucleosome using a simple analytical model that
fits the experimental data with a small number of
parameters (14, 15) (Fig. 1B).

To test the validity of our results, we repeated
the experiment in unsynchronized yeast (fig. S2),
observing well-correlated but consistently faster
turnover rates, as expected given global H3
deposition during genomic replication (Fig. 2
and fig. S3). We analyzed turnover rates in G1-
arrested cells across the entire yeast genome using
commercial microarrays with ~265-bp resolution
(16, 17) (fig. S4) and obtained a high correlation
between rates from the two distinct measurement
platforms (fig. S5). We also measured whole-
genome histone occupancy (1, 3) (13), finding

that H3 replacement rates were weakly anticorre-
lated with H3 occupancy (fig. S6).

These results are consistent with those ex-
pected of H3 replacement from a free pool of H3
and demonstrate that we can recover semiquan-
titative turnover rates from time-course experi-
ments. The time required for production of Flag-H3
(30 to 45 min) limits our ability to measure the
rates of the hottest nucleosomes, which accu-
mulate Flag-H3 before any protein can be
detected by Western blot. We therefore caution
against literal interpretation of turnover rates,
because parameter choices (e.g., Flag-H3 degra-
dation rate) affect absolute turnover rates; howev-
er, over a wide range of parameters, the ratio
between estimated rates is robust. The resulting
rate estimates span one to two orders ofmagnitude
(depending on measurement platform) between
“cold” nucleosomes that rarely turn over and hot
ones whose replacement rate is faster than the
time granularity of our experiment (Fig. 1C and
Fig. 3B).

We compared high-resolution turnover rates to
previously measured features of these nucleo-
somes (12, 17, 18) (Fig. 2 and fig. S7). Nucleo-
somes over protein-coding regions were coldest,
whereas promoter nucleosomes were generally
hot. Correspondingly, hot nucleosomes were de-
pleted of the histone modifications that are
“stereotypically” depleted surrounding the tran-
scription start site (TSS) (12) and were conversely
enriched for the histoneH2AvariantHtz1 (16, 18).

These results are notable for two reasons.
First, they suggest that replacement of TSS-
adjacent nucleosomes with an appropriately
modified nucleoplasmic pool could be partially
responsible for promoter patterns of histone
modification. Second, erasure of histone mod-
ifications due to rapid turnover would result in a
steady-state picture of stereotyped promoter
chromatin that does not capture transient states,
potentially hiding any number of informative
histone modification events.

Analysis of median replacement rates for
various genomic loci confirmed that the most
rapid turnover occurs over promoters, tRNA, and
small nucleolar RNA genes (Fig. 3, A and B, and
fig. S8). Most unexpected, given the dynamic
H3.3 replacement overDrosophila genes (7, 19),
was the slow H3 turnover over protein-coding
genes. Indeed, the coldest probes, mid–coding
region probes, cover 28% of the genome yet
account for only 10% of turnover. Despite the
slower H3 turnover in coding regions, relative
variation of turnover rates among coding regions
might correlate with polymerase activity. For
example, histone turnover over the alpha factor–
inducible geneFUS1 ismore rapid in alpha factor–
arrested cells than in unsynchronized cells (Fig. 3C
and fig. S9). We therefore measured Pol II en-
richment across the entire yeast genome, finding
that polymerase enrichment over genes exhib-
ited good correlation (r2 = 0.54, P < 6 × 10−17)

Fig. 1. Time courses of
histone turnover in yeast.
(A) H3 turnover for 23
adjacent nucleosomes in
G1-arrested yeast cul-
tures. Flag and Myc were
immunoprecipitated at
various time points after
Flag-H3 induction ( x
axis), and Flag/Myc ratios
( y axis) were measured
bymicroarray. (B) A com-
putational model reduces
time course data to a
single turnover parame-
ter l (frequency of his-
tone turnover events, in
units of min−1), repre-
sented as the leftmost
red-to-green color bar.
Measured time-course
data and data simulated using l values are represented as blue-yellow heat
maps (right). Theminor differences (Residual) betweenmeasured and simulated
data demonstrate that our model captures the majority of histone turnover

dynamics during G1 arrest. (C) Distribution of turnover rates for nucleosomes in
G1-arrested yeast. Binned turnover rates are color coded as in (B). (D) Sample
genomic stretch, with nucleosomes (A) color coded by turnover rate.

Fig. 2. Relation between histone
modifications and H3 turnover,
nucleosomes (columns) versus anno-
tations (rows). Nucleosomes are
ordered by turnover rate (red-to-
green). Modification and Htz1 levels
(12, 18) are shown in yellow-to-blue
heat maps, where yellow represents
enrichment. The bottom panel shows
genomic locations (12): 5′ and 3′ TSS
refer to nucleosomes surrounding
the transcriptional start site; pro-
moter indicates other upstream
probes. Protein-coding sequences
are separated into 5′, middle, and
3′. Other annotations describe au-
tonomously replicating sequences
(ARSs), tRNA genes, and Null (any
other intergenic region).

promoter
5' TSS
3' TSS
5' CDS

mid-CDS
3' CDS

NULL
tRNA
ARS

H3K18Ac
H4K12Ac
H3K9Ac

H3K14Ac
H4K5Ac

H2AK7Ac
H4K8Ac

H2BK16Ac
H4K16Ac

G1

Htz1

H3K4Me1

unsynch

H3K4Me3
H3K4Me2
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with histone replacement rates (Fig. 3D). This is
consistent with RNA polymerase passage evict-
ing nucleosomes in some cases, although many
highly transcribed genes (RPL37B, for example)
exhibit low turnover rates.

Although polymerase passage and the result-
ing histone eviction represent a plausible first
step for coding region histone turnover, they are
unlikely to account for the bulk of histone
replacement (Fig. 3A). Promoters of hot coding
regions tend to be hot, but the converse is not
true: Most hot promoters were adjacent to cold
coding regions (e.g., Fig. 1D). Moreover, re-
placement rates at promoters were, unlike those
at coding regions, poorly correlated with poly-
merase abundance, either at the promoter or over
the coding region (fig. S10), making it unlikely
that promoter turnover is solely a result of poly-
merase activity.

To systematically characterize promoter his-
tone turnover, we tested the hottest subset of
promoters for enrichment of published experi-
mental and computational annotations (table S6).
The hottest promoters include those carrying
binding sites for a subset of transcription factors
(such as Rap1, Reb1, Gcn4, and Adr1), those
upstream of genes regulated by chromatin-
modulating complexes (e.g., Ssn6/Tup1, Media-
tor, SAGA, Swi/Snf, and Sir), and those
upstream of genes associated with nuclear pore
components (e.g., Cse1, Mlp1, Nup116, and
Nup2). Clustering hot promoters based on en-
riched annotations yielded independent clusters
(Fig. 4A and fig. S11), such as a group of hot
promoters associated with nuclear pore compo-
nents (20). These separate clusters suggest that
the many enrichments identified potentially

Fig. 3. Slow histone replacement over protein-
coding genes. (A) Median turnover rates for genomic
annotations (from whole-genome data). (B) Probe-
level distributions of transcribed regions compared
with the entire data set. X axis (logarithmic scale)
shows turnover rate. Y axis shows fraction of probes
within each rate bin. (C) FUS1 coding region and
associated nucleosomes, color coded according to
turnover rates from high-resolution microarray
experiments on unsynchronized yeast cultures (top),
and G1-arrested cultures (bottom). (D) Scatter plot of
coding region histone turnover (whole-genome data)
versus log2 of Pol II enrichment.

Fig. 4. Rapid turnover at promoters is associated with multiple partially overlapping features. (A)
Hot promoters were tested for significantly enriched (p < 10−7) annotations. Cluster diagram shows
hot promoters as rows, annotations (table S6 and fig. S11) as columns. Black bars indicate positive
annotations for a given promoter. (B to D) Overlap between hot promoters and pairs of enriched
annotations. P value shows significance of overlap between pairs of annotations, given the extent
of their overlap with hot promoters (hypergeometric distribution). SAGA-dominated genes are
enriched for TATA-containing promoters (B) and are moderately correlated with Cse1-bound genes
(C), whereas promoters with Rap1 sites are not enriched upstream of genes exhibiting high Pol II
levels in our experiment (D).

www.sciencemag.org SCIENCE VOL 315 9 MARCH 2007 1407

REPORTS

 o
n 

M
ar

ch
 8

, 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

83



reflect multiple, partially overlapping mecha-
nisms for rapid promoter turnover (Fig. 4, B to
D). Some enrichments suggest clear hypotheses
about the mechanism for rapid turnover (e.g.,
rapid histone replacement at Swi/snf-regulated
promoters may well be a consequence of Swi/snf
action), whereas other enrichments are less
illuminating (e.g., what causes rapid replacement
at nuclear pores?).

Many features of hot nucleosomes (includ-
ing Htz1, tRNA genes, nuclear pore association,
and Rap1 and Reb1 sites) are associated with
boundaries that block heterochromatin spreading
in yeast (21–24). How do boundaries block
lateral spreading (25) of chromatin states?
Suggested mechanisms include long gaps be-
tween nucleosomes, or recruited acetylases that
compete with spreading deacetylation (26, 27).
The rapidH3 replacement at boundary-associated
regions suggests an alternative hypothesis: that
constant replacement of nucleosomes serves to
erase a laterally spreading chromatin domain
before it spreads any further (fig. S12). To
investigate the role of Htz1 (whose role in
boundary function is poorly understood) in his-
tone replacement, we measured Flag-H3 incor-
poration in htz1D mutants, finding globally
slowed H3 incorporation but few locus-specific
effects (14). Further experiments will be required
to untangle this relationship and to evaluate the
role of rapid turnover at chromatin boundaries.

We have measured H3 replacement rates
throughout the yeast genome, finding that nu-
cleosomes over coding regions are replaced at
high transcription rates, although most turnover
occurs over promoters and small RNA genes.
What function is served by histone replacement
at promoters? Rapid turnover could transiently
expose occluded transcription factor binding sites

or it could ensure, by erasure of promoter chro-
matin marks, that transcriptional reinitiation
occurs only in the continuing presence of an
activating stimulus. Whatever the function, one
important implication is that steady-state local-
ization studies of histone marks could be con-
founded by dilution with histones carrying the
average modification levels of the free histone
pool, making dynamic or genetic studies key to
deciphering any instructive roles of histone
marks in transcriptional control. Finally, rapid
turnover occurs at chromatin boundaries [see also
(28)]. We propose that erasure of histone marks
(or associated proteins) by rapid turnover delim-
its the spread of chromatin states. We further
speculate that the widespread histone turnover at
promoters throughout the compact yeast genome
could serve, in a sense, to “expand” the genome
by preventing chromatin states of adjacent genes
from affecting each other.
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Histone Replacement Marks the
Boundaries of cis-Regulatory Domains
Yoshiko Mito,1,2 Jorja G. Henikoff,1 Steven Henikoff1,3*

Cellular memory is maintained at homeotic genes by cis-regulatory elements whose mechanism of
action is unknown. We have examined chromatin at Drosophila homeotic gene clusters by measuring,
at high resolution, levels of histone replacement and nucleosome occupancy. Homeotic gene clusters
display conspicuous peaks of histone replacement at boundaries of cis-regulatory domains
superimposed over broad regions of low replacement. Peaks of histone replacement closely correspond
to nuclease-hypersensitive sites, binding sites for Polycomb and trithorax group proteins, and sites of
nucleosome depletion. Our results suggest the existence of a continuous process that disrupts
nucleosomes and maintains accessibility of cis-regulatory elements.

Chromatin can be differentiated by the
replication-independent replacement of
one histone variant with another (1). For

example, histone H3.3 is deposited throughout
the cell cycle, replacing H3 that is deposited
during replication (2–4). Unlike replication-
coupled assembly of H3, which occurs in gaps

between old nucleosomes on daughter helices,
the insertion of H3.3 is preceded by disruption
of preexisting histones during transcription and
other active processes (3, 5). We have previous-
ly shown that H3.3 replacement profiles resemble
those for RNA polymerase II (2), which suggests
that gradual replacement of H3.3 occurs in the

wake of transiting polymerase to repair disrupted
chromatin (1). Here, we ask whether histone re-
placement and nucleosome occupancy are also
distinctive at cis-regulatory elements.

Log-phase Drosophila melanogaster S2 cells
were induced to produce biotin-tagged H3.3 for
two or three cell cycles (2). DNA was extracted
from streptavidin pull-down assay and input
material, labeled with Cy3 and Cy5 dyes, and
cohybridized to microarrays. To provide a stan-
dard, we profiled biotin-tagged H3-containing
chromatin in parallel. Analysis of H3.3/H3 levels
over the entire 3R chromosome arm revealed that
the ~350-kb bithorax complex (BX-C) region
displays the lowest H3.3/H3 ratio of any region
of comparable size on 3R, and the Antennapedia
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Discussion and Conclusions 
During my PhD studies, I aimed to gain further understanding of the basic principles 

of transcriptional regulation in eukaryotes. The regulation of gene expression is 

crucial for the proper cell functions and is achieved by a complex network of 

regulators acting at various levels. Throughout my studies I explored the various 

mechanisms involved in regulation of gene expression.  I began my journey from the 

near atomic level of protein-DNA interactions (Chapter 1). I continued by developing 

sophisticated mathematical models for transcription factor binding sites (Barash et al., 

2003) and their genomic applications (Barash et al., 2005) (not included in this 

dissertation). I then developed computational algorithms to explore the combinatorial 

interactions between transcription factors (Chapter 2). Finally, I focused on the 

packaging of DNA and its temporal dynamics (Chapters 3 and 4).  

This discussion is divided into three parts:  The first part concerns Chapter 1, and 

reviews various aspects of our manuscript from 2005, as well as additional updates in 

the field. The second part deals with strategies to analyze more complex regulatory 

systems, in terms of combinatorial interactions between transcription factors, as 

presented in Chapter 2. Finally, I discuss the role of higher order aspects of 

transcriptional regulation, as reflected by the studies presented in Chapters 3 and 4. 

Ab initio prediction of transcription factor targets using structural 

knowledge 
The ever growing availability of genomic sequences, together with the limited rate in 

which proteins can be experimentally characterized, has created a huge number of 

novel proteins, known by their sequence only. This regards also transcription factors, 

which are identified as such by their sequence only, but for which there is no 

information about the binding sites or target genes. To bridge this gap, I developed a 

novel computational algorithm, which uses structural information in order to predict 

the DNA motifs (and putative binding sites) of transcription factors from their 

sequence. The concept of predicting transcription factor binding sites based on 

structural knowledge was presented several years prior to the publication of our work 

(Kono and Sarai, 1999; Mandel-Gutfreund et al., 2001; Benos et al., 2002; Endres et 

al., 2004; Havranek et al., 2004). It relies on two well studied concepts in structural 

biology. First is the use of the 3D structure of one protein as a structural template for 
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other proteins from the same family. This dogma has been employed for many years 

in various structure prediction algorithms (Lemer et al., 1995; Rost and Sander, 1996; 

Rost et al., 1997; Karplus et al., 1999; Skolnick and Fetrow, 2000). Second, the 

energetic preference of protein-DNA interactions are general, and arise from the 

physicochemical properties of amino acids and nucleotides (von Hippel, 1994; 

Mandel-Gutfreund and Margalit, 1998; Luscombe et al., 2001; Mandel-Gutfreund et 

al., 2001). When put together, these concepts allow to use known protein-DNA 

structures to analyze the sequence of novel proteins, identify which residues will 

interact with the DNA, and then predict their binding preferences. Additional studies 

focused on specific structural families, and showed that a particular amino acid may 

have different binding preferences depending on its positional context (Choo and 

Klug, 1994; Choo and Klug, 1994; Kono and Sarai, 1999).  

My study contributed to this line of studies by two means. First, the previous studies 

relied on solved protein-DNA complexes to estimate the amino acid-nucleotide 

binding preferences. Those structures provide details at the atomic level, but their 

number is limited. For example, when we started our study, the largest structural 

compilation of protein-DNA interactions, by Mandel-Gutfreund and Margalit (1998), 

was based upon 53 solved complexes, and surveyed 218 nucleotide-amino acid 

interactions in total (major groove interactions only). To overcome this limitation, I 

developed a computational algorithm to expand our input data and also process 

sequence pairs of transcription factors and their cognate natural binding sites. Such 

data are much easier to obtain. For example, by extracting the sequences of 

experimentally verified binding sites from the TRANSFAC database (Wingender et 

al., 2001), I estimated the recognition preferences based on 5367 interactions, from 

455 protein-DNA pairs. This allowed me to estimate the binding preferences using 25 

times more data. Second, this wealth of data (due to our sequence-based approach) 

allowed me to estimate more specialized, context-specific binding preferences. While 

previous studies estimated the amino acid-nucleotide preferences based on protein-

DNA interactions from a variety of structural families, I focused on a single family 

(the C2H2 zinc finger domain) and learned a different set of binding preferences for 

every key position along the protein’s DNA-binding domain. As I showed, while 

some binding preferences are general (e.g. lysine’s tendency to bind guanine), others 

were position-specific (e.g. the tendency of phenylalanine at position 2 of the zinc 

finger DNA-binding domain to bind cytosine) (Kaplan et al., 2005). A similar 
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approach was simultaneously taken by Benos et al., (2001), using artificial SELEX 

data. As I showed using held-out test data (cross validation), both the use of natural 

sequence data, and the estimation of position-specific binding preferences, 

dramatically contributed to the accuracy of our predictions (shown in Figure 5C of 

Chapter 1, or in Supp Tables 6,7 of Kaplan et al., (2005)). I then applied this 

algorithm to predict the DNA motifs of 29 C2H2 zinc finger proteins in Drosophila 

melanogaster, identified the putative target genes of each, and analyzed gene 

expression data and genomic annotations to estimate the function and activity levels 

of each factor (Chapter 1). 

Since the publication of our manuscript, this concept was further developed by 

additional studies. Some focused on developing better models to approximate the 

physical energy in protein-DNA interactions (Morozov et al., 2005; Moroni et al., 

2007; Siggers and Honig, 2007), while others focused on the computational parts of 

the models (Cho et al., 2008). The type of data used in training the model is also of 

great importance. Benos et al., (2001) used artificial SELEX data to characterize 

protein-DNA interactions. While this allowed the exploitation of additional protein-

DNA interactions, my results suggest that synthetic data (including SELEX) lead to 

biased results when applied to genomic studies (Chapter 1). Technological advances 

from the Bulyk laboratory at Harvard promise to provide high-throughput 

identification of quasi-natural binding sites using protein binding microarrays 

(PBMs). These arrays span a huge range of short dsDNA sequence, to which epitope-

tagged TFs bind preferentially. Such a technology opens an opportunity for large-

scale characterization of the binding preferences of a purified TF in a single day. In 

addition, recent works concentrated on expanding the approach I described to 

additional structural families, including the basic leucine zipper (bZip, Grigoryan and 

Keating, 2006), the helix-turn-helix (Moroni et al., 2007), and homeodomain (Liu and 

Bader, 2007). 

This study provided the first automated characterization of novel transcription factors, 

using their sequence-based predicted DNA motifs to identify target genes on a 

genome-wide scale. As such, it contributed greatly to the scientific community. As 

every model, it includes some caveats and limitations, which should be addressed in 

future extensions. The main caveat of my algorithm relates to the rigid architecture of 

protein-DNA interactions it relies on. In the structural domain we analyzed, the 
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canonical binding model (Elrod-Erickson et al., 1998) which implies the same 

architecture of amino acid-nucleotide contacts between various C2H2 zinc finger 

protein and their DNA binding sites, usually holds. I showed how other C2H2 

proteins (e.g. GLI), where our DNA motif predictions might not hold due to a rather 

different binding architecture (Pavletich and Pabo, 1993), can be identified using a 

probabilistic computational classifier. To further extend our algorithm to handle 

additional, more flexible, DNA binding domains, including Helix-Turn-Helix (HLH) 

and basic leucine zipper (bZIP) domains, we must allow a larger degree of variability 

in the specific protein-DNA contacts. Energy-based approaches were proven useful in 

offering this flexibility for protein-protein docking problems (Baker and Sali, 2001; 

Gray et al., 2003; Schueler-Furman et al., 2005), with promising applications to 

protein-DNA interactions (Endres et al., 2004; Havranek et al., 2004; Endres and 

Wingreen, 2006; Siggers and Honig, 2007). 

Another possible issue is posed by our limited knowledge on modeling transcription 

factors binding sites. Most approaches that describe the sequences bound by some TF 

use a probabilistic model (DNA motif) and inherently assume that positions within the 

binding sites are independent of each other. This independence (or additivity) 

assumption was shown to hold for C2H2 zinc finger domains (Benos et al., 2002; 

Bulyk et al., 2002), although it might not be the case for other structural families. In a 

previous study, we have shown these inner-dependencies to exist in the binding sites 

of many transcription factors, from various structural families (Barash et al., 2003). I 

believe that such dependencies should be incorporated into future sequence-based 

methods for predicting transcription factor binding sites. For example, using the 

complex mathematical models developed by me and others (Agarwal and Bafna, 

1998; Barash et al., 2003; King and Roth, 2003; Zhou and Wong, 2004; Ben-Gal et 

al., 2005; Sharon and Segal, 2007).  

Complex regulatory systems 
Eukaryotic cells regulate gene expression using a complex network of signaling 

pathways, transcription factors and promoters. Studies, such as the one I presented in 

Chapter 1, facilitate the reconstruction of the transcriptional regulatory map of direct 

protein-DNA interactions, but are of limited help in understanding how transcription 

factors interact to control the expression of genes. For example, the binding of two 

transcription factors to the same promoter may result in a transcriptional outcome that 
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equals the sum of their individual effects (hence, act independently). Alternatively, 

they might interact to further activate the gene (e.g. by stabilizing each other) or to 

achieve a weaker transcriptional outcome than expected. 

In Chapter 2, we developed and applied a novel strategy which combined genetic and 

computational tools to gain insights into the structure and function of the well-studied 

transcriptional network that controls the cellular response to osmotic stress. This was 

done by integrating gene expression data from various mutant strains, to 

quantitatively estimate the contribution of single and pairs of TFs to the expression of 

target genes. We found that transcriptional calculus, where the expression level of a 

gene is presented as the sum of TF-specific components, is surprisingly accurate. The 

transcriptional response to osmotic stress of ~90% of the HOG genes we analyzed 

could have been neatly dissected into the sum of contributions by specific 

transcription factors (Sko1, Hot1 and Msn2/4), with only few genes presenting a 

statistically significant residual (Chapter 2). We also found that combinatorial 

regulation of gene expression, for example by binary AND or OR gates, occurs for 

most genes (Chapter 2). In addition to the expression-based analysis, we analyzed the 

regulatory system from two supplementary perspectives. First, we scrutinized the 

DNA regulatory sequence of genes, characterizing the DNA motif of transcription 

factors and identifying their putative target genes. Second, we pinpointed the in vivo 

binding positions of these TFs along the genome, using a novel model-based 

algorithm to analyze a series of chromatin immunoprecipitation experiments, 

followed by hybridization to a densely tiled DNA microarray. These complementary 

studies allowed us, for the first time, to gain insights into the mechanisms of a 

transcriptional regulation - starting from the DNA sequence level (as reflected in the 

computational analysis of binding sites), through the transcriptional mechanism level 

(reflected by our measurements of in vivo physical binding), to their final outcome 

(reflected by changes in the expression levels of target genes). We found that the 

majority (~60%) of regulatory regions that contain the recognition sequence of a TF, 

were also physically bound by it in a statistically significant manner. From those 

bound genes, ~75% presented a significant transcriptional response 20 minutes after 

the induction of hyperosmotic shock. These high numbers imply a rather 

comprehensive understanding of the transcriptional mechanisms involved in the 

majority of HOG pathway genes. On the other hand, these numbers depict significant 

discrepancies between the target genes identified using sequence, physical binding 
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and expression. These differences emphasize the overall complexity of eukaryotic 

transcriptional control, and suggest the role of higher order regulatory mechanisms, 

such as chromatin. 

Previous analyses of the osmotic stress response in yeast led to a coarse-grained 

transcriptional model of the HOG pathway, where the Hog1 kinase regulates gene 

expression through the activation of the general stress regulator Msn2/4 as well as 

additional transcription factors (Rep et al., 2000; Hohmann et al., 2007). While 

microarrays were previously used to portray the whole-genome transcriptional 

response of yeast cells to hyper-osmotic stress (Roberts et al., 2000; O'Rourke and 

Herskowitz, 2004), we extended this strategy by measuring gene expression data from 

a series of yeast strains, including the wild type strain, mutant strains lacking HOG-

related TFs (hog1Δ, msn2/4Δ, sko1Δ, hot1Δ), and strains lacking combinations of 

TFs (e.g. hog1Δmsn2/4Δ). This allowed us to computationally dissect the 

transcriptional response of genes into modular components corresponding to the 

contribution of single or pairs of) transcription factors to the expression levels of 

genes. Our study can be also viewed from an epistatic perspective (Cordell, 2002), 

where the interaction between two genes is estimated by comparing some phenotype 

between the wt strain, the two knockout strains, and the double-knockout strain 

(Avery and Wasserman, 1992; Van Driessche et al., 2005; Collins et al., 2006). We 

extend this classic view by simultaneously measuring the expression levels of 

multiple genes, then treating each one as a different phenotype. As we have shown, 

the epistatic interaction between the two master regulators of the HOG pathway 

(Hog1 and Msn2/4) depends on the gene used as phenotype. 

The genetic/computational approach presented in Chapter 2 yielded insights as to the 

propagation of external stimuli to the nucleus (through Hog1 and Msn2/4), and their 

translation to transcriptional instructions. Such approach cannot be applied to any 

transcriptional network, as it requires a fair amount of prior knowledge. This includes 

the factors participating in this network whose transcriptional components should be 

measured using deletion strains. Moreover, our algorithm, like previous epistatic 

studies, is capable of identifying the cooperative response of transcription factors, but 

fails to determine where such interactions occur. For example, genes with AND-like 

gates between Hog1 and Msn2/4 can be interpreted in two distinct manners. One 

explanation reflects a combinatorial interaction at the promoter level, where both 
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factors are required prior to transcriptional activation. Alternatively, such AND-like 

interactions can be explained at the signaling level, where one factor (Hog1) is related 

to nuclear localization of the second (Msn2/4), which in turn activates the gene. In 

both cases, the presence of a single factor would not suffice to activate the gene. To 

resolve this, we also identified the in vivo physical binding locations of Hog1-

regulated transcription factors, and found that these two explanations are not mutually 

exclusive. While for some genes, the higher nuclear concentration of Msn2/4 is 

predominant, others are controlled by combinatorial regulation at the promoter level. 

This transcriptional network is a fine example of achieving a smooth range of 

transcriptional behaviors, using only 4 main regulators (Hog1, Msn2/4, Sko1 and 

Hot1). Further investigation is needed to understand how exactly this combinatorial 

regulation is encoded in the promoter regions of HOG genes. 

In this study, I developed a computational model-based algorithm to analyze high-

resolution ChIP data. Such algorithm were previously proposed in few studies (Buck 

et al., 2005; Gibbons et al., 2005; Kim et al., 2005; Li et al., 2005; Qi et al., 2006). 

Most these studies naively identified ChIP-enriched genomic regions (Buck et al., 

2005; Gibbons et al., 2005; Kim et al., 2005; Li et al., 2005), whereas our method is 

based on a concrete computational model to estimates the expected shape of 

enrichments around a binding event (Chapter 2). This model-based approach allowed 

us to integrate data from neighboring probes and identify the position of physical 

binding events and their affinity (or height) with significant robustness to 

measurement noise. The recent development of next-generation sequencing platforms, 

such as Illumina’s Solexa sequencers (Barski et al., 2007; Johnson et al., 2007; 

Robertson et al., 2007), or the Roche/454 Genome Sequencers (Margulies et al., 

2005) paved the way to ChIP-sequencing assays. Here, following chromatin 

immunoprecipitation, the purified DNA fragments are being sequenced rather than 

hybridized to a microarray as in ChIP-chip assays. The ChIP-sequencing platform 

offers an accurate assay to identify in vivo binding events at a competitive expense (at 

least for high eukaryotes, where a single ChIP-chip assay requires several micoarrays 

due to the size of the genome). Published Solexa-based ChIP-sequencing data 

(Johnson et al., 2007; Mikkelsen et al., 2007; Robertson et al., 2007) bears a great 

similarity to ChIP-chip results, suggesting that my model-based algorithm tools can 

be easily extended to handle such data. 
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The discrepancies we identified between the predicted target genes of transcription 

factors based on sequence motifs, on in vivo ChIP analysis, or on expression arrays, 

shed light onto the mechanistic principles of transcriptional regulation, and lead to 

fascinating future directions. Obviously, some discrepancies might arise from 

threshold definitions. As previous studies suggested, there are no clear definitions of 

activation thresholds. While the few genes constantly bound by transcription factors 

will have a strong transcriptional effect, thousands of additional genomic loci are also 

bound at low-affinities by transcription factors, sometimes resulting with 

transcriptional activation (Tanay, 2006; Li et al., 2008). For consistency reasons, we 

eventually set the thresholds for all three types of annotations to allow exactly 5% of 

false positive calls (where we expression-based transcriptional groups are used as 

“truth”). Additional reasons for the observed discrepancies might arise from 

experimental noise, or from our limited abilities in modeling binding sites. More 

interesting are the biological mechanisms capable of explaining such discrepancies, 

such as the role of chromatin in transcriptional regulation. Prior studies demonstrated 

how nucleosomes can serve to modify the occupancy of the DNA at the transcription 

start site (Cosma et al., 1999) or at transcription factor binding sites (Narlikar et al., 

2007). A fascinating extension of our work relates the ability of nucleosome 

positioning data to explain the experimental inconsistencies. For example, high 

nucleosomal occupancy which occludes unbound motifs (i.e. bona fide binding sites 

with no supporting ChIP data).  

Higher order aspects of transcriptional regulation 
The studies I presented in Chapters 3 & 4 (Liu et al., 2005; Dion et al., 2007) were 

pioneering in characterizing the chromatin landscape of a eukaryotic genome at a 

single-nucleosome resolution.  

In the first paper, we used published data regarding the position of nucleosome across 

the budding yeast genome (Yuan et al., 2005), and mapped their acetylation and 

methylation patterns. My computational analysis showed that some phenomena are 

limited to specific nucleosomes (such as the punctual deacetylation of the two 

nucleosomes surrounding transcription start site sites), whereas others modifications 

tend to appear in gradients across the coding regions of transcribed genes (e.g., the 

methylation patterns of histone H3 lysine 4 (H3K4)). By analyzing the modification 

data together with the genomic positions of nucleosomes, I characterized the 
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stereotypical modification patterns of various nucleosomes types (e.g., nucleosomes 

over promoters of highly-transcribed genes). I also showed that most of the epigenetic 

information stored in the chromatin can be summarized into two simple overlaid 

patterns, and that no discrete combinatorial code is found. Although histone 

modifications were measured before, our study was the first to characterize the 

epigenetic landscape at a single nucleosome resolution. Such resolution is crucial in 

order to relate the specific modification patterns to genomic loci, or to test the 

similarity between adjacent nucleosomes. For example, this high-resolution allowed 

us to observe a unique pattern of modification on the first nucleosome upstream to the 

transcription start site, or to identify specific nucleosomes at the boundaries of two 

genes. A parallel study by the Young laboratory at the Whitehead Institute (Pokholok 

et al., 2005) used genome-wide arrays of lower resolution to characterize a rather 

different set of histone modifications. Nonetheless, their study also observed some of 

our main phenomena (modifications correlated with transcription and the decaying 

patterns of acetylation and methylation patterns across coding regions). Our 

observations were further confirmed in higher eukaryotes, including plant, fly, mouse 

and human using chromatin immunoprecipitation followed by hybridization 

(Schubeler et al., 2004; Bernstein et al., 2005; Kim et al., 2005; Roh et al., 2005; Roh 

et al., 2006; Bernstein et al., 2007; Koch et al., 2007; Zhang, 2008) or deep 

sequencing (Barski et al., 2007; Mikkelsen et al., 2007). 

Previous hypotheses suggested that the histone modification can be interpreted by 

some form of a “histone code” (Strahl and Allis, 2000). I have employed 

computational and statistical analysis tools to identify probabilistic dependencies 

between different histone positions (in case of a combinatorial code), as well as 

correlations between the modifications to external data, such as gene expression 

levels, localization of transcription and chromatin factors involved in regulating these 

genes, the modifications of adjacent nucleosomes, etc. Yet, I could not identify a 

clear, discrete code to interpret the histone modifications (Liu et al., 2005), nor was it 

found by the other studies mentioned. We should take extra caution before dismissing 

the histone code hypothesis. We should keep in mind that the current studies mapped 

only the modifications for which reliable antibodies existed, and do not cover the full 

arsenal of modifications. A discrete code may still exist over the unmapped 

modifications. In addition, our data were collected in a single-nucleosome resolution 

from a population of yeast cells. Theoretically it is possible that our measurements 

93



average over the values of specific cells, concealing possible differences. This caveat 

could be overcome by future technological advances that will measure the 

modifications at a single molecule level. 

In the second paper (presented in Chapter 4), we measured the replacement rates of 

histone H3 across the yeast genome. We were intrigued by the molecular mechanisms 

that allow for a wide range of chromatin plasticity. On the one hand, cells maintain 

the chromatin state over generations (e.g. in silenced genomic loci). On the other 

hand, rapid changes in the histone modification patterns (as part of transcriptional 

reprogramming) occur only minutes after the induction of a novel stimulus. Such 

changes can be achieved by recruiting chromatin modifying enzymes to directly “fix” 

the old nucleosomes. Alternatively, it is possible to replace the old nucleosomes 

altogether by newer ones. While the first approach was previously addressed (by both 

ChIP-chip and gene expression studies (Robyr et al., 2002; Robert et al., 2004; 

Pokholok et al., 2005)), genome-scale applications of nucleosome turnover were 

somewhat overlooked. We therefore used a yeast mutant strain bearing a galactose-

induced tagged-histones (Schermer et al., 2005), to estimate their genome-wide locus-

specific integration, based on a time-series of ChIP-chip measurements. To analyze 

these data, I developed a mathematical model, and translate the array-based time-

series genome-wide measurements into actual rates (in minutes). We found turnover 

rates over coding regions to correlate with the transcription levels of underlying 

genes. We also found that nucleosomes over regulatory regions are replaced in much 

higher rates than those over coding regions. These two phenomena were further 

supported by parallel studies in budding yeast (Jamai et al., 2007; Rufiange et al., 

2007) and fruit fly (Mito et al., 2007). The interpretation of the first phenomenon is 

rather straightforward. High transcription levels of genes involve multiple passages of 

the transcriptional machinery and polymerase II. This high activity over the DNA, 

was previously shown to cause nucleosomal instability (Kristjuhan and Svejstrup, 

2004; Schwabish and Struhl, 2004), which may partially explain the high turnover 

rates over coding regions of active genes. Less clear, however, is the relation between 

high turnover rates over regulatory regions and transcriptional control. We suggested 

three possible explanations (which are not necessarily mutually exclusive) to this 

striking phenomenon. First, the high turnover rate over regulatory regions may serve 

as a regulatory mechanism per se, by exposing occluded transcription factor binding 

sites to their regulators. Alternatively, given the unique modification pattern of 

94



promoter nucleosomes and its relation to transcription, high turnover rates may serve 

to constantly reset the transcriptional program ensuring that transcriptional re-

initiation only occurs during activating stimuli. Such tight regulation is often obtained 

by additional means, e.g., by a well orchestrated series of events prior to transcription 

initiation, which is followed by a rapid disassembly. Well studied examples include 

the promoter of human interferon β (Agresti and Bianchi, 2003) and the cell-cycle 

regulation of HO gene in yeast (Cosma et al., 1999). A third explanation views 

dynamic nucleosomes as chromatin barriers, suggesting they prevent the spreading of 

chromatin states across the regulatory regions of adjacent genes (Noma et al., 2001). 

Our two studies relate the chromatin landscape around genes to their expression 

levels, and further emphasize the importance of chromatin in transcriptional 

regulation, together with the actual DNA sequence. 

Some caveats might affect our estimations of turnover rates. First, our estimations rely 

on a transgenic system where histone H3 is over-expressed. Theoretically, this over-

abundance might cause a bias toward higher turnover rates. Replacement of H3, 

however, causes full nucleosomal disassembly, suggesting that this bias is limited due 

to stoichiometric constraints (hence, normal activation levels of the other histones). 

More worrying are experimental biases due to non-linear response of DNA 

microarrays. To control for this effect, we repeated our measurements using both a 

printed array (Liu et al., 2005; Yuan et al., 2005) and a commercial one (Guillemette 

et al., 2005; Pokholok et al., 2005). We observed excellent correlation between the 

turnover rates estimated by the two platforms (Dion et al., 2007), although our 

measurements indicated a “quenching” effect (limited dynamic range) in the printed 

arrays. These possible artifacts indicate that the turnover rates I calculated should not 

be literally interpreted as the expected number of turnover events per nucleosome per 

minute. Our qualitative results, however, are valid, and supported by parallel studies 

that used other tagged histones or experimental platforms to measure nucleosome 

exchange (Linger and Tyler, 2006; Jamai et al., 2007). 

So far I showed how the modification patterns of nucleosomes (Chapter 3) are well 

connected to their turnover rates (Chapter 4), as well as to the position of nearby 

genes and their expression levels. This opens the way for several exciting future 

directions, related to transcription, nucleosome exchange, and histone modifications. 

The first question involves the dynamics of histone modification and nucleosome 
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positioning following transcriptional reprogramming. To this end, I analyzed 

published gene expression data, measuring the transcriptional response of yeast cells 

to various types of stress (Gasch et al., 2000), and identified the conditions which 

cause the strongest transcriptional change. Based on this, together with the Rando 

laboratory, we carefully selected four modification sites and designed a time-series of 

measurements. This experiment will describe the temporal change in histone 

modifications following induction of stress. These experiments are about to be 

completed, promising fascinating insights into the dynamics of DNA packaging and 

their relation to transcriptional regulation. 

Second, to probe the causal connection between histone modification and 

transcription, we designed a parallel set of experiments, where the endogenous RNA 

polymerase II was replaced by a temperature-sensitive variant. This allows to “shut-

off” the activity of the polymerase by shifting the cells to high temperature. 

Comparison of the histone modifications in this strain to a wild-type strain (in the 

same environmental conditions), will reveal if and to which extent does 

transcriptional activity control histone modification patterns. 

Third, I am interested in studying the crosstalk between histone modifications and 

nucleosomes turnover. The recently discovered acetylation of Lysine 56 at histone H3 

(H3K56) encompasses a promising opportunity for such questions. Acetylation of 

H3K56 was recently shown to mark newly incorporated nucleosomes during DNA 

replication (Hyland et al., 2005; Masumoto et al., 2005; Xu et al., 2005; Ozdemir et 

al., 2006; Rufiange et al., 2007). Following our discoveries about replication-

independent nucleosome exchange, we decided to pursue this direction and test 

whether acetylation of H3K56 also relates to replication-independent incorporation of 

nucleosomes. I aim to analyze the acetylation of H3K56 in view of the exact timing of 

replication-coupled exchange of nucleosomes (based on external estimations, 

Raghuraman et al., 2001; Yabuki et al., 2002), as well as the replication-independent 

exchange rates (based on our estimations, Dion et al., 2007). We have already 

measured the H3K56 acetylation levels in yeast cells, both in unsynchronized mid-log 

yeast, and in yeast advancing synchronously through the cell cycle. My preliminary 

results suggest that about half of the H3K56 acetylation and deacetylation events can 

be explained by nucleosome exchange. This suggests that the locus-specific 

recruitment of histone modifying enzymes may play a role in regulating the other half.  
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Concluding remarks 
Understanding gene regulation is crucial for understanding how cells function and 

how they adjust to changes in the external environment or internal state. This highly 

complex process involves a stratified network of regulatory layers, including the 

sequence of DNA and its packaging, as well as higher order mechanisms, such as the 

organization of chromosomes in the nucleus.  

In my thesis, I presented several studies in which I developed and applied 

sophisticated computationally tools to provide insights into various levels of 

transcriptional regulation. These studies contributed to the characterization and 

identification of regulatory sites, to our understanding of combinatorial transcriptional 

regulation, and to the fine-grained description of the chromatin state, and as a whole 

present an expedition toward understanding of gene regulation at the systems level. 
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, אולם .ת ומוחלפים בחדשיםלתא הבמורשים א משוכפל ומחצית הנוקלאוזומים "כאשר הדנ

די לענות על כ ?זו של תחלופת נוקלאוזומים מתרחשת גם בנפרד ממחזור התאהאם תופעה 

תכננו ניסוי  .המשכתי בשיתוף הפעולה עם מעבדתו של אוליבר רנדו, שאלה זו באופן ישיר

) H3ההיסטון (המבוסס על שמרים מוטנטים בהם אחד החלבונים המרכיבים את הנוקלאוזום 

לעצור את מחזור , לגדל תאי שמרמנגנון זה איפשר  .והוצב תחת בקרה חיצונית, סומן, שוכפל

בסדרה ך יערהללבסוף ו, )המסומן(המוטנטי להתחיל את ייצור ההיסטון , א באופן חיצוניהת

 לאורך הגנוםכל עמדה בהמסומן נוקלאוזום כמות האת  ChIP-chipשל מדידות בטכנולוגיית 

, לקצבי התחלופה הממוצעים עבור כל נוקלאוזוםולתרגמם , כדי לנתח נתונים אלו. )4פרק (

 .לשערוך הקצבים ואלגוריתם חישובי ,המבוסס על משוואות קצב תמטיפיתחתי מודל מ

לא ש נוקלאוזומיםבחל ה. הקצבים שהתקבלו פרשו טווח רחב של התנהגויות, להפתעתי

שהתחלפו בקצב גבוה נוקלאוזומים ועד ל) עקב חלוקת התאתחלופה למעט (הוחלפו כלל 

קצבי התחלופה למיקום הנוקלאוזום קישר את שערכתי ניתוח סטטיסטי  .מרזולוציית הניסוי

נוקלאוזומים לאורך גנים פעילים התחלפו בקצב , באופן כללי. י הגןוולרמת ביט, לאורך הגן

ממצאים קודמים שקישרו בין פעילות עם בהתאמה , יותר מכאלה לאורך גנים מושתקים גבוה

כי נוקלאוזומים  תיצאמ, בנוסף לכך. יציבות נוקלאוזומלית-ואי) למשל שעתוק(א "על הדנ

התחלופה של קצבי מ) בממוצע( 4פי  יםגבוהתחלופה  יקצבל ומים באזורי הבקרה נטקוהממ

היות ודווקא , תופעה זו מפתיעה. הנמצאים לאורך רצף הגן המקודד לחלבוןוקלאוזומים נ

ניתן היה , א משמש כתבנית לשעתוק ועובר טלטלות פיזיות"הדנהיכן ש ,באזורים המקודדים

: ביניהם, שמצאנוהסברים אפשרים לתופעה אני מציע מספר . לצפות לקצבים גבוהים יותר

; יציבות נוקלאוזומלית-א המתרחשות באזורי הבקרה גורמות לאי"דנ- אינטראקציות חלבון) 1(

תבנית המודיפיקציות המאפיינת נוקלאוזומים באזורי בקרה מעודדת תחלופה גבוהה ) 2(

קצב התחלופה הגבוה באזורי בקרה משמש כמנגנון מובנה ) 3(; דועבאמצעות מנגנון לא י

) 4( -ו; שעתוקהבקרת רענון י כך משמש כפלטפורמה ל"א וע"לשינויים מהירים באריזת הדנ

כרומטין לאורך ה סום פיזי להתפשטות מצבקצב התחלופה הגבוה באזורי בקרה משמש כמח

כדי לאפיין ידרשו מחקרים נוספים . אפשר שונות ברמות הביטוי בין גנים סמוכיםא וכך מ"הדנ

  .שלה לבקרת שעתוקהקשר הסיבתי טוב יותר את התופעה הזו ואת 

מיים וניתחתי נתונים גנו, מתמטיות וסטטיסטיות, בעבודה זו פיתחתי שיטות חישוביות, לסיכום

כפי . ממגוון סוגים כדי ללמוד אודות ההיבטים השונים של בקרת שעתוק בתאים אאוקריוטים

א "החל בקישור בין גורמי שעתוק לבין הדנ, בקרה זו מתרחשת במגוון רמות, שהראתי

י "באופן סימונם ע, גבי נוקלאוזומים-א על"וכלה באריזת הדנ, ובאינטראקציות בינם לבין עצמם

, ככלל .ובשינויים הדינמיים המעורבים באריזה זו לאורך חיי התא, לנטיותוקומודיפיקציות 

להבנה ו, ת בקרת השעתוק ברמה המנגנונית והמערכתיתודואידיעותינו מחקריי תורמים ל

  .המערבות שיבושים בהםאנושיות המחלות התאיים והתהליכיים העמוקה יותר של 



אשר גם בהיותם קשורים לא השפיעו על ביטוי , )non functional binding sites( מתפקדים

בקיום תומכים  ,השפעתו על ביטוי גניםו, קישור החלבון, א"פערים אלה בין רצף הדנ .הגן

-על א"דנה תאריזלמשל כך . וק ביצורים אאוקריוטיםעורבים בבקרת שעתהממנגנונים נוספים 

  .אשר משפיעה על נגישותו לחלבוני בקרה ,קלאוזומיםונקומפלקסים חלבוניים הקרויים גבי 

התמקדתי , א על גבי הכרומטין"כדי להבין את הקשר בין בקרת שעתוק לבין אריזת הדנ

את מיקום הנוקלאוזומים לאורך הן ולל מידע זה כ. א"אריזת הדנבבמידע האפיגנטי המקודד 

הצמדת שיירים ביוכימיים כגון מתיל או (לנטיות וקוי מודיפיקציות "והן את סימונם ע, א"הדנ

ביחד עם , ל"שני המנגנונים הנ. )גבי הנוקלאוזום- אצטיל לחומצות אמינו ספציפיות על

שעתוק פקטורי תרתו מפני הס ,א"של הדנמרחבית קושרו לדחיסה , א"מתילציה של הדנ

לשם כך . מטרתי לפיכך היתה לאפיין את מצב הכרומטין בתאים חיים .ניםועצירת ביטוי ג

 אשר, )Oliver Rando( אוניברסיטת הרווארדממעבדתו של אוליבר רנדו שיתפתי פעולה עם 

של נוקלאוזומים לאורך את תבנית האצטילציה והמתילציה  ChIP-chipבטכנולוגיית  מדד

ו מאפשרים אספנהנתונים ש). 3פרק (וברזולוציה של נוקלאוזום בודד  א בסקלה גנומית"הדנ

מודל ). Histone code hypothesis(לבדוק לראשונה את נכונות היפותזת הקוד האפיגנטי 

יש  כך שלכל מודיפיקציה, תאורטי זה גורס שניתן לפרש את מצב הכרומטין בעזרת קוד פשוט

 12-בשנמדדו קרי רמות האצטילציה והמתילציה , כדי לנתח את הנתונים .משמעות ברורה

הפעלתי מגוון כלים אלגוריתמיים , לאורך הגנום מיםנוקלאוזואלפי עמדות שונות על גבי 

וכן בקשר , שונותהעמדות המתילציה בין /התרכזתי בהצלבת רמות האצטילציה. וסטטיסטיים

האנליזה שערכתי  .א המלופף סביבו"דנרצף יות של כל נוקלאוזום לבין תבנית המודיפיקצ

העמדות  12לפחות לא בין (קוד שכזה  תימצאהיות ולא , נכונות ההיפותזהמטילה ספק ב

מתחלקות באופן גס נו חקרשעמדות ה 12כי הראה  נתוניםניתוח ה, יחד עם זאת). נוחקרש

שני הנוקלאוזומים הגובלים  באופן ייחודי םימנוראשונה מסקבוצה הב. לשתי קבוצות מקבילות

אופן הדרגתי בשינויים בעמדות מהקבוצה השניה נטו להופיע בעוד ש, לת שעתוקיאתרי תחב

 ניםרמת הביטוי של הגנוקלאוזומים לבין המצאתי קשר הדוק בין סימון , בנוסף. לאורך גנים

הרי שניתוח סטטיסטי , "קוד"התומכים בקיום  למרות שאין ממצאים, לפיכך .יהםהארוזים על

ם מיקומ אודותניתן להסיק  מיםשל נוקלאוזו מודיפיקציותמהתבוננות בתבנית המראה כי 

  .ורמת הביטוי שלו הגןהיחסי לאורך 

כדי  בתוך דקותמתעדכנת תכנית הבקרה השעתוקית , כאשר מצב התא או סביבתו משתנים

במצב מקביל מתרחש שינוי , שינוי זה ברמות ביטוי הגניםעם  יחד. לספק את צרכי התא

או לחלופין , מזיזים נוקלאוזומיםי אנזימים ספציפיים אשר "שינוי זה מושג ע. הכרומטין

אצטיל ( אותם שיירים קוריופי הוספת "עהם ם את מצב האצטילציה והמתילציה שלמעדכני

י החלפת "ע - האפיגנטי נוספת לעדכון המצב דרך אפשרות לקיימת , יחד עם זאת. )ומתיל

, תופעה דומה מתרחשת במהלך מחזור התא .חדשיםנוקלאוזומים מסומנים בההנוקלאוזומים 



קישור המודל להשתמש ב יתןנ, בהנתן רצף חלבון חדש מאותה משפחה מבנית .א"דנ-חלבון

א ולנבא את העדפות הקישור "אשר קושרות את הדנאת חומצות האמינו  הפתור כדי לזהות

הדגמתי את יכולות השיטה בעזרת חלבונים ). א חלבון זה יקשור"כלומר אילו רצפי דנ(

 Drosophila(בכך שניתחתי את גנום זבוב הפירות  C2H2 zinc finger -ממשפחת ה

melanogaster ( לאחר מכן סרקתי את רצפי . פקטורי שעתוק 29- לכקישור וניבאתי מוטיבי

י שילוב מידע "ע. ואפיינתי מאות גני מטרה לכל פקטור שעתוק, הבקרה המוכרים בגנום הזבוב

או , לבים שונים של התפתחות הזבובגנים בשהי ביטורמות כגון  ,נוספיםנתונים עם זה 

אופי ורמות הפעילות תובנות חדשות בנוגע להגעתי ל, שונות קבוצות פונקציונליותחלוקתם ל

  .של כל פקטור שעתוק

את הקשר בין פקטורי  מאפשרות למדודשהושגו בשנים האחרונות התפתחויות טכנולוגיות 

 שה'המעבדה של ארין אועם בשיתוף . וברזולוציה גבוהה גנומי יקףהשעתוק לגנים ב

התמקדתי בפיתוח שיטה להבנת המבנה הפנימי , )Erin O’Shea( מאוניברסיטת הרווארד

האסטרטגיה שלנו מבוססת על ). 2פרק (והמנגנונים הקומבינטוריים של רשת בקרת שעתוק 

בכדי למדוד ולכמת  )ד או יותרבהם חסר פקטור שעתוק אח(זנים מוטנטים בשימוש מובנה 

די לחקור את רשת השתמשנו בשיטה זו בכ .על ביטוי גניםפקטורי השעתוק  תהשפעאת 

) Saccharomyces sereviciae(האופים  תגובת שמר מתווכת אתאשר  השעתוקבקרת 

למשל בתנאי מליחות (בתגובה ללחץ אוסמוטי  ).HOG pathway(ללחץ אוסמוטי גבוה 

שם הוא מזרחן ומפעיל מספר פקטורי שעתוק , מוכנס לגרעין התא Hog1החלבון , )קיצוניים

מודל  תיבניו, ניתחתי את הנתונים הגנומיים שנאספו, בעזרת האלגוריתם שפיתחתי .משניים

זו המבוססת על רמות תפקודית במקביל לרשת . מדוייק של בקרת השעתוק ברשת זו כמותי

נעשה , תחילה .שתי רשתות מקבילות המבוססות על נתונים מסוג שונהבנינו , ביטוי של גנים

י "באופן פיזי עבתא החי א הנקשרים "בכדי לזהות אתרי דנ ChIP-chipבטכנולוגיית שימוש 

, מזוקקים, א הקשורים לחלבון מושקעים בעזרת נוגדנים"רצפי דנזו בשיטה . פקטורי שעתוק

 .את גנום השמר צפיפותאשר מכסים ב )DNA microarrays(א "מערכי דנעזרת ומזוהים ב

פיתחתי אלגוריתם חישובי אשר מזהה את המיקום , כדי לנתח את הנתונים הביולוגיים האלה

 טתירטישעל ידי כך . היחסית של כל אתר קישור בגנוםר ושיאת עוצמת הקקובע והמדוייק 

רשת גרסא שלישית של אותה ינו בנ, לבסוף .שעתוקה תבקררשת החיווט הפיזי של את 

 ימוטיב(ההכרה של פקטורי השעתוק  פיי איפיון רצ"ע, א בלבד"על רצף הדנס בסבהתבקרה 

על קישור , גניםתפקוד המבוססות על (השונות  רשתות הבקרהשלוש , כפי שהראיתי). א"דנ

רוב הגנים  –חופפות זו את זו באופן ניכר , )א"ועל מוטיבים קצרים ברצף הדנ, א"פיזי לדנ

, ויתרה מזו, א של פקטור שעתוק אכן נמצאו קשורים אליו פיזית"שהכילו את מוטיב הדנ

מצאתי מקרים , יחד עם זאת .פקטור השעתוק נמצא מעורב בבקרה על רמות הביטוי של הגן

 תםלמרות התאמנותרו פנויים אשר , )latent binding sites( רבים של אתרי קישור חבויים

 אתרי קישור לא תי מספר רב שלמצא, בנוסף .השעתוקהקישור של פקטור מוטיב להרבה 



  תקציר

תאים מסוגים , אולם. א"מקודד ברצף הדנאשר זהה גנטי מידע צור חי מכילים כל התאים ביי

כאשר , שונותת והבדלים אלה מושגים בעזרת בקר .בדלים זה מזה במבנה ובפעילותשונים נ

גנים ומסלולים שונים בהתאם אחראית על הפעלת אשר  ,שעתוקבקרת ההיא הבולטת בהן 

 מנגנוני תהבנאחד האתגרים החשובים ביותר בביולוגיה הוא  .בו ולצרכיולמצ, ג התאולס

כיצד הם , ידע זה יאפשר לנו להבין טוב יותר כיצד תאים עובדים .בקרת השעתוק בתא חי

אשר מערב שיבושים , לדוגמא בסרטן(מה משתבש במחלות , מגיבים לאותות חיצוניים

, ברמה הבסיסית ביותר .שיבושים אלה ם לנקוט כנגדואילו צעדים אנו יכולי, )בבקרת גנים

א בסמיכות לגנים "חלבונים הנקשרים לדנ - י פקטורי שעתוק "בקרת שעתוק מושגת ע

אני מתרכז בשלושה היבטים מרכזיים , במהלך עבודה זו. את שעתוקם) או מונעים(ומעודדים 

 מטרה של פקטורי שעתוקאני מציג גישה חדשנית לזיהוי גני ה, ראשית. של בקרת שעתוק

את המנגנונים בהם מספר  אני בוחן, שנית ).1פרק (בהתבסס על רצף החלבון , חדשים

פקטורי שעתוק פועלים יחדיו כדי לעבד אותות חיצוניים ולתרגמם לשינויים בבקרת השעתוק 

הקשר בין אריזת , מימד מרתק של בקרת השעתוקב אני מתרכז, לבסוף. )2פרק (התאית 

א והאופן בו הם מסומנים "לאורך מולקולת הדנובפרט מיקומם , גבי נוקלאוזומים-על א"דנ

ים מקודדשל הגנים הביטוי הורמות  א לקישור פקטורי שעתוק"ישות הדננגלבין , לנטיתוקו

  .)4 -ו 3פרקים ( א"בדנ

רשת את לתאר במדויק עלינו , ל ביטוי גניםש הדוקהכדי להבין כיצד מושגת בקרה כה 

היות ומיפוי ישיר  .י אילו פקטורי שעתוק"כך לאפיין אילו גנים מבוקרים עבו, השעתוק התאית

פותחו כתחליף  ,א בכלים ניסויים הוא לרוב יקר ומייגע"דנ-של אינטראקציות חלבון

ות גישות חישוביבאופן טיפוסי . אתרי קישור של פקטורי שעתוקאלגוריתמים חישוביים לזיהוי 

גני המטרה של פקטור חלק מ וזיהוי ניתוח תוצאות ניסויים בהיקף גנומי) 1( :כוללתאלו 

 םקצרים אליהאתרים זיהוי ו א באזורי הבקרה של גנים אלה"ניתוח רצף הדנ) 2( ;השעתוק

שימוש ) 4( -ו ;)א"מוטיב דנ(הסתברותי  ייצוג אתרים אלה בעזרת מודל )3(; הוא נקשר

אסטרטגיה . חדשיםאתרי קישור  יהויוז םסריקת אזורי בקרה של גנים נוספילשם מוטיב זה ב

כבר אתרי הקישור שלהם פקטורי שעתוק אשר עבור בעיקר , הכיעיל החהוכ וזחישובית 

אשר כאלה  ,למשל ?ואשר טרם נבחנ אולם מה בנוגע לחלבונים .רב ניסויים מספראופיינו ב

במהלך הדוקטורט שלי  ?נמצאו בעזרת פרוייקטי הגנום המתפרסמים חדשות לבקרים

פרק (סויי אודותיו יגם בהעדר מידע נ, א של חלבון"פיתחתי גישה חישובית לאיפיון מוטיב הדנ

האלגוריתם , א"ים של חלבון ומולקולת הדנמבניקומפלקסים מבהסתמך על מידע ). 1

את העמדות אשר נקשרות באופן ישיר למולקולת תח את רצף החלבון ומזהה שפיתחתי מנ

י קביעת חומצות האמינו "ע(א "בין החלבון לדנהקישור  וןפייאנתונים אלו משמשים ל. א"הדנ

אינטראקציות של  ותטיסטטיסמתורגמים להעדפות הו, )והבסיסים ביניהם מתקיים קשר
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