
Towards an Integrated
Protein-protein Interaction Map

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

by

Ariel Jaimovich

Supervised by

Prof. Hanah Margalit and Prof. Nir Friedman

December 2004

The School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

As protein-protein interaction plays a major role in most cellular processes,
identifying the full repertoire of interacting protein pairs in the cell is of
great importance. This challenge has been addressed both experimentally
and computationally. Large-scale experimental studies provide data sets of
interacting proteins. These data sets, while only partial and noisy, allow us to
characterize properties of interacting proteins and lead to the development of
predictive algorithms. Most algorithms, however, ignore possible dependen-
cies between the various interacting pairs, and predict them independently
of one another. In this study, we present a computational approach that
overcomes this drawback by predicting all interactions simultaneously. For
this, we build an integrated probabilistic model that involves all attributes
we wish to predict, as well as the observations we have on these attributes.
We use the language of relational Markov random fields to build such an in-
tegrated probabilistic model, and to learn its properties efficiently. We then
use this to predict all interactions simultaneously. We show that by modeling
dependencies between interactions, we achieve a more accurate description
of the protein interaction network, and gain new insights into the properties
of the interacting pairs.

Acknowledgements

I am grateful to my advisors, Hanah Margalit and Nir Friedman, for
coming up with the idea behind this work, and for guiding me patiently
through the long way it took to implement it. During the last two years
I have learned a lot from them, not only about my specific research areas,
but also about how to ask the right questions, and how to find the tools
to answer them. I am especially thankful to Gal Elidan, who was in many
ways a third advisor to this work, and who devoted a great deal of effort
and time into helping me. I am very fortunate to be part of Hanah’s lab in
Hadassah, and Nir’s lab in Givaat Ram. Both labs are a constant source of
original and productive scientific discussions, as well as of other conversations
about more important things in life. I thank all members of both labs, Iftach
Nachman, Yoseph Barash, Matan Ninio, Noa Shefi, Ilan Wapinski and Omri
Peleg from Nir’s lab, and Einat Sprinzak, Yael Altuvia, Esti Yeger-Lotem,
Gila Lithwick, Samuel Sattath, Ruti Hirshberg, Arnon Klein, Galit Lipsitz,
Neta Ben-Porat and Naama elephant from Hanah’s lab, who made my last
two years interesting and fun. Especially I want to thank Tommy Kaplan
who is also part of both labs, and helped me a great deal in many fruitful
discussions. Last but not least, I thank Inbal, for being beside me all this
time, and supporting me when times were rough.

i

Contents

1 Introduction 1
1.1 The World of Proteins . 1
1.2 Protein-Protein Interaction Networks 2
1.3 Methods for Finding Protein-protein Interactions 4

1.3.1 Biological Methods . 4
1.3.2 Computational Methods 4
1.3.3 Integrative methods . 5

1.4 Simultaneous Prediction of Interactions 6

2 Probabilistic Graphical Models 8
2.1 Probabilistic Models . 8
2.2 Markov Random Fields . 11

2.2.1 Template Models . 14
2.2.2 Directed potentials . 15

3 The Protein-Protein Interaction Model 16
3.1 Building the Model Skeleton 16
3.2 Adding Information from Large Scale Assays 17
3.3 Enriching The Model . 18

3.3.1 Adding Dependencies between Interactions 18
3.3.2 Adding Protein Attributes 18

4 Inference in Markov Random Fields 21
4.1 Exact Inference in Markov Random Field 21
4.2 Free Energy Minimization and Inference Approximations . . . 24

4.2.1 The Spin Model . 24
4.2.2 Connecting between Energy and Probability 25
4.2.3 Equivalence between Free Energy Minimization and

Inference . 26
4.3 Loopy Belief Propagation . 28

4.3.1 Belief Propagation . 28

ii

4.3.2 Theoretical Support for Correctness of LBP on Graphs
with Loops . 29

5 Learning the Model Parameters from Data 32
5.1 Deriving the Undirected Term 33
5.2 Deriving the Directed Term 34
5.3 Dealing with Relational Models 35
5.4 Our Parameter Learning Approach 35

6 Application of the Integrated Model to Experimental Data
of Protein-protein Interactions 37

7 Discussion 43

iii

Chapter 1

Introduction

1.1 The World of Proteins

All living organisms share the basic cellular mechanism. Although there
is a huge diversity between the simplest uni-cellular creature and the most
complicated mammal, they are all consisted of living cells. Amazingly, all
those cells, whether from a bacterium or a human being, share the same
basic building blocks. These building blocks, which control and determine
the behavior of each cell, are proteins.

The proteins are encoded in DNA and generated by a well known mecha-
nism that is often referred to as the central dogma of biology and is depicted
in Figure 1.1. It states that the blueprint of each cell is encoded in its DNA

DNA RNA Protein

Replication

Transcription Translation

DNA RNA Protein

Replication

Transcription Translation

DNA RNA Protein

Replication

Transcription Translation

Figure 1.1: The central dogma of biology

sequence. The DNA is replicated (and so the blueprint is passed on to the
cell’s offsprings), and part of it is transcribed to RNA, from which proteins
are translated. After translation of an RNA to a protein there are still many
processes the protein has to undergo in order to be functional. First it has
to fold into the correct secondary and tertiary structure, then it has to be
transported to a specific cellular localization, and often it undergoes specific
modifications in order to become active.

1

a ba b

Figure 1.2: The secondary and tertiary structure of proteins

There are many types of proteins in a cell (e.g., 6000 proteins in the
budding yeast Saccharomyces cerevisiae), and each cell can hold a different
number of copies of each protein. The proteins fulfill a wide range of tasks
in the cell: they regulate almost all processes in the cell, they act as selective
porters on the cell membrane, they accelerate chemical reactions in the cell,
and many more.

Conceptually, all proteins can be considered as long strings over an al-
phabet of twenty letters, each such letter representing an Amino Acid. The
length of such a sequence varies from dozens to thousands of amino acids.
The specific sequence of amino acids determines the three dimensional struc-
ture of the protein. This structure is formed from local secondary structures
such as α helices or β sheets (Figure 1.2 a). These local structures join to
form the protein configuration in the three dimensional space (termed ter-
tiary structure, see Figure 1.2 b). Folding into a specific structure scheme
determines the character and function of the protein, and is vital to its func-
tionality.

The function of proteins in the cell usually involves interactions with other
proteins. There are many types of possible interactions. One protein can,
for example, transiently interact with another protein in order to modify it.
Another common example is a stable interaction between two proteins (or
more) that are active only when part of a complex.

1.2 Protein-Protein Interaction Networks

One of the main goals of molecular biology is to reveal the cellular networks
underlying the functioning of a living cell. Protein interactions play a cen-
tral role in these networks. Hence, it is important to know which pairs of
proteins interact and characterize each interaction in terms of strength, time

2

Figure 1.3: Example for an interaction network. Adopted from H Jeong et.al.
Nature 411,41 2001

and place. Deciphering this protein interaction network (see for example Fig-
ure 1.3) in different conditions and stages is a prerequisite for understanding
the complex mechanisms that determine the behavior of the cell.

The challenge of charting protein-protein interactions is complicated by
several factors. Foremost is the sheer number of interactions that have
to be considered. In the budding yeast, for example, there are approxi-
mately 18,000,000 potential interactions between the roughly 6,000 proteins
encoded in its genome. Of these, only a relatively small fraction occur in the
cell [Sprinzak et al., 2003]. Another complication is due to the large variety
of interaction types. These range from stable complexes that are present in
most cellular states, to transient interactions that occur only under specific
conditions (e.g. phosphorylation in response to an external stimulus).

In the last four years a large effort is invested in developing large-scale
screens that will enable us to build such an interaction network. The next
sections review some of these methods, as well as describe our own approach
for this intriguing problem.

3

1.3 Methods for Finding Protein-protein In-

teractions

For the sake of brevity, we divide the methods into categories and give some
typical examples for each paradigm. We first roughly divide the methods
into three sub-groups : biological methods, computational methods and in-
tegrative methods.

1.3.1 Biological Methods

Several biological experimental methods were suggested to approach this
problem, we will give here two examples. The first, and maybe the most
known one is the Yeast Two Hybrid (Y2H) [Uetz et al., 2000, Ito et al.,
2001]. In this method the transcription mechanism is used in order to reveal
interaction between two proteins. Specifically, one of the proteins is fused
to a transcription factor binding domain of a reporter gene, and the other
to the transcription factor activation domain. The fusion is done in a way
such that if the proteins interact, the interaction will enable the transcription
of the reporter gene. This enables testing of many proteins pairs efficiently,
namely, for each ’bait’ protein, many ’preys’ are tested.

Another method, Tandem Affinity Purification (TAP) [Rigaut et al.,
1999] relies upon recent advances in the technologies that enable detection
and identification of small amounts of proteins. Here one protein is fused
with a specific tag, and then introduced into a cell, so it can bind to all
the proteins it interacts with. Then the cell extract is prepared, and the
specific tag is used to capture all protein complexes that include the original
fused protein. Finally, all the proteins in the complexes are identified using
advanced experimental techniques(e.g., Mass spectrometry). Naturally, this
method can only be used to discover interactions within protein complexes
or other stable (i.e., not transient) interactions.

1.3.2 Computational Methods

Several computational methods were developed to identify protein-protein
interactions. We can divide these into two main approaches. The first ap-
proach tries to find functional relations between proteins. It is designed to
find protein pairs that are part of the same cellular process but do not nec-
essarily physically interact. The other approach looks only for real physical
interactions. There are several examples for the first kind, we will present
here two examples.

4

The first one, Phylogentic Profile, was introduced by [Pellegrini et al.,
1999]. It suggests that if two proteins are functionally related then the pres-
ence of one protein at a certain organism might be useless without the other
protein. Hence in most organisms we will see either both proteins or neither
one. Formally, we build for each protein i its ’phylogenetic profile’ ~vi:

vi[j] =

{
1 if protein i appears in organism j
0 if protein i does not appear in organism j

Now for two proteins k and l we simply have to calculate the correlation
between ~vk and ~vl, and if this correlation exceeds a certain threshold we
decide that these proteins are related.

Another strategy for the same ’indirect approach’ relies on the assumption
that if two proteins interact they should be present at the same times in the
cell. [Eisen et al., 1998] suggest to use mRNA level as an evidence for the
presence of a protein in a given time in the cell. This means we can try to
track down indirect interaction by following the mRNA expression profile of
two proteins. Namely, if they tend to co-express at the mRNA level, then
they might be functionally related.

The second approach takes a different path. It chooses a set of reliable
direct interactions and then tries to capture what differs between interacting
pairs and non-interacting pairs. For example, the Correlated domain signa-
ture method (Sprinzak and Margalit [2001]) looks at the domains that each
protein has. These domains are short segments of the protein that often are
related to its role or localization. In this method we look for domain pairs
that tend to appear in interacting proteins more than expected at random.
Specifically, if we look at all pairs of proteins, where protein i has domain
A and protein j has domain B and count how many of those pairs interact.
These pairs of domain-signatures can be used to support putative interactions
between other proteins that contain them.

1.3.3 Integrative methods

There are several problems with the methods above. First, most of them are
applied only to a limited set of protein pairs and do not cover all possible in-
teractions. Moreover, the overlap between the predictions of all the methods
is very small. [Sprinzak et al., 2003] and [von Mering et al., 2002] conducted
detailed analyses of the existing methods reliability only to discover that no
method alone has reasonable combination of sensitivity and recall (e.g., Y2H
has 50% false positives). However, both studies discover that a combina-
tion of two (or more) methods can improve significantly the reliability of the
identified interactions.

5

A few studies (e.g., [Jansen et al., 2003, Zhang et al., 2004]) tried to follow
this line of thought and combine several attributes into one integrated pre-
diction. These attributes can be either predictions of other computational /
experimental methods, or other information sources, such as cellular localiza-
tion assays. Once you choose a desired set of attributes, it seems intuitively
appealing to take a set of reliable interactions, assess the specificity of each
method separately, and then combine the prediction of all methods , when
each method is weighted according to its reliability. This can be done us-
ing machine learning approaches, either in a discriminative way, or using a
Bayesian approach. The discriminative methods take the chosen attributes
as input and use some kind of classifier (SVM, perceptron . . .) to discrim-
inate between interacting and non-interacting pairs (see for example [Bock
and Gough, 2003]). In the Bayesian approach we assess the probability of
each method prediction given an interaction, and use Bayes rule to calculate
the probability of interaction given the predictions of all methods (see for
example [Jansen et al., 2003]).

1.4 Simultaneous Prediction of Interactions

These integrated methods examine each pairwise interaction independently,
and ignore the dependencies between different interactions. In this study
we argue that by examining the protein interaction network as a whole, we
can leverage observations on different interactions, as well as from differ-
ent sources, to get better joint predictions of multiple interactions. As a
concrete example, consider the budding yeast proteins APC2 and APC4.
These proteins were reported as interacting by a large-scale experimental
screen [Rigaut et al., 1999]. However, according to Yeast Protein Database
(YPD) [Costanzo et al., 2001], APC2 is localized in the cytoplasm while
APC4 is localized in the nucleus, i.e., the two proteins are not co-localized.
Thus, a naive model as in Figure 1.4a, that considers this interaction inde-
pendently of other interactions, might assign it a low probability. However,
we can gain more confidence by looking at related interactions. For example,
CC16 is reported to interact with both APC2 and APC4, as illustrated in
Figure 1.4b. This observation suggests that the three proteins might form a
complex. Moreover, both CC16 and APC1 are nuclear proteins that interact
with APC2, Figure 1.4c, implying that APC2 can possibly be nuclear as well,
and increasing our belief in the interaction between APC2 and APC4. This
example shows two types of inferences. First, certain patterns of interactions
(complexes) might be more probable than others. Second, an observation
on one interaction can provide information about the attributes of a pro-

6

APC2 APC4?APC2 APC4?
APC2 APC4

CC16

?APC2 APC4

CC16

? APC2 APC4

CC16APC1

?APC2 APC4

CC16APC1

?

(a) (b) (c)

Figure 1.4: Dependencies between interactions can be used to improve
predictions. (a) Shows a single interaction of two proteins APC2 and APC4,
one of which is localized in the cytoplasm (light orange) and the other in the
nucleus (dark blue). The model assigns a low probability to an interaction of
proteins that are not co-localized. (b) Introduces a third protein interacting
with both proteins of (a). (c) Introduces further evidence that APC2 might
also reside in the nucleus, allowing us to hypothesize that this annotation is
missing and increase the reliability of the interaction with APC4.

tein (cellular localization in this example), which in turn can influence the
likelihood of other interactions.

We present a unified probabilistic model for learning an integrated protein-
protein interaction network. We build on the language of relational proba-
bilistic models [Friedman et al., 1999, Taskar et al., 2002] to explicitly define
probabilistic dependencies between related protein-protein interactions, pro-
tein attributes, and observations regarding these entities. Furthermore, prop-
agation of evidence in our model allows interactions to influence each other in
complex ways, facilitating automatic correction of uncertain interacting can-
didates. Using various proteomic data sources for the yeast Saccharomyces
cerevisiae we show how our method can build on multiple weak observations
to better predict the protein-protein interaction network.

7

Chapter 2

Probabilistic Graphical Models

We saw in the previous chapter why it is both interesting and hard to investi-
gate protein interactions networks. In this chapter we present the background
for the computational tools we are using to explore such networks. We first
describe what are probabilistic models, using a small example, and show how
they can be mapped into a graphical model. We then show how to generalize
this example for any probabilistic model, and introduce some other features
we can use to improve our model.

2.1 Probabilistic Models

In this section we describe a small example, formalize it into variables and
equations, and finally generalize it. Our model consists of two students (Mark
and Jane) who learn together for an exam. Assume we are interested to
know how well the students understand what they have learned, and what
were their grades in the exam. We formalize this into four discrete random
variables :

Um − Mark’s understanding level
Uj − Jane’s understanding level
Gm − Mark’s exam grade
Gj − Jane’s exam grade

Each of these variables can be assigned a few values. We call the values a
variable X can be assigned the domain of X and denote them by dom(X).

8

For example, the domains of the random variables of our example are

Ui =

HIGH If the student i understands the learned material very well
MEDIUM If the student i understands it OK
LOW If the student i doesn’t understand it

Gi =

GOOD If the student’s grade was above 90
AVERAGE If the student’s grade was between 75 and 90
BAD If the student’s grade was below 75

In this example we denote by capital letters the random variables (e.g., Um),
and by small letters the values each take (e.g., um). For the general case,
we will denote by bold capital letters sets of random variables, e.g., X =
X1 . . . Xn and by x an assignment for all n variables. Many times instead of
p(X = x) we will use the abbreviation p(x).

For each assignment of random variables we assign a probability, e.g., we
can say that

p(Uj = HIGH, Gj = GOOD) = 0.5

while
p(Uj = HIGH, Gj = BAD) = 0.1

This means that if Jane understands the material well, she is more likely to
get a good grade than to get a bad grade. There are three rules a probability
function must follow:

1.
p : dom(X) 7→ [0, 1] (2.1)

2.
∀ S ⊂ T

∑
xTrS

p(xT) = p(xS) (2.2)

3.
∀ S

∑
xs

p(xs) = 1 (2.3)

Where S and T are sets of variables, and xS,xT the assignments for the
variables in S and T . We refer the interested reader to [DeGroot, 1989] to
learn more about these rules.

Sometimes, the assignments of some variables are correlated with the
assignments of other variables. For example, knowing the student’s grades
clearly tells us something about their level of understanding. We can trans-
late this intuition about correlation into a mathematic formulation that can
tell us whether two random variables are correlated:

9

Definition 2.1.1: Given two random variables X and Y , if p(x|y) = p(x)
then we say that X is independent of Y . If this equation does not hold we
say that they X is dependent on Y

These relations are not always direct, for example if Jane and Mark learned
together for the exam, then Gj is dependent on Gm. However, assuming
Jane and Mark did not cheat in the exam, Gj and Gm do not directly affect
each other, and the real connection is between Uj and Um. We call this
property conditional independence and its formulation is a natural extension
of Definition 2.1.1:

Definition 2.1.2: Given three random variables X,Y and Z, If p(x|y, z) =
p(x|z) then we say that X is conditionally independent of Y given Z.

In other words, knowledge about Mark’s grade, provides us information about
the grade Jane got. But, if we would have known exactly how well both
students understand the material, Mark’s grade provides us with no new
information about Jane’s grade. Hence Mark’s grade and Jane’s grade are
dependent on each other if nothing else is known, but they are conditionally
independent given direct knowledge about their understanding. Given some
sets of variables X, Y and Z we denote:

(X ⊥ Y) if X and Y are independent
of each other (p(x|y) = p(x))

(X ⊥ Y | Z) if X and Y are conditionally independent
of each other given Z (p(x|y, z) = p(x|y))

Now that we have represented our world, we show how can we use this
representation in order to ask questions about it . We could be interested to
know what is the probability of an assignment for all random variables. This
is often referred to as the likelihood of the assignment, e.g.,

p(Gj = AVERAGE, Uj = HIGH, Um = MEDIUM, Gm = BAD) (2.4)

Or we could ask about the marginal probability for a set of variables getting
a certain assignment, given a (possibly empty) set of assignments for other
variables, e.g.,

p(Gj = BAD) (2.5)

Sometimes we are interested in the getting the Maximal A-posterior Proba-
bility (MAP) of an assignment for a set of variables, given a (possibly empty)
set of assignments for other variables.

argmaxuj
p(Uj = uj|Gj = MEDIUM) (2.6)

10

Naively, in order to answer these questions, we can hold a table which con-
tains the probabilities for all possible assignments such as Eq. (2.4)1. Now,
answering Eq. (2.4) is easy, as we simply need to take the right value from
the table. However, calculation of Eq. (2.5) and Eq. (2.6) is a bit more
complicated, since we need to sum over all assignments for the other three
variables, i.e., :

p(Gj = BAD) =
∑
uj

∑
um

∑
gm

p(Gj = BAD, Uj = uj, Um = um, Gm = gm)

(2.7)
Answering these questions is called inference since we infer from our model
what is the probability of a certain state. There are two practical issues
we have to address, storage and complexity of computation. If we have four
random variables and each one can be assigned three values, we need to store
a table of 34 = 81 values. In our world, that is consisted of two students this
is feasible, but unfortunately in case of a class with 40 students and 40 grades,
we would have 380 possible configurations, and it is not possible to store that
amount of entries in a computer. As for the complexity, computing Eq. (2.4)
is O(1) but the formula in Eq. (2.7) requires us to sum over all 27 possible
configurations of {uj, um, gm}, which is again practical for an example of four
variables, but infeasible for any real life problem. Graphical Models come
to solve both the problem of representation in reasonable space, as well as
computing answers to Eq. (2.4) and Eq. (2.5) without having to perform an
exponential number of summations. The main idea is to exploit conditional
independence properties in order to efficiently represent probabilistic models.
When mapping a probabilistic model into a graph, each random variable is
represented by a node and the conditional independence is translated into
graph structure. Specifically, given three sets of random variables if two sets
are independent given the third one then they are mapped into the graph
such that the nodes of the third set separate the corresponding two sets of
nodes. In the next section we formalize this connection between conditional
independence and separation in graphs.

2.2 Markov Random Fields

We are using an undirected graphical model called Markov Random Field
(MRF)[Hammersley and Clifford, 1971, Pearl, 1988]. In this section we first
show how to build an MRF for our small example and then generalize it into

1We assume, for now, that we are told what values to fill in this table, but we will later
refer to the case where these values are unknown

11

Uj Um

Gj Gm

Uj Um

Gj Gm

Figure 2.1: The Markov Random Field corresponding to the model in Section
2.1

a formal description of an MRF. But first we have to explain the notion of a
factor.

Definition 2.2.1: Let C be a group of random variables, and let dom(C)
be their domain, a factor ψ with scope C is a mapping from dom(C) to <
This notion is very similar to that of a probability function, in the sense
that each assignment is mapped to a score correlated with our belief of its
likelihood. The difference is that in this case we are not limited into the
range [0, 1]. In MRFs, factors are assigned to maximal cliques.

Definition 2.2.2: Let G be an undirected graph, we define a clique in G,
as a fully connected group of nodes. A maximal clique is a clique which is
not a subset of any other clique.

The key in mapping a model into a graph is to build the maximal cliques
such that two conditions hold. On one hand we want all the variables that
are dependent on each other to appear in the same maximal clique. On
the other hand we want variables that are conditionally independent of each
other to appear in different cliques. To do so we need to identify the direct
dependencies within the largest groups of random variables and map them
into maximal cliques. In our case the maximal cliques are {Uj, Um}, {Uj, Gj}
and {Um, Gm}. {Gj,Gm} is not a clique since (Gm ⊥ Gj | Uj, Um). Hence for
our model we get the graph depicted in Figure 2.1. Notice that in the graph
we have built, conditional independence is mapped into structure, i.e., Gj

and Gm are separated from each other by Uj and Um.
In graphical models we often wish to factorize p(gj, uj, um, gm) into a

multiplication over small local factors. e.g.,

p(gj, uj, um, gm) =
1

Z
eψj(gj ,uj)eψm(gm,um)eψu(uj ,um) (2.8)

12

Where each ψ is a factor over a maximal clique (ψc(xc) is the score given to
xc) and Z is a normalization factor, which is termed Partition Function. It
is used so the probability will comply to the rules in Eq. (2.1), Eq. (2.2) and
can be calculated by

Z =
∑

gj ,uj ,um,gm

eψj(gj ,uj)eψm(gm,um)eψu(uj ,um) (2.9)

This enables the storage of our parameters in only 3 tables of 4 entries (12
cells instead of 81). We will present in the next sections some efficient algo-
rithms for computing Eq. (2.4) and Eq. (2.5) as well as for computing the
partition function.

We are now ready to generalize our description into a formulation of an
MRF.

Definition 2.2.3: A Markov Random Field (or Markov Network) over a set
of variables X is defined as a pair 〈G,Ψ〉 where each variable Xi is mapped
into a node in G, and for each maximal clique C in the graph G there is a
factor ψc such that

p(x) =
1

Z

∏
c

(eψc(xc)) (2.10)

Before we finalize our formulation, we need to map the notion of conditional
independence into separation in graphs.

Definition 2.2.4 : Let G be an undirected graph whose nodes map the
random variables X = {X1 . . . Xn}. We say that X is locally Markov with
respect to G if

∀ S p(S|{Xr S}) = p(S|NS)

Where S denotes a group of nodes in G, and NS denotes the group of all
the neighbors of S in the graph.

This means that each group of variables is conditionally independent of all
the other variables in the graph given its neighbors. All that is left now, is
to connect this notion of separation with the factorization of the probability
function.

Theorem 2.2.5 [Hammersley Clifford]: Let G be a graph over the
variables X = {X1 . . . Xn}, if ∀ x p(x) > 0 and X is locally markov with
respect to G, then p(x) factorizes with respect to G, i.e.,

p(x) =
1

Z

∏
j

(eψc(c))

13

Remark 2.2.6: Also the reverse direction is correct, if p(x) factorizes with
respect to G, then X is locally markov with respect to G.

2.2.1 Template Models

Our aim is to construct a Markov random field over protein-protein interac-
tion networks. This poses two significant problems. First, these models will
involve a large number of random variables and potential functions. Robustly
estimating a unique parameter for each value in each potential function is
impractical. Second, we want the same “rules” to apply to different inter-
action maps, whether we use all 6,000 proteins of the yeast, or focus on a
smaller subset. Clearly, in each case we construct a model over a differ-
ent set of variables. We address these problems by using template models.
These models are related to relational probabilistic models [Friedman et al.,
1999, Taskar et al., 2002] in that they specify a recipe with which a concrete
Markov random field can be constructed for a specific set of proteins and
observations. This Markov random field reuses template potentials specified
by the model.

As a simple example, we go back to our understanding and grade model.
We assume that the correlation between the understanding of the material
and the exam grade is the same for all students. As a result we can hold one
template potential ψug(ui, gi) for any student i. Note that this representation
solves both problems that we have just introduced. First, the number of
parameters in the model does not depend on the number of students (or
proteins in our real model). Second, we apply the same “rule” for all the
potentials between student and grade. Following the same logic, we create
a ψuu(ui, uj) potential for each pair of students that learned together for
the exam. Thus, for some k students our induced Markov random field
has k potentials between students and grades, all of which replicate the same
parameters of the template potential, and in addition a ψuu potential between
each two students that learned together for the exam.

Note that the ψuu potential needs to be ignorant of the order of its ar-
guments (as we can “present” each pair of students in any order). Thus,
the actual number of parameters for ψuu is six – three parameters when the
understanding of the two student is the same (High,Medium or Low),and
another three for each possible combination (ui = High and uj = Low etc...)

In summary, a template model consists of several template potentials
and rules that specify how to replicate each of these template potentials
when inducing a specific Markov random field over a specific set of entities
(students in our example and proteins in our real model).

14

2.2.2 Directed potentials

The models we discussed so far make use of undirected dependencies between
variables. In many cases, however, a clear directional cause and effect rela-
tionship is known. For example, it is natural to view the student’s grade
(Gm) as a noisy sensor of his understanding (Um). In this case, we can
use a conditional distribution P (Gm = gm | Um = um) that captures the
probability of the observation (in our case the grade) given the underlying
state of the system (in our case the understanding). Conditional probabili-
ties have several benefits. First, due to local normalization constraints, the
number of free parameters of a conditional distribution is smaller (six in-
stead of nine in this example). Second, since

∑
gj

(p(Gj = gj | Uj = uj)) = 1,
such potentials do not contribute to the global partition function. Proba-
bilistic graphical models that combine directed and undirected interactions
are called Chain Graphs [Buntine, 1995]. In this study we examine a simpli-
fied version of Chain Graphs where a dependent variable associated with a
conditional distribution (i.e., Gj) is not involved with other potentials or con-
ditional distributions. Denoting by X the set of all variables that participate
in undirected potentials and by Y the set of all variables that only interact
with other variables via conditional probabilities, we can rewrite Eq. (2.10)
as

P (X = x,Y = y) = p(X = x)p(Y = y|X = x) =

[
1

Zx

∏
c

eψc(xc)

][∏
j

p(yj|uj)

]

(2.11)
where uj ⊆ X are the directed parents of the variable Yj in the model. Note
that Zx is defined by sum over all assignments to X (as in Eq. (2.9)).

15

Chapter 3

The Protein-Protein
Interaction Model

Our goal is to build a unified probabilistic model that can capture the inte-
grative properties of the protein-protein interaction network. We want our
model to be able to capture the type of reasoning that appears in the example
of Figure 1.4. Thus, we aim for simultaneous prediction of all interactions.
In addition, the model should take into account different attributes of the
protein such as its cellular localization. Furthermore, we would like to explic-
itly account for measurement noise of different assays. To this end we build
a probabilistic model that encompasses the relevant phenomena. This model
is composed of classes of random variables and template potentials that rep-
resent interactions among these variables (Figure 3.1). We now describe the
model in a piecewise fashion.

3.1 Building the Model Skeleton

Given a set of proteins P = {p1, . . . , pk}, an interaction network is a set of
edges among these proteins. We can describe such a network by a collection of
indicator random variables. The first class of random variables we introduce,
is the one that describes the “true” interaction network. In this class we
have binary random variables that represent whether such an interaction
exists . We use the notation I(pi, pj) for the random variable that describes
an interaction between pi and pj:

I(pi, pj) =

{
1 If there is an interaction between pi and pj
0 Otherwise

Note that this is a symmetric relation, and so I(pi, pj) and I(pj, pi) designate
the same random variable. The simplest template model over such an inter-

16

action network has a single univariate potential ψ1(I(pi, pj)). The induced
Markov random field has a potential for each possible edge. Each one of
these potentials is identical to the template potential, so that a priori all
interactions are equally likely.

3.2 Adding Information from Large Scale As-

says

Usually, we expect these interaction random variables to be hidden from us.
We learn about interactions through experimental assays or computational
predictions. For each type of assay a, we have a random variable IAa(pi, pj)
that denotes the result of the assay for the interaction between pi and pj:

IAa(pi, pj) =

1 If the interaction between pi and pj was detected
by the assay a

0 If the interaction between pi and pj was not
detected by the assay a

Note that some assays are not symmetric. For example, in the yeast two
hybrid assay there is a difference between a bait and a prey. In such a situ-
ation IAa(pi, pj) and IAa(pj, pi) are distinct random variables that describe
the outcome of two different experiments. These variables are observed (with
either positive or negative results) for these cases where the assay has been
carried out.

We relate the observed interaction assays with the “true” interactions
using a directed conditional distribution p(IAa(pi, pj) | I(pi, pj))
(Figure 3.1(b)). This conditional distribution views the assay as a noisy sen-
sor. Thus, we explicitly model experiment noise and allow the measurement
to stochastically differ from the ground truth. It is important to note that
IAa(pi, pj) = 0 means that the interaction between pi and pj was tested in
the assay a but not found. In case that this interaction was not tested in
the assay a we can ignore the corresponding random variable. This is a di-
rect consequence of the directionality of the potential between I(pi, pj) and
IAa(pi, pj), since in the case that IAa(pi, pj) is not observed, it has no effect
on the rest of the model (i.e., since it is not observed, summing it out results
in the identity factor). This is a very important consequence, since many
interaction assays are performed only for a small set of proteins, and we can
integrate their information without adding too many random variables to our
model.

For each type of assay we have a different conditional probability that re-
flects the particular noise characteristics of that assay. In addition, the basic

17

model contains a univariate template potential ψ1(I(pi, pj)) that is applied
to each interaction variable. This potential captures the prior probability
of interaction (before we make any additional observations). If we restrict
our model to only these components, then note that the model consists of
potentials over I(pi, pj) and its related assays. Thus, the model specifies a
collection of independent naive Bayes models for each interaction. In this
model we predict interactions based solely on the results of different assays
of each interaction, as in Jansen et al. [2003].

3.3 Enriching The Model

We can enrich the model in two different ways. The first is by explicitly
describing dependencies between related interactions by potentials over sets
of interactions, and the second is by adding information about the properties
of each protein.

3.3.1 Adding Dependencies between Interactions

We want to capture local dependencies between different interactions. The
triad model [Frank and Strauss, 1986] has template potentials over triplets
of edges that share common proteins: ψ3(I(pi, pj), I(pi, pk), I(pj, pk)). This
potential can capture properties such as preferences for (or against) adjacent
edges, as well as transitive closure of adjacent edges. Given P , the induced
Markov random field has

(|P|
3

)
potentials, all of which replicate the same

parameters of the template potential. Note that this requires the potential
to be ignorant of the order of its arguments (as we can “present” each triplet
of edges in any order). Thus, the actual number of parameters for ψ3 is four
– one when all three edges are present, another one for the case when two are
present, and so on. Thus, we allow the evidence about some interactions to
propagate and influence our belief on related interactions. Once we introduce
such potentials, the interaction variables are not independent of one another,
and we can consider simultaneous prediction of all interactions together.

3.3.2 Adding Protein Attributes

A different way to extend the model is by introducing protein attributes
that influence the interactions. It is fairly clear that the structure of the in-
teraction network reflects various aspects of the structure, localization, and
function of specific proteins. Thus, the likelihood of different patterns of

18

interactions can depend on these attributes. Here we consider cellular local-
ization as an example of an attribute that may have impact on the interac-
tions. The intuition is clear: if two proteins interact, then we expect them
to be co-localized. Since each protein can be present in multiple locations,
we model cellular localization by several indicator variables, Ll(p):

Ll(p1) =

{
1 If p1 is present in cellular localization l in some context
0 Otherwise

As with interaction variables, localization variables represent the un-
derlying truth and can not be directly observed. Instead, we have access
to partial noisy observations of localization through experimental assays
(e.g.,Ghaemmaghami et al. [2003]). The outcome of these assays is denoted
by localization assay random variables LAl(pi), which are observed:

LAl(pi) =

{
1 If pi was found in cellular localization l in some context
0 If pi was not found in cellular localization l in any context

Again, we distinguish between the case where pi was searched but not found
(in this case LAl(pi) = 0) and the case where pi was not looked after (in this
case we simply ignore this random variable in our model). We relate each
localization assay variable to its corresponding ground truth variable using a
conditional probability (Figure 3.1(d)). The parameters of this conditional
probability depend on the type of assay and the specific cellular localization.
For example, some localizations, such as “bud”, are harder to detect as they
represent a transient part of the cell cycle. On the other hand other localiza-
tions, such as “cytoplasm”, are easier to detect since they are present in all
stages of the cell’s life and many proteins are permanently present in them.

In addition, we also relate the localization variables for a pair of proteins
with the corresponding interaction variable between them by introducing for
each localization l a potential ψl(Ll(pi), Ll(pj), I(pi, pj)) (Figure 3.1(e)). This
potential encodes preferences for interactions between co-localized proteins.
It also captures the increase (or decrease) in probability of interactions due
to their co-localization. As with the template over potentials between inter-
actions, we enforce this potential to be symmetric in the role of pi and pj.
As discussed above, including such potentials in the model allows for indirect
dependencies between interactions. That is, evidence for interaction between
pi and pj can change the beliefs about the localization of pi, and consequently
change the belief in the existence of the interaction between pi and another
protein pk.

19

IA(acp2,apc4)
I (apc2,apc4)

IA(acp2,apc4)
I (apc2,apc4)

I(apc2,apc4)

I(acp4,cc16)
I(apc2,cc16)

I(apc2,apc4)

I(acp4,cc16)
I(apc2,cc16)

(a) Interaction assay (b) Dependencies among interactions

LA(apc2,nuc)
L(apc2,nuc)

LA(apc2,nuc)
L(apc2,nuc) I(apc2,apc4)

L(apc4,nuc)
L(apc2,nuc)

I(apc2,apc4)

L(apc4,nuc)
L(apc2,nuc)

(c) Localization assay (d) Localization and interactions

H
id

d
en Cellular

localization
L(p1,l1)

Interactions
I(p1,p2)

Localization
assays

LA(p1,l1)

Interaction
assays

IA(p1,p2)O
b

se
rv

ed

d

c a

b

H
id

d
en Cellular

localization
L(p1,l1)

Cellular
localization

L(p1,l1)
Interactions

I(p1,p2)
Interactions

I(p1,p2)

Localization
assays

LA(p1,l1)

Localization
assays

LA(p1,l1)

Interaction
assays

IA(p1,p2)

Interaction
assays

IA(p1,p2)O
b

se
rv

ed

d

c a

b

(e) Global model structure

Figure 3.1: The model consisting of four classes of variables. The relations
between them are divided to four types of potentials: (a) a potential between
an interaction and the corresponding interactions assay; (b) a potential be-
tween three related interacting pairs; (c) a potential between a localization
and the corresponding localization assay; (d) a potential between an interac-
tion and the localization of the two proteins. The integration of four classes
and the global relations between them can be seen in (e).

20

Chapter 4

Inference in Markov Random
Fields

We have already shown how to map probabilistic models onto graphs, and
how this provides an efficient representation of the distribution. We have
also presented in Section 2.2 a few probabilistic queries in such probabilistic
models, and then demonstrated that answering them naively is computation-
ally intractable in real life problems. In this section we show how we can use
probabilistic models in order to efficiently compute answers to these queries.

4.1 Exact Inference in Markov Random Field

First, let us return to the example presented in Section 2.1 and the corre-
sponding MRF we have built (Figure 2.1). Assume, for example, we are
interested in calculating p(Gj = BAD). As we previously showed, this can
be done by Eq. (2.7) but may require an infeasible number of computations.
We can use the factorization of the probability function to try and reduce
the number of summations. By plugging in Eq. (2.8) we get:

p(Gj = BAD) =
∑
uj

∑
um

∑
gm

1

Z
eψj(Gj=BAD,uj)eψm(gm,um)eψu(uj ,um)

Since in this equation not all factors depend on all variables, we can change
the order of summation:

p(Gj = BAD) =
1

Z

∑
uj

eψj(Gj=BAD,uj)
∑
um

eψu(uj ,um)
∑
gm

eψm(gm,um) (4.1)

To sum one variable out we first create an intermediate factor that includes
all the functions in which the eliminated variable takes part. Then we sum

21

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

a

b

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

U� U�

G� G�

a

b

Figure 4.1: A graphic illustration for elimination process (the dashed line
represent the parts that are already summed out). (a) shows original elim-
ination order shown in Eq. (4.1) and (b) shows the elimination order in
Eq. (4.3) Notice that when summing out a variable whose neighbors are not
directly connected, an edge is added since they are now part of the same
factor (see for example Eq. (4.4))

out this variable, thus eliminating it from the equation1. We denote the
resulting marginalized factor with a new notation, for example, if we sum
out the variable x and after marginalization we remain with a function over
y we denote the resulting factor by fx(y). Thus, we can algebraically describe
the process of elimination (it is also illustrated graphically in Figure 4.1):

p(Gj = BAD) =
1

Z

∑
uj

eψj(Gj=BAD,uj)
∑
um

eψu(uj ,um)fgm(um) (4.2)

=
1

Z

∑
uj

eψj(Gj=BAD,uj)fgm,um(uj)

=
1

Z
fgm,um,uj

(Gj = BAD)

The main idea behind these steps is to take advantage of the factorization of
the probability function in order to sum one variable at a time. Notice that
now, instead of summing over 27 possible configurations for {uj, um, gm} we
perform only 9 summations that are done on three iterations. This process is

1This process is referred to as marginalization, for example in our case we take a table
of nine entries and sum each column into one value to end up with a table of three entries,
each holding a marginal probability.

22

called elimination since at each time we sum out one variable (i.e., eliminate
it). The computational complexity of the elimination grows exponentially
with the size of the largest intermediate factor that is created during the
elimination. Note that the order in which we eliminate the variables is very
important, if we change the order of elimination in Eq. (4.1) we will get
different performance. We will demonstrate this for our example (see also
Figure 4.1 b):

p(Gj = BAD) =
1

Z

∑
uj

eψj(Gj=BAD,uj)
∑
gm

∑
um

eψu(uj ,um)eψm(gm,um)

(4.3)

=
1

Z

∑
uj

eψj(Gj=BAD,uj)
∑
gm

fum(gm, uj) (4.4)

=
1

Z

∑
uj

eψj(Gj=BAD,uj)fum,gm(uj)

=
1

Z
fum,gm,uj

(Gj = BAD)

For this elimination order the size of the largest clique is bigger than the one
in the original order we presented. Specifically, while the complexity of the
original elimination order was O(32), the complexity of Eq. (4.3) is O(33)
since the size of the largest intermediate factor grew from 2 to 3. Unfortu-
nately, choosing an optimal elimination order for a general graph is a hard
problem, and although there are some intuitions (e.g., start from the leaves),
there is no straightforward solution. Furthermore, for most real-life models,
regardless of the elimination order, the size of the largest intermediate factor
is exponential with the number of variables in the model.

Though this means that in many cases this exact inference is infeasible,
sometimes we might be willing to compromise on an approximate answer.
In these cases we resort to approximate inference methods. There are sev-
eral methods of approximate inference in graphs, in this work we will deal
with a special subgroup of these methods, which use an interesting connec-
tion between the inference computation in graphical models and free energy
minimization in theoretical physics.

23

4.2 Free Energy Minimization and Inference

Approximations

In these two subsections we explain about the surprising connection between
free energy minimization and inference. First we show an example for a
model where this connection can be intuitively shown and then we give some
theoretical foundation for this connection.

4.2.1 The Spin Model

We start with building a graphical model for a new problem. Assume we
have a grid of nine particles, each of which can spin either up or down. The
direction of the spin is determined by the direction of its neighbors in the
grid, as well as by an external force. We are interested in knowing in which
direction each spin moves. We use what we have learned in the last sections
to build an MRF that can help us solve this problem. First let us determine
the random variables for this example

Xi = The state of the i’th spin

Yi = The external force operated on the i’th spin

And the corresponding domains:

Xi =

{
+1 If the i’th spin turns up
−1 If it turns down

Yi =

{
+1 If the external force on the i’th spin is up
−1 If the external force is down

To map our model into a graph we have to determine the maximal cliques
in it. We have two kinds of direct dependencies, between neighboring spins,
and between a spin and the external force operated on it. This results in the
graph shown in Figure 4.2 and in the following equation:

p(x,y) =
1

Z

∏

〈i,j〉
eψi,j(xi,xj)

∏
i

eψi(xi,yi) (4.5)

Where 〈i, j〉 denotes the set of all pairs i, j where spins i and j are neighbors.
Now, given an assignment for the external force applied on the spins, we
want to find the most probable state of each spin. We can use the elimina-
tion process we just described to compute the probability for each assignment
of x and find the most probable among all the assignments. Unfortunately,

24

X1 X3X2

X4

X8X7

X6X5

X9

Y1 Y3Y2

Y4

Y8Y7

Y6Y5

Y9

X1 X3X2

X4

X8X7

X6X5

X9

Y1 Y3Y2

Y4

Y8Y7

Y6Y5

Y9

Figure 4.2: The spin model

regardless of the elimination order we choose, it can be shown that the com-
plexity of the elimination order is exponential with the size of the grid.

Another approach to solve this problem comes from a physical perspec-
tive, asking what is the state that is energetically preferred, i.e., what is the
assignments for x that bring this system into minimal energy. We show that
this two approaches are actually equivalent.

4.2.2 Connecting between Energy and Probability

We now try to reach Eq. (4.5) from another direction. The connection be-
tween energy and probability is defined in mechanical statistics by Boltzman
law :

p(x) =
1

Z
e−

E(x)
T (4.6)

The intuition behind it is that the lower the energy of an assignment for x,
the higher the probability we have to be in that assignment. This connection
depends also on the temperature, since if the temperature is very high, the
probability of each state is equal (uniform distribution), and if the tempera-
ture is low there will be a low number of preferred states. For example, on
our spin model we can define the energy of the spins for some weight function

25

w as

E(x,y) =
∑

〈i,j〉
E(xi, xj) +

∑
i

E(xi, yi)

=
∑

〈i,j〉
(w(xi, xj)) +

∑
i

(w(xi, yi))

According to the ising model w is defined as the constant function −1, which
yields:

E(x,y) = −
∑

〈i,j〉
(xixj)−

∑
i

(xiyi)

Putting this into this Eq. (4.6) and assuming T=1 we get:

p(x,y) =
1

Z
e−

P
〈i,j〉(xixj)−

P
i(xiyi)

p(x,y) =
1

Z

∏

〈i,j〉
e−xixj

∏
i

e−xiyi

We notice now that if we define ψi,j = −xixj then we obtain Eq. (4.5) from
another direction. Hence in this case finding the most probable assignment
to p(x|y) will also minimize E(x,y).

4.2.3 Equivalence between Free Energy Minimization
and Inference

Now we are ready to formalize the equivalence between inference and energy
minimization for a general model. Assume we have an MRF over a set
of random variables {X1 . . . Xn, Y1 . . . Ym}, where X are hidden and Y are
observed, and we have some probability function p(x|y) which we want to
compute, where y are the fixed observed values of Y. As we have seen in
section Section 4.1 this calculation might be infeasible. We will start by
defining Gibbs free energy.

Definition 4.2.1: Let q be a probability function over x, we define the Gibbs
free energy as:

F(q,x) =
∑
x

(q(x)E(x,y)) +
∑
x

(q(x) ln q(x))

Where the first term is usually termed average energy and the second term
is simply minus the entropy of q

26

The heart of the connection between inference in graphical models and min-
imization of the Gibbs free energy lies in the next proposition.

Proposition 4.2.2:

min
q

(F(q,x)) = − ln p(y) (4.7)

argminq (F(q,x)) = p(x|y) (4.8)

To prove this proposition we use a well known definition of a distance function
between probability functions :

Definition 4.2.3: Given two probability functions p, q over X we define the
Kulback Leibler distance between them as:

DKL(p||q) =
∑
x

(
p(x) ln

p(x)

q(x)

)

We use the two following properties of DKL(p||q):
∀ p, q DKL(p||q) ≥ 0 (4.9)

DKL(p||q) = 0 iff ∀ x p(x) = q(x) (4.10)

Now we use these properties to prove Proposition 4.2.2:
Proof: According to Eq. (4.7)

F(q,x) =
∑
x

(q(x)E(x,y)) +
∑
x

(q(x) ln q(x))

=
∑
x

(q(x)E(x,y)) +
∑
x

(q(x) ln q(x)) + ln p(y)− ln p(y)

Plugging in Eq. (4.6) and since
∑

x q(x) = 1 we get

F(q,x) = −
∑
x

(q(x) ln(p(x,y)) +
∑
x

(q(x) ln q(x)) +
∑
x

q(x) ln p(y)− ln p(y)

= −
∑
x

(
q(x) ln

p(x,y)

p(y)

)
+

∑
x

(q(x) ln q(x))− ln p(y)

=
∑
x

(q(x) ln q(x)− q(x) ln p(x|y))− ln p(y)

= DKL(q(x)||p(x|y))− ln p(y)

27

From Eq. (4.10), since DKL is non-negative, we get that the global minimum
of F(q,x) is achieved when the DKL is zero, and this happens iff p(x|y) =
q(x), proving Proposition 4.2.2.

Several methods use this surprising connection, combined with theoretical
approaches from statistical mechanics that compute an approximation for the
minimal free energy in order to find approximations to inference problems.
We will concentrate on one such approach: Loopy Belief Propagation (LBP).

4.3 Loopy Belief Propagation

In this section we explain how does Loopy Belief Propagation works. We
first explain the intuition behind the belief propagation algorithm, and then
prove its correctness, using what we have shown in Section 4.2.3.

4.3.1 Belief Propagation

General belief propagation algorithms were proposed by [Pearl, 1988] and
have been shown to calculate exact inference in trees. These algorithms
use the elimination process we described in Section 4.1 and take advantage
of the fact that in many inference questions, there is a repetition of the
basic elimination processes. The belief propagation algorithm uses dynamic
programming to avoid repeating these calculations. The units of storage are
called messages and are the result of an elimination process as in Eq. (4.1)

Definition 4.3.1: Belief Propagation Algorithm
We define the algorithm recursively:

b(xc) = ψc(xc)
∏
s∈Nc

ms→c(xc)

ms→c(xs∩c) =
∑
src

ψs(xs)

∏

t∈{Nsrc}
mt→s(xs)

b(xc) is called the belief on xc and ms→c(xs∩c) is called the message from s
to c, where c and s are cliques and s∩ c denotes the overlapping variables in
c and s.

Notice that for a tree this recursion ends in the leaves of the graph, and it
can be calculated ’bottom up’ in one iteration.

28

Proposition 4.3.2: For a tree, given Definition 4.3.1 the following equations
hold

b(xc) = p(xc) =
∑

x/∈c
p(x)

ms→c(xs∩c) = fsrc(xc∩s)

Where fsrc(xc∩s) is defined as in Eq. (4.2)

Surprisingly enough, although the original proof holds only for trees, it turns
out empirically (e.g., [Murphy et al., 1999]) that the performance of the
same algorithm on graphs with loops produces good results. This empirical
phenomenon found theoretical basis with works done by [Yedidia et al., 2002]
that connects this algorithm with the duality of energy minimization and
inference we introduced earlier this section.

4.3.2 Theoretical Support for Correctness of LBP on
Graphs with Loops

Let us recall that we defined the Gibbs free energy as

F(q,x) =
∑
x

(q(x)E(x,y))−
∑
x

(q(x) ln q(x))

= U(q(x))−H(q(x))

Where U(q(x)) is the average energy of q(x), and H(q(x)) is the entropy of
q(x). The theoretical support for the correctness of the belief propagation
algorithm comes from an approximation for the free energy which was found
by [Bethe, 1935] and generalized later by [Kikuchi, 1951]. Namely, if the
belief propagation algorithm converges in graphs with loops, then its fixed
points correspond to local minima of Kikuchi approximations for the free
energy. We first approximate the average energy, using Boltzman law,

U(q(x)) =
∑
x

(q(x)E(x,y))

=
∑
x

(q(x) (− ln p(x|y)− lnZ))

If X is locally markov with respect to G we can rewrite this as

U(q(x)) =
∑
x

(
q(x)

(
− ln

∏
c

ψc(xc) + lnZ − lnZ

))

= −
∑
x

(
q(x)

(
ln

∏
c

ψc(xc)

))

29

And finally, if we divide the summation over X to two different sums, one
over the variables in c and the other on the rest of the variables, we get:

U(q(x)) ≈ −
∑
c

∑
xc

(b(xc) ln(ψc(xc))) (4.11)

Where b(xc) are our approximations for q(x) marginal probabilities. Note,
that if X is locally Markov with respect to G, this is an exact equality and
not an approximation.

We now turn to the entropy term. Here we will approximate q(x) by
multiplying all factors, and dividing by the messages in order to count each
variable once:

q(x) ≈
∏

c b(xc)∏
c,s b(xmc→s)

(4.12)

Again we use b(xc) to denote our approximation for the marginal probabilities
of q(x). Notice that if G is a tree then this is actually not an approximation,
but an exact equality. Now we will use Eq. (4.12) to get an approximation
of H(q(x)):

H(q(x)) =
∑
x

(q(x) ln q(x))

≈
∑
x

(
q(x) ln

∏
c(b(xc))∏

c,s b(xmc→s)

)

Again, we divide each summation into two sums as in Eq. (4.11):

H(q(x)) ≈
∑
c

∑
xc

(b(xc) ln b(xc))−
∑
c,s

∑
xc,s

(b(xmc→s) ln b(xmc→s))

(4.13)

We sum up Eq. (4.11) with Eq. (4.13) to get the Kikuchi approximation for
free energy:

FKikuchi(q,x) = −
∑
c

∑
xc

(b(xc) ln(ψc(xc)) +

+
∑
c

∑
xc

(b(xc) ln bc(xc))−
∑
c,s

∑
xc,s

(b(xmc→s) ln b(xmc→s))

A minimization for FKikuchi(q,x) can be found according to KKT condi-
tions, by adding lagrange multipliers that assure we comply to Eq. (2.1) and

30

Eq. (2.2), deriving the resulting ’Lagrangian’ and comparing to zero. The
resulting fixed points form exactly the equations in the belief propagation
algorithm as in Definition 4.3.1.

This proves that if the loopy belief propagation converges, we are guar-
anteed that this fixed point is a local minima of the Kikuchi approximation
of Gibbs free energy. However, it is not promised that the belief propaga-
tion algorithm will indeed converge, and we can not say anything about the
quality of the approximation. Notice that for trees, the belief propagation
always converges, and the Kikuchi approximation to the gibbs free energy
is exact. Hence, this result give another theoretical proof for the correction
of Proposition 4.3.2, as well as a theoretical explanation to the surprising
performance of the belief propagation algorithm on graphs with cycles.

31

Chapter 5

Learning the Model Parameters
from Data

Until now we assumed the parameters of each local potential are given to
us in advance. Obviously, this is not the case in many real-life scenarios
(such as in the protein interaction network) where we do not want to rely
on any ’expert’ assumption as to the amount and character of correlation
between random variables. We would like to estimate the parameters of the
model from observations using the maximum likelihood approach. Given a
training set of M samples (x[1] . . .x[M],y[1] . . .y[M]), we would like to find
a parametrization of the potentials Ψ,Θ such that the log-likelihood of these
samples is maximized.

Given the set of samples, and two indicator functions fi and fk
1, we

compute the likelihood that these samples were instantiated from these pa-
rameters. In order to make the calculations simpler we compute the log
likelihood. We start with using Eq. (2.11) to write the average log likelihood
of all the instances:

`(Ψ,Θ) =
1

M

∑
m

log p(x[m], y[m])

=
1

M

∑
m

log p(x[m]) +
1

M

∑
m

log p(y[m]|x[m])

=
1

M

∑
m

(∑
i

θifi(x[m])− logZx

)
+

1

M

∑
m

∑

k

(ψkfk(yj|uj))

1Each i and k are indices over the parameter vectors Ψ and Θ such that for each sample
they return 1 if this sample satisfies the assignment of this parameter and zero otherwise

32

Because of the linearity of expectation we can change the order of summation:

`(Ψ,Θ) =
∑
i

(
θiÊ[fi(x)]

)
− logZx +

∑

k

(
ψkÊ[fk(yj|uj]

)
(5.1)

where Ê is the empirical expectation (Ê[fi(x)] =
P

m fi(x[m])

M
and

Ê[fk(yj|uj] =
P

m fk(yj [m]|uj[m])

M
).

In order to find the most likely set of parameters we need to search the pa-
rameter space. To do so efficiently, many methods take a greedy hill climbing
strategy. Starting from an initial guess of parameters, these methods itera-
tively improve the likelihood till convergence. In each iteration the gradient
of the current set of parameters is calculated and the next parameters set is
achieved by moving the parameters in the direction of the gradient. We now
show how we can calculate the gradient of a given set of parameters, thus
enabling the use of such hill climbing methods.

We first show how to derive the likelihood according to the undirected
parameters, next we show how one can derive according to the directed pa-
rameters. We also show how to use these computations in a relational model.
Finally, we explain how we deal with the fact that our observations are only
partial, and how we learn the parameters of our model.

5.1 Deriving the Undirected Term

Obviously when deriving the likelihood according to the undirected param-
eters we need to look only at the left term of Eq. (5.1), and if we derive it
according to θi we get:

∂`(Θ,Ψ)

∂θi
= Ê[fi(x)]− 1

Zx

∂Zx
∂θi

= Ê[fi(x)]− 1

Zx

∑
x

fi(x) exp

(∑
j

θjfj(x)

)

= Ê[fi(x)]−
∑
x

fi(x)
1

Zx
exp

(∑
j

(θjfj(x))

)

= Ê[fi(x)]−
∑
x

fi(x)pθ(x)

= Ê[fi(x)]− E[fi(x)|~θ]

We can see that the result of the derivation is very intuitive, i.e., it is the
difference between the empirical counts of each parameter and the a-priori

33

estimated counts according to the model. If the a-priori estimation is lower
than the empirical count, we have to increase this parameter and vice-versa.
[Della Pietra et al., 1997].

5.2 Deriving the Directed Term

For the conditional part we would expect, following the same reasoning as in
the previous section, that the next equation will hold :

∂`

∂ψk
= Ê[fk(yj|uj)]

Unfortunately, the derivation of the directed parameters is a little more com-
plicated, since we have to make sure that at each stage and for each j we
have a legal CPD, i.e

∑

k:ψk∈p(yj |uj)

ψk = 1

To do so, we can assume that our first parameter set is a legal CPD, and
just make sure that for each j :

∑

k:ψk∈p(yj |uj)

∂`

∂ψk
= 0

This means we have a constrained optimization problem. We handle this
problem by projecting each derivative vector to the ’legal’ hyperplane.

First, let us assume for simplicity that we only require
∑

k
∂`
∂ψk

= 0.
Then we just need to project each vector of parameters to the ’legal’ hyper-
plane, or in other words, we are given a point x0 and a hyperplane

∑
i xi = 0

and we are looking for the closest point to x0 inside the hyperplane, or for-
mally :

min
(

1
2
‖x− x0‖2

)
s.t

∑
i xi = 0

To find such a point we use the KKT conditions and write the Lagrangian :

L =
1

2

(∑
i

(
xi − x0

i

)2

)
+ λ

(∑
i

xi

)

Now we require for each i that ∂L
∂xi

= 0 and we get:

xi − x0
i + λ = 0

xi = x0
i − λ

34

We assign this inside our constraint and get:

∑
i

(x0
i)− λn = 0

λ =

∑
i x

0
i

n

So we the result is:

xi = x0
i −

∑
i x

0
i

n

Now, all we need to do in order to apply this to our case, is to change
the restriction for each CPD instead of for all parameters together. Then the
corrected term will be

(
∂`

∂ψk

)∗
= Ê[fk(yj|uj]−

∑
k:ψk∈p(yj |uj)

Ê[fk(yj|uj)]∑
k:ψk∈p(yj |uj)

1

5.3 Dealing with Relational Models

Recall that in our model many potentials and conditional probabilities share
the same parameters. Thus, we need to compute gradients with respect to
the shared parameters. Using the chain rule of partial derivatives, it is easy
to see that if ψc(xc) = θk for all c ∈ C, then we have a group of parameters
that map to the same parameter.

∂`(Θ,Ψ)

∂θk
=

∑

i is mapped to k

∂`(Θ,Ψ)

∂θi

Thus, the derivatives with respect to the template parameters are aggre-
gates of the derivatives of the corresponding entries in the potentials and
conditional probabilities of the model.

5.4 Our Parameter Learning Approach

Note that both sections above require that the instances we have cover all
the variables in the model. In cases were the evidence is partial, comput-
ing the empirical counts is not a trivial task at all. Our original solution to
this problem was to use inference in order to fill the instances. This means,
that for each parameter set we want to evaluate (this evaluation can hap-
pen many times during each line search, for example) we need to perform

35

inference in order to complete the counts. Unfortunately, this inference cal-
culation is computationally expensive, and caused the learning procedure to
be very slow. In order to reduce the number of invocations of the inference
procedure we perform the next EM-like learning algorithm. At the E-step
we perform inference with the current parameters to complete the missing
evidence. Then at the M-step we estimate the maximum likelihood parame-
ters for the full evidence we obtain in the E-step. Notice that the fact that
we have full evidence allows us to learn separately the directed and undi-
rected parameters. To learn the undirected parameters we use a greedy hill
climbing approach with a standard line search maximization (the gradient is
computed as described in Section 5.1). Having complete instances also makes
it easier to learn the directed parameters. That is, when given full instances,
the directed parameters are independent of each other, and we can optimize
the likelihood of each of them separately in closed form, without resorting to
hill climbing methods. Thus the estimate for each directed parameter ψk, is
simply the fraction of the count for the specific assignment for yj out of the
total number of times we saw the corresponding assignments for his parents
uj. Now we can describe our learning algorithm:
Repeat the following two steps till convergence

1. Infer (using Loopy Belief Propagation) the marginal probabilities of the
random variables that are missing in the evidence. Use these marginal
probabilities together with the rest of the evidence to compute the em-
pirical counts for each parameter.

2. (a) Estimate the undirected parameters using a line search optimiza-
tion.

(b) Estimate the directed parameters parameters as:

ψk =
](yj = ykj ,uj)

](uj)

Where we denote by ykj the assignment of yj corresponding to ψk.

Since it is guaranteed that in each iteration the likelihood increases ([Neal
and Hinton, 1998]), we repeat these steps till convergence. It is important to
note that as in every EM-like algorithm, our learning procedure is sensitive
to the initial parameter set, and often converges to local minima.

36

Chapter 6

Application of the Integrated
Model to Experimental Data of
Protein-protein Interactions

In Chapter 3 we schematically described how to construct a protein-protein
interaction network model. In this chapter, we evaluate the utility of the in-
tegrative model by concretely instantiating such a model for proteins of the
budding yeast S. cerevisiae, and evaluating its performance. For this pur-
pose we choose to use four data sources, each with different characteristics.
The first two are experimental large-scale assays for identifying interacting
proteins: data on protein complexes from the MIPS database [Mewes et al.,
1998], and data on interacting protein pairs identified by the yeast two hybrid
method [Uetz et al., 2000, Ito et al., 2001]. The third data type is composed
of correlated domain signatures learned previously from experimentally de-
termined interacting pairs [Sprinzak and Margalit, 2001]. The fourth one
regards experimental data on protein cellular localization [Ghaemmaghami
et al., 2003]. For the latter we regarded four cellular localizations (nucleus,
cytoplasm, mitochondria and bud). In our model, as described in Chapter 3,
we have a random variable for each possible interaction and a random vari-
able for each assay measuring such interaction. In addition we have a random
variable for each of the four possible localizations of each protein, and yet
again another variable corresponding to each localization assay. Currently,
we cannot cope with a model for all 6000 proteins in the budding yeast
as this requires a model with close to 20, 000, 000 random variables. Thus,
we limit ourselves to a subset of the plausible interactions, retaining both
positive and negative examples. We constructed this subset from the study
of von Mering et al. [2002] that ranked 80, 000 protein interactions accord-
ing to their reliability based on multiple sources of evidence (including some

37

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
p

o
si

ti
ve

 r
at

e

Cluster
Noise
Triplets
Full

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
p

o
si

ti
ve

 r
at

e

Cluster
Noise
Triplets
Full

Figure 6.1: Comparison of test performance of a 4-fold cross validation
experiment. Shown is the true positive vs. the false positive rates tradeoff
for four models: Cluster with just interaction, interaction assays, and local-
ization variables; Noise that adds the localization assay variables; Triplets
that adds a potential over three interactions to Cluster; Full that combines
both extensions.

that we do not examine here). From this ranking, we consider the 2000 high-
est ranked protein pairs as “true” interactions and the last 2000 as “true”
non-interacting protein pairs. These 4000 interactions involve 1662 distinct
proteins. For these entities we span our full model according to Chapter 3,
resulting in approximately 23, 000 variables, and 38, 000 potentials that share
37 parameters.

The main task is to learn the parameters of the model using the methods
described in Chapter 5. To get an unbiased estimate of the quality of the
predictions with these parameters, we want to test our predictions on inter-
actions that were not used during the learning. We use a standard 4-fold
cross validation technique, where in each iteration we learn the parameters
using 1500 positive and 1500 negative interactions, and then test on 500 un-
seen interactions of each type. Cross validation in the relational setting is
more subtle than learning with standard i.i.d. instances. In particular, when
testing the predictions on the 1000 unseen interactions, we use not only the

38

parameters we learned from the other 3000 interactions, but also the obser-
vations on them. This simulates a real world scenario when we are given
observations on some set of interactions, and are interested in predicting the
remaining interactions, for which we have no observation.

To evaluate the performance of the different elements of our model we
compare four different models. The baseline Cluster model is equivalent to
a naive Bayes model similar to the one used by Jansen et al. [2003] and in-
cludes the interaction and interaction assays variables, as well as the protein
localization variables (where we assume that the localization assay is perfect
and take it to be the true localization). The Noise model relaxes this latter
assumption and distinguishes between the localization variable and the local-
ization assay. In Triplets we apply an alternative extension to the Cluster
model by including potentials over three interactions between three proteins.
Finally, the Full model combines both extensions.

Figure 6.1 compares the test set performance of these four models. The
advantage of using a unified model that allows propagation of influence be-
tween varied elements is clear as all three variants improve significantly over
the baseline model. We hypothesize that this potential allows for complex
propagation of beliefs, beyond the local region of the protein in the graph.
When both elements are combined, the model reaches quite impressive re-
sults: a 90% true positive rate with just a 5% false positive rate. This is in
contrast to the baseline model that achieves less then half of the true positive
rate with the same amount of false positives.

Figure 6.2 shows the effect of the training data size on the performance of
classification. As shown, even with a relatively small number of interactions,
the performance of the model is reasonable, although adding more examples
significantly improves the prediction. Moreover we can see that the difference
in performance between data sizes of 100 and 1000 is much larger than the
difference between 1000 and 3000. This gives us hope, that although we
learn the parameters from a relatively small number of interactions, we can
use these parameters to predict interactions in much larger models.

Figure 6.3 shows the average log likelihood per sample, as a function of the
number of iterations in the EM learning procedure described in Section 5.3.
We can see that after less then seven iterations, the algorithm converges.
We can also see that although the EM iterations continue, no over-fitting
occurres, since the test average log likelihood does not decrease.

Recall that in our model we explicitly account for noise in the localization
assay. Thus, it is also insightful to compare the localization predictions made
by our model with the annotations of Ghaemmaghami et al. [2003]. For
example, out of 1662 proteins in our experiment, 590 proteins are annotated
by Ghaemmaghami et al. [2003] as localized in the mitochondria. Our model

39

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

FP RATE

T
P

 R
A

T
E

50
100
500
1000
3000

Figure 6.2: Learning Curve: The performance of Full on the same test set,
using different training data sizes.

predicts that 878 proteins are mitochondrial. These 878 proteins contain
the 590 proteins annotated by Ghaemmaghami et al. [2003], 55 additional
proteins that are mitochondrial according to YPD, and 59 additional proteins
for which there is no known localization. It is reasonable to assume that
our current experimental knowledge about the localization of many proteins
is still incomplete. Hence, the remaining 174 proteins, which have been
annotated by Ghaemmaghami et al. [2003] to different cellular compartments
are not necessarily false positive predictions. This example suggests that we
are able to correctly predict many localizations and also hypothesize about
additional unknown ones.

To get a better sense of the performance of the model, we consider specific
examples where the predictions of our model differ from those of the baseline
model. We first consider the unobserved interaction between the EBP2 and
NUG1 proteins. These proteins are part of a large group of proteins involved
in rRNA biogenesis and transport. Localization assays identify NUG1 in
the nucleus, but do not report any localization for EBP2. The interaction
between these two proteins was not observed in any of the three interaction
assays included in our model. Consequently, the baseline model assigns this
interaction a very low probability. In contrast, propagation of evidence in the
network of the full model effectively integrates information about interactions
of both proteins with other rRNA processing proteins. We show a small
fragment of this network in Figure 6.4a. In this example, the model is able

40

0 5 10 15 20 25 30
-0.42

-0.415

-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

Number of Iterations in EM

A
ve

ra
ge

 L
og

 L
ik

el
ih

oo
d

pe
r

V
ar

ia
bl

e

Train
Test

Figure 6.3: The convergence of the EM algorithm: after seven iterations
both graphs reach saturation.

to make use of the fact that several nuclear proteins interact with both EBP2
and NUG1, and thus predicts that EBP2 is also nuclear, and indeed interacts
with NUG1. Importantly, these predictions are consistent with the cellular
role of these proteins, and are supported by other experiments reported in
the literature [Costanzo et al., 2001, von Mering et al., 2002].

As another, somewhat more complex, example we consider the interac-
tions between RSM25, MRPS9, and MRPS28. While there is no annotation
of RSM25’s cellular role, the other two proteins are known to be components
of the mitochondrial ribosomal complex. Localization assays identify RSM25
and MRPS28 in the mitochondria, but do not report any observations about
MRPS9. As in the previous example, neither of these interactions was tested
by the assays in our experiment. As expected, the baseline model predicts
that both interactions do not occur with high probability. In contrast, by
utilizing a fragment of our network shown in Figure 6.4b, our model predicts
that MRPS9 is mitochondrial, and that both interactions occur. Impor-
tantly, these predictions are verified by the literature [Costanzo et al., 2001,
von Mering et al., 2002]. These predictions suggest that RSM25 is related
to the ribosomal machinery of the mitochondria. Such an important insight
could not be gained without using an integrated model such as the one pre-
sented here.

41

CIC1

ERB1 RLP7

EBP2 NUG1

CIC1

ERB1 RLP7

EBP2 NUG1 MRPS9 RSM25

RSM24 MRPS28

MRPS9 RSM25

RSM24 MRPS28

(a) (b)

Figure 6.4: Two examples demonstrating the difference between the predic-
tions by our model and those of the baseline naive clustering model. Solid
lines denote observed interactions and a dashed line corresponds to an un-
known one. Orange colored nodes represent proteins that are localized in
the nucleus and blue colored ones represent proteins that are localized in the
mitochondria. Uncolored nodes have no localization evidence. In (a), unlike
the naive model, our model correctly predicts that EBP2 is localized in the
nucleus and that it interacts with NUG1. Similarly, in (b) we are able to cor-
rectly predict that MRPS9 is localized in the mytochondria and it interacts
with RSM25, that also interacts with MRPS28.

42

Chapter 7

Discussion

Predicting the protein-protein interaction network is not a trivial task. The
partial and noisy data from interaction assays, the small fraction of true
interactions out of the vast amount of potential protein pairs, and the varia-
tion between interaction types are the main factors that make this problem
so hard. Our framework is different from many existing integrative methods
(e.g., [Bock and Gough, 2003]) in the sense that it suggests not only a pre-
dictive algorithm, but also provides real insights into the relations between
the attributes of the interactions as well as into the relations between these
and the attributes of the proteins that take part in the interactions.

We constructed a concrete model that takes into account interactions,
interaction assays, localization of proteins in several compartments, and lo-
calization assays, as well as the relations between these entities. Our results
demonstrate that modeling the dependencies between interactions leads to
a significant improvement in predictions. Furthermore, our model accounts
for the inherent noise in each of the different assays (both of interaction as-
says and localization assays), and we show that this noise model allows the
evidence to propagate through the model to reach plausible conclusions (see
Figure 6.4).

Our main insight is that we should view this problem as a relational learn-
ing problem where observations about different entities are not independent,
and that the real dependency is between these hidden entities (e.g., the in-
teractions and localizations) and not between the observations on them. To
capture this, we build on and extend tools from relational probabilistic mod-
els to combine multiple types of observations about protein attributes and
interactions in a unified model. These models exploit a template level de-
scription of the model to induce models for a given set of entities and relations
among them [Friedman et al., 1999, Taskar et al., 2002]. In particular, our
work is related to applications of these models to link prediction [Getoor

43

et al., 2001, Taskar et al., 2003b]. The main advantage of our approach is
that our model learns the parameters from the data while accounting for all
evidence, and at the same time taking into account the dependency between
hidden entities of our model. By using the relational model, we enable learn-
ing of the same parameters for all the copies of a specific template potential.
This learning algorithm is different from other works (e.g., [Iossifov et al.,
2004]) that use the characteristics of the interaction network in prediction,
in the sense that these methods learn the reliability of each interaction assay
separately, and then use the structure attributes of the resulting network
(e.g., the node degrees) to improve prediction (thus ignoring dependencies
between interactions when learning the parameters). The relational models
enable incorporation of all the evidence from different data sources when
learning the parameters, while taking into account that many potentials in
the model are in fact copies of one template (e.g., the relation between a
certain interaction assay and the real interaction).

Learning the parameters of a Markov network, even when the training
set is composed of complete data, is not an easy task, and a few approaches
were suggested to address this issue (e.g., [Taskar et al., 2003b]). However,
a major problem that is not addressed in these works, is how to deal with
a large number of unobserved random variables (as in our training data).
This poses significant challenges for the learning algorithm, since we have
to invoke the inference function each time we need to estimate counts (see
Section 5.4). Learning the parameters of our model remains the bottleneck
of our algorithm, and in our future work, we are looking for better ways to
find an optimal set of parameters.

Our probabilistic model over network topology is also related to models
devised in the literature of social networks (e.g., [Frank and Strauss, 1986]).
An important difference from these studies is that we combine these models
with potentials that deal with properties of proteins that affect the patterns
of interactions of specific proteins. In a recent study, Iossifov et al. [2004]
proposed a method to describe properties of an interaction network topology
when combining predictions from literature search and yeast two-hybrid data
for a data-set of 83 proteins. Their model is similar to our Triplet model in
that it combines dependencies between interactions and observations about
interactions. Their model of dependencies, however, is quite different and
deals with the global distribution of node degrees in the network, rather
than on local patterns of interactions. Other recent studies employ variants
of Markov random fields to analyze protein interaction data. In these studies,
however, the authors assumed that the interaction network is given and use
it for other tasks, e.g., predicting protein function [Deng et al., 2004] and
clustering interacting co-expressed proteins [Segal et al., 2003].

44

Our emphasis here was on presenting the methodology and evaluating
the utility of integrative models. However, it is clear that these models can
facilitate incorporation of additional data sources. Our modeling framework
allows us to naturally extend the model to other properties of the interactions
and the proteins. We intend to add to our model other protein attributes
such as cellular processes or expression profiles, as well as different interac-
tion assays. For example, we can look at a set of gene expression experiments
under different conditions, and add the correlation of expression profile under
each condition as a noisy observation on the interaction between proteins.
We can also make our model more accurate by refining our random variables
cardinality, e.g., we can look at an interaction not as a binary random vari-
able, and allow it to take more values (not interacting ; transient interaction
; stable interaction)

Another important extension for our model is trying to learn new de-
pendencies. From the computational angle, learning parameters of large
undirected networks is a very challenging task, but from the biological angle,
many new insights can be gained. For example, the cellular localization of a
protein might influence the probability of its interactions being observed by
a particular assay (e.g., yeast two-hybrid experiment might be more accu-
rate on nuclear proteins and less accurate on mitochondrial proteins). Such
dependencies can be incorporated into our model by adding the suitable tem-
plate potential. An exciting challenge is to learn which dependencies actually
improve predictions. This can be done by methods of feature induction [Della
Pietra et al., 1997]. Such methods can also allow us to discover high-order
dependencies between interactions and protein properties.

It is important to state, that in addition to extending our framework to
more elaborate models, we need to build networks that consider a larger num-
ber of proteins. This poses several technical challenges. Approximate infer-
ence in larger networks is both computationally demanding and less accurate.
Generalizations of the basic loopy belief propagation method (e.g., [Yedidia
et al., 2002]) and other related alternatives ([Jordan et al., 1998, Wainwright
et al., 2002]), may improve both the accuracy and the convergence of the
inference algorithm. As we previously mentioned, learning presents addi-
tional computational and statistical challenges. In terms of computations,
the main bottleneck lies in multiple invocations of the inference procedure.
One alternative is to utilize information learned efficiently from few samples
to prune the search space when focusing on larger models. That is, we can
learn the parameters on a model with a relatively small number of inter-
actions, and use these parameters to predict interactions on a larger model
(see Figure 6.2). The statistical challenge when learning is to improve the
accuracy of the predictions of the learned model. Recent results suggest that

45

large margin discriminative training of Markov random fields can lead to a
significant boost in prediction accuracy [Taskar et al., 2003a]. These meth-
ods, however, apply exclusively to fully observed training data, and we need
to find ways to extend them to our partial data scenario.

Our challenge is to find computational solutions to the problems discussed
above, in order to enable more complex and interesting models, that will lead
to better prediction and new insights. The ultimate goal of this research is
to be able to build a model that will capture most important dependencies
between the interaction attributes and the protein attributes, while being
able to infer the hidden attributes of the model. Such a model, will enable
us to provide optimal prediction on many interesting hidden attributes. We
hope, that this current work establishes the framework that will enable such
developments.

46

Bibliography

H. A. Bethe. Proc. Roy. Soc. London, 150:552, 1935.

J. R. Bock and D. A. Gough. Whole-proteome interaction mining. Bioinfor-
matics, 19:125–134, 2003.

W. Buntine. Chain graphs for learning. In UAI ’95, pages 46–54. 1995.

M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen,
L.S. Robertson, M.S. Skrzypek, B.R. Braun, K.L. Hopkins, P. Kondu,
C. Lengieza, J.E. Lew-Smith, M. Tillberg, and J.I. Garrels. Ypd, pombepd,
and wormpd: model organism volumes of the bioknowledge library, an in-
tegrated resource for protein information. Nuc. Acids Res., 29:75–9, 2001.

M. H. DeGroot. Probability and Statistics. Addison Wesley, Reading, MA,
1989.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random
fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:
380–393, 1997.

M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for func-
tional prediction of proteins. J Comput Biol, 11:463–75, 2004.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. PNAS, 95:14863–8, 1998.

O. Frank and D. Strauss. Markov graphs. Journal of American Statistics
Association, 81, 1986.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic
relational models. In IJCAI ’99. 1999.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic
models of relational structure. In Eighteenth International Conference on
Machine Learning (ICML). 2001.

47

S. Ghaemmaghami, WK. Huh, K. Bower, R. W. Howson, A. Belle, N. De-
phoure, E. K. O’Shea, and J. S. Weissman. Global analysis of protein
expression in yeast. Nature, 425:737 – 741, 2003.

J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices.
Unpublished manuscript, 1971.

I. Iossifov, M. Krauthammer, C. Friedman, V. Hatzivassiloglou, J.S. Bader,
K.P. White, and A. Rzhetsky. Probabilistic inference of molecular networks
from noisy data sources. Bioinformatics, 20:1205–13, 2004.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A com-
prehensive two-hybrid analysis to explore the yeast protein interactome.
Proc Natl Acad Sci U S A, 98:4569–4574, 2001.

R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung,
A. Emili, M. Snyder, J. F. Greenblatt, and M. Gerstein. A Bayesian net-
works approach for predicting protein-protein interactions from genomic
data. Science, 302:449–453, 2003.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduc-
tion to variational approximations methods for graphical models. In M. I.
Jordan, editor, Learning in Graphical Models. Kluwer, Dordrecht, Nether-
lands, 1998.

R. Kikuchi. A theory of cooperative phenomena. Phys. Rev., 81:988–1003,
1951.

HW Mewes, J Hani, F Pfeiffer, and D Frishman. MIPS: a database for
genomes and protein sequences. Nucleic Acids Research, 26:33–37, 1998.

K. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for ap-
proximate inference: An empirical study. In Proc. Fifthteenth Conference
on Uncertainty in Artificial Intelligence (UAI ’99), 1999.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justi-
fies incremental and other variants. In M. I. Jordan, editor, Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

M. Pellegrini, E. M. Marcotte, and T. O. Yeates. A fast algorithm for genome-
wide analysis of proteins with repeated sequences. Proteins, 35:440–446,
1999.

48

G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin. A
generic protein purification method for protein complex characterization
and proteome exploration. Nat Biotechnol, 17:1030–1032, 1999.

E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from pro-
tein interaction and gene expression data. In Proc. Eleventh International
Conference on Intelligent Systems for Molecular Biology (ISMB), 2003.

E. Sprinzak and H. Margalit. Correlated sequence-signatures as markers of
protein-protein interaction. J Mol Biol, 311:681–692, 2001.

E. Sprinzak, S. Sattath, and H. Margalit. How reliable are experimental
protein-protein interaction data? J Mol Biol, 327:919–923, 2003.

B. Taskar, A. Pieter Abbeel, and D. Koller. Discriminative probabilistic
models for relational data. In Proc. Eighteenth Conference on Uncertainty
in Artificial Intelligence (UAI ’02), pages 485–492, 2002.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In
Advances in Neural Information Processing Systems 16, Cambridge, Mass.,
2003a. MIT Press.

B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in re-
lational data. In Advances in Neural Information Processing Systems 16,
Cambridge, Mass., 2003b. MIT Press.

P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight,
D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili,
Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang,
M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of
protein-protein interactions in Saccharomyces cerevisiae. Nature, 403:623–
627, 2000.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and
P. Bork. Comparative assessment of large-scale data sets of protein-protein
interactions. Nature, 417:399–403, 2002.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A new class of upper
bounds on the log partition function. In P roc. Eighteenth Conference on
Uncertainty in Artificial Intelligence (UAI ’02), 2002.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free energy approxi-
mations and generalized belief propagation algorithms. Technical Report
TR-2002-35, Mitsubishi Electric Research Labaratories, 2002.

49

L. V. Zhang, S. L. Wong, O. D. King, and F. P. Roth. Predicting co-
complexed protein pairs using genomic and proteomic data integration.
BMC Bioinformatics, 5:38, 2004.

50

	1 Introduction
	1.1 The World of Proteins
	1.2 Protein-Protein Interaction Networks
	1.3 Methods for Finding Protein-protein Interactions
	1.3.1 Biological Methods
	1.3.2 Computational Methods
	1.3.3 Integrative methods

	1.4 Simultaneous Prediction of Interactions

	2 Probabilistic Graphical Models
	2.1 Probabilistic Models
	2.2 Markov Random Fields
	2.2.1 Template Models
	2.2.2 Directed potentials

	3 The Protein-Protein Interaction Model
	3.1 Building the Model Skeleton
	3.2 Adding Information from Large Scale Assays
	3.3 Enriching The Model
	3.3.1 Adding Dependencies between Interactions
	3.3.2 Adding Protein Attributes

	4 Inference in Markov Random Fields
	4.1 Exact Inference in Markov Random Field
	4.2 Free Energy Minimization and Inference Approximations
	4.2.1 The Spin Model
	4.2.2 Connecting between Energy and Probability
	4.2.3 Equivalence between Free Energy Minimization and Inference

	4.3 Loopy Belief Propagation
	4.3.1 Belief Propagation
	4.3.2 Theoretical Support for Correctness of LBP on Graphs with Loops

	5 Learning the Model Parameters from Data
	5.1 Deriving the Undirected Term
	5.2 Deriving the Directed Term
	5.3 Dealing with Relational Models
	5.4 Our Parameter Learning Approach

	6 Application of the Integrated Model to Experimental Data of Protein-protein Interactions
	7 Discussion

