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Abstract

Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has
been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor
and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve
coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and
attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both
tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on
Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of
the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison
method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our
results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the
resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This
pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from
multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide
transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-
automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-
specific preferences of transcription factors.
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Introduction

Transcription initiation is modulated by transcription factors

that recognize sequence-specific binding sites in regulatory

regions. The organization of binding sites around a gene specifies

which factors can bind to it and where, and consequently

determines to what extent the gene is transcribed under different

conditions. To understand this regulatory mechanism, one must

specify the DNA binding preferences of transcription factors.

These preferences are usually characterized by a motif that

summarizes the commonalities among the binding sites of a

transcription factor [1]. Multiple tools were developed for finding

motifs (e.g., [2–5]), however there are several problems in

interpreting their output. Typically these algorithms output

multiple results which require filtering and scoring. Moreover,

different motif discovery methods have complementary successes,

and therefore it is beneficial to apply multiple methods

simultaneously and collate their results [6]. In addition, the motif

discovery algorithms frequently produce a redundant output and

the transcription factor that binds each motif is usually unknown.

As similar motifs may represent binding sites of the same factor,

eliminating this redundancy is essential for elucidating the true

transcriptional regulatory program. The general strategy is thus to

cluster similar motifs and merge motifs within each cluster to

create a library of non-redundant motifs [6] (Figure 1B). Next, in

order to interpret the meaning of the discovered motifs, they are

compared to databases of previously characterized motifs

(Figure 1C). In large-scale experiments, where the motif output

set is very large, the tasks of scoring, merging and identifying

motifs need to be automated. To address both the clustering and

the retrieval challenges, we need an accurate and sensitive method

for comparing DNA motifs.

In the literature there is an ongoing discussion regarding the

best representation of DNA motifs [1,7–10]. Here we use a

Position Frequency Matrix (PFM), which has the benefits of being

relatively simple yet flexible. A PFM is a matrix of positions in the

binding site versus nucleotide preferences, where each row

represents one residue and each column represents the nucleotide

count at each position in a set of aligned binding sites. This

representation assumes that the choice of nucleotides at different

positions is independent of all other positions.

To compare two PFMs, we need to consider all possible

alignments between them. Given two aligned PFMs, we utilize the

position-independence assumption to decompose the similarity

score into a sum of the similarities of single aligned positions.
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Several similarity scores can be used to compare a pair of aligned

positions. One approach uses the Pearson correlation coefficient

(e.g., [11,12]). This measure, however, might inappropriately

capture similarities between probabilities (Figure 2 and Figure S1).

Alternative approaches are based on similarity between two

distributions. This can be a metric distance, such as the Euclidean

distance [13] or an information-theoretic measure, such as the

Jensen-Shannon divergence [14]. While these latter distances do

not have the artifacts of the Pearson correlation, they equally

weight positions with similar nucleotide distributions that are

specific (e.g., a strong preference for an A) and similar positions

that are non-informative (e.g., identical to the background

distribution) (Figure 2 and Figure S1). It is important to

differentiate between these two situations: Two positions whose

similarity is due to a resemblance to the background distribution

are less relevant to motif similarity, as they do not contribute to

sequence-specific binding of proteins [15,16]. In this work we use

this intuition to develop a novel method for comparing and

merging DNA motifs, based on Bayesian probabilistic reasoning.

We define a new similarity score that combines the statistical

similarity between the motifs with their dissimilarity to the

background distribution. To calculate this score we estimate the

probabilities of DNA nucleotides in each position of the DNA

motif, by a Bayesian estimator with a Dirichlet mixture prior

[17,18] to model the multi-modal nucleotide distribution at

different binding site positions.

This motif similarity score is used by us to identify similar motifs

that represent binding sites of the same factor and for clustering

motifs. For the latter we devised a hierarchal agglomerative

clustering procedure that is based on our motif similarity score.

Our results show that the new method outperforms other

alternatives in accuracy and sensitivity in both the clustering and

retrieval tasks.

Using our new similarity score and the clustering method based

upon it, we developed a large-scale analysis pipeline of DNA motif

sets. This pipeline is designed for analysis following concurrent

motif search by a combination of methods (using the TAMO

package [19]). The goal is to process the set of DNA motifs into a

set of reliable non-redundant motifs. We use our method to

identify sets of DNA motifs from a large-scale ChIP-chip assay in

S. cerevisiae [13]. This allows us to examine how transcription

factors alter their DNA binding preferences under various

environmental conditions and elucidate mechanisms for condi-

tion-specific preferences.

Results

A Novel DNA Motif Similarity Score
Our goal is to determine whether two DNA motifs represent the

same binding preferences. Since the less informative positions in a

motif do not contribute to sequence-specific binding of proteins,

we developed a similarity score that measures the similarity

between two DNA motifs, while taking into account their

dissimilarity from the background distribution.

We now develop the details of the score. We can view DNA

motifs as a list of binding sites from which the nucleotide

distribution at each position is estimated. This view allows us to

perform statistical evaluations. We assume that each binding site

was sampled independently from a common distribution over

nucleotides, which satisfies the position independence properties

(in correspondence with the motif PFM representation described

above). Then, we can evaluate the likelihood ratio of different

source distributions of the sampled binding sites. In practice, we

keep only the sufficient statistics allowing us to evaluate the likelihood

of the binding sites. These sufficient statistics are the counts of each

nucleotide in each position, represented as a PFM.

Our score is composed of two components: the first measures

whether the two motifs were generated from a common

distribution, while the second reflects the distance of that common

distribution from the background (see Methods). Our Bayesian

Likelihood 2-Component (BLiC) score for comparing motifs m1

and m2 is:

BLiCscore~log
Pr m1,m2jcommon{sourceð Þ

Pr m1,m2jindependent{sourceð Þ

zlog
Pr m1,m2jcommon{sourceð Þ

Pr m1,m2jbackgroundð Þ

ð1Þ

Under the position independence assumption, the score decom-

poses into a sum of local position scores. More precisely, our

likelihood-based score measures the probability of the nucleotide

counts in each position of the motif given a source distribution. For

two aligned positions in the compared motifs, let n1 and n2 be the

corresponding positions (count vectors) in the two motifs, the

similarity score is then:
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where P̂P1, P̂P2 and P̂P1,2 are the estimators for the source distribu-

Author Summary

Regulation of gene expression plays a central role in the
activity of living cells and in their response to internal (e.g.,
cell division) or external (e.g., stress) stimuli. Key players in
determining gene-specific regulation are transcription
factors that bind sequence-specific sites on the DNA,
modulating the expression of nearby genes. To under-
stand the regulatory program of the cell, we need to
identify these transcription factors, when they act, and on
which genes. Transcription regulatory maps can be
assembled by computational analysis of experimental
data, by discovering the DNA recognition sequences
(motifs) of transcription factors and their occurrences
along the genome. Such an analysis usually results in a
large number of overlapping motifs. To reconstruct
regulatory maps, it is crucial to combine similar motifs
and to relate them to transcription factors. To this end we
developed an accurate fully-automated method, termed
BLiC, based upon an improved similarity measure for
comparing DNA motifs. By applying it to genome-wide
data in yeast, we identified the DNA motifs of transcription
factors and their putative target genes. Finally, we analyze
motifs of transcription factor that alter their target genes
under different conditions, and show how cells adjust their
regulatory program in response to environmental changes.

A Novel Motif Comparison Method
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tion of n1, n2 and the common source distribution, respectively, Pbg

is the background nucleotide distribution, and NT = {A,C,G,T}.

Since the source distribution is unknown, we must estimate it

from the nucleotide counts at each position. We used a Bayesian

estimator, where a priori knowledge and the number of samples

were integrated into the estimation process. We considered two

alternative priors. The first is a standard Dirichlet prior [20], which

is conjugate to the multinomial distribution, enabling us to

compute the estimations efficiently (see Methods). However with

this prior we cannot model our prior knowledge that a position in

a DNA motif tends to have specific preference to one or more

nucleotides. Such prior knowledge can be described with a Dirichlet

mixture prior [17,18], which represents a prior that consists of

several ‘‘typical’’ distributions. Specifically, we used a five-

component mixture prior, with four components representing an

informative distribution, giving high probability for a single

nucleotide: A, C, G, or T. The fifth component represents the

uniform distribution (see Methods).

In the above discussion we assumed that the motifs are aligned,

but in practice, we compare unaligned motifs. Thus, we defined

Figure 1. Overview of the challenges in DNA motif analysis. (A) Identifying DNA binding motifs: Applying motif discovery algorithms to a
group of related DNA sequences leads to the identification of putative transcription factor DNA binding sites. These algorithms output a set of DNA
motifs, which are frequently redundant. To infer the correct transcription regulation map from the discovered motif set, it is crucial to reduce this
redundancy and to relate the discovered motifs to known ones. (B) Reducing redundancy by clustering and merging motifs: A redundant set of DNA
motifs can be reduced by clustering the motifs into groups of related ones and merging the motifs within each cluster. In this example, a redundant
set of 16 DNA motifs (a partial output of several motif search algorithms) is clustered and merged to a final set consisting of three DNA motifs. (C)
Relating motifs to known factors: The transcription factors that bind the newly discovered DNA motifs can be revealed based on similarities to
previously defined motifs. In this example, comparison of a newly discovered motif to four known motifs reveals high similarity to the Gcn4 binding
motif. From this comparison the transcription factor that binds the motif is identified with high probability.
doi:10.1371/journal.pcbi.1000010.g001
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the similarity score for two motifs as the score of the best possible

alignment (without gaps) between them, including the reverse

complement alignment.

In addition, we need statistical calibration of the similarity

scores, since a high similarity score might be due to chance events

[21,22]. In particular, when comparing a single motif against

motifs of different lengths, the probability of similarity by chance

depends on the query motif and the length of the target. To

circumvent these problems we use the p-value of the similarity

score, which is computed empirically for each query against the

distribution of scores of random motifs of a given length (see

Methods and Figure 3).

Clustering motifs. An important application of motif

similarity scores is clustering. There are many clustering

methods [23] that can be applied to motifs. Here we consider

one of the simplest and straightforward clustering procedures

where we combined a similarity score, such as our BLiC score,

within a hierarchical agglomerative clustering algorithm. In each

iteration, the algorithm computes the similarity between all pairs

of motifs and then merges the most similar pair into a new motif

based on the best alignment between the two motifs (see Figure 1).

It then replaces the two original motifs by the new motif. These

iterations are performed until we are left with a single motif. The

order of merge operations results in a tree, where the leaves are the

initial motifs, and inner nodes correspond to merged motifs that

represent all motifs in the relevant sub-tree (see Figure 4A). We

stress that this procedure is different than standard hierarchical

clustering (such as UPGMA clustering). Since we merge motifs to

create a new one, the similarity of the merged motif to another is

different from the average similarity of each of the original motifs

to that third motif.

We use the clustering tree to distill a large group of motifs

into a concise non-redundant set, by splitting the tree into a

subset of clusters, each representing a group of redundant

motifs by choosing a frontier in the tree (see Figure 4A and

Methods).

Figure 2. Problematic aspects of previous motif similarity scores. (A) Distinguishing between informative and non-informative positions:
Two pairs of aligned motifs are demonstrated, both of which having three identical positions and two different ones. While the identical positions in
the first pair (left) are non-informative, the identical positions in the second pair (right) are informative. The desired similarity score should distinguish
between these two types of similarities and assign a higher score to pair number 2. The nucleotide distributions are visualized so that the height of
each nucleotide is proportional to its probability (see a real life example in Figure S1). (B) Problematic aspects of motif similarity scores: The similarity
score of two position frequency matrices (PFMs) decomposes into the sum of similarities of single aligned positions, due to the common position-
independence assumption in the model. Here we present the similarity scores for various pairs of positions in DNA motifs according to several
similarity functions, in addition to the desired score (scores are normalized to arbitrary scale of 21 to 1). The nucleotide distribution in each position is
visualized as in (A) (the height of each nucleotide is proportional to its probability). As shown here, all scores (Pearson correlation, Jensen-Shannon
divergence, and Euclidean distance) do not reflect the ‘‘true’’ similarity between two distributions or cannot differ between informative and uniform
background positions. Specifically, position 1 should get a higher score than position 2, but the Pearson correlation scores for these positions are
equal. Position 3 should get the lowest possible score, yet the Pearson correlation does not capture this. Both in positions 1 and 4 identical
distributions are compared, but the informative position 1 should get a higher score than position 4. However, all three methods fail to obtain this.
Both positions 4 and 5 analyze nearly-uniform distributions. While in position 4 two identical distributions are compared, in position 5 there are small
variations, which alter the order of nucleotides. As we show, Pearson correlation grades position 5 substantially lower than position 4.
doi:10.1371/journal.pcbi.1000010.g002
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Comprehensive Evaluation of Similarity Scores
We set out to compare our similarity score to existing ones in

the literature, in the context of both motif comparison and

clustering. We use two different data sets.

The first data set, which we refer to as ‘‘Yeast’’ is a synthetic one

where we know the true labeling of motifs and use it to benchmark

different procedures by relating their results with the underlying

truth. To generate synthetic motifs in a realistic manner that

reflects true binding properties of transcription factors, we use the

genome-wide catalogue of transcription factor binding locations in

S. cerevisiae [13]. This catalogue has high-confidence binding sites

(based on combination of experimental assays with evolutionary

conservation considerations). From these, we selected nine

transcription factors to represent different binding patterns (in

terms of inner arrangements of informative positions and length).

From the binding sites of each factor we sampled sets of binding

sites, and from each set generated a motif (see Figure 3A). For each

factor we generated noisy motifs that differ in their quality. To do

so, we varied the number of binding sites (sizes of 5, 15 or 35) and

the coverage of the motif (full site, its beginning, middle, or end).

We repeated this for each motif 20 times, creating a set of 240

random motifs for each of the nine transcription factors.

The second data set, which we refer to as ‘‘Structural’’, was

compiled by Mahony et al. [24]. Their evaluation is based on

structural information. Since structurally related transcription

factors often have similar DNA-binding preferences, the best

match to a given motif is expected to be a motif associated with a

member of the same structural class. Mahony et al. compiled a

data set that contains the motifs of the families with four or more

profiles in JASPAR [25].

Using these two data sets we compared different possible

similarity scores for DNA motifs. Specifically, we compared the

Pearson correlation coefficient; the information-theory based

Jensen-Shannon divergence; the Euclidean distance; and our

BLiC score.

Motif comparison evaluation—Identifying similar

motifs. We evaluated the sensitivity and specificity of motif

similarity scoring methods by comparing all possible pairs of motifs

from the data sets described above, and testing whether pairs that

have high similarity indeed were generated from the same source.

In the ‘‘Yeast’’ data set we call a pair as true if the two motifs were

generated from binding locations of the same transcription factor,

and in the ‘‘Structural’’ data set we call a pair as true if the motifs

are of factors from the same structural class. For each motif pair, if

the similarity is statistically significant we label this as a positive

pair, and otherwise call it a negative. We compared this prediction

to the label of the pair, and calculated the sensitivity and specificity

for each p-value threshold to create ROC curves (Figure 3B and

3C and Figure S2). Comparing the ROC curves of our score to

those of previously suggested scores we see that the BLiC score

outperformed all other scores throughout the range of possible

sensitivity/specificity tradeoffs on both data sets.

The construction of the ‘‘Yeast’’ data set allows examining

different parameters that make the task more challenging. We do

so by restricting the number of binding sites or by checking

whether the motif is partial or not. Using a smaller number of sites

results in higher variability among motifs of the same factor, and

using partial coverage means smaller overlap between compared

motifs; see Figure S2. These results show that as the task becomes

harder all the methods have reduced success rate: for 5% False

Positive Rate (FPR), the True Positive Rates (TPR) vary from 65%

(for partial overlapping motifs from samples of size 5) to 99% (for

the motif with different offsets compared to the full length motifs

from sample of size 35). Nonetheless, using our score improves the

retrieval rates substantially in most tasks; for example, when

looking at sub-motifs with partial overlap from samples of size 35,

for 5% FPR using the BLiC score leads to 80% TPR, compared to

62% with the Euclidean distance or 57% with the Pearson

Correlation (see Figure 3B). For some tasks, such as comparing the

motifs of different offsets to the full length motifs, our method did

not show statistically significant improvement (see Figure S2).

Comparing our two alternative priors, The Dirichlet prior versus

the Dirichlet-Mixture prior, our results show that the more complex

prior, which better models the nucleotide distribution in binding

sites, leads to better results as the number of samples decreases (see

Figure S2). When the number of samples is larger, the two priors

result in similar performance.

Motif clustering evaluation—Reducing the

redundancy. To further evaluate the accuracy of the different

similarity scores we used these scores in clustering motifs from the

two data sets. For this, we used the hierarchical agglomerative

clustering algorithm described above. We then examined whether

clusters consisted of motifs that are considered similar (either from

the same factor in the ‘‘Yeast‘‘ data set, or the same structural

family in the ‘‘Structural’’ data set). Examining the cluster

hierarchy at different levels of granularity we get a tradeoff

curve between two criteria, the True Positive Rate (TPR) of all

clusters, and the number of clusters; see Figure 4. The results show

that the BLiC score outperformed the other similarity scores in the

‘‘Yeast’’ data set and is better than other similarity scores in the

‘‘Structural’’ data set.

As in the motif comparison evaluation, we can perform the

clustering evaluation on various subsets of the ‘‘Yeast’’ data set (see

Figure 4 and Figure S3). From these results we see that in harder

tasks, all methods have reduced success rates. Using our score

improves the clustering rates significantly when clustering all the

motifs or different subsets of motifs as described above; for

example, when looking at all motifs from sample sets of size 15,

using our BLiC score we reach 95% TPR with less than 14

clusters, while all other do not get more than 57% TPR (see

Figure 4B).

Large-Scale DNA Motif Analyses
Motif analysis pipeline. To facilitate analysis of many

motifs we developed an automatic motif analysis pipeline, based

on our BLiC score. This is a three-step method for processing and

integrating large-scale data of newly discovered DNA motifs into

coherent and reliable sets of non-redundant motifs. The inputs for

this procedure are multiple groups of co-regulated DNA

sequences, and the output is a set of non-redundant motifs and

a ranking of their relevance for each of the input groups (Figure 5).

The three steps of the pipeline include:

Step 1: Motif searching and filtering

We begin by applying complementary motif discovery algo-

rithms to each group of sequences. This is done using the TAMO

package [19]. Then, the newly discovered motifs undergo an initial

filtration according to their abundance among the group of

sequences (see Methods).

Step 2: Clustering and merging motifs

The integrated sets of motifs (from all input groups) are

clustered and merged to create a non-redundant set. First, the

discovered motifs for each group are clustered and merged

separately. Then, motifs from all groups are assembled, clustered

and merged. After each stage of clustering, a subset of refined

motifs is automatically chosen based on the clustering tree (see

Methods).

A Novel Motif Comparison Method
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Step 3: Ranking and identifying motifs

Finally, the non-redundant set of motifs is ranked and filtered

once again, using the abundance of the motifs in the original

groups of DNA sequences (see Methods). To know which motif is

new and which was previously characterized, we compare the

motifs to a library of known DNA motifs from the literature

(TRASFAC [26], SCPD [27], YPD [28]). By this comparison we

associate the motifs with transcription factors.

Genome-Wide Yeast Motif Library
As a real life application of this pipeline we examined genome

wide ChIP-chip measurements in S. cerevisiae of 177 transcription
factors under several environmental conditions. In total we
analyzed 301 experiments for different factors and conditions
[13]. We used seven motif discovery algorithms to produce a set of
motifs for each ChIP-chip experiment. These motifs were
clustered, filtered, ranked and compared to known motifs from

Figure 3. Evaluation of motif comparison scores. (A) Generating the test data set: Given a set of genomic binding sites for a transcription factor,
we generate motifs by randomly sampling subsets of genomic binding sites (including 5, 15, or 35 samples per motif), aligning them, and
then truncating the resulting motif to include only a part of the motif. By repeating this procedure, slightly different sets of binding sites were
built for each factor. This ‘‘Yeast’’ data set consisted of noisy motifs for nine different S. cerevisiae transcription factors using the genomic sequences
obtained by Harbison et al. [13], with a total of 240 motifs for each factor. (B) Sensitivity and specificity of different scoring methods: Comparison
of different scoring methods on the ‘‘Yeast’’ data set using a subset of motifs generated from subsets of size 35 with altered lengths (not
including the full length motifs, 685 motifs). Each similarity score was assigned an empirical statistical significance p-value. The ROC curve plots the
true positive rate (TPR) vs. the false positive rate (FPR), as computed for different p-value thresholds, where pairs of motifs generated from
genomic binding sites that were associated with the same factor are considered true positives. The BLiC score (green, using a Dirichlet prior, or blue,
using a Dirichlet-mixture prior) outperformed all other similarity scores: Jensen-Shannon (JS) divergence (red), Euclidean distance (purple), and
Pearson Correlation coefficient (cyan). The full arsenal of comparisons is shown in Figure S2. (C) Sensitivity and specificity estimated by structural
data: Same as (B), but using the ‘‘Structural’’ data set of Mahony et al. [24]. Pairs of motifs from the same structural family are considered true
positives.
doi:10.1371/journal.pcbi.1000010.g003
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the literature (as described above and in the Methods). This

resulted in a concise set of DNA motifs attributed to each

transcription factor under each environmental condition (all the

motif sets can be found at the Supplementary Web site http://

compbio.cs.huji.ac.il/BLiC).

To further analyze the resulting Yeast DNA motif library, we

contrast it against the wealth of genomic annotations in the yeast

literature. To do so, we scanned each motif in the library against

the promoters of yeast genes (see Methods) and created a target

gene set for the motif. We then scored the enrichment of these

motif gene sets against different types of gene annotations: the

original ChIP-chip data [13], GO functional annotations [29], and

groups of genes which are up or down regulated according to gene

expression data (assembled by [30–32]). This allowed us to relate

each motif to specific genomic annotations. To visualize these

relationships we created a combined clustering of motifs and

annotations using EdgeCluster - a clustering algorithm recently

developed in our lab [33]. The novelty of EdgeCluster is in the

Figure 4. Evaluation of clustering DNA motifs. (A) Motif clustering: In this example, the initial motif set consists of four motifs. The score
assigned to each pair of motifs is the score of the best possible alignment between them (including the reverse complement form, as demonstrated
in this example). In each step the highest scoring pair is merged into a new motif (by combining the evidence from both motifs). These steps are
repeated until we are left with a single motif. The order of merge operations results in a tree, where the leaves are the initial motifs. Each frontier in
this tree creates a set of motifs. A frontier in a tree is a subset of nodes, non-descendent to each other, with every leaf in the tree a descendant of one
of them. In this example, a frontier resulting in two motifs is chosen, one is an initial motif and the other is a motif created by merging three initial
motifs. These two motifs are the non-redundant set of motifs, derived from the initial set. (B) Evaluation of clustering with different scoring methods:
Motifs from the ‘‘Yeast’’ data set, generated from subsets of size 15 (180 motifs), were clustered. We split the resulting clustering tree using different
thresholds. Each such threshold defines a different tradeoff between true positive rate (percent of correctly classified motifs in the clustering tree)
versus the number of clusters. In this graph we plotted the average of nine repeats of clustering sets of 180 motifs described above (total of 1620
different noisy motifs). This tradeoff curve demonstrates that our BLiC score (green, using a Dirichlet prior, and blue, using a Dirichlet-mixture prior)
outperforms all other scoring methods, Pearson Correlation, Euclidean distance, and Jensen-Shannon. A more detailed evaluation of clustering noisy
motifs using various similarity scores is shown in Figure S3. (C) Clustering evaluated by structural data: Tradeoff curves (as in (B)) for clustering motifs
in the ‘‘Structural’’ data set [24]. Pairs of motifs from the same structural family are considered true positives.
doi:10.1371/journal.pcbi.1000010.g004
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integration of various sources of information into the clustering

process. These information sources can be attributes of motifs (e.g.,

extent of enrichment in different gene sets) and pairwise

information about motifs (i.e., the similarity of motif pairs). Figure

S4 demonstrates the clustering of all the motifs. Clustering of a

partial set of motifs is presented in Figure 6.

Comparison to Previous Work
In the works of Harbison et al. [13] and MacIsaac et al. [34],

the same ChIP-chip data was used to construct a global

transcriptional regulatory map in yeast. The motif analyses

performed in these two works differ from ours in the similarity

score used (the Euclidean distance) and in the different motif

clustering and merging methods. In addition, the output of these

two works was a single motif for each transcription factor. To be

consistent with these previous works in the comparison, we

narrowed down our set of motifs for each ChIP experiment to a

single motif.

We first looked only at transcription factors with previously

characterized motifs. Our criterion for comparison is measuring

the similarity to known motifs from the literature (TRANSFAC

[26], SCPD [27], YPD [28]), using our BLiC score. To narrow

down our motif set to a single motif for each factor we chose (as

done in these previous works) the motif most similar to the known

motif. In 65% of the cases our motifs have the highest similarity to

the known motifs (Figure 7, Table S1). The motifs learned by the

algorithms of MacIsaac et al. and Harbison et al., had the highest

similarity only in 22% and 12% of the motifs, respectively.

For transcription factors with no previously known binding

motif in the literature, we compared the enrichment of the motifs

within the ChIP-chip groups of sequences. For the comparison, we

narrowed the motif sets by choosing the most significant motif for

each factor and environmental condition (similarly to what was

done in these previous studies). We scanned the genomic

sequences and computed the enrichment of each motif (see

Methods), using the same procedure and parameters for motifs

from all three methods. Our motifs were found to have the highest

enrichments in 80% of the cases (see Figure 7 and Table S1).

To ensure that the improvement we see is not due to differences

in motif discovery methods, we repeated the analysis using the

original output of the motif discovery of Harbison et al. (data not

shown). This lead to slight changes in the output motifs, as our

original analysis used a superset of these motifs. Comparing these

modified results against the results of Harbison et al. and MacIssac

et al. we see essentially improvement as the one we reported above

(in 62% of the cases our motifs have the highest similarity to the

known motifs, and in 65% of the cases our motifs were found to

have the highest enrichments).

Elucidating Conditional Binding of Transcription Factors
Using the motif sets we have learned, we next turned to examine

the change in the binding specificities of the transcription factors

under different conditions. We distinguish between two types of

factors. A condition-independent factor binds the same targets in

multiple conditions, while a condition-dependent factor changes its set

of targets between conditions. An example of a condition-

independent transcription factor in yeast is Fhl1, a master

Figure 5. Overview of the motif analysis pipeline. The first step of the pipeline involves searching for motifs in each input set of DNA
sequences, using complementary motif discovery algorithms. The motifs are filtered according to their abundance in the input set. In the second step
the redundancy in the newly discovered set of motifs is reduced by clustering and merging the similar motifs. These steps are performed separately
for each set (top boxes). Then, the motifs found in each input set are clustered and merged to create a global non-redundant set of motifs. These
motifs are then associated with known motifs from pre-existing libraries. The refined motif set is ranked and filtered according to their abundance in
each input set.
doi:10.1371/journal.pcbi.1000010.g005
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regulator of ribosomal genes, which according to the ChIP data

remains bound to 75% of its targets under different conditions (see

Figure S5A). This is consistent with previous work [35] and with

the motif analysis, where similar motifs are related to Fhl1 in all

three conditions (see Figure S5B).

A condition-dependent regulator can show a range of behaviors

in response to a change in condition. It may expand and bind

additional targets, it may alter and bind to a different set of targets,

or it may even not bind any targets [13]. Various mechanisms may

be involved in monitoring condition-dependent binding. A factor

Figure 6. Overview of the discovered motifs. Investigation of the properties of discovered motifs. Each motif (column) is compared to other
motifs using the BLiC score (rows, top square), to enrichment of putative targets among expressed or silenced genes within a compendium of gene
expression at different cellular conditions (second group), to the enrichment of targets within various GO annotations (third groups) and in ChIP-chip
location assays (bottom group). The rows and columns were clustered using EdgeCluster [33], an agglomerative clustering procedure that integrates
various sources of information into the clustering process. Shown is clustering for partial sets of motifs related to the transcription factors: Fhl1, Sfp1,
Rap1, Hsf1, Ste12, Mcm1, Swi4, Swi6, and Mbp1 (the full clustering is presented in Figure S4 and on http://compbio.cs.huji.ac.il/BLiC).
doi:10.1371/journal.pcbi.1000010.g006
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may expand its targets, due to dosage change of the active

transcription factor in the nucleus [13]. Alternatively, a factor may

alter its targets due to several probable mechanisms (see Figure

S6). One mechanism is changing the factor’s specificity to the

DNA, which we can trace by identifying variations in the DNA

motif (Figure S6A). Another possible mechanism is a change in the

factor’s binding partner, which may be detected through co-

occurrence of motifs of different factors (Figure S6B). In addition,

a change of targets may be caused by a change in the accessibility

to the binding site, which we cannot identify by analyzing motifs

(Figure S6C).

We focus here on factors that alter their targets under different

conditions and try to elucidate the mechanism. We defined a

transcription factor as altering its target genes between two

conditions, if the number of target genes in the intersection is less

than half of the number in each condition separately. In addition,

we considered only factors with at least 20 target genes in each of

the two conditions (a sufficient number for motif discovery). Out of

the 72 transcription factors for which ChIP-chip experiments were

carried out in more than one condition, 50 factors alter their target

genes between two conditions (in total, 112 pairs of differential

conditions) (Table S2). We searched for differential motifs in the

motif set of each factor at every condition. We say a motif is

differential if there is a significant difference (p,0.05, chi-square

test) in the fraction of ChIP targets containing the motif between

the two conditions (excluding the genes in the intersection). This

analysis can potentially elucidate the mechanism through which a

factor changes its DNA targets, by finding different variants of

motifs, or co-occurrence of motifs of different factors as explained

above. In about half of these pairs we did not find statistically

significant motifs in at least one of the compared conditions and

thus could not search for differential motifs. Finding a motif only

for one condition could be meaningful on its own, since this may

indicate that in the other condition there is no direct binding of the

factor to the DNA. On the other hand it could result from

technical reasons, such as noise in the input set of sequences, and

thus in this work we do not analyze these cases. Out of the

remaining 52 pairs (spanned over 27 different transcription

factors), we found differential motifs for 88% of the factors (47

cases spanned over 24 factors, see Table S3) with a p-value of less

than 0.05.

Condition-Dependent Binding of Ste12 under Conditions
of Mating and Filamentous Growth

An example of a transcription factor that shows condition-

dependent binding is Ste12, which activates genes in two

alternative pathways—mating and filamentous growth [36,37]

(Figure 8A). Under filamentous growth signaling (Butanol

induction) we found that Ste12 binds promoters enriched with

its known motif [38], as well as the known recognition sequence of

Tec1 [38], a co-factor that binds the DNA with Ste12 under

filamentous growth [37,39] (Figure 8B). However, under mating

conditions (Alpha factor induction) we find that Ste12 binds

promoters with another variant of the motif more highly enriched

than the known one. This variant is a near-perfect tandem repeat

of its known site, suggesting that Ste12 binds the DNA as a

homodimer following Alpha factor induction [40,41] (Figure 8B).

An additional player found in our analysis is Mcm1, whose known

motif [42] is enriched among promoters bound by Ste12 under

both conditions. This is consistent with the role of Mcm1

inhibiting expression of mating genes in diploid cells [42].

Mcm1 may play a similar role in the filamentous growth pathway,

in which haploid cells undergo invasive growth, and diploid cells

undergo pseudohyphal growth. Interestingly, the exact same

motifs were learned for the ChIP targets of the cofactor Dig1,

under all the conditions stated above, which indicates that Dig1

does not bind the DNA directly [37]. Thus, looking at the

discovered motif sets, we can reveal the regulators involved and

propose a mechanism through which a transcription factor alters

its targets under different conditions. Here we propose the altered

binding is caused by a change in the DNA binding partner: Ste12

binds the DNA with Tec1 under filamentous growth and as a

homodimer under mating conditions.

Figure 7. Comparison to previous analysis methods. Comparing our discovered set of motifs to the ones learned by Harbison et al. [13] and
MacIsaac et al. [34]. We plot the fraction of motifs that obtained the highest score among all three sets. We first compare transcription factors with
previously characterized motifs by their similarity to the known motif from the literature [26–28], calculated using our BLiC score. For this comparison,
we took for each transcription factor the motif most similar to the known binding site (as done in these two previous works). Our motifs received the
highest similarity score (among all three studies) in 65% of the cases (right). The second comparison is for transcription factors with no characterized
binding motif. This comparison is based on the enrichment of the motifs in the ChIP-chip data sets. For this comparison we took the most highly
enriched motif for each factor and condition (for consistency with the two previous works). The same parameters were applied in the analysis of
motifs from all three methods. In this setting, our motifs were found to have higher enrichments in 80% of the cases (left).
doi:10.1371/journal.pcbi.1000010.g007
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Condition-Dependent Binding of the Iron-Regulated
Factor Aft2

Another interesting example is provided by the iron-regulated

transcription factor Aft2, required for iron homeostasis and

resistance to oxidative stress [43]. This factor exhibits a significant

environmental-dependent binding, switching targets between low

and high H2O2 conditions (Figure 9A). The role of Aft2 in iron

homeostasis and resistance to oxidative stress is poorly understood.

In low H2O2, we find that Aft2-bound promoters are highly

enriched with a motif similar to the known recognition sequence of

Aft2 (GgGTG) [43]. However, in high H2O2 we find abundant

occurrences of a low complexity Poly-GT motif (Figure 9B). This

result indicates that a possible explanation for the change in Aft2

DNA targets is a change in its DNA binding specificity over these

conditions. We reach this conclusion due to the lack of the known

motif or motifs of other factors in the bound targets under high

H2O2 and due to the similarity of the Poly-GT to the known motif.

Furthermore, the poly-GT motif under high H2O2 may suggest

that Aft2 binds the DNA as a homodimer. Interestingly, the

known motif of Aft1 (Rcs1) [43], a paralog of Aft2, was enriched

among the Aft2-bound promoters in low H2O2 condition. This

implies a possible overlap between the targets of Aft2 and Aft1,

supported by ChIP-chip data of the two factors (Figure 9B). Based

on our analysis, we report two similar (but not identical) motifs for

the two paralogs (as suggested by [43,44]). Since it is known that

Aft2 and Aft1 have independent and partially redundant roles in

iron regulation [43,44], this strengths our assumption that Aft2

binding to the DNA does not depend on Aft1, but is due to a

change in its specificity to the DNA. The ChIP-chip data and our

motif analysis suggest that under high H2O2 conditions Aft2 has a

unique role in gene regulation. Here again, by looking at the motif

sets, we propose a mechanism for condition dependent binding of

a transcription factor. In this case we propose the cause is a change

in the factor’s specificity to the DNA.

Discussion

An accurate motif comparison method is important for

clustering redundant DNA motifs into coherent groups and for

connecting the discovered motifs to previously characterized

motifs. In this study we present a novel similarity score, the BLiC

score, based on Bayesian probabilistic principles. We use the new

comparison method as a basis for motif clustering and retrieval

procedures, and compare it to several commonly used alternatives.

This comparison shows that our BLiC score improves the

specificity and sensitivity of motif comparisons and clustering

tasks. The resulting motif clustering and retrieval procedures are

incorporated in a large-scale automated pipeline for analyzing

DNA motifs, which integrates the output of various DNA motif

discovery algorithms and automatically merges redundant motifs

from multiple training sets. The output of our pipeline is a

coherent annotated library of motifs. Application of this pipeline to

genome-wide location data of transcription factors in S. cerevisiae,

successfully identified DNA motifs in a manner that is as good as

semi-automated analyses reported in the literature. Moreover, we

demonstrate how motif analysis can lead to insights into regulatory

mechanisms.

Hierarchical Agglomerative Clustering
We used our BLiC score to develop a hierarchical agglomer-

ative clustering algorithm for merging similar motifs, in which we

ensure that the motifs within every sub-tree are properly aligned.

Furthermore, such an approach allows us to trim the cluster tree at

various levels, thus allowing us to merge motifs at different

resolutions. In our method a new agglomerative node results from

aligning and merging the motifs of its descendent nodes, and then

computing the similarly of this new motif to all other nodes. As a

consequence, the hierarchical progression ensures that each sub-

tree is coherent. This is in contrast to many clustering methods,

such as k-means and typical hierarchical clustering [45] which find

a set of motifs that are all similar to each other, but are not

necessarily coherent in the sense that they cannot all be aligned.

Motif Analysis
Our motif analysis pipeline is designed to process discovered

DNA motifs into a set of non-redundant motifs and compare these

with known motifs. As we have shown, our approach improves the

sensitivity and specificity in the analysis of the outputs of standard

motif discovery methods. By automating all the steps, we enable

the analysis of hundreds of input groups. In addition, we achieve a

wide view on transcription regulation by running several motif

discovery algorithms in parallel, and integrating their outputs. By

comparing motifs from different input groups we are able to

connect between transcription factors that play a role in different

processes. Our analysis does not focus on finding the ‘‘best’’ single

motif for each input group (e.g., targets of ChIP-chip assay), but

rather we find a set of non-redundant motifs and their relations

(enrichment) to each input group. This output better captures the

complexity of the underlying regulatory program. For example, in

many cases we find motifs of co-factors (e.g., Ste12 and Tec1). In

other cases we see that a factor changes its binding specificity

under different conditions (e.g., Aft2). For these cases, several

DNA motifs better capture the DNA binding preferences of the

transcription factor than a single motif.

Relations to Previous Work
There are several different approaches attempting to quantify

similarities between DNA motifs. Two previous works [21,22]

showed that using p-values when comparing motifs is more

accurate than the actual similarity scores. Specifically, Gupta et

al.[21], compared seven motif-motif position similarity functions,

including the Pearson Correlation coefficient (e.g., [11,46]),

average log-likelihood ratio (ALLR) [16], Kullback-Leibler

divergence [47–49], and the Euclidean distance (ED) [13,50].

They found that the Euclidean distance is slightly better than the

alternatives they considered. The data set used by Gupta et al. has

a similar design as our data set, but it is based on the TRANSFAC

database [26]. Not surprisingly, our results are consistent with

theirs. Here we also use p-values to calibrate similarity scores, and

show that our score is more accurate than the Euclidean distance,

which is the second best.

Several resources are available for DNA motif analysis. There

are many open access motif discovery tools available (e.g., [2,3,11])

and motif comparison tools [11,21,51]. In addition there are

several available tools that integrate multiple motif discovery tools,

and supply additional tools for filtering, comparison and ranking

motifs [19,49,52]. In our motif analysis pipeline we use the TAMO

package [19], for motif discovery and filtering, with a different

genomic scan approach using statistical tools [53]. The main

difference is that for the motif comparison and clustering we use

our new BLiC score and a hierarchical agglomerative clustering

(as discussed above).

From DNA Motifs to Regulatory Mechanisms
Sequence information is a highly accessible resource, and thus it

is interesting to ask whether it can help elucidate mechanisms of

transcription regulation. We examined transcription factors that

alter their targets in response to an environmental change, and
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found a differential motif in 88% of these cases (24/27 factors).

These differential motifs can suggest the potential mechanism

through which the factor changes its targets. We show that motifs

provide an indication for potential mechanisms when the factor

changes its binding partner (Figure S6A) or its specificity to the

DNA (Figure S6B), as we discussed thoroughly for the case of

Ste12 and Aft2. Nevertheless, motif analysis obviously does not

reveal the whole regulatory picture. For example, chromatin-

modeling mediated regulation cannot be inferred from motif

analysis (Figure S6C). Thus, for a complete understanding of the

regulatory mechanisms additional information is needed.

A significant limitation of motif analysis in general, is the

discrepancy between putative binding sites and actual functional

binding events. This raises the question addressed frequently

before [10,54], whether our representation of transcription factor

binding preferences is sufficiently accurate.

In this study we overcome a basic obstacle in DNA motif

analysis, by developing an accurate motif comparison method.

Our motif analysis pipeline, which includes clustering and retrieval

procedures based on our novel score, is fully automated and

produces accurate results. This is highly important in large-scale

analysis, such as the one reported here. We showed the power of

motif analyses, which is useful not only for building regulatory

maps, but also for understanding more profoundly regulatory

mechanisms.

Methods

Motif Representation
We use a Position Frequency Matrix (PFM) representation for a

DNA motif. This is a n64 matrix, where each i,j cell contains the

count of nucleotide j in position i of the motif.

Scores
We define the similarity score for two aligned PFMs. Due to the

positional independence assumption in PFMs, the score decom-

poses into the sum of scores for corresponding positions. Our score

is composed of two components: The first measures whether the

two motifs were generated from a common distribution. The

second reflects the distance of that common distribution from the

background. Thus, for positions n1 and n2, our score is as

described in Equation 2. Statistically, in the score we sum the log-

likelihood-ratio of two pairs of hypotheses.

The first component:

H0: The two samples were drawn from a common source

distribution.

H1: The two samples were drawn independently from different

source distributions.

The second component:

H0: The two samples were drawn from a common source

distribution that is distinct from the background.

Figure 8. Condition dependent behavior of Ste12. (A) A Venn diagram representing the results of the ChIP-chip experiment [13] for Ste12
under mating (induced by alpha factor) and filamentous growth (induced by butanol). Ste12 alters its targets substantially between these two
conditions. (B) Analysis of the percent of sequences bound by Ste12 which contain the different motifs (when searching for motif occurrences at 2%
false positive rate). Shown are the different motifs in the targets bound by Ste12 in filamentous growth condition only (yellow), in mating condition
only (blue), or in both conditions (green). Each motif is shown as a sequence logo on the left and percent occurrence in each group as bar chart on
the right. We can see that under filamentous growth there is enrichment for a motif similar to the previously characterized Ste12 motif (top motif), as
well as the known recognition sequence of Tec1 (third from top). Under mating there is an enrichment for a near-perfect tandem repeat of Ste12
known binding site (second from top). A motif similar to the known Mcm1 motif (bottom motif) is found to be enriched under both conditions,
especially under filamentous growth.
doi:10.1371/journal.pcbi.1000010.g008
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H1: The two samples were drawn from the background

distribution.

Estimation
We estimate the source distributions from the PFM using a

Bayesian approach, with a Dirichlet prior. The Dirichlet prior is

specified by a set of hyper-parameters a = (a1,a2,…an) and has the

form: Pr Xð Þ~
C
P

i ai

� �
P iC aið Þ

P ix
ai{1

Where C(x) is the Gamma function. We use two prior variants: The

first is a standard Dirichlet prior [20], with hyper-parameters of

(1,1,1,1). When using this prior, the estimated distribution for

position n is:

p̂pi~
nizaiP

j[ A,C,G,Tf g
njzaj

� �

where a is the vector of hyper-parameters.

The second prior we use is a five-component mixture of Dirichlet

prior [17]. We merge five Dirichlet priors using uniform weights.

Four of the components give high probability for a single DNA

nucleotide: A, C, G, or T. The fifth element represents the

uniform distribution. We use the hyper-parameters (5,1,1,1) for A,

(1,5,1,1) for C, etc., For the fifth component we use the hyper-

parameters (2,2,2,2). Using this, the estimated distribution for

position n is:
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This is a weighted average, where the weights are the posterior

probabilities of each component given the data. The posterior is:
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Figure 9. Condition dependent behavior of Aft2. (A) Venn diagrams representing the results of the ChIP-chip experiment [13] for the
transcription factors Aft2 and Rcs1 under high and low H2O2 stress. Aft2 alters its targets substantially between these two conditions. (B) Analysis of
percent of sequences bound by Aft2, which contain the different motifs (when searching for motif occurrences at 2% false positive rate). Shown are
the different motifs in the targets bound by Aft2 and Rcs1 in low H2O2 stress only (yellow and blue, respectively), in high H2O2 stress only (red and
green, respectively) or in both conditions (orange and cyan, respectively). Each motif is shown as a sequence logo on the left and percent occurrence
in each group as bar chart on the right. Under low H2O2 stress there is enrichment for a motif similar to the previously characterized Aft2 motif (top
motif), as well as for the known recognition sequence of Rcs1 (middle motif). Under high H2O2 stress only abundant low-complexity repeats of Poly-
GT (bottom motif) have been identified.
doi:10.1371/journal.pcbi.1000010.g009
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Clustering and Comparing Motifs
Comparing motifs. The similarity score of two PFMs is the

score of the best possible alignment (without gaps) between them,

including the reverse complement alignment. The unaligned flanks

of the motif are scored according to their distance from the

background distribution multiplied by a relaxing factor of 0.2.

Assigning p-values to motif similarity scores. We devised

an empirical p-value estimation procedure for motif similarity

scores. For each motif, we computed the score distribution against

motifs of all possible lengths, by comparison to 1000 random

motifs of a specified length. Since the BLiC score distribution

depends on the specificity of each motif, the distribution is

computed for each motif separately to retain the overall

characteristics of the motif. The random motifs were generated

by sampling positions of motifs from the TRANSFAC database

[26]. The p-value of the similarity of a given DNA motif to

another, is calculated empirically from the score distribution of the

first motif against random motifs of the same length as the second

motif (calculating the fraction of random motifs that got the same

score or higher).

Clustering and Trimming the Tree
To cluster motifs, we implemented a hierarchical agglomerative

clustering algorithm, using various motif comparison scores. In

each iteration, the algorithm computes the similarity between all

pairs of motifs and then merges the pair with the highest similarity

score into a new motif (see Figure 4A). This merge includes

aligning the motifs according to the best scoring alignment

between them, and then combining the evidence from both of

them, by summing their nucleotide counts at each position (i.e.,

the motifs are weighted according to their number of samples).

These iterations are repeated until we are left with a single motif.

The order of merge operations results in a tree, where the leaves

represent initial motifs, and each inner node represents the

merging of all original motif sub-tree below it.

The clustering tree is used to distill the input set into a non-

redundant group, by splitting the tree into clusters representing

groups of redundant motifs. To obtain this non-redundant set,

which covers the initial set, we choose a frontier in the clustering

tree. A frontier in a tree is a subset of nodes, non-descendent to

each other, where every leaf in the tree is a descendant of one of

them. This is done by a bottom-up traversal over the tree in which

we choose the set of nodes in the required frontier. Specifically, we

consider every two motifs that were merged into one in the tree.

We want to identify situations where this merge resulted in a motif

that is very different than each of the two motifs that were merged.

To test that, we compare the degree of similarity between the two

motifs to the maximal score we could have attained (the maximum

of the similarity of each one to itself). If the observed score’s ratio

to this maximum is less than a preset threshold, the two motifs are

added to the frontier. In the motif analysis pipeline, we use a

stringent threshold of 60% of the maximum for creating non-

redundant motifs (chosen according to hand-curated splits of 10

trees).

Motif Analysis
Motif discovery algorithms. In the analysis pipeline we

applied several motif discovery algorithms—MDScan [2],

AligneAce [11], and MEME [3] were used through the TAMO

package [19], with the default parameters (apart from the MEME

algorithm, for which we changed the parameters to output six

motifs). We included conserved and abundant motifs in the yeast

genome [55], and the output of MEME_c [13], Converge [13]

and the SeedSearcher motif discovery algorithm [56]. The

discovered motifs underwent an initial filtration according to

their enrichment among the initial group of sequences (p-value

threshold of 1025, calculated using the TAMO package [19]). All

motifs are converted to a PFM representation.

Clustering motifs. In the second step of the pipeline we

cluster the motifs—first we clustered the motifs discovered for each

transcription factor under each environmental condition

separately, then the (merged) motifs for each factor under all

conditions, and finally the entire set of motifs. The motifs are

clustered and merged as described above.

Truncating motifs. Uninformative positions at the two edges

of motifs were truncated automatically. This was done by a chi-

square test (threshold of 0.05), testing if the nucleotides at a motif

position distribute according to the background.

Identifying the motifs. Connecting between discovered

motifs and transcription factors, we compared the motifs against

a set of known motifs (TRANSFAC [26], SCPD [27], YPD [28]).

Ranking motifs. In the third step of the pipeline, we rank

and filter the merged motifs according to their enrichment (2log

hyper-geometric p-value) in the input groups of DNA sequences.

For filtering we use a threshold of 3 after applying a Bonferroni

correction for multiple hypotheses. For this, we find the

occurrences of each motif using a statistical tool for genomic

scan, TestMotif program [53]. To scan the genome with our

motifs, we transferred them from PFMs (count matrices) to profiles

(frequencies), using estimation with Dirichlet-mixture prior described

above. After scanning with the TestMotif program [53], we

combine evolutionary conservation data to find the occurrences of

motifs. Particularly, we decide whether a DNA sequence contains

a motif if one of two following criteria holds:

N The sequence contains a highly statistically significant binding

site, using a p-value threshold of 0.03 after Bonferroni

correction for multiple hypotheses according to the average

length of the scanned sequences (a good sequence match

between the motif and the binding site).

N A less statistically significant occurrence of the motif (threshold

of 0.1), highly conserved among seven species of the genus

Saccharomyces (average conservation of the motif is at least 0.6,

according to the UCSC conservation track (phastCons [57],

through the UCSC Genome Browser Database [58]).

Parameter tuning. The threshold values listed above were

chosen according to an extensive search of parameters that

maximize the true positive rate, allowing up to 2% false positive

calls. This optimization was based on location analysis data of

Gcn4 [13], and location and expression data for Sko1

(unpublished data).

Supporting Information

Figure S1 Distinguishing between informative and non-infor-

mative positions: Two pairs of aligned motifs are presented (by a

sequence-logo). This is an alignment of the known motif for the

invertebrate factor Dfd versus two variants of the vertebrate factor

Pax4, all taken from TRANSFAC [26] (matrix accessions

I$DFD_01, V$PAX4_02, and V$PAX4_04, all from version

8.3). While it is clear the first motif (left) should get a lower

similarity score than the second motif (right), scoring the two pairs

of aligned motifs using the Jensen-Shannon divergence yields a

higher score for the first motif. The desired similarity score should

distinguish between high similarity of informative positions and

non-informative positions.

Found at: doi:10.1371/journal.pcbi.1000010.s001 (0.73 MB TIF)
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Figure S2 Evaluation of motif comparison. Using different subsets

of motifs out of the ‘‘Yeast’’ data set, we compare our BLiC score

(green, using a Dirichlet prior, and blue, using a Dirichlet-mixture

prior) with other similarity scores: Jensen-Shannon divergence (red),

Euclidean distance (purple) and Pearson Correlation coefficient

(cyan). Each of the nine panels represents a different comparison.

The columns correspond to the number of samples used for

constructing the motifs. The rows correspond to different choices of

query sets and target sets for comparison (illustrated by the logos on

the right): In the top row all motifs of partial offsets are queries

against the same set. In the middle row, all motifs, including full-

length motifs and partial offsets are compared against themselves. In

the bottom row, we use partial offset motifs as queries and full motifs

as targets. In each panel we plot True Positive Rate (y-axis) vs. False

Positive Rate (x-axis) as in Figure 3B.

Found at: doi:10.1371/journal.pcbi.1000010.s002 (1.67 MB TIF)

Figure S3 Evaluation of motif clustering. Using different subsets

of motifs out of the ‘‘Yeast’’ data set, we compare our BLiC score

(green, using a Dirichlet prior, and blue, using a Dirichlet-mixture

prior) with other similarity scores: Jensen-Shannon divergence

(red), Euclidean distance (purple) and Pearson Correlation

coefficient (cyan). Each of the nine panels represents the average

performance of 9 repeats of clustering over different motif sets.

The columns correspond to the number of samples used for

constructing the motifs. The rows correspond to different choices

of motif sets (illustrated by the logos on the right): In the top row

we cluster all motifs of partial offsets. In the middle row, we cluster

all motifs, including full-length motifs and partial offsets. In the

bottom row, we cluster only full motifs. In each panel we plot True

Positive Rate (y-axis) vs. number of clusters (x-axis) as in Figure 4B.

Found at: doi:10.1371/journal.pcbi.1000010.s003 (1.88 MB TIF)

Figure S4 Overview of the discovered motifs. Investigation of

the properties of discovered motifs. Each motif (column) is

compared to other motifs using the BLiC score (rows, top group),

to average expression of its targets in different experiments [30–

32] (second group), to enrichment of its targets in GO annotations

[29] (third groups) and in ChIP-chip location assays [13] (bottom

groups). The rows and columns were clustered using the Edge-

Cluster [33] algorithm, which integrates various sources of

information into the clustering process. These information sources

are attributes of motifs and pairwise information about motifs. The

results are clusters of motifs that have not only similar attributes, as

in regular clustering algorithm, but also similar relations to motifs

in other clusters.

Found at: doi:10.1371/journal.pcbi.1000010.s004 (8.43 MB TIF)

Figure S5 Condition independent binding of Fhl1. (A) A Venn

diagram representing the results of the ChIP-chip experiment [13]

for the transcription factor Fhl1 under YPD conditions, amino-

acid starvation and nutrient deprived conditions. The targets of

Fhl1 do not change under these three environments. (B) Under all

conditions the same motif is found to be highly enriched.

Found at: doi:10.1371/journal.pcbi.1000010.s005 (2.70 MB TIF)

Figure S6 Possible mechanisms for condition-dependent bind-

ing of TFs. Motif analysis for condition-dependent transcription

factors that bind different targets under different conditions. Here,

three possible mechanisms that may be involved in monitoring

condition-dependent binding, which lead to altered targets, are

presented schematically. For each mechanism we show the scheme

of the promoter organization of the target genes (above the dashed

line) and the result of motif discovery (under the dashed line). (A)

The first mechanism is through a change in the cofactor. This may

be detected through co-occurrence of motifs of different factors.

(B) The second mechanism is through a change in the specificity to

the DNA. This change can be traced by identifying variations in

the DNA motif. (C) The third mechanism is a change in the

chromatin state. This change cannot be traced using motif

analysis.

Found at: doi:10.1371/journal.pcbi.1000010.s006 (0.98 MB TIF)

Table S1 Comparison of the Yeast motif library to previous

works

Found at: doi:10.1371/journal.pcbi.1000010.s007 (0.02 MB XLS)

Table S2 Transcription factors with condition-dependent bind-

ing which alter their targets.

Found at: doi:10.1371/journal.pcbi.1000010.s008 (0.02 MB XLS)

Table S3 List of differential motifs.

Found at: doi:10.1371/journal.pcbi.1000010.s009 (0.04 MB XLS)
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