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Abstract

Characterizing the DNA-binding specificities of transcription factors is a key prob-
lem in computational biology that has been addressed by multiple algorithms.
These usually take as input sequences that are putatively bound by the same fac-
tor and output one or more probabilistic DNA motifs. A commonpractice is to
apply several such algorithms simultaneously to improve coverage at the price of
redundancy. Two crucial tasks for interpreting such results regard clustering of
redundant motifs and attributing the motifs to transcription factors by retrieval of
similar motifs from previously characterized motif libraries. Both tasks inherently
involve motif comparison. Here we present a novel method forcomparing and
merging motifs, based on Bayesian probabilistic principles. This method takes
into account both the similarity in positional nucleotide distributions of the two
motifs and their dissimilarity to the background distribution. We demonstrate the
use of the new comparison method as a basis for motif clustering and retrieval pro-
cedures, and compare it to several commonly used alternatives. Our results show
that the new method outperforms other available methods in accuracy and sensi-
tivity. The resulting motif clustering and retrieval procedures we incorporated in a
large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates
the results of various DNA motif discovery algorithms and automatically merges
redundant motifs from multiple training sets into a coherent annotated library of
motifs. Application of this pipeline to recent genome-widetranscription factor lo-
cation data inS. cerevisiae successfully identified DNA motifs in a manner that is
as good as semi-automated analysis reported in the literature. Moreover, we show
how this analysis elucidates the mechanisms of condition-specific preferences of
transcription factors.
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Chapter 1

Introduction

1.1 From DNA to Function

Living cells transfer information from one living cell to its daughter cells through
nucleic acids chains, mainly Deoxyribonucleic Acid - DNA, which contains the
genetic instructions for the development and function of living organisms. The
information in the DNA encoded by a four letters alphabet, A,C,G,T, which are
in fact different nucleotides. The long DNA chain contains short segments called
genes. In the transcription process, short ribonucleic acid (RNA) chains are syn-
thesized according to the information encoded in the genes.A RNA molecule
encodes the information needed to construct proteins, in a process called transla-
tion. The proteins make an essential part of all living organisms and participate in
every process in the cells, defining both the cells function and structure.

One of the miraculous phenomena in nature is that cells change their activity
significantly, in response to changes in their environment or external signals, while
their DNA, which is the blueprint for their function, remains the same. An even
more intriguing fact is that different cells in the same multicellular organism have
identical copies of the DNA and nevertheless their functionand structure vary
considerably. For example, an epithelial cell in the skin tissue has a completely
different function and shape from a neuron cell in the brain of the same organism.
This raises the question how do cells develop different functions and structures
when this genetic instructions are identical?

The answer to this question is that in each cell, at a given time, only part of the
proteins encoded in the DNA are present. The activity and structure of the cell in
a given state is determined by its proteins, implying that exact dosage and content
of proteins at a given time is highly important for the correct function of the cell.
This highly specific content of functional proteins in each cell is achieved through
several layers of regulations. The first layer is transcription regulation, which
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controls which genes are expressed and transcribed to RNA. The second layer
of regulation regards the control of translation process ofRNA to proteins. This
post-transcription layer includes regulation of the processing of the RNA molecule
in to a mature transcript. The third layer of regulation actspost-translationally,
controlling the function, location and degradation of the proteins themselves.

We focus in this work on specific aspects of the first layer of regulation in
the cell, transcription regulation. Key players in the transcription regulation are
transcription factors which bind to sequence-specific motifs in the DNA and con-
stantly modulate (activate or repress) the expression of nearby genes. These fac-
tors recognize specific sequence patterns on the DNA that arecalled transcrip-
tion factor binding sites. To understand transcription regulation it is essential to
construct a map of transcription factors and their targets,indicating when every
transcription factor is active, which genes it regulates, does it lead to activation or
repression of genes and how this regulation is carried out. One of the first steps in
building such a transcription regulation map is to define thesequence preferences
of each transcription factor and the distribution in the genome of its potential bind-
ing sites. This initial mapping indicates which factors canbind to the DNA at a
given location and consequently are candidates for regulation of proximal genes.
In addition, the location of DNA binding motifs can provide evidence of phys-
ical interactions between transcription factors. In this work, we address several
computational challenges related to identifying the sequence-specific DNA mo-
tifs identified by transcription factors. In addition, fromthe biological aspect, we
show here what DNA motifs can teach us about the complex mechanisms of gene
expression regulations by transcription factors.
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Chapter 2

DNA Motifs

To understand how transcription factors associate with theDNA, one must specify
their DNA binding preferences. These preferences are usually characterized by a
motif that summarizes the commonalities among the binding sites of a transcrip-
tion factor.

2.1 DNA Motif Representation

In the literature there is an ongoing discussion regarding the best representation of
the DNA binding specificities of transcription factors [Osada et al., 2004, Day and
McMorris, 1992, Benos et al., 2002, Stormo, 2000]. A DNA motifis an abstrac-
tion that models the sequence preferences of DNA binding proteins. The motif is
built on the basis of multiple sequences known to be bound by the transcription
factor.

The simplest kind of motif representation is the consensus sequence e.g. [Day
and McMorris, 1992], a string of nucleotides that represents the most abundant
nucleotides in each positions of the protein’s binding site. For example: The con-
sensus sequence TGACTC represents the binding preferences of the transcription
factor Gcn4 inS. cerevisiae. However, this model is not flexible enough, since
proteins often display variations in binding specificities. A common addition to
this model is the use of the IUPAC one-letter codes, also known as ambiguity
codes. For example, W represents A or T (weak interaction, 2 hydrogen bonds)
and S represents G or C (strong interaction, 3 hydrogen bonds). Other commonly
used one letter codes are: R = G or A, Y = T or C, M = A or C, K = G or T. For
example: The following sequences are all binding sites of the transcription factor
Gcn4 in theS. cerevisiae genome: TGACTC, TTACTC, TGACTG. Thus a more
accurate consensus sequence for GCN4 based on these sequences is: TKACTS.

Another common representation, which has the benefits of being relatively
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simple yet flexible, is a matrix of positions in the binding site versus nucleotides.
In the matrix each row represents one residue (A, C, G or T), andeach column
represents a position in a set of aligned binding sites. There are several types of
matrix representations which differ in the type of score they hold in the entries.
However, all matrix representations assume that the choiceof nucleotides in each
position of the motif is independent of all other positions.A common matrix rep-
resentation is a matrix of nucleotide frequencies in each position of the motif (i.e.
the frequencies of the nucleotides A, C, G and T in each position). This matrix
is called a Position specific Weight Matrix (PWM) (Figure 2.1), often referred to
as a Position-Specific Probability Matrix, or a Profile. A profile is a more flexible
representation than the consensus sequence described above, for example it allows
us to differentiate between binding preferences of50% A 50% T and preferences
of 70% A 30% T. We are often interested in considering the nucleotide counts
in each position which are more informative then the frequencies alone. We call
such a count matrix an un-normalized PWM (Figure 2.1), and thetransformation
between such a matrix and a profile is by simple normalization.

Figure 2.1:Motif representation. Constructing a DNA motif for a transcription factor
based on given instances of genomic binding sites of the factor. In this illustration a set of
binding sites are converted to an unnormalized PWM from the nucleotide counts in each
position of the sites. By normalizing each position we get to the alternative PWM (or
profile) representation, which contains the nucleotide frequencies in each position in the
motif. From the PWM, a graphical representation for the motif can be constructed using
a sequence-logo (Schneider and Stephens, 1990). In the logo the y-axis is the information
content of a position and the height of each nucleotide is proportional to its frequency in
the relevant position of the motif.

Another common representation is a scoring matrix often called a Position
specific Scoring Matrix (PSSM)[Staden, 1984], where each position holds the
log-likelihood score of each residue to be generated by the motif model. This
log likelihood is the log-ratio of two probabilities: the probability to observe the
nucleotide given the motif model (the matrix), and the probability to observe the
nucleotide given the background model of the frequencies ofeach nucleotide in
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the genomic context. Note that the names of the motif matrices are not always
consistent in the literature. For example a PSSM is in some places referred to as a
PWM.

One weakness of the above matrix representation for DNA motifs is that they
do not take into account higher order dependencies between residues, such as cor-
relations between different positions in the binding site [Man and Stormo, 2001,
Bulyk et al., 2002]. For example, if a transcription factor may bind to the se-
quence: ACGTCC or ACGTGG (CC or GG suffix at the end of the motif), we
cannot use a representation that assumes independent positions since this will lead
to all possible combinations of suffixes including CG and GC. Inthis example, the
transcription factor has a finite set of binding preferences, which can correlate to
different structural configurations of the protein. In thiscase we can model the
binding motif relatively simply by a mixture of PSSMs, in which a transcription
factor can bind to any sequence that fits any one of the matrices. Other cases
may be more complex and require further modeling of higher order dependencies.
Pairwise positional dependencies can be modeled by using a simple correlation
matrix with entries for each pair of positions in the motif [Zhang and Marr, 1993].
A more compact and general model is a Bayesian Network, which has been used
to model arbitrary dependencies [Barash et al., 2003]. The problem in estimating
transcription factor binding preferences as a model with positional dependencies
is that it requires a large amount of data. When sufficient dataare not available
there is a risk of over-fitting.

It has been previously shown that in practice the simpler motif models are of-
ten both useful and practical [Benos et al., 2002] and providea useful approxima-
tion to reality. In this work we are using the unnormalized PWMrepresentation (a
count matrix) for the description of a DNA motif and we refer to it for simplicity
as a PWM.

2.2 Motif Discovery Algorithms

Multiple tools were developed for finding DNA motifs. Most algorithms identify
statistically significant overrepresented sequence patterns in a set of related DNA
sequences. These groups of related DNA sequences are believed to be control
regions in the DNA of a co-regulated group of genes. Thus we expect to find in
the control regions the DNA binding motifs of a set of transcription factors that
mediate this co-regulation. Deriving the groups of co-regulated sequences can be
done from ChIP-on-chip data that characterize a group of DNA sequences bound
by the same transcription factor from gene expression data that provide clusters
of co-expressed genes, or from functional analysis assays that define genes with a
related function, such as genes involved in the same metabolic pathway.
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Finding over-represented motifs can be done by enumerativemethods, which
count exhaustively all words in the dataset. Since this approach is computationally
expensive, most algorithms constrain the motif length or the alphabet size. An
example of an enumerative algorithm is Weeder [Pavesi et al., 2001].

An alternative approach for finding over-represented motifs is by a probabilis-
tic search which constructs a generative model of the sequence data and searches
for a motif that maximizes the likelihood of the observed data. Several probabilis-
tic search algorithms are based on the Expectation Maximization method such as:
MEME [Bailey and Elkan, 1995], and EMnEM [Moses et al., 2004],while others
are based on the Gibbs sampling method, such as AlignAce [Hughes et al., 2000],
MotifSampler [Thijs et al., 2001] and PhyloGibbs [Siddharthan et al., 2005].

One of the problems in these motif discovery algorithms is that the input set of
sequences is usually noisy. One property that can be used to decrease the noise is
to use the degree of confidence we have a-priori for each DNA sequence that it is
co-regulated with the rest of the group. The MDscan [Liu et al., 2002] algorithm
is an example for such an algorithm, which receives as an input a ranked group of
sequences according to the confidence level of each one. Several algorithms inte-
grate evolutionary conservation information based on the reasoning that important
regulatory regions, such as transcription factor binding sites, are under evolution-
ary pressure and as a consequence are more conserved than other non-coding DNA
sequences. The conservation information can be integratedin the algorithms de-
scribed above by finding conserved and overrepresented motifs in a group of re-
lated DNA sequences. This is done in the algorithm PhyloGibbs [Siddharthan
et al., 2005] and EMnEM [Moses et al., 2004]. In addition, theconservation
information can be used in a genome-wide motif discovery performed on phy-
logenetically conserved non-coding regions [Kellis et al., 2003]. The drawback
of integrating conservation information is that regulatory regions are not always
conserved [Tautz, 2000, Moses et al., 2006, Levine and Tjian, 2003], especially
in remote species. Several studies show how different regulatory programs in dif-
ferent species lead to similar function e.g. [Tsong et al., 2006], which indicate
that the regulation program may be highly flexible. Thus integrating conservation
considerations may lead to overlooking of the regulatory signal.

A different approach is to use structural knowledge to inferthe binding mo-
tifs of transcription factors. This can be done as ab-initioprediction of binding
preferences from the structure of the DNA binding domain of proteins [Kaplan
et al., 2005, Morozov et al., 2005]. Moreover, structural knowledge can be inte-
grated as a bias to the motif discovery based on prior knowledge of the typical
motifs of structural families of transcription factors [Sandelin and Wasserman,
2004, MacIsaac and Fraenkel, 2006]. In addition, the motif discovery can be bi-
ased according to positional priors of structural classes in the genome [Narlikar
et al., 2006].
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Different motif discovery methods were shown to have complementary suc-
cesses, and no one is clearly superior [Tompa et al., 2005]. It is therefore benefi-
cial to apply multiple methods simultaneously and collate their results [MacIsaac
and Fraenkel, 2006].

2.3 Emergent Obstacles

There are several problems in interpreting the output of motif discovery algo-
rithms: (a) Many of these methods output multiple results which require scoring
and ranking (b) The outputs of these motif discovery algorithms are frequently
redundant and the binding transcription factor is unknown (see example in Fig-
ure 2.2). (c) In large-scale experiments the motif output set is very large, and thus
the tasks of scoring, merging and identifying motifs need tobe done automati-
cally. Since it is beneficial to apply multiple methods simultaneously, the number
as well as the redundancy of the discovered motifs is amplified. As similar motifs
may represent binding sites of the same protein, eliminating this redundancy is
essential for elucidating the true transcriptional regulatory program.

Figure 2.2:Motif discovery output. An example for a motif discovery output. six motif
discovery tools: MDscan[Liu et al., 2002], AligneAce[Hughes et al., 2000], MEME [Bai-
ley and Elkan, 1995],MEMEc [Harbison et al., 2004], converge[Harbison et al., 2004],
SeedSearcher [Barash, 2005] and an additional method [Kellis et al., 2003], were applied
on a set of genes found to be bound by the cofactor DIG1 in a ChIP-chipassay [Harbison
et al., 2004]. Clearly, deciding which motifs represent the binding site of thesame protein
is not a trivial task. This task gets more complicated as the number of motifs increases

The general strategy for reducing this redundancy involvesclustering similar
motifs together and merging motifs within each cluster to create a library of non-
redundant motifs [MacIsaac and Fraenkel, 2006] (Figure 2.3.B). An additional
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important step in interpreting the output of motif discovery algorithms is to relate
the discovered motifs to previously characterized recognition sequences of known
transcription factors. This task involves retrieval - given a query motif, find sim-
ilar motifs in a motif database (Figure 2.3.C). To address both the clustering and
the retrieval challenges, we need an accurate and sensitivemethod for comparing
DNA motifs

2.4 DNA Motif Comparison

To compare two PWMs, we can utilize the position-independence assumption to
decompose the similarity score of two motifs into the sum of similarities of single
aligned positions. Two motifs may be of different length or reverse complement
each other (meaning that they are taken from the complementary strand of the
DNA), and thus all possible alignments should be considered. The similarity score
between two motifs is the highest score of all possible alignments of the motifs.
Several similarity scores can be used to compare a pair of aligned positions in a
PWM. One possible approach is based on statistical measures,such as the Pearson
correlation coefficient (e.g. as used in CompareACE [Hughes etal., 2000],[Xie
et al., 2005]). This measure, however, might inappropriately capture similarities
between probabilities (Figure 2.4). An alternative approach is to define a similar-
ity between two distributions. This can be a metric distance, such as the Euclidean
distance [Harbison et al., 2004] or an information-theoretic measure, such as the
Jensen-Shannon divergence [Cover and Thomas, 2001]. The later distances mea-
sure distance between vectors, thus they do not have the artifacts of the Pearson
correlation. Such measurements, however, equally weight positions with similar
nucleotide distributions that are specific (e.g., a strong preference for an A) and
similar positions that are non-informative (e.g., identical to the background distri-
bution); (Figure 2.4). It is important to differentiate between the two situations,
because the two positions whose similarity is due to a resemblance to the back-
ground distribution are less relevant to motif similarity,as they do not contribute
to sequence-specific binding of proteins [Yona and Levitt, 2002]. This argument
suggests that a proper motif comparison method should reflect the likelihood that
the two motifs represent sites bound by the same factor. Hence, the motif com-
parison method should take into account the sequence similarity between the two
DNA motifs and at the same time, also take into account the extent to which they
are different from the background distribution. In this work we use this intuition
to develop a novel method for comparing and merging DNA motifs, based on
Bayesian probabilistic reasoning.

8



Figure 2.3:Emergent obstacles and possible solutions .(A) Identifying DNA binding
sites of transcription factors: Applying motif discovery algorithms on a groupof related
DNA sequences leads to finding putative transcription factor DNA binding sites. These
algorithms output a set of unidentified DNA motifs, which are frequently redundant. To
infer the correct transcription regulation map from the discovered motif set, itis crucial
to reduce this redundancy and identify the newly discovered motifs. (B) Reducing redun-
dancy by clustering and merging motifs: A redundant set of DNA motifs can be reduced
by clustering the motifs into groups of related motifs and merging the motifs in each clus-
ter. In this example, a redundant set of 16 DNA motifs (a partial output of several motif
search algorithms, as in Figure 2.2 ) is clustered and merged to a final set consisting of
three DNA motifs. For correct clustering an accurate and sensitive DNA motif similarity
score is needed. (C) Identifying the binding factors of DNA motifs: The transcription fac-
tors that bind unidentified DNA motifs can be revealed based on similarities to previously
defined TF binding motifs. In this example, comparison of a newly discoveredmotif to
four known motifs reveals high similarity to the Gcn4 known binding motif. From this
comparison the transcription factor that bind the motif is identified with high probabil-
ity. For the comparison of DNA motifs an accurate and sensitive motif similarity score is
needed. 9



Figure 2.4: Motif comparison.(A) Differentiating between informative and non-
informative positions. Two pairs of aligned motifs that both have three identical positions
and two different ones. However, the identical positions in pair number one are non-
informative, while the identical positions in pair number two are informative. Thus we
would like our score to differentiate between these two types of similarities and assign a
higher similarity score to pair number two. The nucleotide distribution in each motif is
represented schematically (with a sequence logo using probabilities instead of informa-
tion content). (B) Problematic aspects of currently used motif similarity functions. The
similarity score of two PWMs decomposes into the sum of similarities of single aligned
positions, due to the position-independence assumption in the model. Here we present
scores for pairs of positions in DNA motifs by the various similarity functions in addition
to a proposed optimal score (all scores are normalized between 1 and -1): The nucleotide
distribution in each position is represented schematically (a sequence logo using proba-
bilities). As shown, the Pearson-Correlation does not reflect the true sequence similarity
and the Jensen-Shannon divergence (JS) and Euclidean distance donot differ between
informative and background uniform positions. Clearly, position 1 shouldget a higher
similarity score than position 2, but the Pearson-Correlation scores for these positions are
equal. Position 3 should get the lowest possible score, but Pearson-Correlation does not
capture this. Both in positions 1 and 4 identical distributions are compared, but position 1,
which should get a higher score, fails to obtain this by all three methods. Positions 4 and
5 should get similar scores, however, Pearson-Correlation grades position 5 significantly
lower than position 4.
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Chapter 3

A Novel Method for Motif
Comparison and Clustering

3.1 A Novel DNA Motif Similarity Score

Our goal is to determine whether two DNA motifs represent thesame binding
preferences (i.e., they describe binding sites of the same transcription factor).
However, when comparing motifs, we have to remember that we wish to dif-
ferentiate between two motifs with similarity in nucleotide distributions that are
specific (e.g. a strong preference for nucleotide A) and two motifs with similar
nucleotide distributions that are non-informative (e.g.,identical to the background
distribution), since the less informative positions in a motif do not contribute to
sequence-specific binding of proteins [Yona and Levitt, 2002]. To address this
issue, we developed a similarity score that measures the similarity between two
DNA motifs, while taking into account their dissimilarity from the background
distribution. We now develop the details of the score. Beforethat we need to
clarify how we represent DNA motifs. We can view DNA motifs intwo ways.
The first, and more common way is as a model that describes the probability of
nucleotides in each position of the binding site (see in moredetail above). In this
work this model is a PWM where the probabilities of nucleotides at different po-
sitions are independent of each other. The second view is as the list of sites from
which these probabilities were estimated. In this second view we take into account
the amount of evidence that we have about the DNA binding preferences. This lat-
ter view also allows us to perform statistical evaluation ofthe motifs. In this view,
we assume that each of the binding sites that are presumed to belong to the mo-
tif was sampled independently from a common distribution over nucleotides. We
assume that this distribution satisfies the position independence properties (in cor-
respondence with the PWM representation). Then, we can evaluate the likelihood
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ratio of different source distributions for the sampled binding sites. In practice,
we do not keep the actual binding sites, but the sufficient statistics that allow us
to evaluate the likelihood of the binding sites. Under the position independence
assumption, these statistics are the counts of each nucleotide in each position. Our
score is composed of two components: the first measures whether the two motifs
were generated from a common distribution, while the secondreflects the distance
of that common distribution from the background. Statistically, the former com-
ponent translates to measuring the likelihood-ratio of thetwo hypotheses:
H0: The two samples were drawn from a common source distribution.
H1: The two samples were drawn independently from different source distribu-
tions.
The latter component translates to measuring the likelihood-ratio of the two hy-
potheses:
H0: The two samples were drawn from a common motif distribution (as above).
H1: The two samples were drawn from the background distribution.
Our Bayesian Likelihood 2-Components (BLiC) score for motifsm1 andm2 is:

BLiCscore = log
Pr(m1,m2|common source)

Pr(m1,m2|independent source)
+log

Pr(m1,m2|common source)

Pr(m1,m2|background)

An important aspect of this score is that since we assume thatall the relevant
distributions satisfy position independence, the score decomposes into a sum of
local position scores that examine only the distribution ofnucleotides at one po-
sition in both motifs. More precisely, our likelihood-based score measures the
probability of the nucleotide counts in each position of themotif given a source
distribution. For two aligned positions in the compared motifs, let n1 andn2 be
the corresponding count vectors, the similarity score is then:

BLiCscore = log
Pr(n1, n2| ˆP1,2)

Pr(n1|P̂1)Pr(n2|P̂2)
+ log

Pr(n1 + n2| ˆP1,2)

Pr(n1, n2|P̂bg)

=

∑

y∈A,C,G,T (n1y
+ n2y

) · log ˆP1,2y

∑

y∈A,C,G,T (n1y
) · log P̂1y

+
∑

y∈A,C,G,T (n2y
) · log P̂2y

+

∑

y∈A,C,G,T (n1y
+ n2y

) · log ˆP1,2y

∑

y∈A,C,G,T (n1y
+ n2y

) · log ˆP1,2y

WhereP̂1 , P̂2 and ˆP1,2 are the estimators for the source distribution ofn1, n2

and the common source distribution, respectively. And Pbg is the background
nucleotide distribution.

12



3.2 Estimating Distributions

Since the source distribution is unknown, we must estimate it from the nucleotide
counts in each position of the PWM. There are alternative approaches towards this
goal. The simplest method is to use the maximum likelihood estimator (MLE).
For a multinomial distribution, as in our case, estimation using the MLE is very
efficient. In addition, this estimator is asymptotically unbiased, i.e., it is assured
we will predict the true distribution as the number of samples increases to infin-
ity. However, in the case of DNA motifs, our sample size is farfrom the required
size for calculating the true source distribution. Under these conditions using the
MLE is too strict and may lead, for example, to estimations ofzero probability of
a DNA nucleotide in a certain position of the motif. For this reason it is important
to soften our estimation. We use a Bayesian estimation approach, where a priori
knowledge, as well as the number of samples, is integrated into the estimation
process. We considered two alternative priors. The first is astandard Dirichlet
prior [DeGroot, 1970]. The second, more flexible approach, involves a Dirichlet
mixture prior [Sjolander et al., 1996], which allows to dynamically choose be-
tween several typical distributions. We are using the family of Dirichlet priors
because it is conjugate to the multinomial distribution, which enables us to com-
pute the probabilities efficiently. In addition to efficiency considerations, the prior
should model the typical distribution of a position in a DNA motif. Using Dirich-
let priors is very efficient and has the benefits of Bayesian estimation discussed
above. However, using a single component prior does not allow us to model a
typical distribution of a position in a DNA motif. In DNA motifs there are several
possible typical distributions: informative positions contain positions where the
protein has a strong preference for a specific nucleotide: A,c, G or T. In addition,
there are non-informative positions in the motif where the protein does not have
strong binding preferences. For this reason we chose to use amixture of priors,
which is suitable for representing a complex distribution with more than one typ-
ical distribution. More specifically, we used a five-component mixture prior, with
four components representing a typical informative distribution, giving high prob-
ability for a single DNA nucleotide: A, C, G, or T. The fifth element represents
the uniform distribution.

For example: Given the following motif:

1 2 3
A 5 15 100
C 0 0 0
G 0 0 0
T 0 0 0

Since we are assuming positional independence in the motif,we calculate the
source distribution for each position of the motif separately.
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Estimator type 5 samples 10 samples 100 samples

Maximum Likelihood Estimator: (1,0,0,0) (1,0,0,0) (1,0,0,0)
Bayesian (Dirichlet prior): (0.67,0.11,0.11,0.11) (0.85,0.05,0.05,0.05) (0.97,0.01,0.01,0.01)

Bayesian (Dirichlet-mix prior): (0.76,0.08,0.08,0.08) (0.87,0.04,0.04,0.04) (0.97,0.01,0.01,0.01)

In this example I used a Dirichlet prior with parameters (1,1,1,1), and Dirichletmixture
prior with uniform weights, where the parameters of the first four components are in the
form of : (5,1,1,1) for residue A, etc. and in the form of (2,2,2,2) for the fifth component.

As we can see from this example, the maximum likelihood estimator does not take into
consideration the number of samples, and the estimation remains constant and very strict.
When the number of samples is small the Bayesian estimation is more flexible since our
confidence in the evidence is not high. In addition, The Dirichlet mixture prioris more
accurate than the uniform Dirichlet prior, especially when the number of samples is small.
This is because we integrated in the Dirichlet mixture prior our prior knowledge on the
typical distributions in DNA motifs. As the number of samples grows the differences
between the three alternative estimators decreases.

3.2.1 Estimation Details

When using this estimator, the estimated distribution for position n can be calculatedas:

p̂i =
ni

∑

j∈{A,C,G,T} nj

It is easy to see that when assigning the MLE in the equation of the BLiC scorethe first
component of our score is the known Jensen-Shannon (JS) divergence, which is a similar-
ity measure between two probability vectors based on information theory measure. The
JS divergence is the symmetric form of the Kullback-Leibler distance, whichis defined
for two probabilities P and Q as:

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)

For probability vectorsP, Q andR = n1P+n2Q
n1+n2

, the JS divergent is defined as:

DJS(P ||Q) =
n1

n1 + n2
DKL(P ||R) +

n2

n1 + n2
DKL(Q||R)

For ˆpml, ˆqml and ˆSml ML estimators for the source distribution of positionsn1, n2 and
the common source distribution, respectively. As we said above the first component of
our BLiC score can be represented in the form of a JS divergence:

log
Pr(n1, n2|ŝ)

Pr(n1|p̂)Pr(n2|q̂)
= −DJS(P ||q)
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Bayesian estimation using Dirichlet prior: The Dirichlet prior is specified by aset of
hyper-parametersα = (α1, α2, . . . , αn) and has the form:Pr(X) =

Γ
P

i αi
Q

i Γαi

∏

i x
αi−1

For estimating the source distributions with a standard Dirichlet prior, we use uniform
hyper-parameters (such as (1,1,1,1)). When using this prior, the estimateddistribution for
the position n can be calculated as:p̂i = ni+αi

P

j∈{A,C,G,T

P

(nj+αj)
whereα is the vector of

hyper-parameters. For estimating the source distributions with a five-component mixture
of Dirichlet prior [Sjolander et al., 1996], we merge five standard Dirichlet priors using
uniform weights. The four components, which represent uni-nucleotidedistributions, give
high probabilities for a single DNA nucleotide: A, C, G, or T in the hyper-parameters
(such as (5,1,1,1) for residue A). The fifth component, which represents the background
distribution, is modeled using uniform hyper-parameters (such as (2,2,2,2)). Using this
mixture-prior, the estimated source distribution for a count vector n is:

p̂i =
∑

k

(

Pr(αk|n)
ni + αk

i
∑

j∈{A,C,G,T}(nj + αk
j )

)

This estimator is a weighted average of the estimators using each component separately,
where the weights are the posterior probability of the component given the data. The
posterior reflects our belief that the source distribution in this position of the motif is
a certain typical distribution after we are given the vector of counts. The posterior is:

Pr(αk|n) = qkPr(n|αk)
P

j qjPr(n|αj)

3.2.2 Alignment of Motifs

In the above discussion we assumed that the motifs are aligned. That is, thatposition
1 in the first motif has the same meaning as position 1 in the second one. In practice,
we want to compare two motifs that are not necessarily aligned. Thus, we define the
similarity score for two motifs as the score of the best possible alignment between them.
Since motifs are short sequences we do not allow gaps in the alignment, and so we only
consider the offset of one motif with respect to the other. In addition we consider reverse
complement alignment where one motif is complementary to the other (on the opposite
DNA strand) Figure 3.1. Since the score decomposes to sum of position scores, we can
use a dynamic programming algorithm to find the best scoring alignment betweentwo
PWMs (including reverse complement alignments). The unaligned flanks of the motif
are scored according to their distance from the background distribution multiplied by a
relaxation factor of 0.2.

3.2.3 Assigning P-values to Motif Similarity Scores

To assign the statistical significance of each score, we have devised an empirical p-value
estimation, computed for each motif separately. For each motif, we compute the score
distribution of alignments with partners from all possible lengths. This is done by com-
paring the motif to 1000 random motifs of a specified length. These random motifs were
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Figure 3.1:Motif comparison and clustering. In this short example, the initial set con-
sists of four motifs, which are compared all against all. The score assigned to each pair is
the score of the best possible alignment between them (including the reverse complement
form). In each step the highest scoring pair is merged into a new motif (by combining the
evidence from both motifs). These steps are repeated until we are left witha single motif.
The order of merge operations results in a tree, where the leaves are the initial motifs.
Each frontier of this tree creates a set of motifs. In this example, a frontier resulting in
two motifs is chosen, one is an initial motif and the other is a motif created by merging
three initial motifs. These two motifs are the non-redundant set of motifs, derived from
the initial set.

generated by sampling positions of known DNA motifs from the TRANSFAC database
[Matys et al., 2003]. The TRANSFAC database contains characterized DNA motifs of
known transcription factors. By this process we can create random DNAmotifs of any
length, while using the typical distributions found in transcription factors binding sites.
When comparing a given DNA motif to another one, we will use the score distribution of
the first motif against the random motifs with the same length as the second motif. Wecan
then assign a p-value to the similarity score by calculating the fraction of random motifs
that got the same score or a higher one, which is an approximation for the probability of
getting that score or a better one by chance.

3.3 Clustering Motifs

An important application of motif similarity scores is clustering. There are many potential
ways of clustering motifs [A. K. Jain, 1988]. Here we consider one of thesimplest and
straightforward clustering procedures where we combined a similarity score, such as our
BLiC score, within a hierarchical agglomerative clustering algorithm. In each iteration
of the algorithm we have a set of motifs. The algorithm computes the similarity between
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all pairs of motifs and then merges the pair with the highest similarity score into a new
motif (Figure 3.1). This merge includes aligning the motifs according to the best scoring
alignment between them, and then combining the evidence from both of them. These
iterations are repeated until we are left with a single motif. The order of mergeoperations
results in a tree, where the leaves are the initial motifs, and inner nodes correspond to
merged motifs that represent all motifs in the relevant sub-tree. Each frontier of this
tree stands for a non-redundant clustering of the motifs. We stress that this procedure is
different than hierarchical clustering based on the similarities between the initial set of
motifs (such as UPGMA(Unweighted Pair Group Method with Arithmetic mean)). Since
we merge motifs to create a new one, the similarity of a merged motif to another motif
might be different than the average of the similarities of each of the merged motifs to that
third motif.

3.3.1 Splitting the Clustering Tree

The clustering tree can be used to distill the set of input motifs into a concise non-
redundant group. This is done by splitting the tree into a subset of clusters, each repre-
senting a group of redundant motifs. As mentioned above, in this tree, the leaves represent
initial motifs, and the inner nodes represent a merging of all motifs in the rootedsub-tree.
Thus, to obtain a non-redundant set of motifs, which still covers the initial set, we choose
a frontier in the clustering tree. This is done using a bottom-up traversal over the tree.
Two adjacent nodes are inserted into the frontier if the ratio between their similarity score
and their maximal possible score, is less than a certain threshold (Figure 3.2).After two
nodes were inserted to the frontier, usually, additional nodes from their sub-tree should
be inserted for consistency. This is demonstrated in Figure 3.2.b, where inserting the top
two motifs in the tree to the frontier (separating them to different clusters), derives that
the bottom two motif will be separated from the rest of the clustering tree as well.

In this work we use a quite stringent threshold of60% of the maximal score when
splitting the clustering tree. This threshold was chosen as the optimal split threshold
compared to hand-curated splits of 10 trees into clusters (with 20 leaves in each).

3.4 Comprehensive Evaluation of Similarity Scores

We set to compare our similarity score to existing ones in the literature. We aim to evalu-
ate scores both in the context of comparing motifs (whether they representthe preferences
of the same transcription factor) and clustering motifs. One of the challengesin perform-
ing such evaluations is determining the ground truth against which to compare the results.
The approach we choose is to generate synthetic datasets where we knowthe true labeling
of motifs. This allows us to benchmark the different procedures, by relating their results
with the underlying truth. To make the dataset as realistic as possible, in terms of the
properties of binding sites and their preferences, we use predictions ofbinding sites in
real genomic sequences to generate this synthetic dataset. In more detail, webuilt a li-
brary of synthetic motifs where we know the origin of each motif. Each motif is created
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by sampling a set of binding sites from the genome-wide catalogue of transcription factor
binding locations in S. cerevisiae [Harbison et al., 2004] (see Figure 3.3.a). This dataset
simulates the redundant output of motif discovery programs, with similar motifs that arise
from different runs over the same transcription factor, as well as partially overlapping mo-
tifs that simulate truncated motifs. We compiled a noisy test data of motifs for nine TFs.
For each TF, we generated a set of 12 noisy motifs by randomly sampling a subset (of size
5,15 or 35) of its binding site locations, and trimming the original motif by taking only
the beginning, end or middle parts. Using these test data we compared different possible
similarity scores for DNA motifs. Specifically, we compared the Pearson correlation coef-
ficient; the information-theory based Jensen-Shannon divergence; the Euclidean distance;
and our BLiC score.

3.4.1 Motif Comparison Evaluation -
Identifying Similar Motifs

We evaluated the sensitivity and specificity of motif similarity scoring methods by com-
paring pairs of motifs from the test set described above, and testing whether the prediction
of close similarity coincide with the true assignment to the pair of motifs, i.e. whetherthey
were generated from the genomic binding locations of the same TF. More precisely, for
each pair the significance of the similarity of the first motif to the second was calculated.
If the similarity is significant (p-value smaller than a chosen threshold) we label this as
a positive pair, and otherwise call it a negative. By comparing this prediction to the true
assignment of the motifs (true positive if the two are generated from binding sites of the
same transcription factor) we calculated the sensitivity and specificity for each p-value
threshold to create an ROC curve for each similarity measure (Figure 3.3.b).Comparing
the ROC curves of our score to those of Jensen-Shannon divergence, Euclidean distance
and Pearson Correlation coefficient we see that our BLiC score outperformed all other
measures throughout the range of possible sensitivity/specificity tradeoffs.

3.4.2 Motif Clustering Evaluation - Reducing the Redundancy

To further evaluate the accuracy of the different similarity scores we clustered the motifs
from the test set and examined if motifs originating from the same TF were clustered to-
gether. For this, we used the hierarchical agglomerative clustering algorithm described
above. The results, based on the 108 noisy motifs for nine different TFswere conclu-
sive. Once again, our two-component score outperformed the other scores, as Figure 3.3.c
shows.
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Figure 3.2: Splitting the clustering tree. Two alternative splits of the clustering tree.
The motifs are discovered in a set of genes found to be bound by the TF Gcn4 under
three different environmental conditions in a ChIP-chip assay [Harbison et al., 2004]. We
applied six motif discovery algorithms (as in Figure 2.2). The splits are done using a
threshold of50% of the maximal score for these motifs in (a) and60% of the maximum
in (b). Red lines represent the splits of the tree into separate clusters.
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Figure 3.3:Evaluation of our score. (A) Generating the test dataset. For a given TF a
set of noisy motifs was generated, based on the TF binding locations in the S.cerevisiae
genome. First, a subset of the genomic binding site locations was randomly chosen (with
varying number of sequences). Second, for several subsets, the length of the original
motif was changed by taking only the beginning, end or middle part of the motif. By
repeating this procedure a set of noisy motifs was built for each TF. (B) Sensitivity and
Specificity of the different scoring methods. Comparing all pairs of motifs from the test
set, and assigning an empirical p-value for the score. Motifs generated from the binding
sites of the same TF are the true positives. A ROC curve was plotted based onthe true
positive rate (TPR) and false positive rate (FPR), computed for any choice of p-value
threshold. The BLiC score (turquoise) outperformed all other similarity scores: Jensen-
Shannon divergence (red), Euclidean distance (green) and Pearson Correlation coefficient
(blue). (C) Clustering the test data set using various scores. Here we present the clustering
of a partial set of the test data, consisting of all motifs generated from subsets of size 35
with altered lengths. This clustering demonstrates the BLiC score (right) outperforms
the Pearson-correlation(left). Similar results show our score outperforms the Euclidean
distance and Jensen-Shannon. (D) A more detailed view of the top part ofthe clustering
shown in C, using the BLiC score.
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Chapter 4

Large-Scale DNA Motif Analyses

4.1 Analysis Pipeline

Based on our score we developed a three-step method for processing and integrating
large-scale data of newly discovered DNA motifs into coherent and reliablesets of non-
redundant motifs. The inputs for this procedure are groups of co-regulated DNA se-
quences. As discussed above, examples for these co-regulated groups are groups of DNA
sequences bound by the same transcription factor according to ChIP experiments, or clus-
ters of co-expressed genes from gene expression analysis data. The output for each group
of sequences is a set of ranked motifs (Figure 4.1). The advantage of this three-step
pipeline is in the accurate and automatic analysis and integration method of DNA motifs.
The three steps of the pipeline include:
Step 1:Motif searching and filtering. We begin by applying complementary motif discov-
ery algorithms to each group of sequences. Then, the newly discoveredmotifs undergo
an initial filtration according to their abundance among the group of sequence (see details
below).
Step 2: Clustering and merging motifs. The integrated sets of motifs (from all input
groups) are clustered and merged to create a non-redundant set. First, the discovered mo-
tifs for each group are clustered and merged separately. Then, motifs from all groups
are assembled, clustered and merged. After each stage of clustering, a subset of refined
motifs is automatically chosen based on the clustering tree (see details below).
Step 3:Ranking and identifying motifs. Finally, the non-redundant set of motifs is ranked
and filtered once again, using the abundance of the motifs in the original groups of DNA
sequences (see details below). The significant motifs are then coupled withTFs, by com-
paring them to a known set of DNA motifs from the literature. The output of thisanalysis
is a set of DNA motifs for each TF.
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4.2 Analysis Methods

4.2.1 Motif Analysis Pipeline

Motif discovery algorithms. In the analysis pipeline we applied several motif dis-
covery algorithms - Mdscan [Liu et al., 2002], AligneAce [Hughes et al., 2000], MEME
[Bailey and Elkan, 1995], MEMEc [Harbison et al., 2004], converge [Harbison et al.,
2004], were used through the TAMO package [Gordon et al., 2005], with the default pa-
rameters (apart from the MEME algorithm, for which we changed the parameters to output
six motifs). We also included conserved and abundant motifs in the yeast genome [Kel-
lis et al., 2003], and the output of the SeedSearcher motif discovery algorithm [Barash,
2005]. All the discovered motifs underwent an initial filtration according to their enrich-
ment among the initial group of sequences, using a hyper-geometric p-value threshold of
1e-5. The hyper-geometric p-value is calculated based on the number of binding sites
that match a motif model that can be found within the initial group of genomic sequences
as compared to the occurrences in the entire genome (or at least the sequences in all the
initial input sets). Since this is only an initial filtration, it is done using an efficient scan
for motif matches where a sequence is considered a match to a motif if it had a score
of at least60% of the motif maximum. This is done using the TAMO package [Gordon
et al., 2005]. All motifs were converted to a PWM representation, clusteredand merged
as described in section 3.

Truncating motifs. Uninformative positions at the two edges of motifs were truncated
automatically. This was done by testing the null hypothesis that the nucleotides at a motif
position distribute according to background distribution. The hypothesis was tested using
a chi-square test with a p-value threshold of 0.05.

Ranking and filtering motifs. To score the motifs at the third step of the pipeline,
we scanned the entire genome (or set of promoters) using each motif (see below), finding
all the set of occurrences of each motif in the genome. Then the enrichmentof each motif
relative to the input groups of DNA sequences was computed. The statistical significance
of the enrichment was evaluated by a hyper-geometric p-value. We filteredthe motifs
according to a threshold of 1e-3 after applying a Bonferroni correctionfor multiple hy-
potheses. We then ranked the motifs by their enrichment in the input groups,assigning
enrichment score to each motif as the -log of the hyper-geometric p-value.

Identifying the Motifs. To connect between the discovered motifs and known tran-
scription factor binding specificities, we used our motif comparison method against databases
of known motifs (TRANSFAC [Matys et al., 2003], SCPD [Zhu and Zhang,1999], YPD
[Csank et al., 2002]).
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4.2.2 Genomic scan

Estimating the motif probabilities from count matrices .To scan the genome
with our motifs, we first transferred them from PWMs (count matrices) to profile represen-
tation (frequencies). This was done using a Bayesian estimator with the Dirichlet-mixture
prior described in section 3.

Identifying binding sites. Finding all the genomic locations of a motif was done us-
ing the TestMotif program [Barash et al., 2005] combined with evolutionary conservation
data. Particularly, we decide whether a DNA sequence contains a motif if one of three
following criteria holds:

• The sequence contains a highly significant binding site (a good sequencematch
between the motif and the binding site). For this, we used a p-value threshold of
0.01 (after applying a Bonferroni correction for multiple hypotheses according to
the average length of the scanned sequences).

• The sequence contains a less significant occurrence of the motif (p-value thresh-
old of 0.1), which is highly conserved among seven species of the genus Saccha-
romyces. For this, we used the average conservation of the motif, according to the
UCSC conservation track, with a conservation threshold of 0.8. (phastCons [Sie-
pel et al., 2005], through the UCSC Genome Browser Database [Karolchik et al.,
2003]).

• The sequence may contain a less significant occurrence of the motif but wehave
high confidence that the sequence contains a motif based on the entire sequence.
This criterion is composed of two factors. The first is the Bayesian posterior prob-
ability of a motif in any position in the sequence. Here not only strong instances
of the motif will indicate this promoter as being a target, but also a few weaker
instances of the motif. We require this probability to be at least 0.1. The second
factor is the conditional posterior probability of finding a binding site at this spe-
cific location, if we know that there is a motif somewhere in the sequence. Here
the p-value will be in correlation to the degree of sequence match. We require this
probability to be at least 0.5.

For example, scanning all the S.cerevisae promoters with the following variant of the
Sko1 motif:

In the output set of targets, we find instances of the motif according to eachone of the
three criteria. For instance:

1. The sequence TTACGTAATGG has high sequence similarity with a p-valueof
1.5e-06.
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2. The sequence CTGCGTAAAGG has quite low sequence similarity (p-value0.07),
however the average conservation of the motif is very high and is 8.9.

3. The sequence TCACGTAAAGG has a lower sequence similarity than the first se-
quence (p-value 0.01), however the probability of the entire promoter to beregu-
lated is 0.14 and the probability of finding a motif in this specific position, assuming
the promoter is regulated, is 0.99.

Parameter tuning. The threshold values listed above were chosen according to an ex-
tensive search of parameters that maximize the true positive rate, allowing upto 2% false
positive calls. This optimization was based on location analysis data of Gcn4 [Harbison
et al., 2004], and location and expression data for Sko1 (unpublished data).
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Figure 4.1: Motif analysis pipeline overview. Based on our new score we developed
a large-scale analysis method of DNA motifs, which gets as an input groups of related
sequences and outputs a set of ranked motifs for each group. The first step of the pipeline
is searching for motifs in each group of DNA sequences, using complementary motif
discovery algorithms. The second step is reducing the redundancy in the newly discovered
set of motifs, which is done by clustering and merging the similar motifs. The clustering
is done separately within each group and finally the entire set of motifs are clustered and
merged. The merging of motifs is done automatically as part of the clustering procedure.
The third step of the pipeline is ranking the motifs and identifying their binding factors.
The refined motif set is ranked and filtered according to the enrichment score (-log10 of
the hyper-geometric p-value in the relevant group of DNA sequences).The motif binding
factors are identified by comparing the discovered motifs to the set of knownDNA motifs
in the literature using the BLiC score. The output of this pipeline can be used inadditional
analyses such as applying advanced clustering methods and integrating additional sources
of information.
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Chapter 5

Biological Results

5.1 Yeast Transcription Map

We utilized our pipeline to understand how TFs alter their DNA binding pattern under var-
ious environmental conditions. To this end, we applied our DNA motif analysis pipeline
to genome-wide ChIP-chip data of 177 TFs under several environmentalconditions, a to-
tal of 301 experiments for different TFs and conditions [Harbison et al.,2004]. Initially,
we used seven motif discovery algorithms to produce a redundant set of motifs for each
ChIP experiment (as detailed above). In the second step of the pipeline weclustered the
motifs - first the motifs discovered for each TF under each environmental condition were
clustered separately, then the (merged) motifs for each TF under all conditions, and finally
the entire set of motifs. The motifs were ranked according to their enrichmentin the re-
lated sets of genes bound by the different TFs. The binding motifs were then compared to
the known motifs of the TFs, based on previous information (TRANSFAC [Matys et al.,
2003], SCPD [Zhu and Zhang, 1999], YPD [Csank et al., 2002]). This resulted in a con-
cise set of DNA motifs attributed to each TF under each environmental condition (all the
motifs sets can be found at www.cs.huji.ac.il/ naomih/conditionalmap.html). To further
analyze the DNA motifs learned from the entire ChIP data, we used EdgeCluster - a clus-
tering algorithm recently developed in our lab [unpublished results, Hebrew University,
2007]. The novelty in EdgeCluster is in the integration of various sources of informa-
tion into the clustering process, including pair-wise information. Specifically,we used
for each motif data from three different sources. We calculated the motif’s enrichment in
different groups of genes: the original ChIP data, groups based onfunctional annotations
[Harris et al., 2004], and groups of genes which are up or down regulated according to
gene expression data [Segal et al., 2003]. The pair-wise information weused was inter-
motif similarity scores (using our BLiC score). In addition, as an input to the algorithm
we used an initial partition of the motifs into clusters according to our hierarchical clus-
tering algorithm, which is based only on the sequence similarity of the motifs. The initial
partition was done by applying our hierarchical-clustering algorithm with a highly per-
missive threshold on splitting the tree into clusters (of 0.3). Figure 5.1 demonstrates the
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clustering for all the motifs. As we can see groups of similar motifs are grouped together.

Figure 5.1:Results overview.The output of the EdgeCluster algorithm on the set of dis-
covered motifs. The Clustering is based on several types of data: enrichment of each
motif in different groups of genes: the original ChIP data, functional annotations [Harris
et al., 2004], groups of genes up or down regulated according to geneexpression data
[Segal et al., 2003], and pair-wise information of inter-motif similarity scores(using our
BLiC score).

5.1.1 Comparison to Previous Work

In the work of Harbison et al. (2004) and MacIsaac et al. (2006), thesame ChIP data
was used to construct a global transcriptional regulatory map in yeast. The motif analyses
performed in these two works differ from ours, both in the similarity score used (the Eu-
clidean distance), as well as by applying different motif clustering and merging methods.
In addition, the output of these two works was a single motif for each TF, chosen based on
the motifs enrichment score and its similarity to the known recognition sequence (when
available). We should first note that our motif set might contain several motifsfor a single
ChIP experiment (TF and condition) - different variants for the binding preferences of that
TF, as well as additional motifs for other TFs that interact with it. To be consistent with
these previous works in the comparison, we narrow down our set to a single motif. We
do that in two different manners. We compared our motifs to the ones learnedby these
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Figure 5.2: Comparison to previous analysis methods. Comparison between DNA
motifs, of TFs with previously known binding motifs from the literature, discovered by us
to the motifs discovered by Harbison et al. and MacIsaac et al. The motifs are compared
by three parameters and the fraction of motifs which got the highest score among the
three motif sets is presented. The first parameter compared, is the similarity to theknown
motif from the literature. The similarity was measured using the BLiC score (fromour
set of motifs, for each TF, the motif most similar to the literature was used). The second
and third parameters tested are the enrichment score and the percentage of coverage of
the motifs in the relevant chromatin imunoperticipation group (from our set of motifs, for
each TF, the top enriched motif which is similar to the known motif from the literature
was used for this comparison).

two methods based on similarity to known motifs from the literature (TRANSFAC [Matys
et al., 2003], SCPD [Zhu and Zhang, 1999], YPD [Csank et al., 2002]). To choose a single
motif for each TF, we considered all motifs in the TF s motif set, and picked the motifthat
is most similar to the known recognition element (as done in these previous works). We
then compared the similarity between the known motifs and the discovered motifs (by all
methods). In50% of the cases, our motifs were found to have the highest similarity to the
known motifs. The motifs learned by the algorithms of MacIsaac et al and Harbison et
al, had the highest similarity in32.5% and17.5% of the motifs, respectively. We further
tested the motifs discovered for TFs with known and unknown binding preferences by
comparing the motifs based on their enrichments in the ChIP groups of sequences. In this
scenario, we have chosen the most significant motif for each TF, similarly to what was
done in the previous methods. We scanned for putative target sequences of each motif
as described above, and then compared the enrichment (hyper-geometric p-value) of the
motif among the bound genes (using ChIP data for the same TF and condition).The same
procedure and parameters were applied for motifs from all three methods.Our motifs
were found to have higher enrichments in60% of the cases, see Figure 5.2).
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5.2 Elucidating Transcription Factors Conditional
Binding

Using the motif sets we have learned, we next turned to examine the change in the binding
specificities of the TFs under different conditions, and its effect on the set of targets. Under
different conditions a TF may either bind the same targets (condition-independent), or it
may change its set of targets from condition to condition (condition-dependent). When
changing conditions, such a regulator may expand its targets in addition to the ones it
already binds, it may bind to a different set of targets, or it may even not bind any targets at
all. Various mechanisms may be involved in monitoring the condition-dependent binding.
One possible mechanism regards a change in the dosage of active TF in thenucleus, which
may change the number of targets it can bind [Harbison et al., 2004]. Another possible
mechanism involves changing the TFs DNA binding specificities. This may be caused
by post-translational modifications of the TF or cofactor binding, resulting invariations
of the TF recognition site. In addition, when a TF does not bind the DNA on its own,
a change in the protein binding partner may be the cause for the altered bound targets,
which may be detected through co-occurrence of DNA recognition sites ofdifferent TFs.
Also, a change of targets may be caused by a change in the accessibility of the binding
site due to a modified chromatin state. However, in this case there is no change inthe
motifs recognition site on the DNA. As stated above, we derived a set of motif variants
for each TF at every condition. By analyzing these motif sets, we gain insights into
the mechanism through which a TF changes the DNA targets it binds to, either by a
change in its DNA binding specificities (different variants of motifs), or by binding of a
co-factor (co-occurrence of motifs). Out of the 72 TFs for which ChIP-chip experiments
were carried out in more than one condition, 32 TFs alter their target genesbetween two
conditions (in total, 65 pairs of differential conditions). In 27 of these pairs we did not
find significant motifs in at least one of the compared conditions and thus could not search
for differential motifs. Finding a motif only on one condition could be meaningful on its
own, since this may indicate that there is no direct binding of the factor to the DNA. On
the other hand it could results from technical reasons, such as noise in the input set of
sequences, and thus in this work we do not analyze these cases. Out ofthe remaining 38
pairs (spanned over 21 different TFs), we found differential motifs in89% of the pairs (34
cases spanned over 19 TFs) with a p-value of less than 0.05.

5.2.1 Testing for Differential Motifs

We define a TF as altering its target genes between two conditions, if the number of target
genes in the intersection is less than half the number in each condition separately. In
addition, we consider only TFs with at least 20 target genes in each of the two conditions
(a sufficient number for motif discovery purposes). To define a differential motif, we
looked for motifs that are enriched among the targets of a TF at one condition, but not in
the other (excluding the genes in the intersection). This was calculated usinga chi-square
test, with a p-value threshold of 0.05

29



5.2.2 Condition-Dependent Binding of Ste12 Under Conditions
of Mating and Filamentous Growth

Ste12 provides a known example of a TF that shows condition-dependent binding. This
TF activates genes in two alternative pathways - the mating pathway and filamentous
growth pathway [Zeitlinger et al., 2003, Chou et al., 2006] (Figure 5.3.a).Under fila-
mentous growth signaling (induced by Butanol) we find that Ste12 binds to genes whose
promoters are enriched with its known recognition sequence [Madhani and Fink, 1997],
as well as the known recognition sequence of Tec1 [Madhani and Fink,1997], a co-factor
of Ste12 under filamentous growth [Chou et al., 2004, 2006](Figure 5.3.b). Nevertheless,
under mating signaling (induced by Alpha factor) we find that Ste12 binds promoters en-
riched with another variant of its recognition sequence - a near-perfect tandem repeat of
its known site. This motif variant suggests that Ste12 acts as a dimer following Alpha
factor induction, as was previously suggested [Schaber et al., 2006, Wang and Dohlman,
2006](Figure 5.3.b). Interestingly, the exact same motifs were learned for Dig1 - a cofac-
tor that apparently does not bind the DNA directly, but is essential for the binding of Ste12
.An additional player found in our analysis is the TF Mcm1. We found its knownrecog-
nition sequence [Gelli, 2002] enriched among promoters bound by Ste12, both in mating
and filamentous growth, consistent with previous knowledge on the role thatMcm1 plays
in expression inhibition of mating genes in diploid cells [Gelli, 2002]. We speculate that
Mcm1 plays a similar role in the filamentous growth pathway. While haploid cells un-
dergo invasive growth, diploid cells undergo pseudohyphal growth. Thus, using only the
motif sets we discovered, we can track a transcription factor altered DNA binding pattern,
caused by a change in the DNA binding partner when the environmental conditions is
changed.

5.2.3 Condition-Dependent Binding of the Iron-Regulated
Factor AFT2

Another interesting example is provided by the iron-regulated transcription factor Aft2,
required for iron homeostasis and resistance to oxidative stress [Courel et al., 2005]. This
TF exhibits a significant environmental-dependent binding, switching targets between low
and high H2O2 conditions (Figure 5.4.a). The role of Aft2 in iron homeostasisand re-
sistance to oxidative stress is poorly understood. In low H2O2, we find thatAft2-bound
promoters are highly enriched with a motif similar to the known recognition sequence
of Aft2 (GgGTG) [Courel et al., 2005]. However, in high H2O2 we find abundant low-
complexity repeats of Poly-GT (Figure 5.4.b). This result indicates that the DNA binding
specificity of Aft2 changes over these conditions, a possible explanation for the change
in its DNA targets. We can further speculate that the repeated poly-GT motifs under high
H2O2 may suggest that Aft2 binds the DNA as a homodimer. However, we could not
support this speculation with experimental data. Interestingly, we do find a motif similar
to the known recognition sequence of Aft1 (Rcs1)[Courel et al., 2005], a paralog of Aft2,
enriched among the Aft2-bound promoters in low H2O2 condition. This implies a possi-
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Figure 5.3: Ste12.(A) A diagram representing the results of the ChIP-chip experiment
[Harbison et al., 2004] for the Ste12 under mating (induced by alpha factor) and fila-
mentous grows (induced by butanol). As it is demonstrated Ste12 alters it’s targets sig-
nificantly between these two conditions. (B) From the motif analysis we see thatunder
filamentous growth signaling we find enrichment for a motif similar to the previously
characterized Ste12 motif, as well as the known recognition sequence of Tec1, which is
a known co-factor of Ste12 under filamentous growth. Under mating signaling we find a
near-perfect tandem repeat of Ste12 known binding site. This motif variant suggests that
Ste12 acts as a dimmer in mating. A motif similar to the known Mcm1 motif is found to
be enriched under both conditions, especially under filamentous grows. This is consistent
with the known role of Mcm1 as an inhibitor of mating in diploid cells.

ble overlap between the targets of Aft2 and Aft1, which is indeed supportedby ChIP-chip
data of the two TFs (Figure 5.4.b). Based on our analysis, we report two similar (but not
identical motifs) for the two paralogs (as suggested by Courel et al. 2005. Rutherford, et
al. 2001). Since it is known that Aft2 and Aft1 have independent and partially redundant
roles in iron regulation [Rutherford et al., 2001, Courel et al., 2005], we assume that Aft2
DNA binding does not depend on Aft1 and the change in Aft2 targets is due toa change in
its specificity to the DNA. The ChIP data and our motif analysis suggest that under high
H2O2 conditions Aft2 has a unique role in gene regulation. Here again, using only the
motif sets, a transcription factor altered DNA binding pattern was elucidated, caused by a
change in its DNA specificity when the environmental conditions have changed.

5.2.4 Condition-Independent Example

As opposed to the cases presented above, the motif sets learned for several TFs re-
mained constant under different environmental conditions. For example,the condition-
independent TF Fhl1 is a master regulator of ribosomal genes (Figure 5.5.a). As expected,
we find similar sets of motifs enriched in all the conditions tested (Figure 5.3.b), and the
most highly enriched motif is similar to the previously known Fhl1 binding motif. This is
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Figure 5.4: Aft2.(A) A diagram representing the results of the ChIP-chip experiment
[Harbison et al., 2004] for the TF Aft2 under high and low H2O2 stress. As it is demon-
strated Aft2 alters it’s targets significantly between these two conditions. (B) From the
motif analysis we see that under low H2O2 stress we find enrichment for a motifsimilar
to the previously characterized Aft2 motif, as well as the known recognition sequence of
Rcs1, a paralog of Aft2 which is known to have an independent and partially redundant
role as Aft2 in iron homeostasis. Under high H2O2 stress we only find abundant low-
complexity repeats of Poly-GT. This indicates that the DNA binding specificity of Aft2
changes over these conditions, and may suggest that Aft2 binds the DNA as a homodimer

consistent with previous studies that show that Fhl1 remains bound to its target genes, and
the environmental dependant regulation of the ribosomal genes is determined by the two
cofactors IFH1 (a coactivator) and CRF1 (a corepressor) that bindto Fhl1[Martin et al.,
2004].

These results suggest that our two-component score, and the motif analysis pipeline,
improve the specificity of the discovered motifs. In addition, our sets of motifs,assigned
to each TF in each condition, contain additional information, which is important for un-
derstanding the mechanisms of transcriptional regulation. To demonstrate that, we have
applied our motif discovery pipeline on transcription factors which alter their behavior
under environmental changes.
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Figure 5.5: Fhl1.(A) A diagram representing the results of the ChIP-chip experiment
[Harbison et al., 2004] for the TF Fhl1 under YPD conditions, amino-acid starvation and
nutrient deproved conditions. As it is demonstrated the targets of Fhl1 remainstable
under these changing environments. (C) From the motif analysis we see thatunder all
conditions a motif similar to the known Fhl1 motif is found to be highly enriched under
all conditions.
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Chapter 6

Discussion

Building maps of transcription regulation requires comparison of DNA motifs. An ac-
curate motif comparison method is important for clustering redundant DNA motifsinto
coherent groups and for connecting the discovered motifs to previouslycharacterized mo-
tifs of known TFs. In this study we present a novel similarity score, the BLiCscore,
based on Bayesian probabilistic principles. Our score reflects the similaritiesbetween
transcription factors binding preferences, while taking into account notonly the similar-
ity in positional nucleotide distributions of the two motifs but also their dissimilarity to
the background distribution. We use the new comparison method as a basis for motif
clustering and retrieval procedures, and compare it to several commonlyused alterna-
tives. This comparison shows that our BLiC score is more accurate than other possible
scores, and improves the specificity and sensitivity of motif comparisons andcluster-
ing tasks. The resulting motif clustering and retrieval procedures are incorporated in a
large-scale automated pipeline for analyzing DNA motifs, which integrates the output
of various DNA motif discovery algorithms and automatically merges redundantmotifs
from multiple training sets. The output of our pipeline is a coherent annotatedlibrary of
motifs. Application of this pipeline to genome-wide location data of transcription fac-
tors in S. cerevisiae, successfully identified DNA motifs in a manner that is as good as
semi-automated analyses reported in the literature. Moreover, we demonstrate how motif
analysis can lead to insights into regulatory mechanisms. More specifically we eluci-
date mechanisms of transcription factor condition-specific binding, by focusing our motif
analysis on transcription factors that alter their targets as a response to changes in their
environmental conditions, and by searching for differential motifs for these TFs.

Hierarchical agglomerative clustering We used our BLiC score to develop a hi-
erarchical agglomerative clustering algorithm for merging similar motifs. Clustering the
motifs hierarchically ensures that the motifs within every sub-tree are properly aligned.
Furthermore, such an approach allows us to trim the cluster tree at variousheights, thus
splitting the motif library into different numbers of non-redundant groups,depending on
the requested resolution. In addition, the inner nodes in the tree are created along the run
of the algorithm by aligning and merging all motifs in the relevant subtree. Suchpossibil-
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ities are not always available in alternative clustering methods. For instance, the popular
k-means clustering algorithm is based on a fixed number of clusters, which isusually not
known in advance. Choosing a wrong number of clusters, might lead to either a redundant
set of clusters, or to mis-aligned, mixed clusters. Moreover, in k-means clustering there is
not necessarily a good alignment for all the motifs within a cluster, thus mergingsimilar
motifs cannot be done automatically from the clustering itself.

Motif analysis We developed a motif analysis pipeline based on our BLiC score and
the hierarchical agglomerative clustering, designed to process discovered DNA motifs
into a set of non-redundant, identified motifs. As we have shown, such anapproach im-
proves the sensitivity and specificity of standard motif discovery outputs. Byautomating
all the analyses (including the trimming of cluster trees into discrete sets of motifs), we
enable the analysis of hundreds of input groups. In addition, we achieve a wider view
on transcription regulation by running several motif discovery algorithms in parallel, and
integrating their outputs. By comparing motifs from different input groups we are able to
connect between transcription factors that play a role in different processes. In our analy-
sis, we assigned a set of motifs for each input group of genes, and showed that for many
input groups, a set of non-redundant motifs captures the regulatory function of the input
genes better than a single DNA motif. Many of these cases include TFs that work cooper-
atively with other TFs (e.g. Ste12). The regulatory mechanism is captured through a set
of motifs related to all the involved factors. In addition, some TFs change theirbinding
specificity under different conditions, as we suggest here for the TF Aft2. For these cases,
several DNA motifs better capture the DNA binding preferences of the TF than a single
motif.

From DNA motifs to regulatory mechanisms Sequence information is a highly
accessible resource, and thus it is interesting to ask what can we learn from sequence
information alone on transcription regulation? We demonstrated in this study thatexam-
ining DNA motifs elucidate the regulation mechanisms of transcription factors. Weshow
that motifs can give an indication for the mechanism involved in altered DNA binding,
in cases where it involves a change in the TFs specificity to the DNA or its binding part-
ner, as we discussed thoroughly for the TFs Ste12 and Aft2. In addition we examined all
the TFs that alter their binding in response to a change in their environment (according
to the ChIP-chip data), and found a differential motif for 89% of the TFs (32 TFs). A
differential motif is a motif that is over-represented in the set of targets bound by the TF
in one condition but not in the other. These differential motifs can point to thecause of
the altered DNA binding. An additional important factor affecting DNA binding, which
we have not discussed here, is the dosage of the active transcription factors in the nucleus.
It has been previously suggested [Harbison et al., 2004] that the dosage of the TF can be
inferred as well from DNA motif analysis, by examining the similarity of the boundmotif
to the consensus sequence. The rational behind this is that when the concentration of the
protein is low it will bind sites similar to the consensus since it has a higher affinityfor
them.
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Still, motif analysis obviously does not reveal the whole picture. For instance, we
can learn from the motifs if a TF changes its specificity to the DNA, but the cause of that
change in specificity still remain unknown. This cause could be, for example, a modifica-
tion of the protein or binding of a cofactor that does not bind the DNA. In addition, other
regulatory mechanisms, such as chromatin remodeling mediated regulation, cannot be
inferred from motif analysis. Thus, for a complete understanding of the regulatory mech-
anisms additional information such as nucleosome positions and dynamics is needed. A
significant limitation of motif analysis is that an instance of the DNA motif in the genome
is not a sufficient indication for binding of a TF and even less an indication for its activity.
There are several methodologies trying to overcome this obstacle, none ofwhich solves
the problem completely. A common approach is to consider only conserved instances of
motifs eg. [Harbison et al., 2004], since functional motifs are under evolutionary con-
straints. This reduces the false positives, but may lead to loss of functional sites since
the regulatory program undergoes rapid evolution compared to coding sequences [Tautz,
2000, Moses et al., 2006, Levine and Tjian, 2003]. Another possibility is toadd informa-
tion, which may separate between functional and non-functional sites (specific for each
TF), such as the distance from the transcription start site, co-occurrence of motifs and
more. Our inability to differentiate between functional and nonfunctional motifs raises
the question addressed many times before [Barash et al., 2003], if our representation of
transcription factor binding preferences is sufficiently accurate? An efficient approach for
reducing this noise in motif analysis could be to use additional biological data narrowing
down the motif search to certain regions in the genome. We based our work onloca-
tion data from low resolution arrays which focused mainly on promoter regions. Using
genome wide arrays with increased resolution can help point out the genomicbound re-
gions. In work in progress we are using our motif analysis pipeline to analyze data from
such arrays.

In this study we overcome a basic obstacle in DNA motif analysis, by developingan
accurate motif comparison method. Our motif analysis pipeline, which includes clustering
and retrieval procedures based on our novel score, is fully automatedand produces accu-
rate results. This is highly important in large-scale analysis, such as that reported here.
We showed here the power of motif analyses, which are very useful notonly to building
regulatory maps, but also for understanding more profoundly regulatory mechanisms.
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