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Abstract

Continuous-time Bayesian networK€TBNSs)
are graphical representationsmofilti-component
continuous-time Markov processes directed
graphs. The edges in the network represent di-
rect influences among components. The joint
rate matrix of the multi-component process is
specified by means of conditional rate matrices
for each component separately. This paper ad-
dresses the situation where some of the compo-
nents evolve on a time scale that is much shorter
compared to the time scale of the other com-
ponents. We prove that in the limit where the
separation of scales is infinite, the Markov pro-
cess converges (in distribution, or weakly) to a
reduced, or effective Markov process that only
involves the slow components. We also demon-
strate that for a reasonable separation of scales
(an order of magnitude) the reduced process is
a good approximation of the marginal process
over the slow components. We provide a simple
procedure for building a reduced CTBN for this
effective process, with conditional rate matrices
that can be directly calculated from the original
CTBN, and discuss the implications for approxi-
mate reasoning in large systems.
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sities for transitioning between states. Intuitively, we can
think of the entryg,;, as the rate parameter of an exponen-
tial distribution whose value is the duration of time spentin
states before transitioning td. When more than one tran-
sition is possible, the shortest duration determines the next
state. Thusq;}7 is the expected duration in statébefore
transitioning to staté (assuming it were the only possible
transition), and}’., g.»)"" is the expected duration be-
fore transitioning out of state

In many applications, the state space is of the form of a
product spac& = S; X S; X --- X Sy, whereM is the
number ofcomponentgsuch processes are called multi-
component). Even if each of tisgis of low dimension, the
dimension of the state space is exponential in the number of
components, which often poses computational difficulties,
e.g., in learning applicationsContinuous-time Bayesian
networks(Nodelman et al. [2002, 2003]) are a graphical
representation for Markov processes that have extra struc-
ture, therefore allowing for more a compact representation
with fewer parameters. The first assumption is that tran-
sitions only occur in one component at a time. Second,
the transition rates associated with each component are as-
sumed to only depend on the state of a collection of “par-
ent components”. The CTBN is a directed, possibly cyclic
graph whose nodes are the components of the process, and
whose edges represent parent-child relations.

It is also often the case that certain components are con-
siderably faster than the others. Mathematically, it is as-
sumed that the (conditional) rates associated with the fast
components are larger by a factorIgfe than the (condi-

onal) rates associated with the other, slow components,
with ¢ < 1. Systems having such property are said to have

in the modeling of a huge range of stochastic dynami—ase aration of scale®r to besingularly perturbed Such
cal systems, e.g., chemical kinetics, population dynamics,. Pé cale 9 yp : S
situations are ubiquitous, for example, in chemical kinetics,

tock markets, and many mor rdiner [2004]). W n- i
stock markets, and many more (Gardiner [2004]). We co here some reactions may occur much faster than other. In

sider Markov processes that are homogeneous in time a"%luch situations, the fast components tend to reach “local
have a finite state space. Such systems are fully determined’ ! P

 he s space e istibuton o e processat he UL Lolahe o e S oronenc, and s
initial time, and a description of the dynamics of the pro- : y

cess. These dynamics are specified byate matrix Q, rived for a lower dimensional system that only involves the
: : : . slow components (see van Kampen [1985] for a classical
whose off-diagonal entrieg,, are exponential rate inten-



review on dimension reduction in scale separated systemsatisfies the so-calletiaster equation
see Givon et al. [2004] for a recent review).
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In this paper we derive the limiting Markov process and
show how to reduce a CTBN with fast components into
a smaller CTBN that involves only the slow components.
We discuss the implications of this result for inference in

CTBNSs with different time scales.

It is important to note that the master equation (1) en-
compasses all the statistical properties of the Markov pro-
cess. There is a one-to-one correspondence between the
. . . description of a Markov process by means of a master equa-
2 Continuous-time Bayesian networks tion, and by means of a “pathwise” characterization (up to

) ) ) ) stochastic equivalence of the latter; see Gikhman and Sko-
In this section we briefly review the CTBN model (Nodel- ,gknod [1975]).

man et al. [2002]). Consider avi-component Markov pro-
cess We are concerned here with processes for which every tran-

X(t) = (X1 (t), Xa(b), . .. Xp(t)) sition involves a single component. In such case, the most

: general rate matrix takes the form
with state space

S=81 XSy X"+ X Sp. M
, | Gap = Y ap | [ 00 2
A notational convention: vectors are denoted by boldface pc i

symbols, e.g.X,a, and matrices are denoted by black-
board style characters, e.q). The states irf are de-  here they’ , are the entries of aonditional rate matrix

note’d ’by vectors of indexes,= (ai, ..., ay). The indexes Q' for X; transitioning fromu; to b; given that the state of

1 <i,j < Mare used to enumerate the components. the system is1. The structure (2) represents the fact that
The dynamics of a time-homogeneous continuous-timeach component undergoes transitions independently from
Markov process are fully determined by tharkov tran-  the other components, but at a rate that depends on the cur-
sition function rent state of the entire system.@matrix of the form (2)
requiresMd™(d — 1) independent parameters, which may
still be a large number.

where time-homogeneity implies that the right hand sideg;yher reduction in the number of parameters is obtained if
does not depend on Provided that the transition func-  itional structure is incorporated. CTBNS are applicable
tion sa’glsfles certain analytical propertles (continuity, and, it ations where each of the conditional rate matr@es
regularity; see Chung [1960]) the dynamics are fully cap-jg oy influenced by a subset of component. Specifically, a
tured by a constant matrio—the rate, or intensity ma- 5 a0y child relation is introduced between ordered pairs of
trix—whose entrieg,;, are defined by components. To every < i < M we define the (possibly
Pap(h) = Oap empty) set of indexes

110 h !

pu,b(t) = Pr(XHs = bIXs = a),

. L Par() ={1 < j<M: X;is a parent ofX;t,
where o, is a multivariate Kronecker delta (an alterna- ar(i) { J J P ’}

tive notation using an indicator functioniga = b)). The
Markov processX; can also be given a pathwise charac-
terization. Suppose the process starts in a statéfter _
spending a finite amount of time in stateit transitions, Spar() = >< 5
at a random time, to a random stdie# a. The tran- JePar(i)
sition times to the potential new states are exponentiall
distributed, withg,, a # b, being the exponential rate
for transitioning from stata to stateb. The diagonal el-
ements ofQ satisfy the condition that each row sums up
to zero. Suppose, for simplicity, that each compon€nt
takes values in &-dimensional space. Then, the state space
is dM-dimensional, and th@-matrix involvesd™(d™ — 1)
parameters.

and the state space associated with the parenfs of

Xne then introduce a restriction operafor: S — SPar(i)»
which extracts from the state of the system the state of the
subsystem that consists of the parentXpf

Pi(a) = (amy, Amys - - -, Omy),

wherePar(i) = {my, mo, ..., m;}.

The conditional rate matrix associated with ffta compo-
nent only depends on the state of the parent components.
To make this dependence explicit, we denote the condi-

pa(t) = Pr(X(t) = a), acs, tional rate matrices b@"7>® with entrieSq;‘,I;?lrg)(u). Thus,

The time-dependent probability distribution of the process
p(t), whose entries are defined by



the joint rate matrix of the whole process assumes the re- °

duced form
M
_ i| Par(i)
fap = Z Do, i1 Pi(a) H Oa by ©)) ° e
i=1 j#i

Equation (3) is, using the terminology of Nodelman et al.

[2002], the “amalgamation” of th#1 conditional rate ma- °

trices. Note the compact representation which is valid for

both diagonal and off-diagonal entries. It is also notewor-

thy that amalgamation is a summation, rather than a prodrigure 1: A four-component process, in whidfy is a
uct; indeed, independent exponential rates are additive. Iiviarkov process (i.e., its rate matrix does not depend on
for example, every component hagarents, the rate matrix other components)X, and X3 are influenced by;, and
requires now onlyMd“+1(d — 1) parameters. in turn influenceX,. Thus, the construction of a joint rate

The dependency relations between components can be re?—atr'x requires the prescription of a rates mafk and

resented graphically as a directed gra@hin which each ond_ition_al rates matricé®”!, Q°', andQ*”, Thi$ s_truc-
node corresponds to a component, and each directed edﬁge implies, fqr exampl_e, thé.(l angIX4 are statistically
defines a parent-child relation. A CTBN consists of such dependent given thentire trajectoriesaf X; andXs.

graph, supplemented with a setdfconditional rate matri-

cesQ/Pa( ‘and an initial distribution. Formally, we define the conditional rate matrices of the complementary compo-

a CTBN as a tuple nents. Intuitively, this means that every fast component has
undergone many transitions during a time interval charac-
e= (9 {Qi'Par(i)}?fl,P()), teristic of a single transition in the slow components. For
the sake of mathematical analysis, we will consider CTBNs
whereP, is the initial distribution oveiX(0). that are parametrized by a small parametidsat represents

the ratio of a characteristic time of residence in a state of a

As stated in Nodelman et al. [2002], the graph structuref L : :
. g . .~ fast component, and a characteristic time of residence in a
has two main roles: (i) it provides a data structure to which

. AN : o state of a slow component.
parameters are associated; (i) it provides a qualitative de-
scription of dependencies among the various componentd/e now introduce definitions pertinent to the classification
of the system. The graph structure also reveals statistief components into fast ones and slow ones: let

cal (possibly conditional) independencies between sets of

= <i< X
components. An example of a four-component CTBN is fast = {1 < 1 SM:X; fs a fast componeft
shown in Figure 1. Isiow = {1 <i < M : X; is a slow componeit

For later use, we note that if we substitute the structure (3fe the sets of indexes of fast and slow components, respec-
of the rate matrix into the master equation (1), the latteftVely, and let

takes the particular form, Stast = >< S; and Seiow = >< S;
d M 1€ltast i€lsiow
% = Z Z qjiéfg.)(b)P(bl,...,b,--l,uub,-+1 ,,,,, n)-  (4)  be the state spaces associated with the two sets of com-
t i1 aes ponents. Fora € S we define the restriction operator

Fast : S — Stast,

. Fast(a) = (a;,,ai,, ..., 4a:,),
3 Singularly perturbed CTBNs (@)= )
with {iy, is,...,1i,} = If. The restriction operatdslow :

In many situations, it is possible to partition thé com- S = Ssiow iS defined similarly. Below we will derive ex-
ponents into two sets: “fast” components and “slow” com-Pressions that involves statesinSsiow andStast. For the
ponents. A standard measure for the “speed” of a Markowake of readability, we will use the symbaisb for states
process is the rate at which it equilibrates, which is comn S &, 8 for states irSsiow, and for states irbas.

monly taken to be the absolute value of the second largest/e make the following assumptions:

eigenvalue of th€ matrix. In the context of CTBNs every

component is assigned a conditional rate matrix. Scale seghssumption 3.1 The conditional rate matrices associated
aration holds if all the equilibration rates associated withwith fast components can be expressed f&stimes ane-

the conditional rate matrices of a subset of components ar@dependent rate matrix, while the conditional rate matri-
much faster than all the equilibration rates associated witltes associated with the slow components do not depend on



€. Furthermore, for every fixed state of the slow compo-The fact that the marginal distribution ovBg,, Satisfies
nents, the Markov process defined by the conditional rat& master equation means that the limiting behavior of the
matrices of the fast components is ergodic augs: slow components is Markovian.

Remark.When interpreting (7) note that andg are both
Note that even if the entire system is ergodic, the subglements inSgq,, Whereas the summation variablesire
system that consists only of the fast components, with th@lements irS;.s. The concatenatiofw, ¢) is identified as
slow components fixed, is not necessarily ergodic. Thusan element of the full spacg& andP;((a, {)) restricts the

we need to explicitly require this additional property. This state(a, ¢) to only those components that are parent of
condition is automatically satisfied, for example, if the con- ) ) ) )
ditional rate matrices have strictly positive off-diagonal en- 1h€ expression (6) for the effective rates can be written in

tries. We will denote the (conditional) equilibrium distribu- &N alternative form. Writing
tion of the fast components, given the state of the slow com- 1
ponents, byrlestison with entrieSngla;‘”S"’W (where, as stated Q= EQfast + Qo

above g € Sigtanda € Sgion)-

Graphically, we will mark fast components by nodes with whereQ™standQ®°" aree-independent and have entries
shaded fillings. For example, Figure 1 represents a four-

component CTBN in which onl¥3 is a fast component. fast _ i Par(i)
Consequent| Tab Z a1 Pita) H Oay
q y' i€lfast j#f
slow _ i| Par(i)
Itast = {3} Isiow = {1/ 2, 4} qa,b - Z quj,bi\P,(u) H 6“,‘171‘1
Stast = S3 Selow = 51 X S2 X S4 i€lsiow j#i
Fast(a) = a5 Slow(a) = (@, a2, a4), the entries of) can be written as
and the conditional rate matrices can be writtenCls < Iasilsiow ;Slow
Q?, 1@ and Q**3, where each of th@/P>( is e- Gap = Z Ta V@060 (8)
independent. CESast

The goal is to study the limiting behavior of the system asln simple words, the reduced rate matrix associated with

€ — 0. Our main theorem, whose proof is sketched inthe limiting dynamics of the slow components is the full

Appendix A, is: rate matrix, averaged over the conditional equilibrium dis-
tribution of the fast components. If we denote By"

Theorem 3.1 Let X(f) be anM-component Markov pro- €xpectation with respect to the conditional distribution
cess satisfying Assumption 3.1. Thereas 0, the distri- 7=/, then (8) takes the more suggestive form,
butionp(t) converges to a product distribution of the form,
Q — ]Ef|5 [QS|OW].
Pa(t) = ngﬁéﬂslow(a)ﬁsmw(a)(t),
Example 3.1 As the simplest illustration of Theorem 3.1,

wherep is the marginal distribution of the slow compo- .gnsider a two-component systeXi(t) = (Xi(t), Xa(t))
nents. The latter, satisfies theduced or effective master with rate matrix of the form ’

equation
d_.  ~r. 1
Z7=Q'p (5) Q=_Q'+Q".
€
whereQ is a rate matrix oveBsw. Its entries are given by 41 is X, is a fast component and it influences the slow
~ y componentX,. The equilibrium distribution oiX; is de-
Jap = Z Tap H Ou ;1 (6)  noted byr!. Theorem 3.1 asserts thatas> 0, X»(t) con-
lsow  lowdj#i verges in a weak sense (i.e., in distribution) to a Markov

L ) process with effective ral®, whose entries are given by
where()' with entries

~ ~2 1 21
~1 _ Ifastuslow i| Par(i) qaz,ﬁz = %Q,ﬁz = Z chlqa ’ﬁ |C .
Dap = c; Toa Doy piPil(ac) @) o) .
€ fast

is the effective conditional rate matrix associated with theThe next section addresses the systematic derivation of re-
slow componenX;. duced CTBNSs.



4 Dimension reduction of CTBNs

4.1 Segregated fast components

We start by considering CTBNs in which fast components E =
are segregated: there are no parent-child relations between

two fast components. In such case the conditional equi-
librium distribution of the fast components factors into a
product distribution on the form

Trastlsiow _ i Par(i)
Tga = 11 ™ciPiy © .
iclpat Figure 2: Left: a three-component CTBN with one fast

] ] ] component. Right: the reduced two-component CTBN in
where, with a slight abuse of notatiod$(a) extracts from  iha imite — 0.

the vectora € Sgow those components that belong to

Par(i). That is, the marginal equilibrium distribution of ° °
each fast components depends only on the state of its par-
ent components, which by assumption are all slow compo-
@& _®
=
Substituting the factorization (9) into the effective rate ma-
trix (7), we obtain ° ° ° °
k| Par(k) | _i|Par(i)
aﬁ 2 [H Ck|Pk(“)jl T Bil(Pi(a),C))”

where the product is ovér € It N Par(i) (i.e., fast par-  Figure 3: Left: a six-component CTBN with two fast com-
ents ofX;) and the sum is over in the corresponding state ponents. Right: the reduced four-component CTBN in the
spaceStast N Spary- Note thatQ' is only conditional on e — 0 limit.

those components that are either slow parentXofor

(non-exclusively) slow parents of fast parentsxef Q!, Q2 @1, Q¥12, Q134 and Q. The components

Remark.In such cases where the fast dynamics can be facX3, X4 are assumed to be fast, and have conditional equilib-
tored into independent components, there is no necessityum distributionsr®! andr*12, respectively. A — 0,

for all fast components to evolve on the same fast scalethe slow components weakly converge to a four-component
The results remain unchanged if each fast component hddarkov process ofisiq defined by the conditional rate ma-
its own time scale;, as long as; — 0 for all i € Ijast tricesQ?, Q?, Q°"2, andQ®! whose entries are given by

~1 _ 41
Example 4.1 Consider the three-component system de- Darpr = Do o
picted in Figure 2 (left), which consists of a chain of three

~2 _ 2
. . . qaz B T qaz B2
components, the one in the middle being fast. The dynam-

. : . : 2 3 412 5134
ics are defined by the conditional rate matri@ésQ*! and Qs psl(ar ) = Z Tl Z M) Tas il o, )
Q3?. Letm?! be the equilibrium distribution aX, given a G€Ss CieSs
fixed state ofX;. Theorem 3.1 implies that as— 0, the 7011 = 2 311 q6|3
ag,Belar C3|061 ae,PslCs”

joint distributionp of the slow componentx;, X3 tends to

the solution of a master equation which corresponds to the
reduced two-state CTBN shown in Figure 2 (right). The ef-Note that althoughX, and X5 are statistically dependent,
fective rate matriXQ is determined by the conditional rate poth being descendantsX§, they do not directly influence

(3€S3

matricesQ' andQ*' given by each other in the reduced CTBN; in general, the elimination
" 1 of a fast component does not introduce graphical connec-
o pr = Doy tions between its descendants, in contrast to node elimina-
(73|1 _ Z 21 q3|z _ tion in Bayesian networks. This point is highly non-trivial:
as,falay = Calan s BalCo for finite € the knowledge oK influences the posterior dis-

tribution of X3, which in turn affects the evolution of;.

In the limit of extreme scale separatioy equilibrates be-
Example 4.2 Consider the CTBN shown in Figure 3 (left). tween successive transitions of the slow components, there-
The dynamics are defined by the conditional rate matrice$ore the effective rate matrix of¢ is only affected by the
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Figure 4. Left: a five-component CTBN with two inter- Figure 5: Left: a six-component CTBN with two interact-
acting fast component. Center: equivalent CTBN with theing fast component. Right: the reduced four-component
interacting fast components grouped together. Right: th€TBN in thee — 0 limit.

reduced three-component CTBN in the- 0 limit.

assumed to be fast. If we groufy andX,, we again have
stationary distribution X3, which, in turn, is only affected thatr>* describes the equilibrium distribution &% and

by X;. X4 given X; and X,. This would imply thatXs depends
on bothX; andX, in the reduced CTBN. However, if we
4.2 Connected fast components examine the pattern of influence in the original CTBN, the

intuition is that there is no path of influence froXa to Xs.

In situations where parent-child relations exist between fasﬁ_he situation becomes clearer once we realize that we can
components, the equilibrium distribution dig condi- represent the equilibrium distribution &% andX, as

tional of Sg o does not factor into a product over fast com-
ponents. A simple minded solution is to group together fast 3401,2 _ 31 4123

. TC =T Tt .
components that are connected together into a compound Glallara) — Glar Callan,a2,0)

component, as illustrated in the following example: To see this, note thaX, does not influenc&. Thus, if

we fix the values ofX;, the process(; is Markovian and

reaches the same equilibrium distribution regardless of the

Q1, Q32 andQ. The componenks, X, are assumed state ofX,. Repeating the same argument as in the previ-
puS example, we conclude thatas~» 0, the slow compo-

to be fast. This situation can be adapted to the framewor ents weakly converge to the Markov processes depicted
considered in the previous subsection by grouping togethert1 weaxly Verg v p P!

i i iti icddl ©2 OO
X3 andX4 into a single component with state sp&gex Sy. o;;%%gg%wnh cr?[?idnm?al ir\?t?\ rt?atrlc@l, Q. Q7
This intermediate CTBN is depicted in Figure 4 (center).al » WNOS€ entries are given by
Let thenm®412 denote the equilibrium distribution of the

Example 4.3 Consider the CTBN shown in Figure 4 (left),
which is defined by the conditional rate matrid@$, Q?,

~1 _ .1
pair X3, X4 given the pairX;,X,. Ase — 0, the slow Qarpr = Do o
components weakly converge to the Markov processes de- qizlﬁz = qizlﬁz
picted in the right, with conditional rate matric€s, Q?, 5t A 5p
andQ°2, whose entries are given by Do pslar = Z Tston Tas pslcs
(3€S3
S | 6[1,2 _ 34012 6l4
favp = Goups Dus psl(en ) = Z Z TG ol Tas pslcs”
~2 — 2 (3€S3 (4€5,
qaz,ﬁz qaz,ﬁz
P12 = 34112 b4 Note that in the last equation we sum o¥gy for the pur-
Tovton = Dy 2t Tioanan ool I qu im oder for the p
(555 (4€54 pose of finding the marginal probability &f, in 7>,

This solution, however, misses some of the structure in the

reduced process. The point of the last example is that although we cannot
factor the equilibrium distribution of the two fast compo-

Example 4.4 Consider the CTBN shown in Figure 5 (left), nentsX; andX4, the marginal distribution of one variable,

which is defined by the conditional rate matrid@$, Q?, X3 in this example, does not depend on the conditional rate

Q¥ Q*2, @°P, andQ®*. The component¥s, X, are  matrix of the other variable.



To generalize this line of reasoning, we need to characterizthe behavior of theonditional-CTBNdefined by their con-

which marginal distributions of the equilibrium distribution ditional rate matrices, with the slow components fixed. In

can be computed independently of rates of the other comthis conditional CTBN, we can apply Corollary 4.1 and find

ponents. To analyze such situations, we consider a morthe set of conditional rate matrices that determine the equi-

general result about marginal distributions in CTBNSs. librium distribution of any particular subset of fast compo-
nents.

Definition 4.1 Let @ be anM-component CTBN, and l¢t

be a subset of the componeits. ., M; we denote by For example, this result implies that in Example 4.4 the

equilibrium distribution ovetX; in the “fast” conditional
X () = (Xi(t) : i € ) CTBN depends on the rate mati@! but not onQ*?3.
As a consequence the chilis, of X5 depends orX; in
the corresponding sub-process. We say th& upward  the reduced CTBN, but not aX.
closedif for everyi € |, we have thaPar(i) C J. We define
theupward closurd&Jp(J) to be the minimal upward closed
set that containg.

We now use this intuition to define the reduced CTBN in
a precise manner. Consider a CTBN with fast and slow
components. Given a sdt,C I, Of fast components, we
defineUpf(]) to be the upward closure gfin the sub-
graph that only consists of fast componeld ,()) is the
smallest subset of fast components that contgissch that
Up({4}) = {1,2,3,4}. if i € ], thenj € J for all j € Par(i) N Las; to shorten the
terminology, we will callUp .(J) the fast-upward closure

of J. We then define fof C Iz,st the set

Example 4.5 In Example 4.4 (Figure 5) = {1, 3,5} is an
upward closed subset of components, and

Suppose we are given a CTBN Given an upward closed
subset of componentg, we can define thesub-CTBN

spanned by. Formally, we define sPar(]) = {i € Iyow : 3j € Up,(]), i € Par(j)}
e = <9| {QilPar(i)} Pyl > That is,sPar(]) are the slow components that are parents of
J I e 0| components irf, or components in the fast upward closure

of J. We will call sPar(]) the set oflast slow ancestorsf

.

where§|; is the sub-graph d§ restricted to the components
in J, andPy|; is the marginal distribution aPy overX/(0).
The sub-CTBN spanned [y contains the conditional rate
matrices from the original CTBN for all the components in Example 4.6 Consider once again Example 4.4 (Figure 5).
J. Since] is upward closed, this results in a well defined There,

CTBN, as the parents of every componenf appear in the Up(14}) = {3,4}

sub-CTBN. _ _
is the upward closure of the subset of compongdtsin

Theorem 4.1 Let € be anM-component CTBN, and let the subgraph that only contains the fast components. More-
J be an upward closed subset of components. Then, tH&/eh
marginal distribution oveX’(¢) in € is identical to the dis- sPar({4}) = {1,2},

. - ] -
tribution overX'(f) in C;. sinceX; is a parent ofX, andX; is a parent ofX3, which

) ) belongs to fast-upward closure {@f.
The proof is straightforward, as we can show that the prob-

ability over any trajectory oX’ is the same in both distri-
butions. This follows, for example, if we sum the master
equation (4) over all indexes;, i ¢ |.

We now can formally define the procedure of building a
reduced CTBN. Assume we are given a CTBMiith scale
separation. We define the reduced CTBIds follows:

Corollary 4.1 Let C be anM-component CTBN, and let
J be an upward closed subset of components. Then, thel. § is the graph ovelso, such that for eache Iow
marginal equilibrium distribution oveK’ does not depend
on the rates associated with the remaining variables. Eﬁ(i) = (Par(i) N Igjow) U sPar(Par(i) N Ias)

Using this result we can return to the question of elimi-  In other words, the parents of each slow componént
nation of fast components. Suppose we have a connected in the reduced CTBN are its slow parents i sup-

set of fast components. Since they are much faster than the ~ plemented by the last slow ancestors of its fast parents
slow components, we can view their behavior as though the  in €. Consistently with out notations we defiRga)

slow components are fixed. This implies that the equilib-  to be the restriction o € Sy to those components
rium distribution over the connected fast components has that belong td®ar(i).



2. For each € Iy, We define the conditional rate matrix The total effective matrix is

fyilPar(i) yyi i
Q with entries -475 1 3.75 0

iPart) Upf(Par(i)ﬂIfast)lf);'(i) i| Par(i) Q _ 2 -6.25 0 4.25
i filbi(a) ) Do il Pi((@,0))” 475 0 -575 1 |
¢ 0 5.25 2 -7.25

where the summation variable takes values in the
state space spanned by the fast-upper closure of the
fast parents oK;. While the last equation may be dif- To test the accuracy of the procedure we have generated
ficult to parse, it bears a simple interpretation. Thepaths of lengtil’ = 50000 and used standard maximum
conditional rate matrix of thé-th component in the likelihood to estimate the rate matrix, assuming that the
reduced CTBN is obtained by averaging o@*"®  process(X;(t), Xs(t)) is a Markov process. Far = 0.05

with respect to the marginal equilibrium distribution we obtained

of the fast-upward closure of the fast parentsXpf
conditioned by the last slow ancestors of this fast- —47907 09942 3.7965 0
closure. The effective conditional rate matrix de- Q0% = 4113(9)82 _6'%)869 5 2(3)066 411(1)(9)5 ,
pends, as a result, only on the slow parentXpand ’ 0 51638 1 §886 _% 1504
on the last slow ancestors of its fast parents. ) ) )

with a lexicographic ordering of the states.

3. Do = Polr,,. i.e., deviations of about one percent. Foe 0.2 we ob-
tained
Our main Theorem 3.1, reformulated in the language of —4.8259 0.9955 3.8304 0
CTBNs, implies: ~ec02 | 20033  —6.2026 0 41993
est. ™1 4.8555 0 —5.8644 1.0089 |’
Theorem 4.2 Let € be anM-component CTBN with con- 0 52026 19936 —7.1962

ditional rate matrices satisfying Assumption 3.1. Then,

ase — 0, the marginal distribution of the sub-process i.e., deviations of about two percent. In either case the main
spanned by the slow componehis, converges to the dis- source of error seems to be statistical. The fact that pa-
tribution induced by the reduced CTBN rameter estimation converges Bs— oo is by itself not
surprising, since the whole process is ergodic. The ques-
tion is to what extent is the reduced proc€éXss(t), Xs(t))
Markovian? To test this we re-evaluated the entries of the
rate matrix conditional on the preceding state. This yielded
changes of about one percent, which again, could be at-
tributed to a lack of statistics.

5 Numerical examples

Example 5.1 Consider Example 4.1 with state spate=
{0,1}, j = 1,2,3, and conditional rate matrices

Q'= ( 21 _12) Example 5.2 Consider next Example 4.4 wit}y = {0, 1},
j=1,...,6, and conditional rate matrices,
o ( 2 2 ) o = (—3 3 )
0 3 3 1 2 =2 1 (-1 1 > (-2 2
Q (2 —2) Q= ( 1 -1

The conditional equilibrium distribution? is ( ) ( )
Q'3 = -3 3 Qi3 = -4 4
a1 1/(3 o 1(2 100 \4 -4 10~ \3 -3
o =512 ™ =513/
Q4|2,3 _
1(0,1)
As ¢ — 0 the slow componentX;, X5 weakly converge ( ) ( )

to a Markov process with effective rate matri@@s = Q!, o
and@®! given by

B _ 21yl 2132
Q OIOQ 1\0Q 24 24

-21 21 The slow componenXs is only influenced by the fast com-
26 -26)° ponentX3, whose conditional equilibrium distribution only

o) ar-(i L) (i )

1
"5

1
B _ 2P | 21030
Q ouQ 1\1Q —g



5(1 5|1

depends on its slow ancestky: €1l 9010 | Y011
11 1.638 | 1.875
= %(g) i = %(g) 05 || 1.700 | 1.992
0.25 || 1.742 | 2.077
As € — 0 the conditional rate matrix associated wii 0.1 1766 | 2.145
converges to 0.05 || 1.782 | 2.189
0.025 || 1.796 | 2.174
. 1{(-9 9 — 0 || 1.800 | 2.200
511 _ _3[1~513 31518 _ =
Q|o - 7Ioonlo + 7T1|0Qu ~5 (11 —11)

<501 3esB . aesp  1(—11 11 Table 1: Estimated values of entries of the (effective) con-
Q= Qe+, Q= 59 -9 ditional rate matrixQ°" for various values of. The max-
imum likelihood estimation was applied to trajectories (of

A .
To test the reduction procedure, we generated a trajecton&he full system) withl0” transitions.

of the full process witHl0” transitions an& = 0.05. We
used maximum likelihood to estimate the rates associated . . . .
with the reduced process that only consists of the SIOV\llntegratlng out a variable introduces dependencies among

componenty, X;, X5, Xg¢. For example, we estimated the 'tt;’ c_hlld_rtgn. (;—Iowevetr, wrller:j_elln:;natlng _fast components
rates associated witKi5 transitioning from0 to 1; one can IS Intuiion does not apply directly, and In SOMe cases we

estimate these rates assuming that they depend on the st&f@d with a simpler CTBN than we started with. Thus, our

of all other (slow) components. The estimation procedurereduction leads to further simplifications than one might
expect from basic intuitions about Bayesian networks.

gives
51,26 5126 In practice, one seldom encounters systems in which a
90,11000) = 178 Do,111,00) = 2.19 small parametes is explicitly given. In many applications
q5'1’2’6 =177 q5'1'2’6 =220 there exists a range of characteristic rates, and one has to
g& ‘(202,0) gﬁl(zlém verify to what extent the dimension reduction is a good ap-
Toai001) = 1.77 To,111,01) = 2.18 proximation. Sinqe equilibration is exponentially fast, d|
5126  _ 5126 mensional reduction is expected to be a good approxima-
oj0,1,1) = 1-80 Toria,1,1) = 2-18-

tion when the equilibration rates associated with a subset

These results are in very good agreement with our predic?f Components are larger, by at least an order of magni-
tion that the rates in the left column be equabyé = 1.8 tude, than the equilibration rates associated with the other

and the rates in the right column 1d/5 = 2.2, irrespec- ~components.

tively of the values ofX; andX. To put the results we introduce here to use we need to de-

Finally, we show in Table 1 the estimated valueﬁgﬁlo velop them into concrete approximf_;ltion algorithms. The
_5(1 . B ’ appeal of such results is that they give us a strategy to use

and%lll for various values of. The case . 1 means .separation of scales to reason about the system at differ-

that all components evolve on comparable time scales, 'Bnt levels of time granularity. For reasoning about coarse

\tNECh ca?_e thethre(_jutctl{(_)n r;roclz_edutrhe '??he s not ho_Id. tTh'ﬁme scales, our results allow to reduce the system to exam-
aole confirms the intuitive Teeting that the approximation;, only the slow components. To reason about fine time

gets reasonably accurate toof the order o0.1. Note that scales we can then assume that most of the slow compo-

. 511 _ .
the estimate of, 1]1 for € = 0.025 is less accurate than for nents are fixed, and then reason about the dynamics of the

le N 0.05|; tthlsl's att”guiﬁd .tto. thte fat;:t that thf smrﬁtetthe th fast components. Clearly this intuition can be extended to
ess (relatively) probable it is to observe a transition in e hierarchy of time scales.

slow variables, resulting in poor statistics.
Given a CTBN, we can assess the characteristic equilibra-
tion rate of each conditionaD-matrix by computing the
absolute value of its second largest eigenvalue. There are,
._however, multiple ways of using these values to separate
the system into an approximate hierarchy of scales. An-
of scales between fast and slow com c(J]Iher issue deals with evidence. Clearly, once we find a
ponents. We showe . .
CIreduced CTBN we can incorporate evidence and reason

the implications of this theorem for constructing a reduce Lbout the posterior probability of slow components and
CTBN that captures the dynamics of the slow components P P P

without explicitly dealing with the fast ones consequently fast components. However, it is also fairly
plicitly 9 ' clear that the frequency of observations and the time scale

Our results show that the elimination of fast componentof the observed variables can make important impact on the
has a counter intuitive property. The typical intuition is that approximation.

6 Discussion

reduction of CTBNSs in the limit of an infinite separation



The results we presented here provide solid foundations foAssumption 3.1 implies thatxp(tQ@) converges expo-
introducing scale-based approximation in real applicationsnentially fast, ag — oo, to an operato, which is the or-
Clearly, these initial results are only the first step in the dethogonal projection onto the subspace of distributions that
velopment of promising approximate inference proceduresare invariant unde®s. The projectiorG has entries

Ifaslllslow
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tified asga g, i.€., p satisfies a master equation with rate
matrix Q.

A Proof sketch of Theorem 3.1

Using the partition of th€)-matrix as the sum of fast and
slow components, the master equation (1) takes the form

d 1 fast T, _ slow\T

P~ 2@ =@'p.

If we treat the right hand side as an inhomogeneous term,
this equation can be integrated, resulting in an integral
equation,

t
() = - @ p(0) + f ¢ QY (QSIOW)T (s) s,
0

The one-parameter semigroup of operatexp(tQ?) is
the solution operator of the master equation derived from
the fast dynamics, with the slow components held fixed.



