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Abstract

Continuous-time Bayesian networks(CTBNs)
are graphical representations ofmulti-component
continuous-time Markov processesas directed
graphs. The edges in the network represent di-
rect influences among components. The joint
rate matrix of the multi-component process is
specified by means of conditional rate matrices
for each component separately. This paper ad-
dresses the situation where some of the compo-
nents evolve on a time scale that is much shorter
compared to the time scale of the other com-
ponents. We prove that in the limit where the
separation of scales is infinite, the Markov pro-
cess converges (in distribution, or weakly) to a
reduced, or effective Markov process that only
involves the slow components. We also demon-
strate that for a reasonable separation of scales
(an order of magnitude) the reduced process is
a good approximation of the marginal process
over the slow components. We provide a simple
procedure for building a reduced CTBN for this
effective process, with conditional rate matrices
that can be directly calculated from the original
CTBN, and discuss the implications for approxi-
mate reasoning in large systems.

1 Introduction

Continuous-time Markov processes are a framework used
in the modeling of a huge range of stochastic dynami-
cal systems, e.g., chemical kinetics, population dynamics,
stock markets, and many more (Gardiner [2004]). We con-
sider Markov processes that are homogeneous in time and
have a finite state space. Such systems are fully determined
by the state spaceS, the distribution of the process at the
initial time, and a description of the dynamics of the pro-
cess. These dynamics are specified by arate matrixQ,
whose off-diagonal entriesqa,b are exponential rate inten-

sities for transitioning between states. Intuitively, we can
think of the entryqa,b as the rate parameter of an exponen-
tial distribution whose value is the duration of time spent in
statea before transitioning tob. When more than one tran-
sition is possible, the shortest duration determines the next
state. Thus,q−1

a,b is the expected duration in statea before
transitioning to stateb (assuming it were the only possible
transition), and(

∑
b,a qa,b)−1 is the expected duration be-

fore transitioning out of statea.

In many applications, the state space is of the form of a
product spaceS = S1 × S1 × · · · × SM, whereM is the
number ofcomponents(such processes are called multi-
component). Even if each of theSi is of low dimension, the
dimension of the state space is exponential in the number of
components, which often poses computational difficulties,
e.g., in learning applications.Continuous-time Bayesian
networks(Nodelman et al. [2002, 2003]) are a graphical
representation for Markov processes that have extra struc-
ture, therefore allowing for more a compact representation
with fewer parameters. The first assumption is that tran-
sitions only occur in one component at a time. Second,
the transition rates associated with each component are as-
sumed to only depend on the state of a collection of “par-
ent components”. The CTBN is a directed, possibly cyclic
graph whose nodes are the components of the process, and
whose edges represent parent-child relations.

It is also often the case that certain components are con-
siderably faster than the others. Mathematically, it is as-
sumed that the (conditional) rates associated with the fast
components are larger by a factor of1/ε than the (condi-
tional) rates associated with the other, slow components,
with ε� 1. Systems having such property are said to have
a separation of scales, or to besingularly perturbed. Such
situations are ubiquitous, for example, in chemical kinetics,
where some reactions may occur much faster than other. In
such situations, the fast components tend to reach “local
equilibrium”, relative to the slow components, and under
certain conditions, reduced Markovian dynamics can be de-
rived for a lower dimensional system that only involves the
slow components (see van Kampen [1985] for a classical



review on dimension reduction in scale separated systems;
see Givon et al. [2004] for a recent review).

In this paper we derive the limiting Markov process and
show how to reduce a CTBN with fast components into
a smaller CTBN that involves only the slow components.
We discuss the implications of this result for inference in
CTBNs with different time scales.

2 Continuous-time Bayesian networks

In this section we briefly review the CTBN model (Nodel-
man et al. [2002]). Consider anM-component Markov pro-
cess

X(t) = (X1(t),X2(t), . . .XM(t))

with state space

S = S1 × S2 × · · · × SM.

A notational convention: vectors are denoted by boldface
symbols, e.g.,X,a, and matrices are denoted by black-
board style characters, e.g.,Q. The states inS are de-
noted by vectors of indexes,a = (a1, . . . , aM). The indexes
1 ≤ i, j ≤M are used to enumerate the components.

The dynamics of a time-homogeneous continuous-time
Markov process are fully determined by theMarkov tran-
sition function,

pa,b(t) = Pr(Xt+s = b|Xs = a),

where time-homogeneity implies that the right hand side
does not depend ons. Provided that the transition func-
tion satisfies certain analytical properties (continuity, and
regularity; see Chung [1960]) the dynamics are fully cap-
tured by a constant matrixQ—the rate, or intensity ma-
trix—whose entriesqa,b are defined by

qa,b = lim
h↓0

pa,b(h) − δa,b

h
,

whereδa,b is a multivariate Kronecker delta (an alterna-
tive notation using an indicator function is1(a = b)). The
Markov processXt can also be given a pathwise charac-
terization. Suppose the process starts in a statea. After
spending a finite amount of time in statea it transitions,
at a random time, to a random stateb , a. The tran-
sition times to the potential new states are exponentially
distributed, withqa,b, a , b, being the exponential rate
for transitioning from statea to stateb. The diagonal el-
ements ofQ satisfy the condition that each row sums up
to zero. Suppose, for simplicity, that each componentX j
takes values in ad-dimensional space. Then, the state space
is dM-dimensional, and theQ-matrix involvesdM(dM

− 1)
parameters.

The time-dependent probability distribution of the process,
p(t), whose entries are defined by

pa(t) = Pr(X(t) = a), a ∈ S,

satisfies the so-calledmaster equation,

dp
dt
= QTp. (1)

It is important to note that the master equation (1) en-
compasses all the statistical properties of the Markov pro-
cess. There is a one-to-one correspondence between the
description of a Markov process by means of a master equa-
tion, and by means of a “pathwise” characterization (up to
stochastic equivalence of the latter; see Gikhman and Sko-
rokhod [1975]).

We are concerned here with processes for which every tran-
sition involves a single component. In such case, the most
general rate matrix takes the form

qa,b =

M∑
i=1

qi
a,bi

∏
j,i

δa j,b j , (2)

where theqi
a,bi

are the entries of aconditional rate matrix

Qi for Xi transitioning fromai to bi given that the state of
the system isa. The structure (2) represents the fact that
each component undergoes transitions independently from
the other components, but at a rate that depends on the cur-
rent state of the entire system. AQ-matrix of the form (2)
requiresMdM(d − 1) independent parameters, which may
still be a large number.

Further reduction in the number of parameters is obtained if
additional structure is incorporated. CTBNs are applicable
to situations where each of the conditional rate matricesQi

is only influenced by a subset of component. Specifically, a
parent-child relation is introduced between ordered pairs of
components. To every1 ≤ i ≤ M we define the (possibly
empty) set of indexes

Par(i) =
{
1 ≤ j ≤M : X j is a parent ofXi

}
,

and the state space associated with the parents ofXi,

SPar(i) =
�

j∈Par(i)

S j.

We then introduce a restriction operatorPi : S → SPar(i),
which extracts from the state of the system the state of the
subsystem that consists of the parents ofXi,

Pi(a) = (am1 , am2 , . . . , ami ),

wherePar(i) = {m1,m2, . . . ,mi}.

The conditional rate matrix associated with thei-th compo-
nent only depends on the state of the parent components.
To make this dependence explicit, we denote the condi-
tional rate matrices byQi|Par(i) with entriesqi|Par(i)

ai,bi |Pi(a). Thus,



the joint rate matrix of the whole process assumes the re-
duced form

qa,b =

M∑
i=1

qi|Par(i)
ai,bi |Pi(a)

∏
j,i

δa j,b j . (3)

Equation (3) is, using the terminology of Nodelman et al.
[2002], the “amalgamation” of theM conditional rate ma-
trices. Note the compact representation which is valid for
both diagonal and off-diagonal entries. It is also notewor-
thy that amalgamation is a summation, rather than a prod-
uct; indeed, independent exponential rates are additive. If,
for example, every component hask parents, the rate matrix
requires now onlyMdk+1(d − 1) parameters.

The dependency relations between components can be rep-
resented graphically as a directed graph,G, in which each
node corresponds to a component, and each directed edge
defines a parent-child relation. A CTBN consists of such a
graph, supplemented with a set ofM conditional rate matri-
cesQi|Par(i), and an initial distribution. Formally, we define
a CTBN as a tuple

C =
〈
G, {Qi|Par(i)

}
M
i=1,P0

〉
,

whereP0 is the initial distribution overX(0).

As stated in Nodelman et al. [2002], the graph structure
has two main roles: (i) it provides a data structure to which
parameters are associated; (ii) it provides a qualitative de-
scription of dependencies among the various components
of the system. The graph structure also reveals statisti-
cal (possibly conditional) independencies between sets of
components. An example of a four-component CTBN is
shown in Figure 1.

For later use, we note that if we substitute the structure (3)
of the rate matrix into the master equation (1), the latter
takes the particular form,

dpb

dt
=

M∑
i=1

∑
ai∈Si

qi|Par(i)
ai,bi |Pi(b)p(b1,...,bi−1,ai,bi+1,...,bM). (4)

3 Singularly perturbed CTBNs

In many situations, it is possible to partition theM com-
ponents into two sets: “fast” components and “slow” com-
ponents. A standard measure for the “speed” of a Markov
process is the rate at which it equilibrates, which is com-
monly taken to be the absolute value of the second largest
eigenvalue of theQmatrix. In the context of CTBNs every
component is assigned a conditional rate matrix. Scale sep-
aration holds if all the equilibration rates associated with
the conditional rate matrices of a subset of components are
much faster than all the equilibration rates associated with

X1

X2 X3

X4

Figure 1: A four-component process, in whichX1 is a
Markov process (i.e., its rate matrix does not depend on
other components),X2 andX3 are influenced byX1, and
in turn influenceX4. Thus, the construction of a joint rate
matrix requires the prescription of a rates matrixQ1 and
conditional rates matricesQ2|1,Q3|1, andQ4|2,3. This struc-
ture implies, for example, thatX1 andX4 are statistically
independent given theentire trajectoriesof X2 andX3.

the conditional rate matrices of the complementary compo-
nents. Intuitively, this means that every fast component has
undergone many transitions during a time interval charac-
teristic of a single transition in the slow components. For
the sake of mathematical analysis, we will consider CTBNs
that are parametrized by a small parameterε that represents
the ratio of a characteristic time of residence in a state of a
fast component, and a characteristic time of residence in a
state of a slow component.

We now introduce definitions pertinent to the classification
of components into fast ones and slow ones: let

Ifast = {1 ≤ i ≤M : Xi is a fast component}

Islow = {1 ≤ i ≤M : Xi is a slow component}

be the sets of indexes of fast and slow components, respec-
tively, and let

Sfast =
�
i∈Ifast

Si and Sslow =
�
i∈Islow

Si

be the state spaces associated with the two sets of com-
ponents. Fora ∈ S we define the restriction operator
Fast : S→ Sfast,

Fast(a) = (ai1 , ai2 , . . . , aim ),

with {i1, i2, . . . , im} = I f . The restriction operatorSlow :
S → Sslow is defined similarly. Below we will derive ex-
pressions that involves states inS, Sslow andSfast. For the
sake of readability, we will use the symbolsa, b for states
in S, α,β for states inSslow, andζ for states inSfast.

We make the following assumptions:

Assumption 3.1 The conditional rate matrices associated
with fast components can be expressed as1/ε times anε-
independent rate matrix, while the conditional rate matri-
ces associated with the slow components do not depend on



ε. Furthermore, for every fixed state of the slow compo-
nents, the Markov process defined by the conditional rate
matrices of the fast components is ergodic overSfast.

Note that even if the entire system is ergodic, the sub-
system that consists only of the fast components, with the
slow components fixed, is not necessarily ergodic. Thus,
we need to explicitly require this additional property. This
condition is automatically satisfied, for example, if the con-
ditional rate matrices have strictly positive off-diagonal en-
tries. We will denote the (conditional) equilibrium distribu-
tion of the fast components, given the state of the slow com-
ponents, byπIfast|Islow with entriesπIfast|Islow

ζ|α (where, as stated
above,ζ ∈ Sfast andα ∈ Sslow).

Graphically, we will mark fast components by nodes with
shaded fillings. For example, Figure 1 represents a four-
component CTBN in which onlyX3 is a fast component.
Consequently,

Ifast = {3} Islow = {1, 2, 4}
Sfast = S3 Sslow = S1 × S2 × S4

Fast(a) = a3 Slow(a) = (a1, a2, a4),

and the conditional rate matrices can be written asQ1,
Q2|1, 1

εQ
3|1 andQ4|2,3, where each of theQi|Par(i) is ε-

independent.

The goal is to study the limiting behavior of the system as
ε → 0. Our main theorem, whose proof is sketched in
Appendix A, is:

Theorem 3.1 Let X(t) be anM-component Markov pro-
cess satisfying Assumption 3.1. Then asε → 0, the distri-
butionp(t) converges to a product distribution of the form,

pa(t) = πIfast|Islow

Fast(a)| Slow(a)p̃Slow(a)(t),

where p̃ is the marginal distribution of the slow compo-
nents. The latter, satisfies thereduced, or effective master
equation,

d
dt

p̃ = Q̃Tp̃, (5)

whereQ̃ is a rate matrix overSslow. Its entries are given by

q̃α,β =
∑

i∈Islow

q̃i
α,β

∏
Islow3 j,i

δα j,β j , (6)

whereQ̃i with entries

q̃i
α,β =

∑
ζ∈Sfast

π
Ifast|Islow

ζ|α qi|Par(i)
αi,βi |Pi((α,ζ))

(7)

is the effective conditional rate matrix associated with the
slow componentXi.

The fact that the marginal distribution overSslow satisfies
a master equation means that the limiting behavior of the
slow components is Markovian.

Remark.When interpreting (7) note thatα andβ are both
elements inSslow, whereas the summation variablesζ are
elements inSfast. The concatenation(α,ζ) is identified as
an element of the full spaceS, andPi((α,ζ)) restricts the
state(α,ζ) to only those components that are parents ofXi.

The expression (6) for the effective rates can be written in
an alternative form. Writing

Q =
1
ε
Qfast+Qslow,

whereQfast andQslow areε-independent and have entries

qfast
a,b =

∑
i∈Ifast

qi|Par(i)
ai,bi |Pi(a)

∏
j,i

δa j,b j

qslow
a,b =

∑
i∈Islow

qi|Par(i)
ai,bi |Pi(a)

∏
j,i

δa j,b j ,

the entries ofQ̃ can be written as

q̃α,β =
∑
ζ∈Sfast

πIfast|Islow

ζ|α qslow
(α,ζ),(β,ζ). (8)

In simple words, the reduced rate matrix associated with
the limiting dynamics of the slow components is the full
rate matrix, averaged over the conditional equilibrium dis-
tribution of the fast components. If we denote byE f |s

expectation with respect to the conditional distribution
πIfast|Islow, then (8) takes the more suggestive form,

Q̃ = E f |s[Qslow].

Example 3.1 As the simplest illustration of Theorem 3.1,
consider a two-component systemX(t) = (X1(t),X2(t))
with rate matrix of the form

Q =
1
ε
Q1 +Q2|1.

That is,X1 is a fast component and it influences the slow
componentX2. The equilibrium distribution ofX1 is de-
noted byπ1. Theorem 3.1 asserts that asε→ 0, X2(t) con-
verges in a weak sense (i.e., in distribution) to a Markov
process with effective ratẽQ, whose entries are given by

q̃α2,β2 = q̃2
α2,β2
=

∑
ζ1∈S1

π1
ζ1

q2|1
α2,β2 |ζ1

.

The next section addresses the systematic derivation of re-
duced CTBNs.



4 Dimension reduction of CTBNs

4.1 Segregated fast components

We start by considering CTBNs in which fast components
are segregated: there are no parent-child relations between
two fast components. In such case the conditional equi-
librium distribution of the fast components factors into a
product distribution on the form

πIfast|Islow

ζ|α =
∏
i∈Ifast

πi|Par(i)
ζi |Pi(α), (9)

where, with a slight abuse of notations,Pi(α) extracts from
the vectorα ∈ Sslow those components that belong to
Par(i). That is, the marginal equilibrium distribution of
each fast components depends only on the state of its par-
ent components, which by assumption are all slow compo-
nents.

Substituting the factorization (9) into the effective rate ma-
trix (7), we obtain

q̃i
α,β =

∑
ζ

∏
k

πk|Par(k)
ζk |Pk(α)

 qi|Par(i)
αi,βi |(Pi(α),ζ)),

where the product is overk ∈ Ifast ∩ Par(i) (i.e., fast par-
ents ofXi) and the sum is overζ in the corresponding state
spaceSfast ∩ SPar(i). Note thatQ̃i is only conditional on
those components that are either slow parents ofXi, or
(non-exclusively) slow parents of fast parents ofXi.

Remark.In such cases where the fast dynamics can be fac-
tored into independent components, there is no necessity
for all fast components to evolve on the same fast scale.
The results remain unchanged if each fast component has
its own time scaleεi, as long asεi → 0 for all i ∈ Ifast.

Example 4.1 Consider the three-component system de-
picted in Figure 2 (left), which consists of a chain of three
components, the one in the middle being fast. The dynam-
ics are defined by the conditional rate matricesQ1,Q2|1 and
Q3|2. Letπ2|1 be the equilibrium distribution ofX2 given a
fixed state ofX1. Theorem 3.1 implies that asε → 0, the
joint distributionp̃ of the slow componentsX1,X3 tends to
the solution of a master equation which corresponds to the
reduced two-state CTBN shown in Figure 2 (right). The ef-
fective rate matrixQ̃ is determined by the conditional rate
matricesQ̃1 andQ̃3|1 given by

q̃1
α1,β1
= q1

α1,β1

q̃3|1
α3,β3 |α1

=
∑
ζ2∈S2

π2|1
ζ2 |α1

q3|2
α3,β3 |ζ2

.

Example 4.2 Consider the CTBN shown in Figure 3 (left).
The dynamics are defined by the conditional rate matrices

X1

X2

X3

=⇒
X1

X3

Figure 2: Left: a three-component CTBN with one fast
component. Right: the reduced two-component CTBN in
the limit ε→ 0.

X1

X3

X5

X4

X6

X2

=⇒
X1

X6 X5

X2

Figure 3: Left: a six-component CTBN with two fast com-
ponents. Right: the reduced four-component CTBN in the
ε→ 0 limit.

Q1, Q2, Q3|1, Q4|1,2, Q5|1,3,4 andQ6|3. The components
X3,X4 are assumed to be fast, and have conditional equilib-
rium distributionsπ3|1 andπ4|1,2, respectively. Asε → 0,
the slow components weakly converge to a four-component
Markov process onSslow defined by the conditional rate ma-
tricesQ̃1, Q̃2, Q̃5|1,2, andQ̃6|1 whose entries are given by

q̃1
α1,β1
= q1

α1,β1

q̃2
α2,β2
= q2

α2,β2

q̃5|1,2
α5,β5 |(α1,α2) =

∑
ζ3∈S3

π3|1
ζ3 |α1

∑
ζ4∈S4

π4|1,2
ζ4 |(α1,α2)q

5|1,3,4
α5,β5 |(α1,ζ3,ζ4)

q̃6|1
α6,β6 |α1

=
∑
ζ3∈S3

π3|1
ζ3 |α1

q6|3
α6,β6 |ζ3

.

Note that althoughX6 andX5 are statistically dependent,
both being descendants ofX3, they do not directly influence
each other in the reduced CTBN; in general, the elimination
of a fast component does not introduce graphical connec-
tions between its descendants, in contrast to node elimina-
tion in Bayesian networks. This point is highly non-trivial:
for finiteε the knowledge ofX5 influences the posterior dis-
tribution of X3, which in turn affects the evolution ofX6.
In the limit of extreme scale separation,X3 equilibrates be-
tween successive transitions of the slow components, there-
fore the effective rate matrix ofX6 is only affected by the



X1

X3

X4

X5

X2

=⇒

X1

X3 + X4

X5

X2

=⇒
X1

X5

X2

Figure 4: Left: a five-component CTBN with two inter-
acting fast component. Center: equivalent CTBN with the
interacting fast components grouped together. Right: the
reduced three-component CTBN in theε→ 0 limit.

stationary distribution ofX3, which, in turn, is only affected
by X1.

4.2 Connected fast components

In situations where parent-child relations exist between fast
components, the equilibrium distribution onSfast condi-
tional of Sslow does not factor into a product over fast com-
ponents. A simple minded solution is to group together fast
components that are connected together into a compound
component, as illustrated in the following example:

Example 4.3 Consider the CTBN shown in Figure 4 (left),
which is defined by the conditional rate matricesQ1, Q2,
Q3|1, Q4|3,2 andQ5|4. The componentX3,X4 are assumed
to be fast. This situation can be adapted to the framework
considered in the previous subsection by grouping together
X3 andX4 into a single component with state spaceS3×S4.
This intermediate CTBN is depicted in Figure 4 (center).
Let thenπ3,4|1,2 denote the equilibrium distribution of the
pair X3,X4 given the pairX1,X2. As ε → 0, the slow
components weakly converge to the Markov processes de-
picted in the right, with conditional rate matricesQ̃1, Q̃2,
andQ̃5|1,2, whose entries are given by

q̃1
α1,β1
= q1

α1,β1

q̃2
α2,β2
= q2

α2,β2

q̃5|1,2
α5,β5 |(α1,α2) =

∑
ζ3∈S3

∑
ζ4∈S4

π3,4|1,2
(ζ3,ζ4)|(α1,α2)q

5|4
α5,β5 |ζ4

.

This solution, however, misses some of the structure in the
reduced process.

Example 4.4 Consider the CTBN shown in Figure 5 (left),
which is defined by the conditional rate matricesQ1, Q2,
Q3|1, Q4|3,2, Q5|3, andQ6|4. The componentsX3,X4 are

X1

X3

X5 X4

X6

X2

=⇒
X1

X5 X6

X2

Figure 5: Left: a six-component CTBN with two interact-
ing fast component. Right: the reduced four-component
CTBN in theε→ 0 limit.

assumed to be fast. If we groupX3 andX4, we again have
thatπ3,4|1,2 describes the equilibrium distribution ofX3 and
X4 given X1 andX2. This would imply thatX5 depends
on bothX1 andX2 in the reduced CTBN. However, if we
examine the pattern of influence in the original CTBN, the
intuition is that there is no path of influence fromX2 to X5.

The situation becomes clearer once we realize that we can
represent the equilibrium distribution ofX3 andX4 as

π3,4|1,2
(ζ3,ζ4)|(α1,α2) = π

3|1
ζ3 |α1
π4|1,2,3
ζ4 |(α1,α2,ζ3).

To see this, note thatX4 does not influenceX3. Thus, if
we fix the values ofX1, the processX3 is Markovian and
reaches the same equilibrium distribution regardless of the
state ofX2. Repeating the same argument as in the previ-
ous example, we conclude that asε → 0, the slow compo-
nents weakly converge to the Markov processes depicted
on the right, with conditional rate matrices̃Q1, Q̃2, Q̃5|1,
andQ̃6|1,2, whose entries are given by

q̃1
α1,β1
= q1

α1,β1

q̃2
α2,β2
= q2

α2,β2

q̃5|1
α5,β5 |α1

=
∑
ζ3∈S3

π3|1
ζ3 |α1

q5|3
α5,β5 |ζ3

q̃6|1,2
α6,β6 |(α1,α2) =

∑
ζ3∈S3

∑
ζ4∈S4

π3,4|1,2
(ζ3,ζ4)|(α1,α2)q

6|4
α6,β6 |ζ4

.

Note that in the last equation we sum overζ3, for the pur-
pose of finding the marginal probability ofX4 in π3,4|1,2.

The point of the last example is that although we cannot
factor the equilibrium distribution of the two fast compo-
nentsX3 andX4, the marginal distribution of one variable,
X3 in this example, does not depend on the conditional rate
matrix of the other variable.



To generalize this line of reasoning, we need to characterize
which marginal distributions of the equilibrium distribution
can be computed independently of rates of the other com-
ponents. To analyze such situations, we consider a more
general result about marginal distributions in CTBNs.

Definition 4.1 LetC be anM-component CTBN, and letJ
be a subset of the components1, . . . ,M; we denote by

X J(t) = {Xi(t) : i ∈ J}

the corresponding sub-process. We say thatJ is upward
closedif for everyi ∈ J, we have thatPar(i) ⊆ J. We define
theupward closureUp(J) to be the minimal upward closed
set that containsJ.

Example 4.5 In Example 4.4 (Figure 5)J = {1, 3, 5} is an
upward closed subset of components, and

Up({4}) = {1, 2, 3, 4} .

Suppose we are given a CTBNC. Given an upward closed
subset of components,J, we can define thesub-CTBN
spanned byJ. Formally, we define

CJ =
〈
G|J,

{
Qi|Par(i)

}
i∈J
,P0|J

〉
,

whereG|J is the sub-graph ofG restricted to the components
in J, andP0|J is the marginal distribution ofP0 overX J(0).
The sub-CTBN spanned byJ, contains the conditional rate
matrices from the original CTBN for all the components in
J. SinceJ is upward closed, this results in a well defined
CTBN, as the parents of every component inJ appear in the
sub-CTBN.

Theorem 4.1 Let C be anM-component CTBN, and let
J be an upward closed subset of components. Then, the
marginal distribution overX J(t) in C is identical to the dis-
tribution overX J(t) in CJ.

The proof is straightforward, as we can show that the prob-
ability over any trajectory ofX J is the same in both distri-
butions. This follows, for example, if we sum the master
equation (4) over all indexes,bi, i < J.

Corollary 4.1 Let C be anM-component CTBN, and let
J be an upward closed subset of components. Then, the
marginal equilibrium distribution overX J does not depend
on the rates associated with the remaining variables.

Using this result we can return to the question of elimi-
nation of fast components. Suppose we have a connected
set of fast components. Since they are much faster than the
slow components, we can view their behavior as though the
slow components are fixed. This implies that the equilib-
rium distribution over the connected fast components has

the behavior of theconditional-CTBNdefined by their con-
ditional rate matrices, with the slow components fixed. In
this conditional CTBN, we can apply Corollary 4.1 and find
the set of conditional rate matrices that determine the equi-
librium distribution of any particular subset of fast compo-
nents.

For example, this result implies that in Example 4.4 the
equilibrium distribution overX3 in the “fast” conditional
CTBN depends on the rate matrixQ3|1 but not onQ4|2,3.
As a consequence the child,X5, of X3 depends onX1 in
the reduced CTBN, but not onX2.

We now use this intuition to define the reduced CTBN in
a precise manner. Consider a CTBN with fast and slow
components. Given a set,J ⊆ Ifast of fast components, we
defineUp f (J) to be the upward closure ofJ in the sub-
graph that only consists of fast component;Up f (J) is the
smallest subset of fast components that containsJ, such that
if i ∈ J, then j ∈ J for all j ∈ Par(i) ∩ Ifast; to shorten the
terminology, we will callUp f (J) the fast-upward closure
of J. We then define forJ ⊆ Ifast the set

sPar(J) =
{
i ∈ Islow : ∃ j ∈ Up f (J), i ∈ Par( j)

}
.

That is,sPar(J) are the slow components that are parents of
components inJ, or components in the fast upward closure
of J. We will call sPar(J) the set oflast slow ancestorsof
J.

Example 4.6 Consider once again Example 4.4 (Figure 5).
There,

Up f ({4}) = {3, 4}

is the upward closure of the subset of components{4}, in
the subgraph that only contains the fast components. More-
over,

sPar({4}) = {1, 2} ,

sinceX2 is a parent ofX4 andX1 is a parent ofX3, which
belongs to fast-upward closure of{4}.

We now can formally define the procedure of building a
reduced CTBN. Assume we are given a CTBNC with scale
separation. We define the reduced CTBNC̃ as follows:

1. G̃ is the graph overIslow such that for eachi ∈ Islow

P̃ar(i) = (Par(i) ∩ Islow) ∪ sPar(Par(i) ∩ Ifast)

In other words, the parents of each slow componentXi
in the reduced CTBÑC are its slow parents inC sup-
plemented by the last slow ancestors of its fast parents
in C. Consistently with out notations we defineP̃i(α)
to be the restriction ofα ∈ Sslow to those components
that belong tõPar(i).



2. For eachi ∈ Islow we define the conditional rate matrix
Q̃i|P̃ar(i) with entries

q̃i|P̃ar(i)
αi,βi |P̃i(α)

=
∑
ζ

π
Up f (Par(i)∩Ifast)|P̃ar(i)

ζ|P̃i(α)
qi|Par(i)
αi,βi |Pi((α,ζ))

,

where the summation variableζ takes values in the
state space spanned by the fast-upper closure of the
fast parents ofXi. While the last equation may be dif-
ficult to parse, it bears a simple interpretation. The
conditional rate matrix of thei-th component in the
reduced CTBN is obtained by averaging overQi|Par(i)

with respect to the marginal equilibrium distribution
of the fast-upward closure of the fast parents ofXi,
conditioned by the last slow ancestors of this fast-
closure. The effective conditional rate matrix de-
pends, as a result, only on the slow parents ofXi and
on the last slow ancestors of its fast parents.

3. P̃0 = P0|Islow.

Our main Theorem 3.1, reformulated in the language of
CTBNs, implies:

Theorem 4.2 Let C be anM-component CTBN with con-
ditional rate matrices satisfying Assumption 3.1. Then,
as ε → 0, the marginal distribution of the sub-process
spanned by the slow componentsIslow converges to the dis-
tribution induced by the reduced CTBÑC.

5 Numerical examples

Example 5.1 Consider Example 4.1 with state spaceS j =
{0, 1}, j = 1, 2, 3, and conditional rate matrices

Q1 =

(
−1 1
2 −2

)
Q2|1
·|0 =

(
−2 2
3 −3

)
Q2|1
·|1 =

(
−3 3
2 −2

)
Q3|2
·|0 =

(
−3 3
4 −4

)
Q3|2
·|1 =

(
−5 5
6 −6

)
The conditional equilibrium distributionπ2|1 is

π2|1
·|0 =

1
5

(
3
2

)
π2|1
·|1 =

1
5

(
2
3

)
.

As ε → 0 the slow componentsX1,X3 weakly converge
to a Markov process with effective rate matricesQ̃1 = Q1,
andQ̃3|1 given by

Q̃3|1
·|0 = π

2|1
0|0Q

3|2
·|0 + π

2|1
1|0Q

3|2
·|1 =

1
5

(
−19 19
24 −24

)
Q̃3|1
·|1 = π

2|1
0|1Q

3|2
·|0 + π

2|1
1|1Q

3|2
·|1 =

1
5

(
−21 21
26 −26

)
.

The total effective matrix is

Q̃ =


−4.75 1 3.75 0

2 −6.25 0 4.25
4.75 0 −5.75 1

0 5.25 2 −7.25

 ,
with a lexicographic ordering of the states.

To test the accuracy of the procedure we have generated
paths of lengthT = 50000 and used standard maximum
likelihood to estimate the rate matrix, assuming that the
process(X1(t),X3(t)) is a Markov process. Forε = 0.05
we obtained

Q̃ε=0.05
est. =


−4.7907 0.9942 3.7965 0
1.9958 −6.1869 0 4.1911
4.8004 0 −5.8066 1.0062

0 5.1638 1.9886 −7.1524

 ,
i.e., deviations of about one percent. Forε = 0.2 we ob-
tained

Q̃ε=0.2
est. =


−4.8259 0.9955 3.8304 0
2.0033 −6.2026 0 4.1993
4.8555 0 −5.8644 1.0089

0 5.2026 1.9936 −7.1962

 ,
i.e., deviations of about two percent. In either case the main
source of error seems to be statistical. The fact that pa-
rameter estimation converges asT → ∞ is by itself not
surprising, since the whole process is ergodic. The ques-
tion is to what extent is the reduced process(X1(t),X3(t))
Markovian? To test this we re-evaluated the entries of the
rate matrix conditional on the preceding state. This yielded
changes of about one percent, which again, could be at-
tributed to a lack of statistics.

Example 5.2 Consider next Example 4.4 withS j = {0, 1},
j = 1, . . . , 6, and conditional rate matrices,

Q1 =

(
−1 1
2 −2

)
Q2 =

(
−2 2
1 −1

)
Q3|1
·|0 =

(
−2 2
3 −3

)
Q3|1
·|1 =

(
−3 3
2 −2

)
Q4|2,3
·|(0,0) =

(
−3 3
4 −4

)
Q4|2,3
·|(1,0) =

(
−4 4
3 −3

)
Q4|2,3
·|(0,1) =

(
−1 1
2 −2

)
Q4|2,3
·|(1,1) =

(
−2 2
1 −1

)
Q5|3
·|0 =

(
−1 1
3 −3

)
Q5|3
·|1 =

(
−3 3
1 −1

)
Q6|4
·|0 =

(
−1 1
4 −4

)
Q6|4
·|1 =

(
−4 4
1 −1

)
.

The slow componentX5 is only influenced by the fast com-
ponentX3, whose conditional equilibrium distribution only



depends on its slow ancestorX1:

π3|1
·|0 =

1
5

(
3
2

)
π3|1
·|1 =

1
5

(
2
3

)
.

As ε → 0 the conditional rate matrix associated withX5
converges to

Q̃5|1
·|0 = π

3|1
0|0Q

5|3
·|0 + π

3|1
1|0Q

5|3
·|1 =

1
5

(
−9 9
11 −11

)
Q̃5|1
·|1 = π

3|1
0|1Q

5|3
·|0 + π

3|1
1|1Q

5|3
·|1 =

1
5

(
−11 11

9 −9

)
.

To test the reduction procedure, we generated a trajectory
of the full process with107 transitions andε = 0.05. We
used maximum likelihood to estimate the rates associated
with the reduced process that only consists of the slow
componentsX1,X2,X5,X6. For example, we estimated the
rates associated withX5 transitioning from0 to 1; one can
estimate these rates assuming that they depend on the state
of all other (slow) components. The estimation procedure
gives

q5|1,2,6
0,1|(0,0,0) = 1.78 q5|1,2,6

0,1|(1,0,0) = 2.19

q5|1,2,6
0,1|(0,1,0) = 1.77 q5|1,2,6

0,1|(1,1,0) = 2.20

q5|1,2,6
0,1|(0,0,1) = 1.77 q5|1,2,6

0,1|(1,0,1) = 2.18

q5|1,2,6
0,1|(0,1,1) = 1.80 q5|1,2,6

0,1|(1,1,1) = 2.18.

These results are in very good agreement with our predic-
tion that the rates in the left column be equal to9/5 = 1.8
and the rates in the right column to11/5 = 2.2, irrespec-
tively of the values ofX2 andX6.

Finally, we show in Table 1 the estimated values ofq̃5|1
0,1|0

and q̃5|1
0,1|1 for various values ofε. The caseε = 1 means

that all components evolve on comparable time scales, in
which case the reduction procedure does not hold. This
table confirms the intuitive feeling that the approximation
gets reasonably accurate forε of the order of0.1. Note that
the estimate of̃q5|1

0,1|1 for ε = 0.025 is less accurate than for
ε = 0.05; this is attributed to the fact that the smallerε, the
less (relatively) probable it is to observe a transition in the
slow variables, resulting in poor statistics.

6 Discussion

In this paper we have proved a theorem about dimension
reduction of CTBNs in the limit of an infinite separation
of scales between fast and slow components. We showed
the implications of this theorem for constructing a reduced
CTBN that captures the dynamics of the slow components
without explicitly dealing with the fast ones.

Our results show that the elimination of fast components
has a counter intuitive property. The typical intuition is that

ε q̃5|1
0,1|0 q̃5|1

0,1|1
1 1.638 1.875

0.5 1.700 1.992
0.25 1.742 2.077
0.1 1.766 2.145

0.05 1.782 2.189
0.025 1.796 2.174
→ 0 1.800 2.200

Table 1: Estimated values of entries of the (effective) con-
ditional rate matrixQ̃5|1 for various values ofε. The max-
imum likelihood estimation was applied to trajectories (of
the full system) with107 transitions.

integrating out a variable introduces dependencies among
its children. However, when eliminating fast components
this intuition does not apply directly, and in some cases we
end with a simpler CTBN than we started with. Thus, our
reduction leads to further simplifications than one might
expect from basic intuitions about Bayesian networks.

In practice, one seldom encounters systems in which a
small parameterε is explicitly given. In many applications
there exists a range of characteristic rates, and one has to
verify to what extent the dimension reduction is a good ap-
proximation. Since equilibration is exponentially fast, di-
mensional reduction is expected to be a good approxima-
tion when the equilibration rates associated with a subset
of components are larger, by at least an order of magni-
tude, than the equilibration rates associated with the other
components.

To put the results we introduce here to use we need to de-
velop them into concrete approximation algorithms. The
appeal of such results is that they give us a strategy to use
separation of scales to reason about the system at differ-
ent levels of time granularity. For reasoning about coarse
time scales, our results allow to reduce the system to exam-
ine only the slow components. To reason about fine time
scales we can then assume that most of the slow compo-
nents are fixed, and then reason about the dynamics of the
fast components. Clearly this intuition can be extended to
a hierarchy of time scales.

Given a CTBN, we can assess the characteristic equilibra-
tion rate of each conditionalQ-matrix by computing the
absolute value of its second largest eigenvalue. There are,
however, multiple ways of using these values to separate
the system into an approximate hierarchy of scales. An-
other issue deals with evidence. Clearly, once we find a
reduced CTBN we can incorporate evidence and reason
about the posterior probability of slow components and
consequently fast components. However, it is also fairly
clear that the frequency of observations and the time scale
of the observed variables can make important impact on the
approximation.



The results we presented here provide solid foundations for
introducing scale-based approximation in real applications.
Clearly, these initial results are only the first step in the de-
velopment of promising approximate inference procedures.

Acknowledgments

Nir Friedman was supported in part by grants from the Is-
rael Science Foundation (ISF) and from the Binational US-
Israel Science Foundation (BSF). Raz Kupferman was sup-
ported in part by a grant from the Israel Science Foundation
(ISF).

References

K.L. Chung. Markov chains with stationary transition
probabilities. Springer Verlag, Berlin, 1960.

C.W. Gardiner.Handbook of stochastic methods. Springer-
Verlag, New-York, third edition, 2004.

I.I Gikhman and A.V. Skorokhod.The theory of Stochastic
processes II. Springer Verlag, Berlin, 1975.

D. Givon, R. Kupferman, and A.M. Stuart. Extracting
macroscopic dynamics: model problems and algorithms.
Nonlinearity, 17:R55–R127, 2004.

U. Nodelman, C.R. Shelton, and D. Koller. Continuous
time Bayesian networks. InEighteenth Conference on
Uncertainty in Artificial Intelligence, pages 378–387,
2002.

U. Nodelman, C.R. Shelton, and D. Koller. Learning con-
tinuous time Bayesian networks. InNineteenth Con-
ference on Uncertainty in Artificial Intelligence, pages
451–458, 2003.

N.G. van Kampen. Elimination of fast variables.Phys.
Rep., 124:69–160, 1985.

A Proof sketch of Theorem 3.1

Using the partition of theQ-matrix as the sum of fast and
slow components, the master equation (1) takes the form

d
dt

p −
1
ε

(Qfast)Tp = (Qslow)Tp.

If we treat the right hand side as an inhomogeneous term,
this equation can be integrated, resulting in an integral
equation,

p(t) = e
t
ε (Qfast)T

p(0) +
∫ t

0
e

(t−s)
ε (Qfast)T

(Qslow)Tp(s) ds.

The one-parameter semigroup of operatorsexp(tQfast) is
the solution operator of the master equation derived from
the fast dynamics, with the slow components held fixed.

Assumption 3.1 implies thatexp(tQfast) converges expo-
nentially fast, ast→ ∞, to an operatorG, which is the or-
thogonal projection onto the subspace of distributions that
are invariant underQfast. The projectionG has entries

ga,b = π
Ifast|Islow

Fast(b)| Slow(b) δSlow(a),Slow(b).

As ε → 0, the distributionp(t) tends to the solution of the
limiting equation,

p(t) = GTp(0) +
∫ t

0
GT(Qslow)Tp(s) ds,

which is equivalent to the differential equation,

d
dt

p = GT(Qslow)Tp. (10)

Note that according to the limiting equationp(0) is in the
range of the projectionGT; if this assumption does not
hold, the actual limit ofp(t) deviates from the solution of
the limiting equation only in a short time interval after the
initial time (a “boundary layer”).

The range ofGT, which consists of distributions of the form

pa = π
Ifast|Islow

Fast(a)| Slow(a)p̃Slow(a),

wherep̃ is the marginal distribution overSslow, is invariant
under Equation (10). Substituting this product into Equa-
tion (10) and summing over allFast(a), we get an equation
for the marginal distribution,

d
dt

p̃α =
∑
β∈Sslow

 ∑
ζ∈Sfast

qslow
(β,ζ),(α,ζ)π

Ifast|Islow

ζ|β

 p̃β.

Comparing with (8), the expression in the brackets is iden-
tified as q̃α,β, i.e., p̃ satisfies a master equation with rate
matrix Q̃.


