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Abstract

Conditional logics play an important role in recent attempts
to investigate default reasoning. This paper investigates first-
order conditional logic. We show that, as for first-order
probabilistic logic, it is important not to confound statisti-
cal conditionals over the domain (such as “most birds fly”),
and subjective conditionals over possible worlds (such as “I
believe that Tweety is unlikely to fly”). We then address
the issue of ascribing semantics to first-order conditional
logic. As in the propositional case, there are many possi-
ble semantics. To study the problem in a coherent way, we
use plausibility structures. These provide us with a general
framework in which many of the standard approaches can be
embedded. We show that while these standard approaches
are all the same at the propositional level, they are signifi-
cantly different in the context of a first-order language. We
show that plausibilities provide the most natural extension of
conditional logic to the first-order case: We provide a sound
and complete axiomatization that contains only the KLM
properties and standard axioms of first-order modal logic.
We show that most of the other approaches have additional
properties, which result in an inappropriate treatment of an
infinitary version of the lottery paradox.

1 Introduction
In recent years, conditional logic has come to play a major
role as an underlying foundation for default reasoning. Two
of the more successful default reasoning systems (Geffner
1992; Goldszmidt, Morris, & Pearl 1993) are based on con-
ditional logic. Unfortunately, while it has long been rec-
ognized that first-order expressive power is necessary for a
default reasoning system, most of the work on conditional
logic has been restricted to the propositional case. In this
paper, we investigate the syntax and semantics of first-order
conditional logic, with the ultimate goal of providing a first-
order default reasoning system.

Many seemingly different approaches have been pro-
posed for giving semantics to conditional logic, including
preferential structures (Lewis 1973; Boutilier 1994; Kraus,
Lehmann, & Magidor 1990), � -semantics (Adams 1975;
Pearl 1989), possibility theory (Benferhat, Dubois, & Prade
1992), and � -rankings (Spohn 1987; Goldszmidt & Pearl
1992). In preferential structures, for example, a model con-
sists of a set of possible worlds, ordered by a preference

ordering � . If ����� � , then the world � is strictly more
preferred/more normal than � � . The formula Bird � Fly
holds if in the most preferred worlds in which Bird holds,
Fly also holds. (See Section 2 for more details about this
and the other approaches.)

The extension of these approaches to the first-order case
seems deceptively easy. After all, we can simply have
a preferential ordering on first-order, rather than proposi-
tional, worlds. However, there is a subtlety here. As in
the case of first-order probabilistic logic (Bacchus 1990;
Halpern 1990), there are two distinct ways to define condi-
tionals in the first-order case. In the probabilistic case, the
first corresponds to (objective) statistical statements, such
as “90% of birds fly”. The second corresponds to subjec-
tive degree of belief statements, such as “the probability that
Tweety (a particular bird) flies is 0.9”. The first is captured
by putting a probability distribution over the domain (so that
the probability of the set of flying birds is 0.9 that of the set
of birds), while the second is captured by putting a proba-
bility on the set of possible worlds (so that the probability
of the set of worlds where Tweety flies is 0.9 that of the set
of worlds where Tweety is a bird). The same phenomenon
occurs in the case of first-order conditional logic. Here,
we can have a measure (e.g., a preferential ranking) over
the domain, or a measure over the set of possible worlds.
The first would allow us to capture qualitative statistical
statements such as “most birds fly”, while the second would
allow us to capture subjective beliefs such as “I believe that
the bird Tweety is likely to fly”. It is important to have a
language that allows us to distinguish between these two
very different statements. Having distinguished between
these two types of conditionals, we can ascribe semantics
to each of them using any one of the standard approaches.

There have been previous attempts to formalize first-
order conditional logic; some are the natural exten-
sion of some propositional formalism (Delgrande 1987;
Brafman 1991), while others use alternative approaches
(Lehmann & Magidor 1990; Schlechta 1995). (We defer
a detailed discussion of these approaches to the full paper;
see also Section 5.) How do we make sense of this plethora
of alternatives? Rather than investigating them separately,
we use a single common framework that generalizes almost
all of them. This framework uses a notion of uncertainty



called a plausibility measure, introduced by Friedman and
Halpern� (1995). A plausibility measure associates with set
of worlds its plausibility, which is just an element in a par-
tially ordered space. Probability measures are a subclass of
plausibility measures, in which the plausibilities lie in 	 0 
 1 � ,
with the standard ordering. In (Friedman & Halpern 1996),
it is shown that the different standard approaches to condi-
tional logic can all be mapped to plausibility measures, if we
interpret Bird � Fly as “the set of worlds where Bird � Fly
holds has greater plausibility than that of the set of worlds
where Bird �� Fly holds”.

The existence of a single unifying framework has al-
ready proved to be very useful in the case of propositional
conditional logic. In particular, it allowed Friedman and
Halpern (1996) to explain the intriguing “coincidence” that
all of the different approaches to conditional logic result in
an identical reasoning system, characterized by the KLM
axioms (Kraus, Lehmann, & Magidor 1990). In this paper,
we show that plausibility spaces can also be used to clarify
the semantics of first-order conditional logic. However, we
show that, unlike the propositional case, the different ap-
proaches lead to different properties in the first-order case.
Intuitively, these are infinitary properties that require quan-
tifiers and therefore cannot be expressed in a propositional
language. We show that, in some sense, plausibilities pro-
vide the most natural extension of conditional logic to the
first-order case. We provide a sound and complete axioma-
tization for the subjective fragment of conditional logic that
contains only the KLM properties and the standard axioms
of first-order modal logic.1 (We provide a similar axiom-
atization for the statistical fragment of the language in the
full paper.) Essentially the same axiomatization is shown
to be sound and complete for the first-order version of � -
semantics, but the other approaches are shown to satisfy
additional properties.

One might think that it is not so bad for a conditional logic
to satisfy additional properties. After all, there are some
properties—such as indifference to irrelevant information—
that we would like to be able to get. Unfortunately, the ad-
ditional properties that we get from using these approaches
are not the ones we want. The properties we get are re-
lated to the treatment of exceptional individuals. This issue
is perhaps best illustrated by the lottery paradox (Kyburg
1961).2 Suppose we believe about a lottery that any partic-
ular individual typically does not win the lottery. Thus we
get �����

true �� Winner
��������� �

1
�

However, we believe that typically someone does win the
lottery, that is

true ��� � Winner
������� �

2
�

1By way of contrast, there is no (recursively enumerable) ax-
iomatization of first-order probabilistic logic (Halpern 1990).

2We are referring to Kyburg’s original version of the lottery
paradox (Kyburg 1961), and not to the finitary version discussed
by Poole (1991). As Poole showed, any logic of defaults that
satisfies certain minimal properties—properties which are satisfied
by all the logics we consider—is bound to suffer from his version
of the lottery paradox.

Unfortunately, in many of the standard approaches, such as
Delgrande’s (1987) version of first-order preferential struc-
tures, from (1) we can conclude

true � �����  Winner
��������� �

3
�

Intuitively, from (1) it follows that in the most preferred
worlds, each individual  does not win the lottery. There-
fore, in the most preferred worlds, no individual wins. This
is exactly what (3) says. Since (2) says that in the most pre-
ferred worlds, some individual wins, it follows that there
are no most preferred worlds, i.e., we have true � false.
While this may be consistent (as it is in Delgrande’s logic),
it implies that all defaults hold, which is surely not what we
want. Of all the approaches, only � -semantics and plausi-
bility structures, both of which are fully axiomatized by the
first-order extension of the KLM axioms, do not suffer from
this problem.

It may seem that this problem is perhaps not so serious.
After all, how often do we reason about lotteries? But, in
fact, this problem arises in many situations which are clearly
of the type with which we would like to deal. Assume, for
example, that we express the default “birds typically fly” as
Delgrande does, using the statement�����

Bird
����� � Fly

��������� �
4
�

If we also believe that Tweety is a bird that does not
fly, so that our knowledge base contains the statement
true � Bird

�
Tweety

� �! Fly
�
Tweety

�
, we could similarly

conclude true � false. Again, this is surely not what we
want.

Our framework allows us to deal with these problems.
Using plausibilities, (1) and (2) do not imply true � false,
since (3) does not follow from (1). That is, the lottery
paradox simply does not exist if we use plausibilities. The
flying bird example is somewhat more subtle. If we take
Tweety to be a nonrigid designator (so that it might denote
different individuals in different worlds), the two statements
are consistent, and the problem disappears. If, however,
Tweety is a rigid designator, the pair is inconsistent, as we
would expect.

This inconsistency suggests that we might not always
want to use (4) to represent “birds typically fly”. After
all, the former is a statement about a property believed to
hold of each individual bird, while the latter is a state-
ment about the class of birds. As argued in (Bacchus et al.
1994), defaults often arise from statistical facts about the
domain. That is, the default “birds typically fly” is often a
consequence of the empirical observation that “almost all
birds fly”. By defining a logic which allows us to express
statistical conditional statements, we provide the user an
alternative way of representing such defaults. We would,
of course, like such statements to impact our beliefs about
individual birds. In (Bacchus et al. 1994), the same issue
was addressed in the probabilistic context, by presenting an
approach for going from statistical knowledge bases to sub-
jective degrees of belief. We leave the problem of providing
a similar mechanism for conditional logic to future work.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the various approaches to conditional



logic in the propositional case; we also review the defi-
nition" of plausibility measures from (Friedman & Halpern
1996) and show how they provide a common framework
for these different approaches. In Section 3, we discuss the
two ways in which we can extend propositional conditional
logic to first-order—statistical conditionals and subjective
conditionals—and ascribe semantics to both using plausi-
bilities. In Section 4, we provide a sound and complete
axiomatization for first-order subjective conditional asser-
tions. In Section 5, we discuss the generalization of the
other propositional approaches to the first-order case, by
investigating their behavior with respect to the lottery para-
dox. We also provide a brief comparison to some of the
other approaches suggested in the literature, deferring de-
tailed discussion to the full paper. We conclude in Section 6
with discussion and some directions for further work.

2 Propositional conditional logic
The syntax of propositional conditional logic is simple. We
start with a set # of propositions and close off under the
usual propositional connectives (  , $ , � , and % ) and the
conditional connective � . That is, if & and ' are formulas
in the language, so is &(��' .

Many semantics have been proposed in the literature for
conditionals. Most of them involve structures of the form�*) 
�+,
.- � , where

)
is a set of possible worlds, - � � � is a

truth assignment to primitive propositions, and + is some
“measure” on

)
such as a preference ordering (Lewis 1973;

Kraus, Lehmann, & Magidor 1990).3 We now describe
some of the proposals in the literature, and then show how
they can be generalized. Given a structure

��) 
*+,
/- � , let	 	0&�� ��1 ) be the set of worlds satisfying & .2 A possibility measure (Dubois & Prade 1990) Poss is a
function Poss : 2 35467	 0 
 1 � such that Poss

�*)8�:9
1,

Poss
��;<�=9

0, and Poss
�?>@�A9

sup BDCFE � Poss
�*G �IH � . A

possibility structure is a tuple
��) 
 Poss 
/- � , where Poss

is a possibility measure on
)

. It satisfies a conditional&(��' if either Poss
� 	 	0&�� � �J9 0 or Poss

� 	 	0&K�L'M� � �KN
Poss

� 	 	0&O�KP'Q� � � (Dubois & Prade 1991). That is, ei-
ther & is impossible, in which case the conditional holds
vacuously, or &���' is more possible than &=��P' .2 A � -ranking (or ordinal ranking) on

)
(as defined by

(Goldszmidt & Pearl 1992), based on ideas that go back
to (Spohn 1987)) is a function � : 2 3R6TS UWV , whereS U V 9 S UYX G[Z H , such that � �*)8�:9 0, � ��;\�A9]Z

,
and � �?>^�_9 min BDCFE � � ��G �@H ��� . Intuitively, an ordinal
ranking assigns a degree of surprise to each subset of
worlds in

)
, where 0 means unsurprising and higher

numbers denote greater surprise. A � -structure is a tuple��) 
/�Q
/- � , where � is an ordinal ranking on
)

. It satisfies
a conditional &(�8' if either � � 	 	0&�� � ��9`Z or � � 	 	0&P�a'Q� � ��b� � 	 	0&A�=P'Q� � � .
3We could also consider a more general definition, in which

one associates a different “measure” with each world, as done by
Lewis, for example (Lewis 1973). It is straightforward to extend
our definitions to handle this. Since this issue is orthogonal to the
main point of the paper, we do not discuss it further here.

2 A preference ordering on
)

is a partial order � over)
(Kraus, Lehmann, & Magidor 1990; Shoham 1987).

Intuitively, �]�c� � holds if � is preferred to � � . A
preferential structure is a tuple

��) 
��d
.- � , where � is
a partial order on

)
. The intuition (Shoham 1987) is

that a preferential structure satisfies a conditional &(��'
if all the most preferred worlds (i.e., the minimal worlds
according to � ) in 	 	 &�� � satisfy ' . However, there may
be no minimal worlds in 	 	 &�� � . This can happen if 	 	0&�� �
contains an infinite descending sequence

�e�f� �g� 2 �`� 1.
The simplest way to avoid this is to assume that � is
well-founded; we do so here for simplicity. A yet more
general definition—one that works even if � is not well-
founded—is given in (Lewis 1973; Boutilier 1994). We
discuss that in the full paper.2 A parameterized probability distribution (PPD) on

)
is

a sequence
G
Pr h : iIj 0 H of probability measures over)

. A PPD structure is a tuple
��) 
 G Pr h : idj 0 Hk
/- � ,

where
G
Pr h H is PPD over

)
. Intuitively, it satisfies a

conditional &(��' if the conditional probability ' given& goes to 1 in the limit. Formally, &P��' is satisfied if
lim hmldn Pr h � 	 	0'Q� �/op	 	0'Q� � �P9 1 (where Pr h � 	 	0'Q� �/oq	 	0&�� � � is taken
to be 1 if Pr h � 	 	0&�� � �r9 0). PPD structures were introduced
in (Goldszmidt, Morris, & Pearl 1993) as a reformulation
of Pearl’s � -semantics (Pearl 1989).

These variants are quite different from each other. However,
as shown in (Friedman & Halpern 1996), we can provide a
uniform framework for all of them using the notion of plau-
sibility measures. In fact, plausibility measures generalize
other types of measures, including probability measures (see
(Friedman & Halpern 1995)).

A plausibility measure Pl on
)

is a function that maps
subsets of

)
to elements in some arbitrary partially ordered

set. We read Pl
�s>^�

as “the plausibility of set
>

”. If Pl
�?>^�ut

Pl
��vd�

, then
v

is at least as plausible as
>

. Formally, a
plausibility space is a tuple w 9x�*) 
 Pl

�
, where

)
is a set

of worlds and Pl maps subsets of
)

to some set y , partially
ordered by a relation

t
(so that

t
is reflexive, transitive,

and anti-symmetric). As usual, we define the ordering
b

by
taking  1

b  2 if  1

t  2 and  1 z9  2. We assume that y
is pointed: that is, it contains two special elements { and|

such that
| t  t { for all  ~}Ly ; we further assume

that Pl
��)8�a9 { and Pl

��;\��9 |
. Since we want a set to be

at least as plausible as any of its subsets, we require:

A1. If
> 1 v , then Pl

�s>^�at
Pl
��vd�

.

Clearly, plausibility spaces generalize probability spaces.
Other approaches to dealing with uncertainty, such as pos-
sibility measures, � -rankings, and belief functions (Shafer
1976), are also easily seen to be plausibility measures.

We can give semantics to conditionals using plausibility
in much the same way as it is done using possibility. A
plausibility structure is a tuple PL

9��*) 
 Pl 
.- � , where Pl is
a plausibility measure on

)
. We then define:2 PL o 9 &P��' if either Pl
� 	 	0&�� � �:9 | or Pl

� 	 	0&O�J'Q� � �~N
Pl
� 	 	0&A��P'M� � � .

Intuitively, &(��' holds vacuously if & is impossible; oth-
erwise, it holds if &d�_' is more plausible than &���P' . It is



easy to see that this semantics for conditionals generalizes
the semantics of conditionals in possibility structures and� -structures. As shown in (Friedman & Halpern 1996), it
also generalizes the semantics of conditionals in preferential
structures and PPD structures. More precisely, a mapping is
given from preferential structures to plausibility structures
such that

��) 
��d
/- � o 9 & if and only if
��) 
 Pl ��
.- � o 9 & ,

where Pl � is the plausibility measure that corresponds to � .
A similar mapping is also provided for PPD structures.

These results show that our semantics for conditionals
in plausibility structures generalizes the various approaches
examined in the literature. Does it capture our intuitions
about conditionals? In the AI literature, there has been dis-
cussion of the right properties of default statements (which
are essentially conditionals). While there has been little
consensus on what the “right” properties for defaults should
be, there has been some consensus on a reasonable “core” of
inference rules for default reasoning. This core, is known as
the KLM properties (Kraus, Lehmann, & Magidor 1990).4

Do conditionals in plausibility structures satisfy these
properties? In general, they do not. To satisfy the KLM
properties we must limit our attention to plausibility struc-
tures that satisfy the following conditions:

A2. If
>

,
v

, and � are pairwise disjoint sets, Pl
�s> X vd�aN

Pl
� � � , and Pl

�s> X@� �(N Pl
��vd�

, then Pl
�s>^�aN

Pl
��v X@� � .

A3. If Pl
�s>^�P9

Pl
��vd�a9 |

, then Pl
�s> X vd�P9 | .

A plausibility space
��) 
 Pl

�
is qualitative if it satisfies A2

and A3. A plausibility structure
��) 
 Pl 
/- � is qualitative

if
��) 
 Pl

�
is a qualitative plausibility space. In (Friedman

& Halpern 1996) it is shown that, in a very general sense,
qualitative plausibility structures capture default reasoning.
More precisely, the KLM properties are sound with respect
to a class of plausibility structures if and only if the class
consists of qualitative plausibility structures. Furthermore,
a very weak condition is necessary and sufficient in order for
the KLM properties to be a complete axiomatization of con-
ditional logic. As a consequence, once we consider a class
of structures where the KLM axioms are sound, it is almost
inevitable that they will also be complete with respect to
that class. This explains the somewhat surprising fact that
KLM properties characterize default entailment not just in
preferential structures, but also in � -semantics, possibility
measures, and � -rankings. Each one of these approaches
corresponds, in a precise sense, to a class of qualitative
plausibility structures. These results show that plausibility
structures provide a unifying framework for the characteri-
zation of default entailment in these different logics.

3 First-order conditional logic
We now want to generalize conditional logic to the first-
order case. As mentioned above, there are two distinct
notions of conditionals in first-order logic, one involving
statistical conditionals and one involving subjective con-
ditionals. For each of these, we use a different syntax,

4Due to space limitations we do not review the KLM properties
here; see (Friedman & Halpern 1996) in this proceedings.

analogous to the syntax used in (Halpern 1990) for the prob-
abilistic case.

The syntax for statistical conditionals is fairly straightfor-
ward. Let # be a first-order vocabulary, consisting of predi-
cate and function symbols. (As usual, constant symbols are
viewed as 0-ary function symbols.) Starting with atomic
formulas of first-order logic, we form more complicated
formulas by closing off under truth-functional connectives
(i.e., ��
.$�
/ , and % ), first-order quantification, and the fam-
ily of modal operators &O���� ' , where �� is a sequence of
distinct variables. We denote the resulting language �u���?�.� .
The intuitive reading of &�� �� ' is that almost all of the�� ’s that satisfy & also satisfy ' . Thus, the � �� modality
binds the variables �� in & and ' . A typical formula in this
language is ��� ���_��� 
.� � � �O� ��� 
/� ��� , which can be read
“there is some � such that most

�
’s satisfying

�_��� 
/� � also
satisfy � ��� 
.� � ”.5 Note that we allow arbitrary nesting of
first-order and modal operators.

The syntax for subjective plausibilities is even sim-
pler than that for statistical plausibilities. Starting with
a first-order vocabulary # , we now close off under truth-
functional connectives, first-order quantification, and the
single modal operator � . Thus, a typical formula is�������_����� ����� � ��� 
/� ��� . Let �����<��� be the resulting lan-
guage (the “subj” stands for “subjective”, since the con-
ditionals are viewed as expressing subjective degrees of
belief).

We can ascribe semantics to both types of conditionals
using any one of the approaches described in the previous
section. (In fact, we do not even have to use the same
approach for both.) However, since we can embed all of the
approaches within the class of plausibility structures, we use
these as the basic semantics. As in the propositional case,
we can then analyze the behavior of the other approaches
simply by restricting attention to the appropriate subclass of
plausibility structures.

To give semantics to �����?�.� , we use (first-order) statisti-
cal plausibility structures, which generalize the semantics
of statistical probabilistic structures (Halpern 1990) and
statistical preferential structures (Brafman 1991). Statis-
tical plausibility structures are tuples of the form PL

9�
Dom 
.-D
�� � , where Dom is a domain, - is an interpretation

assigning each predicate symbol and function symbol in #
a predicate or function of the right arity over Dom, and �
associates with each number � a plausibility measure Pl �
on Dom

� . As usual, a valuation maps each variable to an
element of Dom. Given a structure

���
and a valuation � ,

we can associate with every formula & a truth value in a
straightforward way. The only nontrivial case is &,���� ' .
We define S�� PL   ¡F  ��e¢ � & �d9£G � :

�
PL 
/�¤	���¤¥ � f� � o 9 &(H , where

�¤	����¥ � f� is a valuation that maps each
�

in �� to the corre-
sponding element in � and agrees with � elsewhere.2 � PL 
/� � o 9 &`� �� ' if either Pl � � S � PL   ¡¦  ��e¢ � & ���=9 | or

Pl � � S � PL   ¡¦  ��e¢ � &,�§' ����N Pl � � S � PL   ¡F  ��e¢ � &,�,P' ��� , where� is the length of �� .

5This syntax is borrowed from Brafman (1991), which in turn
is based on that of (Bacchus 1990; Halpern 1990).



We remark that we need the sequence of plausibility mea-
sures¨ to deal with tuples of different arity. The analogous se-
quence of probability measures was not needed in (Halpern
1990), since, given a probability measure on Dom, we can
consider the product measure on Dom

�
. In the full paper,

we place some requirements on Pl � to force it to have the
key properties we expect of product measures. We omit
further discussion of statistical plausibilities here, and focus
instead on subjective plausibilities.

To give semantics to �����<��� , we use (first-order) subjec-
tive plausibility structures. These are tuples of the form
PL
9��

Dom 
 ) 
 Pl 
/- � , where Dom is a domain,
�*) 
 Pl

�
is

a plausibility space and - � � � is an interpretation assign-
ing to each predicate symbol and function symbol in # a
predicate or function of the right arity over Dom. We de-
fine the set of worlds that satisfy & given the valuation �
to be 	 	0&�� � � PL   ¡ ¢ 9©G � :

�
PL 
.�d
.� � o 9 &(H . (We omit the

subscript whenever it is clear from context.) For subjective
conditionals, we have2 � PL 
.�d
.� � o 9 &(��' if Pl

� 	 	0&�� �ª� PL   ¡ ¢ �J9 | or Pl
� 	 	0&��'Q� �?� PL   ¡ ¢ �aN Pl

� 	 	0&=�«('Q� �?� PL   ¡ ¢ � .
We do not treat terms as rigid designators here. That is,

in different worlds, a term can denote different individuals.
For example, if - � � �.��¬�� z9 - � � � �.��¬�� , the constant

¬
denotes

different individuals in � and � � . Because terms are not
rigid designators, we cannot substitute terms for universally
quantified variables. (A similar phenomenon holds in other
modal logics where terms are not rigid (Garson 1977).) For
example, let a& be an abbreviation for P&(� false. Notice
that

�
PL 
.� � o 9 a& if Pl

� 	 	0P&�� � �Q9 | ; i.e., �& asserts that the
plausibility of P& is the same as that of the empty set, so that& is true “almost everywhere”. We define ®d& as ��P& ;
this says that & is true in some non-negligible set of worlds.
Suppose

¬
is a constant that does not appear in the formula& . As we show in the full paper,

��� ®d& ����� %¯®�& ��¬�� is
not valid in our framework; that is, we cannot substitute
constants for universally quantified variables. We could
substitute if

¬
were rigid. We can get the effect of rigidity

by assuming that � ���  ���K9©¬����
holds. Thus, we do not

lose expressive power by not assuming rigidity.

4 Axiomatizing default reasoning in
plausibility structures

We now want to show that plausibility structures provide
an appropriate semantics for a first-order logic of defaults.
As in the propositional case, this is true only if we restrict
attention to qualitative plausibility structures, i.e., those sat-
isfying conditions A2 and A3 above. Let ��°�±�²���<��� be the
class of all subjective qualitative plausibility structures. We
provide a sound and complete axiom system for ��°�±�²���<��� , and
show that it is the natural extension of the KLM properties
to the first-order case.

The axiomatization ³d���<��� , specified in Figure 1, consists
of three parts. The first set of axioms (C0–C5 together
with the rules MP, LLE, and RW) is simply the standard
axiomatization of propositional conditional logic (Hughes

C0. All instances of propositional tautologies
C1. ´�µ,´
C2. ¶�¶?´�µ,· 1 ¸�¹ ¶?´�µ,· 2 ¸�¸rº ¶?´�µW¶?· 1 ¹ · 2 ¸�¸
C3. ¶�¶?´ 1 µW· ¸�¹ ¶?´ 2 µW· ¸�¸Qº ¶�¶?´ 1 » ´ 2 ¸ µ,· ¸
C4. ¶�¶?´ 1 µW´ 2 ¸�¹ ¶?´ 1 µ,· ¸�¸Qº ¶�¶?´ 1 ¹ ´ 2 ¸ µ,· ¸
C5. ¼p¶?´�µ,· ¸rº¾½ ¶?´�µW· ¸ª¿<¹ ¼0ÀD¶?´�µ,· ¸rº¾½ ÀD¶?´�µ,· ¸ª¿
F1. Á�ÂÃ´ º ´Q¼0ÂkÄ�Å ¿ , where Å is substitutable for Â in the sense

discussed below
F2. Á�Â�¶?´ º · ¸rº ¶�ÁÆÂk´ º ÁÆÂk· ¸
F3. ´ º Á�ÂÃ´ if Â does not occur free in ´
F4. Â@Ç�Â
F5. Â@Ç�È º ¶?´ º ´�É ¸ , where ´ is a quantifier-free and µ -free

formula and ´ É is obtained from ´ by replacing zero or more
occurrences of Â in ´ by È

F6. ½ Á�Âk´AÊËÁÆÂ ½ ´
F7. Â@Ç�È º©½ ¶?Â^ÇKÈ ¸
F8. Â:ÌÇ�È º©½ ¶?ÂÍÌÇKÈ ¸
MP. From ´ and ´ º · infer ·
LLE. From ´ 1 ÊÎ´ 2 infer ´ 1 µO·�Ê�´ 2 µW·
RW. From · 1 º · 2 infer ´�µO· 1 º ´�µO· 2.

Figure 1: The system C ���<��� consists of all generalizations
of the following axioms (where & is a generalization of '
if & is of the form

���
1

�e�f�ª��� ��' ) and rules;
�

and � denote
variables, while Ï denotes an arbitrary term.

& Cresswell 1968); the second set (axioms F1–F5) consists
of the standard axioms of first-order logic (Enderton 1972);
the final set (F6–F8) contains the standard axioms relating
the two (Hughes & Cresswell 1968). F6 is known as the
Barcan formula; it describes the relationship between  and�

in structures where all the worlds have the samedomain (as
is the case here). F7 and F8 describe the interaction between and equality, and hold because we are essentially treating
variables as rigid designators.

It remains to explain the notion of “substitutable” in F1.
Clearly we cannot substitute a term Ï for

�
with free variables

that might be captured by some quantifiers in & ; for example,
while

��� ��� ��� z9 � � is true as long as the domain has at least
two elements, if we substitute � for

�
, we get ��� � � z9 � � ,

which is surely false. In the case of first-order logic, it
suffices to define “substitutable” so as to make sure this does
not happen (see (Enderton 1972) for details). However, in
modal logics such as this one, we have to be a little more
careful. As we observed in Section 3, we cannot substitute
terms for universally quantified variables in a modal context,
since terms are not in general rigid. Thus, we require that
if & is a formula that has occurrences of � , then the only
terms that are substitutable for

�
in & are other variables.

Theorem 4.1: C ���<��� is a sound and complete axiomatiza-
tion of �u���<��� with respect to ��°�±�²���<��� .

We claim that ³d���<��� is the weakest “natural” first-order
extension of the KLM properties. The bulk of the proposi-
tional fragment of this axiom system (axioms C1–C4, LLE,
and RW) corresponds precisely to the KLM properties. The



remaining axiom (C5) captures the fact that the plausibility
functionÐ Pl is independent of the world. This property does
not appear in (Kraus, Lehmann, & Magidor 1990) since they
do not allow nesting of conditionals. As discussed above,
the remaining axioms are standard properties of first-order
modal logic.

5 Alternative Approaches
In the previous section we showed that ³d���<��� is sound and
complete with respect to ��°�±�²���<��� . What happens if we use
one of the approaches described in Section 2 to give seman-
tics to conditionals? As noted above, we can associate with
each of these approach a subset of qualitative plausibility
structures. Let �ÒÑ   B���<��� 
��ÒÑ���<��� 
���Ó���<��� 
��ÒÑ[Ô ������<��� 
 and �:Õ���<��� be the

subsets of ��°�±�²���<��� that correspond to well-founded preferen-
tial orderings, preferential orderings, � -rankings, possibility
measures, and PPDs, respectively. From Theorem 4.1, we
immediately get

Theorem 5.1: C ���<��� is sound in �ÒÑ   B���<��� , �ÖÑ   ����<��� , �ÒÑ���<��� ,� Ó���<��� , �ÒÑFÔ �*����<��� , and � Õ���<��� .
Is ³d���<��� complete with respect to these approaches?

Even at the propositional level, it is well known that be-
cause � rankings and possibility measures induce plausibil-
ity measures that are total (rather than partial) orders, they
satisfy the following additional property:

C6. &(��',�� � &P��Q× � % � &��_×���' � .
In addition, the plausibility measures induced by � rankings,
possibility measures, and � semantics are easily seen to have
the property that { N | . This leads to the following axiom:

C7.  � true � false
�
.

In the propositional setting, these additional axioms and the
basic propositional conditional system (i.e., C0–C5, MP,
LLE, and RW) lead to sound and complete axiomatization
of the corresponding (propositional) structures.

Does the same phenomenon occur in the first-order case?
For � -semantics, it does.

Theorem 5.2: C ���<���eØ C7 is a sound and complete axiom-
atization of �u���<��� w.r.t. �:Õ���<��� .
But, unlike the propositional case, the remaining approaches
all satisfy properties beyond ³I���<��� , C6, and C7. And these
additional properties are ones that we would argue are un-
desirable, since they cause the lottery paradox. Recall that
the lottery paradox can be represented with two formulas:
(1)
�����

true �� Winner
�������

states that every individual is
unlikely to win the lottery, while (2) true ��� � Winner

�����
states that is is likely that some individual does win the
lottery. We start by showing that (1) and (2) are consis-
tent in ��°�±�²���<��� . We define a first-order subjective plau-
sibility structure PLlot

9Ù�
Domlot 
 ) lot 
 Pllot 
.- lot

�
as fol-

lows: Domlot is a countable domain consisting of the in-
dividuals 1 
 2 
 3 
 �f��� ; ) lot consists of a countable num-
ber of worlds � 1 
/� 2 
/� 3 
 �f�f� ; Pllot gives the empty set
plausibility 0, each non-empty finite set plausibility 1

¥
2,

and each infinite set plausibility 1; finally, the denotation

of Winner in world �ah according to - lot is the singleton
set

G  \h*H (that is, in world �ah the lottery winner is in-
dividual  h ). It is easy to check that 	 	  Winner

�  h � � � 9)7Ú©G � h H , so Pllot

� 	 	0 Winner
�  h � � � ��9 1

N
1
¥
2
9

Pl
� 	 	Winner

�  <h � � � � ; hence, PLlot satisfies (1). On the other
hand, 	 	0� � Winner

����� � � 9R)
, so Pllot

� 	 	0� � Winner
����� � � �§N

Pllot

� 	 	0P� � Winner
����� � � � ; hence PLlot satisfies (2). It is also

easy to verify that Pllot is a qualitative measure, i.e., satisfies
A2 and A3. A similar construction allows us to capture a
situation where birds typically fly but we know that Tweety
does not fly.

What happens to the lottery paradox in the other ap-
proaches? First consider well-founded preferential struc-
tures, i.e., �ÒÑ   B���<��� . In these structures, &(��' holds if ' holds
in all the preferred worlds that satisfy & . Thus, (1) implies
that for any domain element  ,  is not a winner in the most
preferred worlds. On the other hand, (2) implies that in
the most preferred worlds, some domain element wins. To-
gether both imply that there are no preferred worlds. When,
in general, does an argument of this type go through? As
we now show, it is a consequence of

A2 V . If
Ge> h : iJ}©SkH are pairwise disjoint sets,

>59
XDh CFÛ > h , 0 }LS , and for all iÖ}LS Ú`G 0 H , Pl

�?>ÜÚ�> h �IN
Pl
�?> h � , then Pl

�?>
0

�(N
Pl
�?>!ÚJ>

0

�
.

Recall that A2 states that if
>

0,
>

1, and
>

2 are disjoint,
Pl
�s>

0 X > 1

��N
Pl
�s>

2

�
, and Pl

�?>
0 X > 2

�dN
Pl
�?>

1

�
, then

Pl
�s>

0

�(N
Pl
�s>

1 X > 2

�
. It is easy to check that for any finite

number of sets, a similar property follows from A1 and A2
by induction. A2 V asserts that a condition of this type holds
even for an infinite collection of sets. This is not implied
by A1 and A2. To see this, consider the plausibility model
PLlot that we used to capture the infinite lottery: Take

>
0 to

be empty and take
> h , i N 1, to be the singleton consisting

of the world �ah . Then Pllot

�s>:Ú^> h �(9 1
N

1
¥
2
9

Pllot

�?> h � ,
but Pllot

�s>
0

�P9
0
b

1
9

Pl
� X hsÝ 0

> h � . Hence, A2 V does not
hold for plausibility structures in general. It does, however,
hold for certain subclasses:

Proposition 5.3: A2 V holds in every plausibility structure
in �ÖÑ   B���<��� and ��Ó���<��� .

In the full paper we show that A2 V is characterized by the
axiom called

�
3 by Delgrande:�

3.
����� &P��' � % � &P� ��� ' � if

�
does not occur free in & .

This axiom can be viewed as an infinitary version of ax-
iom C2 (which is essentially KLM’s And Rule). Since A2 V
holds in �ÒÑ   B���<��� and ��Ó���<��� , it follows that

�
3 does as well.

It is easy to see that the axiom
�

3 leads to the lottery para-
dox: From

�����
true �� Winner

�������
,
�

3 would imply that
true � �����  Winner

�������
.

As we show in the full paper, A2 V does not hold in �ÒÑ[Ô ������<���
and �ÒÑ���<��� . In fact, the infinite lottery is consistent in these
classes, although a somewhat unnatural model is required
to express it. For example, we can represent the lottery
via a possibility structure

�
Domlot 
 ) lot 
 Poss 
.- lot

�
, where

all the components besides Poss are just as in the plausibil-
ity structure PLlot that represents the lottery scenario, and
Poss

� �ah ��9 i ¥k� irØ 1
�
. This means that if i N�Þ , then it



is more possible that individual i wins than individual
Þ
.

Moreoverß , this possibility approaches 1 as i increases. It
is not hard to show that this possibility structure satisfies
formulas (1) and (2).

We can block this type of behavior by considering a
crooked lottery, where there is one individual who is more
likely to win than the rest, but is still unlikely to win. To
formalize this in the language, we add the following formula
that we call Crooked:

P� ��� Winner
����� � false

� ����� ������� z9 ��%���
Winner

����� $ Winner
� � �*� � Winner

� � �����
The first part of this formula states that each individual has
some plausibility of winning; in the language of plausibility,
this means that Pl

�  �aN | for each domain element  . The
second part states that there is an individual who is more
likely to win than the rest. To see this, recall that

� &($�' � ��'
implies that either Pl

� 	 	0&�$,'Q� � ��9 | (which cannot happen
here because of the first clause of Crooked) or Pl

� 	 	0&�� � �àb
Pl
� 	 	 'M� � � . We take the crooked lottery to be formalized by the

formula
�����

true �á Winner
������� � � true �á� � Winner

�����*� �
Crooked. Note, that

�����
true �� Winner

�����*�
implies that

every individual is unlikely to win.
It is easy to model the crooked lottery using plausibil-

ity. Consider the structure PL
�
lot

9á�
Domlot 
 ) lot 
 Pl

�
lot 
/- lot

�
,

which is identical to PLlot except for the plausibility mea-
sure Pl

�
lot. We define Pl

�
lot

� � 1

��9
3
¥
4; Pl

�
lot

� � h ��9 1
¥
2

for i N 1; Pl
�
lot

�s>^�
of a finite set

>
is 3

¥
4 if � 1 } > ,

and 1
¥
2 if � 1 z} > ; and Pllot

�s>^�=9
1 for infinite

>
. It

is easy to verify that PL
�
lot satisfies Crooked, taking  1

to be the special individual who is most likely to win
(since Pl

� 	 	Winner
�  1

� � � �D9 3
¥
4
N

1
¥
2
9

Pl
� 	 	Winner

�  \h � � � �
for i N 1). It is also easy to verify that PL

�
lot o 9�����

true �� Winner
������� � � true ��� � Winner

�������
.

As we show in the full paper, the crooked lottery cannot
be captured in �ÒÑFÔ �*����<��� and �ÒÑ���<��� . This shows that, once we
move to first-order logic, possibility structures and preferen-
tial structures satisfy extra properties over and above those
characterized by ³I���<��� .

Although our focus thus far has been on subjective con-
ditionals, the situation for statistical conditionals is similar.
We have already remarked that we can construct “statisti-
cal” first-order analogues of all the approaches considered
in the propositional case. As in the subjective case, all of
them suffer From problems except for the one based on� -semantics. We illustrate this using by considering the ex-
tension of well-founded preferential structures to first-order
conditionals over the domain,as defined by Brafman (1991).
Consider the statement� � � true � �  Married

��� 
.� �*� �
5
�

This states that for any individual � , most individuals are
not married to � . This seems reasonable since each � is
married to at most one individual, which clearly constitutes
a small fraction of the population. The analogue of

�
3 holds

in Brafman’s logic, for the same reason that it does in �ÒÑ   B���<��� .As a consequence, (5) implies

true � � � �\ Married
��� 
/� ���

That is, most people are not married! This certainly does not
seem to be a reasonable conclusion. It is straightforward to
construct similar examples for the statistical variants of the
other approaches, again, with the exception of plausibility
structures and � -semantics. We note that these problems
occur for precisely the same reasons they occur in the sub-
jective case. In particular, property A2 V , when stated for the
plausibility over domain elements, is the necessary property
for the statistical analogue of

�
3.

We observe that problems similar to the lottery paradox
occur in the approach of Lehmann and Magidor (1990),
which can be viewed as a hybrid of subjective and statistical
conditionals based on on preferential structures. Finally,
we observe that the approach of (Schlechta 1995), which
is based on a novel representation of “large” subsets, is in
the spirit of our notion of statistical defaults (although his
language is somewhat less expressive than ours). We defer
a detailed discussion of these approaches to the full paper.

6 Discussion
We have shown how to ascribe semantics to a first-order
logic of conditionals in a number of ways. Our analysis
shows that, once we move to the first-order case, significant
differences arise between approaches that were shown to
be equivalent in the propositional case. This vindicates the
intuition that there are significant differences between these
approaches, which the propositional language is simply too
weak to capture. Our analysis also supports our choice of
plausibility structures as the semantics for first-order de-
faults: it shows that, with the exception of � -semantics,
all the previous approaches have significant shortcomings,
which manifest themselves in lottery-paradox type situa-
tions.

What does all this say about default reasoning? As we
have argued, statements like “birds typically fly” should
perhaps be thought of as statistical statements, and should
thus be represented as Bird

����� � � Fly
�����

. Such a repre-
sentation gives us a logic of defaults, in which statements
such as “birds typically fly” and “birds typically do not fly”
are inconsistent, as we would expect.

Of course, what we really want to do with such typicality
statements is to draw default conclusions about individuals.
Suppose we believe such a typicality statement. What other
beliefs should follow? In general,

�����
Bird

����� � Fly
�������

does not follow; we should not necessarily believe that all
birds are likely to fly. We may well know that Tacky the
penguin does not fly. As long as Tacky is a rigid des-
ignator, this is simply inconsistent with believing that all
birds are likely to fly. In the absence of information about
any particularly bird,

�����
Bird

����� � Fly
�������

may well be
a reasonable belief to hold. Moreover, no matter what we
know about exceptional birds, it seems reasonable to believe
true � � � Bird

����� � Fly
�������

: almost all birds are likely to
fly (assuming we have a logic that allows the obvious com-
bination of statistical and subjective plausibility).

Unfortunately,we do not have a general approach that will
let us go from believing that birds typically fly to believing
that almost all birds are likely to fly. Nor do we have an



approach that allows us to conclude that Tweety is likely to
fly givenâ that birds typically fly and Tweety is a bird (and
that we know nothing else about Tweety). These issues were
addressed in the first-order setting by both Lehmann and
Magidor (1990) and Delgrande (1988). The key feature of
their approaches, as well as other propositional approaches
rests upon getting a suitable notion of irrelevance. While
we also do not have a general solution to the problem of
irrelevance, we believe that plausibility structures give us
the tools to study it in an abstract setting. We suspect that
many of the intuitions behind probabilistic approaches that
allow us to cope with irrelevance (Bacchus et al. 1994) can
also be brought to bear here. We hope to return to this issue
in future work.
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