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Abstract

In recent years, a number of different semantics for de-
faults have been proposed, such as preferential structures, � -
semantics, possibilistic structures, and � -rankings, that have
been shown to be characterized by the same set of axioms,
known as the KLM properties (for Kraus, Lehmann, and
Magidor). While this was viewed as a surprise, we show here
that it is almost inevitable. We do this by giving yet another
semantics for defaults that uses plausibility measures, a new
approach to modeling uncertainty that generalize other ap-
proaches, such as probability measures, belief functions, and
possibility measures. We show that all the earlier approaches
to default reasoning can be embedded in the framework of
plausibility. We then provide a necessary and sufficient con-
dition on plausibilities for the KLM properties to be sound,
and an additional condition necessary and sufficient for the
KLM properties to be complete. These conditions are easily
seen to hold for all the earlier approaches, thus explaining
why they are characterized by the KLM properties.

1 Introduction
There have been many approaches to default reasoning
proposed in the literature (see (Ginsberg 1987; Gabbay,
Hogger, & Robinson 1993) for overviews). The recent
literature has been guided by a collection of axioms that
have been called the KLM properties (since they were dis-
cussed in (Kraus, Lehmann, & Magidor 1990)), and many
of the recent approaches to default reasoning, including
preferential structures (Kraus, Lehmann, & Magidor 1990;
Shoham 1987), � -semantics (Adams 1975; Geffner 1992b;
Pearl 1989), possibilistic structures (Dubois & Prade 1991),
and � -rankings (Goldszmidt & Pearl 1992; Spohn 1987),
have been shown to be characterized by these properties.
This has been viewed as somewhat surprising, since these
approaches seem to capture quite different intuitions. As
Pearl (1989) said of the equivalence between � -semantics
and preferential structures, “It is remarkable that two totally
different interpretations of defaults yield identical sets of
conclusions and identical sets of reasoning machinery.”

The goal of this paper is to explain why all these ap-
proaches are characterized by the KLM properties. Our
key tool is the use of yet another approach for giving se-
mantics to defaults, that makes use of plausibility measures

(Friedman & Halpern 1995a). A plausibility measure asso-
ciates with a set a plausibility, which is just an element in a
partially ordered space. The only property that we require
is that the plausibility of a set is at least as great as the
plausibility of any of its subsets. Probability distributions,
Dempster-Shafer belief functions (Shafer 1976), and possi-
bility measures (Dubois & Prade 1990) are all easily seen to
be special cases of plausibility measures. Of more interest
to us here is that all the approaches that have been used
to give semantics to defaults that can be characterized by
the KLM properties can be embedded into the plausibility
framework.

In fact, we show much more. All of these approaches can
be understood as giving semantics to defaults by considering
a class

�
of structures (preferential structures, possibilistic

structures, etc.). A default � is then said to follow from
a knowledge base � of defaults if all structures in

�
that

satisfy � also satisfy � . We define a notion of qualitative
plausibility measure, and show that the KLM properties are
sound in a plausibility structure if and only if it is qualitative.
Moreover, as long as a class

�
of plausibility structures sat-

isfies a minimal richness condition, we show that the KLM
properties will completely characterize default reasoning in�

. We then show that when we map preferential structures
(or possibilistic structures or any of the other structures con-
sidered in the literature on defaults) into plausibility struc-
tures, we get a class of qualitative structures that is easily
seen to satisfy the richness conditioning. This explains why
the KLM axioms characterize default reasoning in all these
frameworks. Far from being surprising that the KLM ax-
ioms are complete in all these cases, it is almost inevitable.

The KLM properties have been viewed as the “conser-
vative core” of default reasoning (Pearl 1989), and much
recent effort has been devoted to finding principled meth-
ods of going beyond KLM. Our result shows that any ap-
proach that gives semantics to defaults with respect to a
collection

�
of structures will almost certainly not go be-

yond KLM. This result thus provides added insight into and
justification for approaches such as those of (Bacchus et
al. 1993; Geffner 1992a; Goldszmidt & Pearl 1992; Gold-
szmidt, Morris, & Pearl 1993; Lehmann & Magidor 1992;
Pearl 1990) that, roughly speaking, say � follows from �
if � is true in a particular structure �	��
 � that satisfies �



(not necessarily all structures in
�

that satisfy � ).
This
�

paper is organized as follows. In Section 2, we
review the relevant material from (Friedman & Halpern
1995a) on plausibility measures. In Section 3, we review
the KLM properties and various approaches to default rea-
soning that are characterized by these properties. In Sec-
tion 4, we show how the various notions of default reasoning
considered in the literature can all be viewed as instances
of plausibility measures. In Section 5, we define qualita-
tive plausibility structures, show that the KLM properties
are sound in a structure if and only if it is qualitative, and
provide a weak richness condition that is necessary and suf-
ficient for them to be complete. In Section 6, we discuss
how plausibility measures can be used to give semantics
to a full logic of conditionals, and compare this with the
more traditional approach (Lewis 1973). In the full paper
(Friedman & Halpern 1995b) we also consider the relation-
ship between our approach to plausibility and epistemic en-
trenchment (Gärdenfors & Makinson 1988). We conclude
in Section 7 with a discussion of other potential applications
of plausibility measures.

2 Plausibility Measures
A probability space is a tuple ������������ , where � is a set of
worlds, � is an algebra of measurable subsets of � (that is,
a set of subsets closed under union and complementation to
which we assign probability) and � is a probability measure,
that is, a function mapping each set in � to a number in � 0 � 1 �
satisfying the well-known Kolmogorov axioms ( �	������ 0,
�	���� � 1, and �	"!$#�%&�'�(�	"!)�+*,�	�%&� if ! and % are
disjoint).

A plausibility space is a direct generalization of a prob-
ability space. We simply replace the probability measure
� by a plausibility measure Pl, which, rather than mapping
sets in � to numbers in � 0 � 1 � , maps them to elements in
some arbitrary partially ordered set. We read Pl "!-� as “the
plausibility of set ! ”. If Pl .!)�0/ Pl �%&� , then % is at least
as plausible as ! . Formally, a plausibility space is a tuple1 �2��3����� Pl� , where � is a set of worlds, � is an algebra
of subsets of � , and Pl maps the sets in � to some set 4 ,
partially ordered by a relation /65 (so that /75 is reflex-
ive, transitive, and anti-symmetric). We assume that 4 is
pointed: that is, it contains two special elements 8 5 and9 5 such that

9 5 / 5 �:/ 5 8 5 for all �:
;4 ; we further
assume that Pl ����	�<8=5 and Pl ��>�?� 9 5 . The only other
assumption we make is

A1. If !<@A% , then Pl .!)�'/ 5 Pl �%&� .
Thus, a set must be at least as plausible as any of its subsets.

Some brief remarks on the definition: We have delib-
erately suppressed the domain 4 from the tuple

1
, since

the choice of 4 is not significant in this paper. All that
matters is the ordering induced by / 5 on the subsets in � .
The algebra � also does not play a significant role in this
paper; for our purposes, it suffices to take �B� 2 C . We
have chosen to allow the generality of having an algebra
of measurable sets to make it clear that plausibility spaces
generalize probability spaces. For ease of exposition, we

omit the � from here on in, always taking it to be 2 C , and
just denote a plausibility space as a pair ���� Pl � . As usual,
we define the ordering D75 by taking � 1 D75A� 2 if � 1 /75A� 2
and � 1 E�F� 2. We omit the subscript

1
from /75 , D75 , 8G5

and
9 5 whenever it is clear from context.

Clearly plausibility spaces generalize probability spaces.
We now briefly discuss a few other notions of uncertainty
that they generalize:
H A belief function Belon � is a function Bel : 2 CJIK� 0 � 1 �

satisfying certain axioms (Shafer 1976). These axioms
certainly imply property A1, so a belief function is a
plausibility measure.

H A fuzzy measure (or a Sugeno measure) L on � (Wang
& Klir 1992) is a function L : 2 CNMI � 0 � 1 � , that sat-
isfies A1 and some continuity constraints. A possi-
bility measure (Dubois & Prade 1990) Poss is a fuzzy
measure such that Poss ����O� 1, Poss ����O� 0, and
Poss "!)�?� sup P	QSR6 Poss �TSU-VW� .

H An ordinal ranking (or � -ranking) � on � (as defined
by (Goldszmidt & Pearl 1992), based on ideas that go
back to (Spohn 1987)) is a function mapping subsets of
� to X Y[ZG�\X YF#]TW^(V such that �_����	� 0, �`a�>���\^ ,
and �_"!-�b� min P	QSR ��_�TSU-VW��� . Intuitively, an ordinal
ranking assigns a degree of surprise to each subset of
worlds in � , where 0 means unsurprising and higher
numbers denote greater surprise. It is easy to see that if
� is a ranking on � , then ��3�c�d� is a plausibility space,
where ef/ X Y[g�h if and only if h /ie under the usual
ordering on the ordinals.

H A preference ordering on � is a partial order j over
� (Kraus, Lehmann, & Magidor 1990; Shoham 1987).
Intuitively, Ukj�U6l holds if U is preferred to U6l .1 Pref-
erence orders have been used to provide semantics for
default (i.e., conditional) statements. In Section 4 we
show how to map preference orders on � to plausibil-
ity measures on � in a way that preserves the ordering
of events of the form TWUmV as well as the truth values of
defaults.

H A parametrized probability distribution (PPD) on � is
a sequence T Pr n : omp 0 V of probability measures over
� . Such structures provide semantics for defaults in
� -semantics (Pearl 1989; Goldszmidt, Morris, & Pearl
1993). In Section 4 we show how to map PPDs into
plausibility structures in a way that preserves the truth-
values of conditionals.

Plausibility structures are motivated by much the same
concerns as two other recent symbolic generalizations of
probability by Darwiche (1992) and Weydert (1994). Their
approaches have a great deal more structure though. They
start with a domain 4 and several algebraic operations that
have properties similar to the usual arithmetic operations
(e.g., addition and multiplication) over � 0 � 1 � . The result

1We follow the standard notation for preference here (Lewis
1973; Kraus, Lehmann, & Magidor 1990), which uses the (perhaps
confusing) convention of placing the more likely world on the left
of the q operator.



is an algebraic structure over the domain 4 that satisfies
variousr properties. Their structures are also general enough
to capture all of the examples above except preferential
orderings. These orderings cannot be captured precisely
because of the additional structure. Moreover, as we shall
see, by starting with very little structure and adding just what
we need, we can sometimes bring to light issues that may
be obscured in richer frameworks. We refer the interested
reader to (Friedman & Halpern 1995a) for a more detailed
comparison to (Darwiche 1992; Weydert 1994).

3 Approaches to Default Reasoning: A
Review

Defaults are statements of the form “if s then typi-
cally/likely/by default t ”, which we denote s?uvt . For
example, the default “birds typically fly” is represented
Bird u Fly. There has been a great deal of discussion in
the literature as to what the appropriate semantics of de-
faults should be, and what new defaults should by entailed
by a knowledge base of defaults. For the most part, we
do not get into these issues here. While there has been
little consensus on what the “right” semantics for defaults
should be, there has been some consensus on a reasonable
“core” of inference rules for default reasoning. This core,
known as the KLM properties, was suggested by (Kraus,
Lehmann, & Magidor 1990), and consists of the following
axiom and rules of inference (where we use w to denote
material implication):

LLE. From sfxys l and s�uzt infer s l uFt (left logical
equivalence)

RW. From tOw{t	l and s�uzt infer s?uvt|l (right weaken-
ing)

REF. s�uzs (reflexivity)

AND. From s?uvt 1 and s�uzt 2 infer s?uvt 1 } t 2

OR. From s 1 uzt and s 2 uFt infer s 1 ~ s 2 uFt
CM. From s?uvt 1 and s?uvt 2 infer s } t 1 uFt 2 (cautious

monotonicity)

LLE states that the syntactic form of the antecedent is irrel-
evant. Thus, if s 1 and s 2 are equivalent, we can deduce
s 2 uvt from s 1 uvt . RW describes a similar property of
the consequent: If t (logically) entails t	l , then we can de-
duce s?uvt|l from s?uvt . This allows us to can combine
default and logical reasoning. REF states that s is always a
default conclusion of s . AND states that we can combine
two default conclusions: If we can conclude by default both
t 1 and t 2 from s , we can also conclude t 1 } t 2 from s . OR
states that we are allowed to reason by cases: If the same
default conclusion follows from each of two antecedents,
then it also follows from their disjunction. CM states that
if t 1 and t 2 are two default conclusions of s , then discov-
ering that t 1 holds when s holds (as would be expected,
given the default) should not cause us to retract the default
conclusion t 2.

This system of rules is called system P in (Kraus,
Lehmann, & Magidor 1990). The notation ��� P s?uvt

denotes that s?uvt can be deduced from � using these
inference rules.

There are a number of well-known semantics for defaults
that are characterized by these rules. We sketch a few of
them here, referring the reader to the original references
for further details and motivation. All of these semantics
involve structures of the form ��3���[�c�`� , where � is a set
of possible worlds, �+�UG� is a truth assignment to primitive
propositions, and � is some “measure” on � such as a
preference ordering, a � -ranking, or a possibility measure.
We define a little notation that will simplify the discussion
below. Given a structure ��3���[�c�`� , we take � ��s_� ��@�� to
be the set of of worlds satisfying s , i.e., � ��s_� ���zTWU2
$� :
�+aUG���s	��� true V .

The first semantic proposal was provided by Kraus,
Lehmann and Magidor (1990), using ideas that go back
to (Lewis 1973; Shoham 1987). Recall that a preference
ordering on � is partial order (i.e., irreflexive and transi-
tive relation) j over � . A preferential structure is a tuple
��3��jm���`� , where j is a partial order on � .2 The intu-
ition (Shoham 1987) is that a preferential structure satisfies
a conditional s?uvt if all the the most preferred worlds
(i.e., the minimal worlds according to j ) in � ��s_� � satisfy
t . However, there may be no minimal worlds in � ��s`� � .
This can happen if � ��s_� � contains an infinite descending se-
quence ������j�U 2 j�U 1. What do we do in these struc-
tures? There are a number of options: the first is to as-
sume that, for each formula s , there are minimal worlds
in � ��s`� � ; this is the assumption actually made in (Kraus,
Lehmann, & Magidor 1990), where it is called the smooth-
ness assumption. A yet more general definition—one that
works even if j is not smooth—is given in (Lewis 1973;
Boutilier 1994). Roughly speaking, s?u2t is true if, from a
certain point on, whenever s is true, so is t . More formally,

��3��j&���`� satisfies s?uvt , if for every world U 1 
O� ��s_� � ,
there is a world U 2 such that (a) U 2 � U 1 (so that U 2
is at least as normal as U 1), (b) U 2 
$� ��s } t+� � , and (c)
for all worlds U 3 jFU 2, we have U 3 
�� ��s$w�t+� � (so
any world more normal than U 2 that satisfies s also
satisfies t ).

It is easy to verify that this definition is equivalent to the ear-
lier one if j is smooth. A knowledge-base � preferentially
entails s?uvt , denoted ��� � p s?uvt , if every preferential
structure that satisfies (all the defaults in) � also satisfies
s?uvt .

Lehmann and Magidor show that preferential entailment
is characterized by system P.

2We note that the formal definition of preferential structures in
(Kraus, Lehmann, & Magidor 1990; Lehmann & Magidor 1992) is
slightly more complex. Kraus, Lehmann, and Magidor distinguish
between states and worlds. In their definition, a preferential struc-
ture is an ordering over states together with a labeling function that
maps states to worlds. They take worlds to be truth assignments
to primitive propositions. Our worlds thus correspond to states in
their terminology, since we allow two worlds �k�� �'� such that��� � � � �d� � � � . Despite these minor differences, all the results
that we prove for our version of preferential structures hold (with
almost no change in proof) for theirs.



Theorem 3.1: (Lehmann & Magidor 1992; Boutilier 1994)
��� � p s?uvt if and only if �F� P s?uvt .

Thus, reasoning with preferential structures corresponds in a
precise sense to reasoning with the core properties of default
reasoning.

As we mentioned earlier, we usually want to add addi-
tional inferences to those sanctioned by the core. Lehmann
and Magidor (1992) hoped to do so by limiting attention
to a special class of preferential structures. A preferential
structure ��3��j&�c�`� is rational if j is a modular order, so
that for all worlds ��������Uf
�� , if U\j�� , then either �:jA�
or U�ji� . It is not hard to show that modularity implies
that possible worlds are clustered into equivalence classes,
each class consisting of worlds that are incomparable to
one another, with these classes being totally ordered. Thus,
rational structures form a “well-behaved” subset of pref-
erential structures. Unfortunately, Lehmann and Magidor
showed that restricting to rational structures gives no ad-
ditional properties (at least, as far as the limited language
of defaults is concerned). We say that a knowledge base
� rationally entails s?uvt , denoted ��� � r s?uvt , if every
rational structure that satisfies � also satisfies s?uvt .3

Theorem 3.2: (Lehmann & Magidor 1992) ��� � r s?uvt if
and only if �z� P s�uzt .

Thus, we do not gain any new patterns of default inference
when we restrict our attention to rational structures.

Pearl (1989) considers a semantics for defaults grounded
in probability, using an approach due to Adams (1975). In
this approach, a default s?uvt denotes that Pr �tA� s¡� is ex-
tremely high, i.e., almost 1. Roughly speaking, a collection
� of defaults implies a default s?uFt if we can ensure that
Pr �s6� t�� is arbitrarily close to 1, by taking the probabilities
of the defaults in � to be sufficiently high.

The formal definition needs a bit of machinery.4 Recall
that a PPD on � is a sequence T Prn : o	p 0 V of probability
measures over � . A PPD structure is a tuple ��3��T Pr n : o+p
0 V¢���`� , where T Pr n�V is PPD on � . Intuitively, it satisfies
a conditional s?uvt if the conditional probability t given
s goes to 1 in the limit. Formally, s?uvt is satisfied if
lim n¤£¦¥ Pr n c� ��t+� �c�§� ��t+� �"�&� 1 (Goldszmidt, Morris, & Pearl
1993) (where Pr n �� � t¡� ���§� ��s_� �"� is taken to be 1 if Pr n c� ��s_� �"��� 0).
�¨� -entails s�uFt , denoted �©��¦ª«s?uvt , if every PPD
structure that satisfies all the defaults in � also satisfies
s?uvt . Surprisingly, Geffner shows that � -entailment is
equivalent to preferential entailment.

Theorem 3.3: (Geffner 1992b) ��� �¦ª|s?uvt if and only if
�z� P s?uvs .5

Possibility measures and ordinal rankings provide two
more semantics for defaults. A possibility structure is a

3Rational entailment should not be confused with the notion of
rational closure, also defined by Lehmann and Magidor.

4We adopt the presentation used in (Goldszmidt, Morris, &
Pearl 1993).

5Geffner’s result is stated in terms of the original formulation
of � -entailment, as described in (Pearl 1989). However, results of
(Goldszmidt, Morris, & Pearl 1993) show that the formulation we
describe here is equivalent to the original one.

tuple PS �2���� Poss ���`� such that Poss is a possibility mea-
sure on � . We say PS � � Poss s�uFt if either Poss c� ��s_� �¬�+� 0
or Poss c� ��s } t+� �"�® Poss �� � s }O¯ t+� �"� . Intuitively, s?uvt
holds vacuously if s is impossible; otherwise, it holds if
s } t is more “possible” than s }f¯ t . For example,
Bird u Fly is satisfied when Bird } Fly is more possible
than Bird }�¯ Fly. Similarly, an ordinal ranking structure
is a tuple °��±��3�������`� if � is a an ordinal ranking on
� . We say that °�� �-²Os�uzt if either �`�� � s_� �"�®��^ or
�_c� ��s } t+� �"�?D��_c� ��s }®¯ t+� �"� . We say that � possibilistically
entails s?uFt , denoted �¨� � Poss s?uvt (resp., �z� -entails
s?uvt , denoted �K� �)²�s?uFt ) if all possibility structures
(resp., all ordinal ranking structures) that satisfy � also
satisfy s?uvt .

These two approaches are again characterized by the
KLM properties.

Theorem 3.4: (Geffner 1992b; Dubois & Prade 1991)
�©�� Poss s?uvt if and only if �©�� ² s?uvt if and only
if �F� P s?uFt .

Why do we always seem to end up with the KLM proper-
ties? As we are about to show, thinking in terms of plausi-
bility measures provides the key to understanding this issue.

4 Default Reasoning Using Plausibility
We can give semantics to defaults using plausibility mea-
sures much as we did using possibility measures. A plau-
sibility structure is a tuple PL �k��3� Pl ���`� , where ��3� Pl �
is a plausibility space and � maps each possible world to
a truth assignment. We define PL � �=³`´Fs?uvt if either
Pl �� ��s`� �"�+� 9 or Pl c� ��s } t+� �"�' Pl c� ��s }µ¯ t+� �"� .

Notice that if Pl is a probability function Pr, then s?uvt
holds exactly if either Pr �� ��s`� �"�'� 0 or Pr c� ��t+� �c�§� ��s_� �¬�? 1 ¶ 2.
How does this semantics for defaults compare to others that
have been given in the literature? It is immediate from the
definitions that the semantics we give to defaults in possi-
bility structures is the same as that given to them if we view
these possibility structures as plausibility structures (using
the obvious mapping described above, and similarly for or-
dinal ranking structures. What about preferential structures
and PPD structures? Can we map them into plausibility
structures while still preserving the semantics of defaults?
As we now show, we can.

Theorem 4.1: (a) Let j be a preference ordering on � .
There is a plausibility measure Pl · on � such that
��3��j&� �`�G� �'¸bs?uvt iff ��3� Pl ·'�c�`�6� � PL s�uzt .

(b) Let �&�(�<T Pr n V be a PPD on � . There is a plausibility
measure Pl ³`³ on � such that ��3��T Pr n V¹�c�`�&� � ª s?uvt
iff ��3� Pl ³`³G���`�G� � PL s�uzt .

Proof: We first sketch the proof of part (a). Let j be a
preference order on � . We define a plausibility measure
Pl · on � as follows. Let 4 0 be the domain of plausibility
values consisting of one element � P for every element Uº

� . We use j to determine the order of these elements:
��»fDB� P if U�j¨� . (Recall that U{jBU0l denotes that
U is preferred to U0l .) We then take 4 to be the smallest
set containing 4 0 closed under least upper bounds (so that



every set of elements in 4 has a least upper bound in 4 ).
In the¼ full paper, we show that this construction results in
the following ordering over subsets of � :

Pl ·�.!)�-/ Pl ·�a%&� if and only if for all Uz
,!A½�% ,
there is a world U0l�
[% such that U0l`jAU and there is
no U l�l 
[!f½$% such that U l�l jAU l .

It is not hard to show that Pl · satisfies the requirements of
the theorem.

We next sketch the proof of part (b). Let �&�y�
T Pr1 � Pr2 ����������V be a PPD on � . We define Pl ³`³ so that
Pl ³`³6.!)�:/ Pl ³`³Ga%&� iff lim n¾£&¥ Pr n�a%¿� !�#3%¦�À� 1. It
is easy to see that this definition uniquely determines the
effect of Pl ³`³ . It is also easy to show that Pl ³`³ satisfies
the requirements of the theorem.

Thus, each of the semantic approaches to default reason-
ing that were described above can be mapped into plausi-
bility structures in a way that preserves the semantics of
defaults.

5 Default Entailment in Plausibility
Structures

In this section we characterize default entailment in plausi-
bility structures. To do so, it is useful to have a somewhat
more general definition of entailment in plausibility struc-
tures.

Definition 5.1: If
�

is a class of plausibility structures,
then a knowledge base � entails s?uvt with respect to

�
,

denoted �Á� �=ÂFs?uvt , if every �&Ãk
 � that satisfies �
also satisfies s?uFt .

The classes of structures we are interested in include
� ³`´ ,

the class of all plausibility structures, and
� ³�Ä�Å�Å , � ² ,

� ¸ ,�&Æ
, and

� ª , the classes that arise from mapping possibil-
ity structures, ordinal ranking structures, preferential struc-
tures, rational structures, and PPDs, respectively, into plau-
sibility structures. (In the case of possibility structures and
ordinal ranking structures, the mapping is the obvious one
discussed in Section 2; in the case of preferential and ratio-
nal structures and PPDs, the mapping is the one described
in Theorem 4.1.) Recall that all these mappings preserve
the semantics of defaults.

It is easy to check that our semantics for defaults does
not guarantee that the axioms of system P hold in all struc-
tures in

� ³`´ . In particular, they do not hold in probabil-
ity structures. It is easy to construct a plausibility struc-
ture �&Ã where Pl is actually a probability measure Pr such
that Pr c� � Ç }3È � �"�¦ 0, Pr �� � È � �c�§� � Ç¹� �"�=�� 5 � Pr �� ��É�� ���§� � Ç¹� �"�=�� 5,
but Pr c� � ÈG} É�� �c�§� � Ç¹� �"�¦DB� 5 and Pr c� ��É�� �c�§� � Ç }OÈ � �¬�ÊDB� 5. Re-
call that if Pr �s	�, 0 then s?uvt holds if and only if
Pr �t=� s	��K� 5. Thus, PL � � ³`´  true uAÇË� }  true u È � ,
but PL E� � ³`´ true u�Ç }�È and PL E� � ³`´  true } Ç`u È � . This
gives us a violation of both AND and CM. We can similarly
construct a counterexample to OR. On the other hand, as
the following result shows, plausibility structures do satisfy
the other three axioms of system P. Let system P l be the
system consisting of LLE, RW, and REF.

Theorem 5.2: If �v� P Ì s�uFt , then �Í� � Â	Î>Ï s?uvt .

What extra conditions do we have to place on plausibility
structures to ensure that AND, OR, and CM are satisfied?
We focus first on the AND rule. We want an axiom that
cuts out probability functions, but leaves more qualitative
notions. Working at a semantic level, taking � ��s`� �&�¨! ,
� ��t 1 � �)�¨% 1, and � � t 2 � �)��% 2 , and using � to denote the
complement of � , the AND rule translates to:

A2 l . For all sets ! , % 1, and % 2, if Pl "!¿Ð-% 1 �' Pl "!¿Ð % 1 �
and Pl "!fÐ¿% 2 �' Pl "!$Ð % 2 � , then Pl .!$Ð¿% 1 Ð¿% 2 �?
Pl "!fÐ a% 1 Ðµ% 2 ��� .

It turns out that in the presence of A1, the following some-
what simpler axiom is equivalent to A2 l :
A2. If ! , % , and Ñ are pairwise disjoint sets, Pl .!;#À%&�7

Pl �Ñ&� , and Pl "!¿#-Ñ&�? Pl �%¦� , then Pl "!)�7 Pl �%�#-Ñ&� .
Proposition 5.3: A plausibility measure satisfies A2 if and
only if it satisfies A2 l .

A2 can be viewed as a generalization of a natural re-
quirement of qualitative plausibility: if ! , % , and Ñ are
pairwise disjoint, Pl "!-�' Pl a%&� , and Pl "!-�' Pl �Ñ¦� , then
Pl .!)�m Pl a%�#ÒÑ&� . Moreover, since A2 is equivalent to
A2 l , and A2 l is a direct translation of the AND rule into con-
ditions on plausibility measures, any plausibility structure
whose plausibility measure satisfies A2 satisfies the AND
rule. Somewhat surprisingly, a plausibility measure Pl that
satisfies A2 satisfies CM. Moreover, Pl satisfies the non-
vacuous case of the OR rule. That is, if Pl c� ��s 1 � �"�? 9 , then
from s 1 uzt and s 2 uvt we can conclude �s 1 ~ s 2 ��uvt .6

To handle the vacuous case of OR we need an additional
axiom:

A3. If Pl .!)��� Pl �%&�'� 9
, then Pl "!$#�%&�'� 9

.

Thus, A2 and A3 capture the essence of the KLM properties.
To make this precise, define a plausibility space ��3� Pl � to
be qualitative if it satisfies A2 and A3. We say PL �
��3� Pl �c�`� is a qualitative plausibility structure if ��3� Pl �
is a qualitative plausibility space. Let

�bÓ ³`´ consist of all
qualitative plausibility structures.

Theorem 5.4: If
� @ �bÓ ³`´ , then for all ����s and t , if

�k� P s�uzt , then �Í� �=Â$s?uvt .

Thus, the KLM axioms are sound for qualitative plausi-
bility structures. We remark that Theorem 5.4 provides, in a
precise sense, not only a sufficient but a necessary condition
for a set of preferential structures to satisfy the KLM prop-
erties. As we show in the full paper, if the KLM axioms
are sound with respect to

�
, then even if there is a structure

6We remark that if we dropped requirement A1, then we can
define properties of plausibilities measures that correspond pre-
cisely to CM and OR. The point is that in the presence of A1,
A2—which essentially corresponds to AND—implies CM and the
non-vacuous case of OR. Despite appearances, A1 does not corre-
spond to RW. Semantically, RW says that if Ô and Õ are disjoint
sets such that Pl � Ô7�|Ö Pl � ÕG� , and Ôf×3Ô � , Õ � ×OÕ , and Ô � and
Õ=� are disjoint, then Pl � Ô7�§�6Ö Pl � Õ=�Ø� . While this follows from
A1, it is much weaker than A1.



�\�<��3� Pl �c�`�?
 � that is not qualitative, � is “essentially
qualitative”Ù for all practical purposes. More precisely, we
can show that Pl l , the restriction of Pl to sets of the form
� ��s_� � is qualitative.

This, of course, leads to the question of which plausibil-
ity structures are qualitative. All the ones we have been
focusing on are.

Theorem 5.5: Each of
� ³�Ä�Å�Å , � ² ,

� ª , � ¸ , and
�mÆ

is a
subset of

� Ó ³`´ .

It follows from Theorems 5.4 and 5.5 that the KLM prop-
erties hold in all the approaches to defaults considered in
Section 3. While this fact was already known, this result
gives us a deeper understanding as to why the KLM prop-
erties should hold. In a precise sense, it is because A2 and
A3 holds for all these approaches. In the full paper we also
show that each of the classes considered in Theorem 5.5 is,
in a nontrivial sense, a subset of

�bÓ ³`´ ; this remains true
even if we restrict to totally ordered plausibility measures
in the case of

� ³�Ä�Å�Å and
� ² .7

We now turn to the problem of completeness. To get
soundness we had to ensure that

�
did not contain too many

structures, in particular, no structures that are not qualitative.
To get completeness we have to ensure that

�
contains

“enough” structures. In particular, if � E � P s?uFt , we want
to ensure that there is a plausibility structure �&ÃÚ
 � such
that �&Ã�� �=³`´3� and �&Ã E� � ³`´ s?uvt . The following weak
condition on

�
does this.

Definition 5.6: We say that
�

is rich if for every collec-
tion s 1 ���������cs+Û of mutually exclusive formulas, there is a
plausibility structure �¦ÃO�\��3� Pl ���`��
 � such that:

9 � Pl c� ��s 1 � �"�?D Pl c� ��s 2 � �"�	D<Ü�Ü�Ü�D Pl �� � s+Û�� �"���
The requirement of richness is quite mild. It says that we

do not have a priori constraints on the relative plausibilities
of a collection of disjoint sets. Certainly every collection
of plausibility measures we have considered thus far can be
easily shown to satisfy this richness condition.

Theorem 5.7: Each of
� ³�Ä�Å�Å , � ² , � ¸ ,

�&Æ
,
� ª , and

�bÓ ³`´
is rich.

More importantly, richness is a necessary and sufficient
condition to ensure that the KLM properties are complete.

Theorem 5.8: A set
�

of qualitative plausibility structures
is rich if and only if for all � and defaults s?uvt , we have
that ��� �=Â;s?uvt implies �F� P s?uvt .

Putting together Theorems 5.4, 5.5, and 5.8, we get

Corollary 5.9: For
� 
ÝT � ³�Ä�Å�Å , � ² , � ¸ ,

�&Æ
,
� ª ,�bÓ ³`´ V , and all � , s , and t , we have �K� P s?uvt if

and only if ��� � Â s�uzt .

7Since, for example, the range of a possibility measure is [0,1],
there are totally ordered plausibility measures that are not possi-
bility measures, although they may put the same ordering on sets.
However, for example, we can have a qualitative plausibility mea-
sure on Þ 1 ß 2 à such that Pl � Þ 1 à�� � Pl � Þ 2 à��0á Pl � Þ 1 ß 2 à�� . This
cannot correspond to a possibility measure, since Poss � Þ 1 à�� �
Poss � Þ 2 à�� would imply that Poss � Þ 1 à�� � Poss � Þ 1 ß 2 à�� .

Not only does this result gives us a straightforward and
uniform proof that the KLM properties characterize default
reasoning in each of the systems considered in Section 3, it
gives us a general technique for proving completeness of the
KLM properties for other semantics as well. All we have to
do is to provide a mapping of the intended semantics into
plausibility structures, which is usually straightforward, and
then show that the resulting set of structures is qualitative
and rich.

Theorem 5.8 also has important implications for attempts
to go beyond the KLM properties (as was the goal in in-
troducing rational structures). It says that any semantics
for defaults that proceeds by considering a class

�
of

structures satisfying the richness constraint, and defining
�J� � Â s�uzt to hold if s?uvt is true in every structure in

�
that satisfies � cannot lead to new properties for entailment.

Thus, to go beyond KLM, we either need to consider
interesting non-rich classes of structures, or to define a no-
tion of entailment that does not amount to considering what
holds in all the structures of a given class. It is possible to
construct classes of structures that are arguably interesting
and violate the richness constraint. One way is to impose
independence constraints. For example, suppose we con-
sider all structures where Ç is independent of È in the sense
that true u È holds if and only if Ç_u È holds if and only if
¯ Ç`u È holds, so that discovering either Ç or ¯ Ç does not af-
fect whether or not È is believed.8 Restricting to such struc-
tures clearly gives us extra properties. For example, from
true u È we can infer Ç`u È , which certainly does not follow
from the KLM properties. Such structures do not satisfy
the richness constraint, since we cannot have, for example,
Pl �� � Ç }=È � �¬�+ Pl c� � Ç }G¯�È � �"�_ Pl �� � ¯ Ç }=¯�È � �"�` Pl c� � ¯ Ç }GÈ � �"� .
Much of the recent work in default reasoning (Bacchus et
al. 1993; Geffner 1992a; Goldszmidt & Pearl 1992; Gold-
szmidt, Morris, & Pearl 1993; Lehmann & Magidor 1992;
Pearl 1990) has taken the second approach, of not looking
at entailment with respect to a class of structures. Roughly
speaking, these approaches can be viewed as taking the
basic idea of preferential semantics—placing a preference
ordering on worlds—one step further: They try to get from a
knowledge base one preferred structure (where the structure
itself puts a preference ordering on worlds)—for example,
in (Goldszmidt, Morris, & Pearl 1993), the PPD of maxi-
mum entropy is considered—and carry out all reasoning in
that preferred structure. We believe that plausibility mea-
sures will provide insight into techniques for choosing such
preferred structures, particularly through the use of indepen-
dence, but the discussion of this issue is beyond the scope
of this paper.

6 A Logic of Defaults
Up to now, we have just focused on whether a set of defaults
implies another default. We have not considered a full logic
of defaults, with negated defaults, nested defaults, and dis-

8We remark that if we define independence appropriately in
plausibility structures, this property does indeed hold; see (Fried-
man & Halpern 1995a).



junctions of defaults. It is easy to extend all the approaches
we have defined so far to deal with such a logic. Condi-
tional logic is a logic that treats u as a modal operator. The
syntax of the logic is simple: let â6ã be the language defined
by starting with primitive propositions, and close off under
} , ¯ , and u . Formulas can describe logical combination of
defaults (e.g., ØÇ_u È � ~ äÇ`u ¯�È � ) as well as nested defaults
(e.g., äÇ`u È ��uvÉ ).

The semantics of conditional logic is similar to the se-
mantics of defaults.9 The usual definition (Lewis 1973)
associates with each world a preferential order over worlds.
We now give a similar definition based on plausibility mea-
sures. Given a preferential structure PL ����3� Pl ���`� , we
define what it means for a formula s to be true at a world
U in PL. The definition for the propositional connectives is
standard, and for u , we use the definition already given:
H  PL ��UG�6� �OÇ if �+�U=�G� �OÇ for a primitive proposition Ç
H  PL ��UG�6� � ¯ s if  PL ��UG� E� ��s
H  PL ��UG�6� �As } t if  PL �cU=�6� ��s and  PL ��UG�6� ��t
H  PL ��UG�3� ��s?uvt if either Pl c� ��s_� � PL �[� 9 or Pl �� � s }
t+� � PL �? Pl c� ��s }G¯ t+� � PL � , where we define � ��s`� � PL �<TSUA

� :  Pl ��UG�6� ��s?V .10

We now want to axiomatize default reasoning in this
framework. Clearly we need axioms and inference rules that
generalize those of system P. Let Y[s be an abbreviation
for ¯ s?u false. (This operator is called the outer modality
in (Lewis 1973).) Expanding the definition of u , we get
that YÒs holds at U if and only if Pl c� � ¯ s_� �"��� 9 . Thus, Y[s
holds if ¯ s is considered completely implausible. Thus, it
implies that s is true “almost everywhere”. Let system C
be the system consisting of LLE, RW, and the following
axioms and inference rules:

C0. All the propositional tautologies
C1. s?uvs
C2. �as?uit 1 � } as�uzt 2 ����w��s?u�at 1 } t 2 ���
C3. �as 1 uzt�� } �s 2 uvt�����w���s 1 ~ s 2 ��uvt��
C4. �as 1 uzs 2 � } �s 1 uvt�����w���s 1 } s 2 ��uvt��
C5. �§�s?uvt��?w�Y��s?uvt?�.� } � ¯ as�uzt���w�Y ¯ �s?uFt��.�
MP. From s and s[w�t infer t .

It is easy to see that system C is very similar to system P.
The richer language lets us replace a rule like AND by the
axiom C2. Similarly, C1 to REF, C3 to OR and C4 to CM.
We need C0 and MP to deal with propositional reasoning.
Finally, C5 captures the fact that the plausibility function
Pl is independent of the world. Thus, if a default is true
(false) at some world, it is true (false) at all of them. If
we had enriched plausibility structures to allow a different
plausibility function Pl P for each world U (as is done in the

9The connections between default reasoning and conditional
logics are well-known; see (Boutilier 1994; Kraus, Lehmann, &
Magidor 1990; Katsuno & Satoh 1991).

10We redefine å å�æèç ç PL since æ can involve conditional statements.
Note that if æ does not contain occurrences of é then this definition
is equivalent to the one we gave earlier. Again, we omit the
subscript when it is clear from the context.

general definition of conditional logic (Lewis 1973)) then
we would not need this axiom. There is no KLM property
analogous to C5 since a formula such as Y��s?uvt�� involves
nested u ’s.

It is well known (Lewis 1973; Burgess 1981; Friedman
& Halpern 1994) that system C captures reasoning in pref-
erential structures.

Theorem 6.1: (Burgess 1981; Friedman & Halpern 1994)
System C is a sound and complete axiomatization of â6ã
with respect to

� ¸ .

Since the axioms of system C are clearly valid in all the
structures in

�bÓ ³`´ and
� ¸ @ �bÓ ³`´ , we immediately get

Corollary 6.2: System C is a sound and complete axioma-
tization of â7ã with respect to

�¦Ó ³`´ .

This result shows that, at least as far as the language â6ã
goes, plausibility structures are no more expressive than
preferential structures. We return to this issue in Section 7.

The language â7ã allows us to make distinctions that we
could not make using just implication between defaults, as
in Section 4. For example, consider the following axiom:

C6. s?uvt }�¯ as }Êê uvt��?w�s?u ¯+ê
Axiom C6 corresponds to the rule of rational mono-
tonicity discussed in (Kraus, Lehmann, & Magidor 1990;
Lehmann & Magidor 1992). It is not hard to show that C6
is valid in systems where the plausibility ordering is modu-
lar. In particular, it is valid in each of

�&Æ
,
� ³�Ä�Å�Å , and

� ² ,
although it is not valid in

� ¸ . In fact, it is well-known that
system C * C6 is a sound and complete axiomatization of
â6ã with respect to

�&Æ
(Burgess 1981).11

7 Conclusions
We feel that this paper unifies earlier results regarding the
KLM properties, and explains why they arise so frequently.
It also points out the advantage of using plausibility mea-
sures as a semantics for defaults.

Do we really need plausibility measures? If all we are
interested in is propositional default reasoning and the KLM
properties, then the results of Section 6 show that preferen-
tial structures provide us all the expressive power we need.
Roughly speaking, this is so because when doing proposi-
tional reasoning, we can safely restrict to finite structures.
(Technically, this is because we have a finite model prop-
erty: if a formula in â6ã is satisfiable, it is satisfiable in
a finite plausibility structure (Friedman & Halpern 1994).)
As we show in companion paper (Friedman, Halpern, &
Koller 1996), preferential structures and plausibility struc-
tures are no longer equally expressive once we move to a
first-order logic, precisely because infinite structures now
play a more important role. The extra expressive power
of plausibility structures makes them more appropriate than

11To capture ë6ì and ë?í�î�ïaï , we need the additional axiomð � true é false � . This axiom together with system C also pro-
vides a complete axiomatization for ë6ñ . These results are
based on well-known results in conditional logic (Burgess 1981;
Friedman & Halpern 1994) and are proved in the full paper.



preferential structures for providing semantics for first-order
defaultò reasoning.

Beyond their role in default reasoning, we expect that
plausibility measures will prove useful whenever we want
to express uncertainty and do not want to (or cannot) do so
using probability. For example, we can easily define a plau-
sibilistic analogue of conditioning (Friedman & Halpern
1995a). While this can also be done in many of the other
approaches we have considered, we believe that the gen-
erality of plausibility structures will allow us to again see
what properties of independence we need for various tasks.
In particular, in (Friedman & Halpern 1996), we use plau-
sibilistic independence to define a plausibilistic analogue of
Markov chains. We plan to further explore the properties
and applications of plausibility structures in future work.
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