
Discretizing Continuous Attributes While Learning Bayesian Networks

Nir Friedman
Stanford University

Dept. of Computer Science
Gates Building 1A

Stanford, CA 94305-9010
nir@cs.stanford.edu

Moises Goldszmidt
Rockwell Science Center
444 High St., Suite 400
Palo Alto, CA 94301

moises@rpal.rockwell.com

Abstract

We introduce a method for learning Bayesian net-
works that handles the discretization of contin-
uous variables as an integral part of the learn-
ing process. The main ingredient in this method
is a new metric based on the Minimal Descrip-
tion Length principle for choosing the threshold
values for the discretization while learning the
Bayesian network structure. This score balances
the complexity of the learned discretization and
the learned network structure against how well
they model the training data. This ensures that
the discretization of each variable introduces just
enough intervals to capture its interaction with
adjacent variables in the network. We formally
derive the new metric, study its main properties,
and propose an iterative algorithm for learning
a discretization policy. Finally, we illustrate its
behavior in applications to supervised learning.

1 INTRODUCTION

Bayesian networks provide efficient and effective repre-
sentation of the joint probability distribution over a set of
random variables. They have been successfully applied as
expert systems, diagnostic engines, optimal decision mak-
ing systems, and classifiers. Building Bayesian networks
can be a laborious and expensive process in large appli-
cations. Thus, learning Bayesian networks from data has
become a rapidly growing field of research that has seen
a great deal of activity in recent years [1, 2, 4, 10, 14].
The objective is to induce a network (or a set of networks)
that “best describes” the probability distribution over the
training data. This optimization process is implemented in
practice using heuristic search techniques to find the best
candidate over the space of possible networks. The search
process relies on a scoring metric that asses the merits of
each candidate network.

In several domains of interest, such as medicine and in-

dustrial control, variables in the training data often have
continuous values. We have two basic approaches to deal
with continuous variables: we can restrict ourselves to spe-
cific families of parametric distributions and use the meth-
ods described in [11, 16, 12, 3], or we can discretize these
variables and learn a network over the discretized domain.
There is tradeoff between the two options. The first can
model the conditional density of each variable in the net-
work (under some assumptions regarding the family of dis-
tributions). However, at the current stage, we do not have
efficient reasoning machinery for such models. The second
only captures rough characteristics of the distribution of the
continuous variables. However, it induces models that can
be efficiently used for probabilistic inference and optimal
decision making. Also, it is interesting to note that many
of the current applications of Bayesian networks for med-
ical diagnostic involve discretization supplied by human
experts.

In this paper we present a principled approach to the second
option. The problem of variable discretization is essen-
tially that of finding for each continuous variable

�
, a set

of threshold values that partition the real line into a finite
number of intervals. These intervals are the values of the
discretized counterpart of

�
. Our approach to this prob-

lem is based on the Minimal Description Length (MDL)
principle.

The MDL score of a network � is composed of two parts.
The first part measures the “complexity” of the network,
while the second part measures how good the network is as
a model for the data [14, 1]. The “optimal” network � given
a data set � is the network that minimizes the MDL score.
This minimization involves a tradeoff between the two parts
of the score. In practice, the MDL score regulates the
number of parameters learned and helps avoid overfitting.

We derive an augmented version of MDL to take into ac-
count the discretization of continuous variables in the data.
This approach embodies a new tradeoff between the com-
plexity of the learned discretization and the learned net-
work, with the how well they model the training data. This
tradeoff guarantees that the discretization of each variable

introduces just enough intervals to capture the interaction
with adjacent variables in the network. This new metric
provides a principled approach for selecting the threshold
values in the discretization process.

Our proposal can be regarded as a generalization of the
method proposed by Fayyad and Irani [7]. Roughly speak-
ing, their approach, which applies to supervised learning
only, discretizes variables to increase the mutual infor-
mation with respect to the class variable. In fact, as we
show experimentally below, the two approaches are almost
identical when we restrict our attention to suitable network
structures where variables are restricted to interact solely
through the class variable. In general, and in particular
in unsupervised learning, we would like the discretization
of each variable to maximize its mutual information with
respect to all directly related variables. These relation-
ships are explicitly represented by the Bayesian network
structure—an arc denotes direct dependence between two
variables. Thus, the local neighborhood of each variable (in
the network structure) contains all the variables that directly
interact with it. By having the discretization be an integral
part of the learning of the Bayesian network, we are able to
maximize the mutual information among related variables.

This paper is organized as follows: in Section 2 we review
the MDL metric and the process of learning a Bayesian
network. In Section 3 we augment this metric to account
for discretizations. In Section 4 we examine computational
issues and identify several properties of our scoring met-
ric that can be exploited in this regard. In Section 5 we
present experimental results that evaluate this method in
classification tasks and compare it to the method proposed
by Fayyad and Irani [7]. Finally, Section 6 summarizes our
contributions and discusses future work.

2 LEARNING BAYESIAN NETWORKS

Consider a finite set U ��� � 1 ���	���
� ���� of discrete random
variables where each variable

���
may take on values from

a finite domain. We use capital letters, such as
� �����
� ,

for variable names and lowercase letters � ������� to denote
specific values taken by those variables. The set of values�

can attain is denoted as Val � ��� , the cardinality of this
set is denoted as ��� � ����� �Val � ��� � . Sets of variables are
denoted by boldface capital letters X � Y � Z, and assignments
of values to the variables in these sets will be denoted by
boldface lowercase letters x � y � z (we use Val � X � and �!�X ��� in
the obvious way). Let " be a joint probability distribution
over the variables in U, and let X � Y � Z be subsets of U.
X and Y are conditionally independent given Z if for all
x # Val � X � � y # Val � Y � � z # Val � Z � ,"�� x � z � y � �$"�� x � z � whenever "�� y � z �&% 0 �
A Bayesian network is an annotated directed acyclic graph
that encodes a joint probability distribution of a domain
composed of a set of random variables. Formally, a

Bayesian network for U is the pair �'�)(+* ��,.- . * is a di-
rected acyclic graph whose nodes correspond to the random
variables

�
1 �	���	��� ��� , and whose edges represent direct de-

pendencies between the variables. The graph structure *
encodes the following set of independence assumptions:
each node

� �
is independent of its non-descendants given

its parents in * [17].1 The second component of the pair,
namely , , represents the set of parameters that quantifies
the network. It contains a parameter /103254 6�7 2 ��"8�9� � � : 032 �
for each possible value � � of

� �
, and : 0;2 of :=< 2 (the set

of parents of
� �

in *). � defines a unique joint probability
distribution over U given by:

"?>=� � 1 �����	�
� ���@� �
�A�5B

1

"C>D� � � � :D< 2 � �
�A �EB

1

/ < 2 4 6?F 2 (1)

The problem of learning a Bayesian network can be stated
as follows. Given a training set �G�H� u1 �����	�
� uI of
instances of U (i.e., each u

�
is a value assignment to all

variables in U), find a network � that best matches � . To
formalize the notion of goodness of fit of a network with re-
spect to the data, we normally introduce a scoring function,
and to solve the optimization problem we usually rely on
heuristic search techniques over the space of possible net-
works [9]. Several different scoring functions have been
proposed in the literature [4, 10, 14]. In this paper we focus
our attention on the MDL score [14]. This score is sim-
ple, very intuitive, and has proven to be quite effective in
practice.

The idea behind the MDL principle is as follows. Suppose
that we are given a set � of instances which we would
like to store and keep in our records. Naturally, we would
like to conserve space and save a compressed version of � .
To this end we need to find a suitable model for � such
that an encoder can take this model and produce a compact
image of � . Moreover, as we want to be able to recover� , we must also store a version of the model used by the
encoder to compress � . The description length of the data
based on a model, and using a particular encoder, is then the
length of the compressed data plus the representation size
of the model itself. In our case the length is measured by
the number of bits needed for storage. The MDL principle
dictates that the optimal model is the one (from a particular
class of interest) that minimizes the total description length.

The MDL principle is applied to learning Bayesian net-
works by taking a network to be the model for the data used
by an encoder to produced a compressed version of � . The
idea is as follows: a network � assigns a probability to
each instance of U. Using these probabilities we can con-
struct an efficient code. In particular, we use the Huffman
code [5], which assigns shorter codes to frequent instances.
The benefit of using the MDL as a scoring metric is that
the best network for � optimally balances the complexity

1Formally there is a notion of minimality associated with this
definition, but we will ignore it in this paper. See [17] for details.

of the network with the degree of accuracy with which the
network represents the frequencies in � .

We now describe in detail the representation length required
for the storage of both the network and the coded data. The
MDL score of a candidate network is defined as the total
description length. To store a network �J�J(+* �
,.- , we
need to describe U, * , and , :

To describe U, we store the the number of variables, K , and
the cardinality of each variable

� �
. This information can

be stored in log K�LNM � log �!� � � ��� bits.2

To describe the DAG * it is sufficient to store for each
variable

���
a description of : < 2 (namely, its parents in*). This description consists of the number of parents

followed by a list of the parents. Since we can encode each
of these using log K bits, the graph structure can be encoded
in M � � 1 L�� : < 2 � � log K bits.

To describe the parameters in , , we must consider the pa-
rameters in each conditional probability table. For the table
associated with

� �
, we need to store ��� :=< 2 ���O�P��� � � �!�RQ 1

�
parameters. The representation length of these parame-
ters depends on the number of bits we use for each nu-
meric parameter. The usual choice in the literature is
1 S 2 log T [1, 9]. Thus, the encoding length of , is
1
2 log T M � ��� : < 2 ���U�1��� ��� ���VQ 1

�
We remark that the description length of � is only a function
of U and of * , and it does not depend on the actual values
of parameters in , . Combining all three components we
have:

DLnet ��W � * � � X �ZY log ��� � � ���
L[� 1 L\� :D< 2 � � log K�]�L
log T

2
X � ��� : < 2 ���O�P��� ��� �!�VQ 1

�

We turn our attention to the description length of the data.
Using the probability measure defined by � , we construct
a Huffman code for the instances in � . In this code, the
exact length of each codeword depends on the probability
assigned to that particular instance. There is no closed form
description of this length. However, it is known [5] that
when we choose longer coding blocks we can approximate
the optimal encoding length in which the encoding of each
u is Q log "C>D� u � bits. Thus, the description length of the
data is simply: Q^M I�5B 1 log "C>D� u � �
We can rewrite this expression in a more convenient form.
Let _"C` be the probability measure that corresponds to the
frequency of instances in the data. Using (1) and some
algebraic manipulations we can rewrite the representation

2This number is slightly imprecise since we do not know in
advance the length of the encoding [5].

length of the data as:

Q IX �5B
1

log "C>D� u � � ��QaT�X � X0 25b 6 7 2 _"C`a�c�
� � : 032 � log / 0 2 4 6 7 2

Using standard arguments, we can show that this term is
minimized if we set / 0;2d4 6�7 2 �G_" ` �9� � � : 0 2 � . From now on,
we assume that we will always choose the values of , in
this manner. Thus, we can write the description length of
the data, given a network structure * , as:

DLdata �9� � * � �$T X �\e � � � � :D< 2 �
Where e � X �Y � �fQ M x b y _" ` � x � y � log _" ` � x � y � is the
conditional entropy of X given Y (if Y � g thene � X �Y � � e � X � , the unconditional entropy of X) [5]. Us-
ing this information-theoretic interpretation we can rewrite
DLdata �9� � * � slightly. The mutual information between
two sets of variables X and Y is defined as hi� X; Y

� �M x b y _"?`.� x � y � log jkRlCm x b y njkRlCm x n jkRl?m y n . (When Y �og we de-

fine hi� X; Y
� � 0.) It is easy to verify that e � X �Y � �e � X � Qphq� X; Y
�
. Thus, we can rewrite:

DLdata �c� � * � �$T X �re � ���s� QpT X � hi� ��� ; : < 2 �
Since e � � � � does not depend on the structure * , the first
term is constant in the description length of all possible
structures. Thus, we ignore it when we compare candidate
network structures. This information-theoretic interpreta-
tion shows that to minimize the description length of � we
need to find a structure that maximizes the mutual informa-
tion between each variable and its parents.

Finally, the MDL score (of a candidate network structure*) is defined as the total description length

DL �sW � * � � � � DLnet ��W � * � L DLdata �9� � * � � 2 �
According to the MDL principle, we should strive to find
the network structure that minimizes the description length.
In practice, this is usually done by searching over the space
of possible networks. Since this space is large, this search
is a non-trivial problem. Details about the search process
can be found in [1, 9].

3 MDL SCORE FOR DISCRETIZATION

Until now we have assumed that all the variables
���

in the
universe U are discrete (or nominal). We now consider the
case where some of the variables take numerical values.
We assume that Ucont t U is the set of continuous variables
in U.

A discretization sequence uv�'(Ew 1 �	���	�
� w�x - is an increasing
sequence of real values (i.e., w 1 y w 2 yz���	�Cy w x). Such

a sequence defines a function {}| : h ~��� � 0 ���	���s�
� as
follows:

{}|��c� � � � 0 if � y w 1�
if w ��� � y w �5� 1 for 1

�r� yr�� if w x � �
A discretization policy is a collection ���H�}u � :

� � #
Ucont

. Such a policy defines a new collection of variables

U �� �J� � �� :
��� # U

, where

� �� �J{ | 2 � ���c� if
��� #

Ucont and
� �� � � � otherwise. Thus,

� �� is the discrete
random variable associated with

�
by the discretization

policy � . From now on we will omit the subscript � when
it is understood from the context.

Our target is to (jointly) learn a discretization policy and a
Bayesian network over the discretized data. To do so, we
augment the MDL score to include the description length
needed for storing enough information to be able to recover
the original data from the discretized data.

Lets assume (for now) that both * and � are fixed.
Let � be a collection of instances over U. We de-
fine � � to be the discretization of � using � . Namely,� � ��� u �1 ���	���
� u �I , where if u�v��(+� m � n1 ���	���
� � m � n� - , then

u �� �H(+{}| 1 �9� m � n1
� �	���	�
� {}|3�;�c� m � n� � - . The output of our en-

coder consists of the following parts:

1. The description of � � (using a network based on *).
2. The description of � .
3. The description of � based on � � , e.g., an encoding

of the information necessary to recover each u� from
u �� .

Since � � is a discrete dataset, the description length of the
first part is the one derived in Section 2, and DL �sW � � * � � � �
bits long (Eq. 2).

We introduce some useful notation. Let Val `.� � � � to be the
set of values of

� �
in that appear in the dataset � , and letT � ���Val `.� � � � � to be the number of these values (clearlyT �D� T). Since we need to recover � we have to record

the set of values Val `.� � � � for each continuous random
variable

� � # Ucont. The representation of this set depends
on the exact precision in which we choose to encode real
numbers. However, since this encoding depends only on �
and not on � nor * , it has the same length for all possible
instances of * and � . Thus, we will ignore this factor in
the total score.

We now turn to the description of the discretization policy� . The description of U � (which is stored as part of the
description of � �), already records the number of values
of
� �� . Thus we already recorded the number of threshold

points, and only need to encode the threshold values inu � . Since we only need to distinguish among values in
Val `.� � � � , we can limit our attention to threshold values
that are mid-points between successive values in this set.
Thus, the thresholds w+� ’s are chosen from among the T � Q 1
mid-point values in Val `.� � � � . All we need to store is the

index of the discretization policy in some enumeration of
the Y I 2+� 1x 2!� 1] different discretization policies of cardinality� � �Z��� � �� ��� . This index can be described using log Y I 2+� 1x 2 � 1]
bits. Using Sterling’s approximation (see [5, p. 151]), we
get that log Y I 1 � 1x 2d� 1] � �9T � Q 1

� e � x 2 � 1I 2d� 1

�
, where e �!� � �Q�� log �vQN� 1 Q^� � log � 1 Q�� � .3 Thus the description of �

is of length:

DL � ��� � � X< 2+� Ucont

�9T � Q 1
� e � � � Q 1T � Q 1

�
Finally, we need to describe how to reconstruct each u�
from u �� . For each continuous

���
, the value of

� �� in the
discretized instance u �� specifies an interval. We need only
to encode what value in this interval actually appears in
u� . Note that there is a limited number of such values in
Val ` � ���s� . Thus, we can use a Huffman code to encode
which one of those appears in the specific instance u� . The
optimal Huffman code is the one constructed according to
the frequencies of values in Val ` � ���c� . Thus, we need to
store these frequencies as well. Since these frequencies
depend only on the data � , and not on the particular dis-
cretization policy or network structure, we can ignore them
in the description length.

Given that we have recorded these frequencies, we can
reconstruct the code for each value of

� �� . The encoding for
a particular value of

���
is approximately Q log _" ` � ��� � � �� �

bits long. Summing the length of the encoding for all
instances in � and for all variables in Ucont, we get:

DL `��1��`.�9� � � � � Q X � IX� B 1

log _"C`.�9� m � n� � u � �9� m � n� �s�
� T�X � e � � � � � �� � � (3)

Combining all these parts together, we conclude that the
representation length of � , using � and * , is:

DL � U � � * � � � � L DL � ��� � L DL `&����`.�9� � � � �
We now rewrite this term to a more convenient expression.
Using basic properties of the entropy and mutual informa-
tion measures (see [5]), we easily prove the following:

Proposition 3.1: e � � �� � : �< 2 � L e � ��� � � �� � � e � ���9� Qhi� � �� ; : �< 2 �
Note that e � � � � is a function of the data � and does not
depend on � and * . Thus, we can ignore it. With this
simplification we take the score to be:

DL � �c* � � � � � � DLnet � U � � * � L DL � �+� �QaT X � hi� � �� ; :a�< 2 � (4)

3This bound is tight in the following sense: �+���.�
1 �c� �R¡ 2�¢ 1£ 25¢ 1 ��� log �+�a����¤ log Y £ 1 ¢ 1¡ 2+¢ 1]

The only difference with the previous version of the score
represented by Eq. 2 is the middle term which encodes
the discretization policy. Thus, as in the previous case,
the score weights the addition of a new arc (an increase
in the complexity of the network) against the increase in
mutual information between the nodes in the extremes of
this edge. The additional term, DL � ��� � , takes into account
another tradeoff involving the number of intervals in the
discretization against the mutual information score.

4 LEARNING DISCRETIZATIONS

We now dispense with the assumption in the previous sec-
tion that both � and * are set, and examine how to learn a
discretization policy and network structure in practice. We
will start by assuming that we have a fixed network struc-
ture * , and examine how to find the discretization policy� that minimizes the score DL �¥�9* � � � � � . We consider
first the simplest case where there is exactly one continuous
variable in U, and examine a number of properties that can
be exploited in the computation of DL � �9* � � � � � . For the
general case, where more than one variable is discretized,
we will describe an iterative approach that takes advantage
of these results. Finally, in Section 4.3 we discuss how to
learn the network structure as well as a the discretization
policy.

4.1 DISCRETIZING ONE VARIABLE

Let
� �

be the continuous variable to be discretized. We
examine how DL �}�c* � � � � � changes as we change � . As
we will show most of the terms in this score do not change
when we change the discretization of

� �
. This fact can be

exploited to reduce the computations during the discretiza-
tion process.

We define the local score of
� �

to consist of the terms in
DL � �9* � � � � � that involve

� �
’s discretization:

DLlocal � ��� ; * � � � � � �
1
2 log T�¦R��� : �< 2 �!�O�1�!� � �� ����Q 1

�
L 1

2 log T�¦ M � b < 2�� 6?Fi§ ��� : �< § ���O�P��� � �� ���VQ 1
��¨

L log � � L©�9T � Q 1
� e � x 25� 1I 2 � 1

�
Q T�¦}ªUhq� � �� ; : �< 2 � L M � b < 2d� 6?Fq§ hi� � �� ; : �< § ��¨

Immediately we get:

Proposition 4.1: Let � and �&« be two discretization poli-
cies that differ only on the discretization of

� �
. Then

DL �¥�9* � � � � � Q DL �3�9* � �&« � � � � DLlocal � ��� ; * � � � � � Q
DLlocal � ��� ; * � ��« � � � �
Thus, when we are only changing the discretization of

� �
,

it suffices to minimize DLlocal � ��� ; * � � � � � . The important
aspect of this result, is that DLlocal � ��� ; * � � � � � involves
only variables that are in the Markov blanket of

� �
[17],

i.e.,
� �

’s parents,
� �

’s children, and parents of
� �

’s chil-
dren in * . The term we attempt to minimize weights the
cost of describing � partitions for

� �
against the mutual

information gained about the parents and children of
���

from having this number of partitions.

The problem now is how to search for a discretization that
minimizes this DLlocal. As we noted above, the only points
that we should consider for thresholds are the T � Q 1 mid-
points between successive values of

� �
. The space of

possible discretizations consists then of all subsets of theseT � Q 1 points. In practice, we search this space by starting
with the trivial discretization (i.e., the discretization with the
empty threshold list), and search over the possible refine-
ments. This approach, which is usually called top-down, is
common in the supervised learning literature [18, 7]. The
search strategy can be any of the well known ones, greedy
search (or hill climb search), beam search, etc.

Carrying out this search can be very expensive. Even for
a simple greedy search strategy we need to perform T � � Q
1
2 � � � L 1

�
threshold evaluations to find a discretization with� thresholds. However, as we show below, because of some

properties of DLlocal it is not always necessary to recompute
the change of DLlocal for all possible splits at each step.

Let u¬�)(�w 1 ���	���s� w x - . Define uv¦�w to be the refinement of u ,
e.g., the discretization sequence that contains w 1 �	���	�
� w x andw . Suppose our current candidate for discretizing

� �
is u .

The possible successors are of the form u¦cw , where w is one
of the midpoints of Val ` � ���s� . We evaluate each successorw by examining the change in the term DLlocal described
above. We notice, however, that the only term in DLlocal
that depends on the particular threshold we choose to add is
the one that measures the mutual information between

� �
and its Markov blanket. Thus, to find the best successor
of a discretization sequence, we need only to compute the
information gain of each possible successor:

Gain �5w ; u � � � * � � � �hq� � �|3® ¯ ; : �< � L°M©± b < � 6?² hq� � � ; : �± |3® ¯ �Q hq� � � ; :D< � Q³M©± b < � 6?² hi� � � ; : �± �
This term has the following property that we can use to
speed up the search:

Proposition 4.2: If { | �5w ��´� { | �dws« � , then Gain �5ws« ; u[¦w � � � * � � � � Gain �dws« ; u � � � * � � � .
Using this proposition we conclude that if we choose to add
the threshold w to u , we only need to recompute the gain for
those thresholds that split the same interval that w splits.

Our implementation uses a greedy search routine. This
routine maintains a list of possible splits and their associated
gain. At each iteration the best split is added to the current
candidate. If the change in description length is negative the
routine terminates. Otherwise, it recomputes the gain only
for the relevant thresholds (according to Proposition 4.2)
and reiterates.

4.2 DISCRETIZING SEVERAL VARIABLES

We now turn to the more general problem where there are
several continuous variables in U. Computationally, this
seems to be a hard problem. We need to search over all
possible discretizations for all variables in Ucont. How-
ever, we can take advantage of the structure of * and the
independences it encodes to find non-interacting discretiza-
tions. Roughly speaking,

�
and � are non-interacting if

we can discretize each one of them separately. Let � be
some discretization policy, let X t Ucont, and let � X to
be a discretization policy over

�
. We define �µª � X

¨
to be

the discretization policy that results by replacing the dis-
cretization of each

� # X in � by the discretization of
�

in � X.

Definition 4.3: Let X � Y be two disjoint subsets of Ucont.
X and Y are non-interacting (with respect to a DAG *)
if for all set of instances � , discretization policies �
and discretization policies � X and � Y for X and Y, we
have that DL � �9* � �.ª � X � � Y

¨ � � � � DL � �9* � �.ª � X
¨ � � � L

DL �¥�9* � �.ª � Y
¨ � � � Q DL �¥�9* � � � � � .

Thus,
�

and � are non-interacting if the difference in the
total score when we change the discretization of both

�
and� is the sum of differences in the score when we change

each one individually. In particular, this implies that we can
optimize the discretization for

�
and for � independently

of each other. On the other hand, when
�

and � are
interacting, it might be the case that after discretizing one
set, we might have to reconsider the discretization of the
other set.

We can read many non-interaction relationships from the
structure of * . The moral-graph of *¶�H� U �
· � is an
undirected graph ¸)�9* � , such that

�
is adjacent to � in¸)�9* � if one of the following cases hold: � � �s� � # · ,� �&� ��� # · , or there is some � such that � � �
� � � � ���
� � #· . It is easy to verify that the Markov blanket of

�
is

exactly the set of adjacent nodes of
�

in ¸)�c* � . Since the
discretization of

�
depends only on its Markov blanket we

can show:

Theorem 4.4: Let X � Y be two disjoint subsets of Ucont. If
X is not adjacent to Y in ¸)�9* � then X and Y are non-
interacting with respect to * .

Example 4.5: Let U ����¹ 1 ���	���s� ¹ � �
º , where the vari-
ables ¹ 1 ���	���
� ¹ � are the attributes and º is the class vari-
able. A naive Bayes model is Bayesian network with the
following structure: :�»¼�)g , i.e., the class variable is the
root; and :=½ 2 �¶� º for all 1

���v� K , i.e., the only
parent for each attribute is the class variable. Then, each
attribute’s Markov blanket consists only of the class vari-
able, and the attributes are non-interacting. Consequently
we can discretize each one in isolation, using the techniques
introduced in the previous section, taking into account only
the class variable.

From now on we assume that if X and Y are adjacent
in ¸)�c* � , then they actually interact. We say that a set
X t Ucont is an interacting component (of *), if for all
Y ¾ X, Y and X Q Y are interacting. Intuitively, an inter-
acting component cannot be subdivided into non-interacting
subsets. Finding the interacting components in * can be
done very efficiently (formally this is equivalent to finding
connected components in a graph).

Our definition of non-interaction guarantees that we can
discretize the variables in each interacting component in-
dependently of the discretization of other interacting com-
ponents. If all interacting components are singletons, then
the problem reduces to discretizing single variables as dis-
cussed in the previous section.

The question is how deal with non-trivial interacting com-
ponents. Suppose

�
and � interact. Then, changing the

discretization of
�

changes the local environment of � .
This might lead us to reconsider the discretization of � .
After doing so, we might need to reconsider the discretiza-
tion of

�
, and so forth. There are two main approaches to

deal with this problem. The first is to search the space of
possible discretizations of all the variables in the interacting
component at once. This approach ensures that we consider
all the interactions in the component while we discretize the
variables in it. The problem is that for large components
this procedure is impractical.

The second approach is to discretize one variable at a
time, treating all other variables as being discrete and fixed.
Roughly speaking this procedure goes at follows: we find
some initial discretization for each variable. Then at each
step we select a variable

���
and search for a discretization

of
� �

while treating all other variables as discrete (i.e., their
discretization policy is held fixed). This can be done using
the method described in the previous section. We repeat
this step until we cannot improve the discretization of any
of the variables in the component. It is easy to see that this
approach must converge. At each step we are improving
the overall score of the current discretization policy. And,
since the score function is bounded from below, we must
stop at some stage. We remark that this procedure is essen-
tially a hill-climbing procedure and only guarantees to find
a local minima of the score and not necessarily the optimal
discretization. A remaining question is the order in which
variables are discretized. In our experiments we used the
algorithm outlined in Figure 1, which seemed to perform
reasonably well. This algorithm has the desirable prop-
erty that between any two discretization passes on

� �
, the

discretizations of all the variables in
� �

’s Markov blanket
are reconsidered. This guarantees that we do not discretize���

before we propagate the changes made in the previous
discretization of

���
to all of its neighbors.

This procedure has to be initialized with some discretiza-
tion. In our current implementation, we use the least square
quantization [5] method. This method attempts to find
the best � -partitioning of a random variable, essentially by

Input: An initial discretization ¿ of U.
Output: A (locally) optimal discretization of U.

Push all continuous variables onto a queue À .
While À is not empty

Remove the first element Á from À .
Compute ÂiÃÄ , a new discretization of Á .
If DL Å1�+Æ�Çc¿�ÈUÂ ÃÄ�É�Ç9ÊË�ÍÌ DL Å1�+Æ�Çc¿&ÇÎÊ� then

Replace Â Ä by Â ÃÄ in ¿ .
For all Ï interacting with Á , if Ï\ÐÑ À , push Ï onto À .

return ¿ .

Figure 1: Algorithm for discretizing several variables in an
iterative fashion.

matching � Gaussians to the distribution of the values. In
our experiments we initialized the discretization with the
minimum between � �ÓÒdÔ�ÕRT � and an upper bound of 5.
This choice, however, however is quite arbitrary. We sus-
pect that the finding a good initial discretization can greatly
improve the quality of the discretization found. We are
currently exploring this issue in more detail.

4.3 LEARNING THE NETWORK STRUCTURE

In many situations we need to learn the structure of the
network * . This is once more an optimization problem;
we want to find a network structure * and a discretization
policy � to maximize DL �¥�9* � � � � � .
There are two possible ways of going about this. The first
is very similar to current approaches to learning Bayesian
networks. In this approach we search over the space of
possible candidates for * . To evaluate each candidate, we
search for a discretization � that maximizes the score given
that candidate. This search procedure is computationally
costly, even though we can use the local properties of the
discretization to avoid rediscretizing all the variables in
each candidate network.

The second approach alternates between learning the dis-
cretization policy and learning the network structure in an
iterative fashion. The idea is as follows: we start with
some discretization, and learn a network structure given
this (fixed) discretization. Then, we rediscretize based on
the learned network. This cycle is repeated until no im-
provement is made. Again, since the procedure improves
the score on each iteration, it is easy to see that this pro-
cedure must terminate. (In our experiments this process
almost always terminated in less than 3 iterations.) This
procedure, however, only guarantees to find a a local min-
ima, which is not necessarily an optimal solution. As we
will show below, the choice of the initial discretization can
affect the outcome of the procedure. We are currently ex-
ploring these issues in more detail.

Table 1: Experimental results comparing naive Bayes mod-
els to the method of Fayyad and Irani.

Dataset Prediction Accuracy
naive FI-naive

australian 86.38+-1.38 86.23+-1.10
breast 97.36+-0.55 97.36+-0.55
cleve 82.76+-1.66 82.76+-1.27
crx 86.84+-1.10 86.22+-1.14
diabetes 74.48+-0.76 74.48+-0.89
glass 62.64+-1.86 67.78+-2.17
glass2 76.10+-1.68 79.77+-1.50
iris 94.00+-1.25 94.00+-1.25
lymphography 81.72+-2.62 81.72+-2.62
pima 75.65+-1.23 75.51+-1.63
shuttle-small 98.50+-0.28 98.76+-0.25
vehicle 58.75+-1.43 58.99+-1.57
waveform-21 78.17+-0.60 78.68+-0.60

5 PRELIMINARY EXPERIMENTAL
RESULTS

This section describes preliminary experiments designed to
test the soundness of the method proposed. The experi-
ments were run on 13 datasets from the Irvine repository
[15]. We estimated the accuracy of the learned classifiers
using 5-fold cross-validation, except for the “shuttle-small”
and “waveform-21” datasets where we used the hold-out
method. We report the mean of the prediction accuracies
over all cross-validation folds. We also report the standard
deviation of the accuracies found in each fold. These com-
putations were done using the MLC L.L library. (See [8, 13]
for more details.)

Our first experiment is concerned with an application to
supervised learning and a comparison to the discretization
method of Fayyad and Irani [7] (FI from now on). This
method is considered state of the art in supervised learning
[6]. In their approach, FI attempt to maximize the mutual-
information between each variable and the class variable.
Although their method was not developed in the context
of Bayesian networks, it is applicable for one particular
network structure, namely that of a naive Bayes classifier.
As Example 4.5 shows, in the naive Bayes classifier, the
Markov blanket of each attribute consists of the class node
only. In this network, our approach will also discretize each
variable to maximize the mutual information with the class
variable. Therefore, in this case, under this particular fixed
structure for the network, it is reasonable to compare our
method to theirs.

Table 1 shows the results of this comparison: naive denotes
a naive Bayes classifier that was learned from the original
data discretized with our approach; in FI-naive the data set
was prediscretized by the method of FI using only the train-
ing data, in the manner described in [6], then, a naive Bayes
classifier was learned over the discretized data. As these

Table 2: Experimental results comparing unsupervised
learning of network structure.

Dataset Prediction Accuracy
unsup(LS) unsup(naive) FI-unsup

australian 86.52+-1.42 86.81+-0.62 86.09+-1.58
breast 97.51+-0.50 96.78+-0.68 96.92+-0.49
cleve 82.44+-1.65 82.08+-1.51 80.73+-1.31
crx 86.84+-1.42 85.91+-0.92 84.38+-0.90
diabetes 74.74+-0.60 76.30+-0.41 75.91+-0.29
glass 52.41+-5.11 60.80+-5.51 55.57+-5.39
glass2 70.55+-3.28 75.49+-3.13 75.49+-2.47
iris 94.67+-1.33 94.00+-1.25 94.00+-1.25
lymphography 77.70+-2.74 77.72+-1.65 75.01+-2.69
pima 76.30+-1.17 75.39+-1.59 74.74+-1.24
shuttle-small 99.17+-0.21 96.07+-0.44 99.17+-0.21
vehicle 58.75+-1.56 63.60+-2.24 60.99+-1.94
waveform-21 75.47+-0.63 68.45+-0.68 69.85+-0.67

results show, FI’s method performed slightly better—which
is not surprising given the that it was specially designed for
classification problems. Yet, our method is comparable and
the discretizations found often coincided.

In the first experiment we used a fixed network structure. In
the second, we learn both the discretization and the struc-
ture of the network to examine the effects of the interac-
tion. We learned structure by searching in a greedy fashion
over the space Bayesian networks. This procedure is un-
supervised, it does not distinguish the class variable from
other variables in the domain.4 Table 2 contains the results
of this experiment: unsup(LS) denotes the unsupervised
learning method described in Section 4.3, where the initial
discretization was performed by least square quantization
as described in Section 4.2; unsup(naive) denotes an unsu-
pervised learning method where the initial discretization is
the one found by the naive procedure above; in FI-unsup
the unsupervised learning was performed on training data
prediscretized using FI’s method. These results are incon-
clusive. We might have expected that unsup(naive) would
be better since it is biased toward better classification. Yet,
somewhat surprisingly there is no clear dominance between
unsup(LS) and unsup(naive). It is evident, though, that
FI’s method, which is informed about the classification task,
is not the optimal discretization for the networks learned.
This is due to the fact that it does not take into account the
interactions between the other variables in the discretization
process.

Finally in order to compare the discretization policies com-
puted in each of these experiments, we used the discretiza-
tions learned by naive, unsup(LS), unsup(naive) and FI’s
method as a prediscretized input for the C4.5 classifier [18].

4We note that unsupervised Bayesian network classifiers are
often better than the naive Bayes classifier. However, in datasets
with multiple attributes their performance can be poor. We explain
this phenomena is detail in [8].

Table 3 lists the prediction accuracies as well as C4.5’s per-
formance when given the data without prediscretization.
As these results show that our procedures, even the unsu-
pervised ones, are comparative with FI’s method and with
C4.5’s internal discretization.

We emphasize that these results compare a supervised ap-
proach, i.e., one that is informed about the goal of the
discretization process, with an unsupervised approach that
does not give the class variable any special status. Yet, the
results show that our unsupervised method is competitive
with a state-of-the-art supervised method. The task we ex-
amined here is a very narrow one. It measures in a very
limited fashion the quality of the learned model. We are
currently devising experimental setup to compare our ap-
proach with parametric method for dealing with continuous
variables.

6 DISCUSSION

This paper presents an innovative approach to the discretiza-
tion of continuous variable in supervised and unsupervised
learning based on the MDL principle. Discretization is
handled as an integral part of the learning of a Bayesian
network. This has a number of advantages. The first is that
the discretization of each variable introduces just enough
intervals to capture the interactions with adjacent variables
in the network. The second is that non-interacting vari-
ables can be discretized in isolation. We have validated
our approach against a state-of-the-art discretization proce-
dure in the context of supervised learning, and are currently
performing experiments to validate the approach in applica-
tions involving unsupervised learning. One problem we are
facing is that since this is the the first approach to discretiz-
ing while learning Bayesian networks, we lack a method-
ological reference and established validation standards. We
are currently in the process of defining these.

In addition, this research opened a number of issues that we
are currently investigating. The first one is understanding
how our iterative procedures depend on the initial con-
ditions and what are good choices for these initial con-
ditions. The second one is how to scale up the process
for large databases. Currently our discretization procedure
tests each mid-point among the continuous values. When
the data contains a large number of values for a continuous
variable this procedure becomes extremely expensive. We
are considering several approaches including subsampling
techniques and simple quantization methods for finding a
reasonably sized candidate pool for threshold values.

Finally, an open question is the development of a similar
scoring metric for discretization based on Bayesian con-
cepts as opposed to the MDL principle. A natural path
would be to augment the Bayesian scoring metric intro-
duced in [11, 10]. The main obstacle is to specify in a
compact way a prior for the parameters , , for each possi-
ble discretization of the data. This is a non trivial problem,

Table 3: Using learned discretizations for C4.5.

Dataset Prediction Accuracy
naive unsup(LS) unsup(naive) FI C4.5

australian 85.94+-1.66 68.70+-17.21 85.65+-1.51 85.65+-1.82 85.36+-0.74
breast 95.17+-0.59 95.02+-0.59 95.02+-0.43 94.73+-0.59 95.32+-0.44
cleve 72.97+-0.54 78.71+-0.46 77.36+-1.19 73.31+-0.63 74.29+-2.75
crx 85.91+-0.94 85.00+-1.08 86.22+-1.36 86.22+-0.58 84.53+-0.93
diabetes 75.00+-1.36 73.18+-1.27 75.13+-1.17 76.04+-0.85 70.84+-1.67
glass 66.36+-1.56 65.45+-3.94 69.19+-2.62 69.62+-1.95 67.75+-2.50
glass2 75.44+-1.10 74.26+-4.24 74.28+-3.60 76.67+-1.63 73.60+-4.06
iris 94.00+-1.25 95.33+-0.82 94.00+-1.25 94.00+-1.25 94.67+-1.33
lymphography 77.03+-1.21 77.70+-0.82 74.97+-1.84 77.03+-1.21 77.01+-0.77
pima 75.65+-1.29 74.99+-1.14 75.39+-1.12 75.13+-1.52 72.65+-1.78
shuttle-small 99.22+-0.20 99.38+-0.18 99.33+-0.19 99.17+-0.21 99.53+-0.15
vehicle 69.16+-2.30 66.31+-1.57 70.80+-1.02 69.74+-1.52 69.86+-1.84
waveform-21 72.47+-0.65 69.98+-0.67 72.64+-0.65 74.70+-0.63 70.36+-0.67

for which the methods of [10] do not immediately apply.

Acknowledgments

The authors are grateful to Denise Draper, Usama Fayyad,
Ronny Kohavi and Meheran Sahami for comments on a
previous draft of this paper and useful discussions relating
to this work. Parts of this work were done while the first
author was at Rockwell Science Center. The first author
was also supported in part by an IBM Graduate fellowship
and NSF Grant IRI-95-03109.

References

[1] R. R. Bouckaert. Properties of Bayesian network
learning algorithms. In UAI ’94, pp. 102–109. 1994.

[2] W. Buntine. Operations for learning with graphical
models. J. of Artificial Intelligence Research, 2:159–
225, 1994.

[3] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor,
and D. Freeman. Autoclass: a Bayesian classification
system. In ML ’88. 1988.

[4] G. F. Cooper and E. Herskovits. A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9:309–347, 1992.

[5] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley, 1991.

[6] J. Dougherty, R. Kohavi, and M. Sahami. Super-
vised and unsupervised discretization of continuous
features. In ML ’95. 1995.

[7] U. M. Fayyad and K. B. Irani. Multi-interval dis-
cretization of continuous-valued attributes for classi-
fication learning. In IJCAI ’93, pp. 1022–1027, 1993.

[8] N. Friedman and M. Goldszmidt. Building classifiers
using Bayesian networks. In AAAI ’96. 1996.

[9] D. Heckerman. A tutorial on learning Bayesian net-
works. Technical Report MSR-TR-95-06, Microsoft
Research, 1995.

[10] D. Heckerman, D. Geiger, and D. M. Chickering.
Learning Bayesian networks: The combination of
knowlege and statistical data. Machine Learning,
20:197–243, 1995.

[11] D. Heckermann and D. Geiger. Learning bayesian
networks: a unification for discrete and gaussian do-
mains. In UAI ’95, pp. 274–284. 1995.

[12] G. H. John and P. Langley. Estimating continuous dis-
tributions in bayesian classifiers. In UAI ’95, pp. 338–
345. 1995.

[13] R. Kohavi, G. John, R. Long, D. Manley, and
K. Pfleger. MLC++: A machine learning library in
C++. In Tools with Artificial Intelligence, pp. 740–
743. IEEE Computer Society Press, 1994.

[14] W. Lam and F. Bacchus. Learning Bayesian belief
networks. An approach based on the MDL principle.
Computational Intelligence, 10:269–293, 1994.

[15] P. M. Murphy and D. W. Aha. UCI repository of
machine learning databases. http://www.ics.
uci.edu/˜mlearn/MLRepository.html.

[16] R. M. Neal. Connectionist learning of belief networks.
Artificial Intelligence, 56:71–113, 1992.

[17] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, 1988.

[18] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

