LEARNING HIDDEN VARIABLES IN
PROBABILISTIC GRAPHICAL MODELS

THESIS SUBMITTED FOR THE DEGREE OFD OCTOR OFPHILOSOPHY"
BY

Gal Elidan

SUBMITTED TO THE SENATE OF THEHEBREW UNIVERSITY
DECEMBER 2004

This work was carried out under the supervision of

Prof. Nir Friedman

Abstract

In the past decades, a great deal of research has focusedramdgprobabilistic graphical
models from data. A serious problem in learning such modetse presence dfidden or latent
variables. These variables are not observed, yet thenaittion with the observed variables has im-
portant consequences in terms of representation, inferamd prediction. Consequently, numerous
works have been directed towards learning probabiliséplgical models with hidden variables. A
significantly harder challenge is that of detecting new aiddariables and incorporating them into
the network structure. Surprisingly, and despite the reizegl importance of hidden variables both
in social sciences and the learning community, this proliiesireceived little attention.

In this dissertation we explore the problem of learning nedén variable in real-life domains.
We present methods for coping with the different elemerasttiis task encompasses: the detection
of new hidden variables; determining the cardinality of nadden variables; incorporating new
hidden variables into learning model. In addition we alsdrads the problem of local maxima that
is common in many learning scenarios, and is particulanieam the presence of hidden variables.

We present simple and easy to implement methods that work whaing data is relatively
plentiful as well as a more elaborate framework that is bietavhen the model is particularly
complex and the data is sparse. We also consider methodsicglctailored at networks with
continuous variables and the added challenges in this sSoena

We evaluate all of our methods on both synthetic and realddta. For the more elaborate
methods, we put a particular emphasis on learning compledetaavith many hidden variables.
We demonstrate significant improvement in quantitativedisteon on unseen test samples when
learning with hidden variables, reaffirming their impoxtarin practice. We also demonstrate that
models learned with our methods have hidden variables tieafj@alitatively appealing and shed
light on the learned domain.

Acknowledgments

| am indebted to my adviser Nir Friedman who had a profoundiégmite on my research. Nir has
exposed me to the world of probabilistic graphical modeld #amed my ambition to discover
hidden variables, a “small” project in his course. | havared from Nir, a brilliant scientist, an
endless collection of scientific skills: how to approach anptex problem; how to take an idea
and make it concrete; how to crisply analyze and understasults; how to go back to data where
answers (or more questions) are to be found; how to be driticayself but always in a constructive
way; and the list goes on and on. | truly feel that | have ledrinem a master and | am sure the
principles Nir ingrained in me will help me throughout my ear. | was always impressed, and
through the years came to appreciate more and more, how-oanN#&’s mentoring is and how
involved he is in every detail of the research from the fundatal ideas to the axis on a figure of
a presentation. Finally, while Nir was being my intelledtoeentor he was also, often on the same
day, a friend. | have gossiped, dined, hiked, biked and diviédal Nir. | cannot but feel extremely
lucky that | have had such an inspiring adviser.

| would like to thank, from the bottom of my heart, Eli Shammiy first adviser. An intellectual
role-model and a person who constantly thinks of othersh&dl the insight and confidence to
direct me to a then new faculty member whose research intee¢i®r matched mine. Throughout
my studies, he continued to support and advise. | will alwaysember the kindness Eli showed in
taking the time to think of what is best for me, and his wisdompuash me in the right direction.

| want to thank the other members of my research committeleosfaua Sagiv was continuously
supportive. Dan Geiger, unknowingly, influenced my carebenvhe gave a superb Al course.
Special thanks to the people of the Horowitz foundation fier generous support that allowed me
to invest myself in research, and to Intel corporation whavjgted additional support.

| would also like to thank Zvi Gilula for giving me insight te@al science, for his unfaltering
moral support, and for believing in me. He was always theleetp, professionally and as a friend.

| had the pleasure of fruitful collaborations with many werfdl people. Noam Lotner helped
make my first paper happen, and made working together so edsdyiia. Daphne Koller, from the
start, inspired me by her intellect. Even more so, she inggebsme with her genuine desire to listen
to the ideas of someone who just entered the world of rese@raphne continued to collaborate,

influence and support me throughout my studies and lateragrslg took me under her wing as a
postdoc. Dana Pe’er and Aviv Regev showed me how excitingoatestional biology can be and
how far you can get when people work together. Matan Ninionkhew to ask dumbfounding
guestions that constantly improved our work. Dale Schunsmaade us feel like great scientists
and helped us do great work. Yoseph Barash and Tommy Kapd@fimed cooperation and, | hope,
paved the way for many works still to come. Iftach Nachman abasys laid back yet sharp so that
writing a serious paper was carefree. Ariel Jaimovich andeHdargalit made the last paper in my
Ph.D. studies such a friendliness based success.

| spent six wonderful years at the computer science depattatethe Hebrew university and
worked with wonderful people. Thank you Yael, Ziva, Silviegtna, Rina, Lital, Ayelet, Relly,
Hagit, Koby and Eli for your friendliness and for going outyafur way to help me, so that | never
felt the weight of bureaucracy. | want to thank Eli Shamillj Teshby, Yoram Singer, Nir Friedman
and Yair Weiss for creating a world class learning lab thatves for excellence and at the same
time maintains a friendly atmosphere, where students stenkd to, and faculty doors are always
open. | want to thank Yair for giving me an eye-opening ex@eé as his teaching assistant. |
was fortunate to be a member of a special lab where friendsttigorates research. All current
and former lab members, including Noam S., Ran, Gill, Gal,ji &, Lavi, Amir N., Yevgeni and
Yossi, were there to drink coffee and so much more. Koby Hedrlearning” with me and were
there for endless thought provoking discussions. Shai wiisgvto advise about linear algebra,
Hazzanic music and the nature of god. Ofer was always reallg frmssionate about anything and
everything. Elon gave me a “glimpse” to political conscienc

| was also lucky to be a part of Nir's group, a small family. &ald Noam were with me from
the beginning and | will always consider them my friends., Glillel, Omri, Tomer, Yuval and llan
made every day so enjoyable. Dana was there to talk, suppdrtare. Noa and Ariel, so quickly,
naturally and deservedly became a part of us all and madeilss $fatan made everything exciting
and was always ready to be a friend. Iftach gave me a frespgege on life and inspired me with
his big heart. Finally, my roommates, collaborators aneniis, Tommy and Yoseph. We talked
about everything. Just by being there you made this era offsngd memorable.

| want to thank my parents, Yossi and Sara, for being so wdnldelFrom an early age they
flamed my curiosity, encouraged my passions and somehovd fitinentime to answer my endless
guestions. Mom, Dad, it is because of you that | have comdahis will forever be grateful.

Last, | am at a loss for words on how to thank my eternal lové Ta¢orge Eliot once wrote:
“What greater thing is there for two human souls than to fleat they are joined... to strengthen
each other... to be at one with each other in silent unspéakadmories”. How right he was! Tali,
| have met you when | started my graduate studies and you haee me all that and more. You
have strengthened me and were with me in all moments and mesnsitent or not. For everything
that was and will be, thank you.

To my parents who supported and loved me unconditionally
and to Itai, my son, who | hope will one day feel as | do.

Contents

Acknowledgments

1

Introduction

11
1.2
1.3

Probabilistic Graphical Models
Hidden Variables
Road Map of OurMethods

Probabilistic Graphical Models

2.1

2.2

2.3

2.4

The Bayesian Network Model
2.1.1 Encoding Independencies
2.1.2 Independence Maprhap o e
2.1.3 Model Definition
214 Inference e
Learning Parameters with Complete Data
2.2.1 Maximum Likelihood Estimation
2.2.2 Bayesian Estimation e
Structure Learning e e aa
2.3.1 The Bayesian Dirichlet Equivalent Sample Size Score
2.3.2 Scores ForContinuousCPDs
2.3.3 SearchAlgorithm
Learning with Missing Values and Hidden Variables
2.4.1 Parameter Estimationo
2.4.2 StructurelLearning e e

Weight Annealing

3.1
3.2
3.3

Annealing Algorithms e
Weight Annealing e
Reweighting Strategies e e
3.3.1 RandomReweighting.

3.3.2 Adversarial Reweighting
3.4 AnalysisofaToyproblem
3.5 Learning BayesianNetworks aa. ..
3.5.1 Perturbing Structure Searcho
3.5.2 Perturbing ParametricEM L 0.
3.5.3 Perturbing StructuralEM
3.5.4 Evaluation of real-lifedomains
3.6 Learning Sequence Motifs
3.7 Relationto OtherMethods
3.8 DISCUSSION e

Discovering Hidden Variables: A Structure-Based Approat

4.1 Detecting Hidden Variables e
4.2 Experimental Results e
4.3 DISCUSSION e

Adapting the cardinality of hidden variables

5.1 Learning the Cardinality of a Hidden Variable
5.1.1 The Agglomeration Procedure
5.1.2 ScoringofaMerge
5.1.3 Initialization

5.2 PropertiesoftheScore

5.3 Learning the Cardinality of Several Hidden Variables

5.4 Experimental Results and Evaluation

5.5 Discussion and Previous Work

Information BottleNeck EM
6.1 Multivariate Information Bottleneck Lo L.
6.2 Information Bottleneck Expectation Maximization
6.2.1 The Information Bottleneck EM Lagrangian.
6.2.2 The Information Bottleneck EM Algorithm
6.3 Bypassing Local Maxima using Continuation e e e e
6.4 Multiple Hidden Variables e
6.5 Proofs and Technical Computations00
6.5.1 Fixed point equations:Single Hidden Variable
6.5.2 Fixed point equations:Multiple Hidden Variable
6.5.3 Computing the Continuation Direction.
6.6 Experimental Validation: Parameter Learning

Vi

55
57
62
68

6.7 Learning Structure e e e e e 116
6.8 Learning Cardinality e 119
6.9 Experimental Validation: Learning Cardinality 122
6.10 Learning New Hidden Variables uu.... 123
6.11 Full Learning — Experimental Validation 127
6.12 Related Work e 130
6.13 Discussion and Future Work L 132
7 The “ldeal Parent” method for Continuous Variable Network s 134
7.1 The“ldeal parent” Concept e 135
7.1.1 BasicFramework 351
7.1.2 LinearGaussian 371
7.2 ldealParentsinSearch 141
7.3 Adding New Hidden Variables 142
7.4 Learning with Missing Values, 144
7.5 Non-linear CPDs e 145
7.6 Experiments e e 150
7.7 Discussionand Future Work e 156
8 Discussion 158
8.1 Summary . ..o e e e e e e 815
8.2 The Method of Choice 159
8.3 Previous Approaches for Learning Hidden Variables 161
8.4 FUtUre Prospects. o i e e e e e 165
Notation 167

vii

viii

Chapter 1

Introduction

The intriguing world around us is endlessly complex andveresurprising. How then, do we hu-
mans manage to cope with different tasks? From infancy we leaidentify relevant influencing
factors and allow experience to form deep rooted knowledgech guides our decision making
processes: Before going outdoors we listen to the foretast,a quick glance outside, and some-
how combine these observations to decide whether takingrdmalla is worth the hassle; A finan-
cial analyst combines his formal knowledge and his “madeartse” experience to explain current
changes in the stock market and predict future trends. Reglroblems are further complicated by
the fact that we are usually given only a partial view of theld.oA physician will typically want to
make a diagnosibeforeall possible tests have been carried out; A SWAT squad leaildnave to
handle a hostage situation without necessarily knowinduteetails of the terrorists’ strength. In
fact, in making decisions for a domain of interest, an infiieg factor mayneverbe observed. A
chess player, for example, will never have access to hisrapyts strategy and mood at a particular
game, but will constantly try to infer it from the observedvas, the time it took to make them, and
the opponent’s history of games. Such hidden factors abourehl-life domains, and often play
the part of central hidden mechanisms influencing many obtiservations. It is the goal of this
dissertation, to learn these hiddenatententities.

1.1 Probabilistic Graphical Models

In coping with the challenges outlined above, we rely hgaoii our life experience. For example,
long before we formally study the constructs of the languagelearn how to talk by hearing those
around us speak. A child learn how to ride a bicycle withowtarstanding the fundamentals of me-
chanical physics. From its early days, computer sciencé&riealsto mimic these human capabilities,
or least cope successfully with similar tasks. As the akditg of structured data grew, a transition

2 INTRODUCTION

Exposure
(to sunlight)

-
L

-- Bleeding
(a) (b) (€)

Y =

(to sunlight)

@ <>
OCLIXY

\

Indigestion Bleeding

S

Figure 1.1: Simple network for a cancer domain. (a) showsaagible structure wher€ancer
separates its causes from symptoms. (b) shows the resattingfure wherCancer is removed
from the model and is no longer able to mediate between inpand children nodes. (c) shows a
possible structure wheancer is included in the model but its cardinality is too small.

has taken place from classical rule based Atrtificial Irgeltice [Russell and Norwig, 1995] to ex-
ample basedlachine Learning In this field, where our aim is to learn from examples, aldonis
are applied to data in order to produce favorable hypothpsisas we humans apply our inherited
skills to the observations of the world around us. A centeabgdigm in Machine Learning is that
of probabilistic graphical models [Pearl, 1988, Jense®61®auritzen and Spiegelhalter, 1988]
that have become extremely popular in recent years, andesing hised in numerous applications
(e.g., [Heckerman et al., 1995b]).

Probabilistic graphical models compactly represent e jdistribution over a set of variables
in a domain, and facilitate the efficient computation of fideiprobabilistic queries. Nodes in
the graph of such models denote relevant entitiesaodom variables and the graph structure
encodes probabilistic relations between them. Figure) st{ows the structure of a simple directed
graphical model, called Bayesian networkPearl, 1988] for a cancer domain. One of the most
appealing features of the graph representation is tha¢#sgy interpretable, and tells us a lot about
the qualitative structure of the domain. For example, itdasyeto “read” from the graph that the
relation betweersmoking and the appearance bimps in an x-ray is mediated by th€ancer
node. It is also easy to see th@ancer is concurrently effected by several possible direct causes
In contrast,Cancer is the only direct influencing factor dBleeding.

The parameters of a probabilistic graphical model compigrie structure to represent a full
joint probability distribution over the variables in therdain. This probability distribution is special
in that it takes the form of the structure of the model. Fomagie, the distribution represented by
our simple structure of the cancer domain can be written as

P(C,S,E,A,L,B,I) = P(S) - P(E) - P(A)- P(C | S,E,A)-P(L|C)-P(B|C)-P(I|C)

INTRODUCTION 3

where, for convenience, instead of the variable’s full nameeuse a single letter as shown in Fig-
ure 1.1. Notice that the individual terms in the abolszompositiorof the distribution correspond
to properties that we intuitively interpreted from the dragiructure. For exampl®(S) encodes
the fact that there are no predecessor caus&smaking. It is this decomposition that gives prob-
abilistic graphical models their unique advantage andifaids a compact representation of the
joint distributions. In the cancer example, naively repraig the full joint distribution over 7 bi-
nary variables required’ — 1 = 127 parameters, each providing the probability to one of thetjoi
assignment of these variables. However, the above decdtiopas made up of smaller building
blocks requiring justt + 1+ 1+ 8 + 2 + 2 + 2 = 17 parameters, corresponding to the factors
P(S),P(E),P(A),P(C|S,E,A),P(L|C),P(B|C),andP(I | C), respectively. Obviously, for
larger domains the savings can be significantly larger, lawabs to cope with distributions that are
otherwise considered “infeasible”.

The decomposition of the distribution has many advantagdsta importance cannot be over-
stated. The compact representation is not only a goal itf,itagt also facilitates efficient proba-
bilistic computations [Pearl, 1988, Jensen et al., 1990}efBa joint distributions, a central task of
interest is that of inference, or answering probabilistieries. For example, we might be interested
in the probability of an Anthrax attack given a partial obsdion on several potential “red flag”
factors. Alternatively, given an outcome such as the piaseha disease, we might wantdecode
or diagnose the causes the most probably led to it. We migbt etamine the influence of one
factor on another to quantify the merit of future decisioA#.these tasks are typically intractable
even for small domains if the joint distribution is naivepresented. While inference in general
graphical models is NP-hard [Cooper, 1990], the decomipositf the distribution allows us to
compute varied probabilistic queries for relatively lasyel complex domains.

The decomposability of the joint distribution also has impot implications on our ability to
learn these models from data. In practice, we are given agldramount of training data and want
to learn a hypothesis or model. The performance of prabtiesly method in Machine Learning
for doing so, deteriorates as the number of parameters dangsr with respect to the number
of samples. Intuitively, if there are many parameters and $amples, each parameter will be
supported by little evidence, and its estimation will notdserobust. In this case, the learning
procedure will capture specifics of the training data (idoig noise), rather than the regularities
that will enable it to make predictions for unseen sampléstis, the model wilbver-fit or will be
highly adapted, to the training data, rather than have geoemlization capabilities. Indeed, the
need for a succinct model in Machine Learning is today botlotétically and practically justified.
Probabilistic graphical models offer an appealing framwior formulating and learning such
models.

Probabilistic graphical models in general, and Bayesiawaor models in particular, have be-
come popular following the work of Pearl [1988]. Since themrerous works have dealt with the

4 INTRODUCTION

problem of learning these models from the data. When theigatamplete so that each variables
is observed in each instance, closed form formulas for asimg themaximum likelihoodbara-
meters are known for many useful distributions. The mairllehge in this case is to learn the
structure of the network. As the number of possible striestis super-exponential in the number of
variables, heuristic greedy procedures are typically uSéese explore the space of structures by
considering local changes to the structure (e.g., edgeiadddeletion or reversal), and are prone
to get stuck in local maxima. When some observations aramgiss some variables are altogether
unobserved, learning is significantly harder: local maxiftan trap the learning procedure and
lead to inferior models. In fact, the problem of local maximaommon to most learning tasks,
and is central in learning probabilistic graphical modéhen we consider real-life domains, we
also have to cope with the fact that the sheer size of the gmolphay limit our ability to learn an
effective model in practice. Consequently, much of theasdein recent years has been directed
at learning probabilistic graphical models in complex sc@s where some of the data may be
missing (e.g., [Friedman, 1997, Jordan et al., 1998]).

1.2 Hidden Variables

In this dissertation, we address the task of learning newernidzariables in probabilistic graphical
models for real-life domains. That is, we are interestedidlién variables that are not known to
be part of the domain, in contrast to those of which we haver gmowledge. Thus, in addition
to the task of learning the parameters and structure of ttaemuwre face the further complication
of whether and how to incorporate new hidden variables ihortetwork structure. Why then,
should we bother with hidden variables that are never obseand seemingly contribute no new
information to the model?

Consider again the model of the Cancer domain shown in Figiiréa). This simple model
encodes the fact that an observation of@@cer node separates possible causes (smoking, expo-
sure to sunlight, excessive consumption of alcohol) fromvalausible symptoms (lumps,unusual
bleeding,chronic indigestion). Now imagine a physiciarttaf 16th century who is yet unaware
of the existence of this yet undiscovered disease. Such siqiuwy might be able to recognize a
correlation between smoking of a Nargile (a hookah) and gpearance of lumps. He might also
be able to deduce a relation between repeated bleeding amdicindigestion. Slowly, accumu-
lating these correlations, the physician may end up with dehthat is similar to the one shown in
Figure 1.1(b).

The “true” structure in Figure 1.1(a) is more appealing fevesal reasons. First, intuitively, it
tells us much more about the domain’s structure, and inquéati about the way that the different
variables influence each other. For example, we can dedatbythefraining from smoking, we can
reduce the chances of having cancer and consequently avaighnptoms. Without the knowledge

INTRODUCTION 5

of the disease, we might think that if we treated our chronitigestion, we would be able to
somehow reduce the life threatening bleeding. In fact, type of hidden variable exemplifies
the process of scientific discovery where a new entity, maisha or base theory are introduced
to explain common correlated phenomena. Second, the wteusfith the hidden variable offers a
much more compact representation of the domain. In conivasy. (1.1), the distribution of the

model in Figure 1.1(b) decomposes as

P(C,S,E, A, L, B,I) =
P(S)- P(E)-P(A)-P(L|S,E,A)-P(B|S,E HL)-P(I|S,E,H,L,B).

This decomposition is clearly less favorable than the deguasition that follows the original struc-
ture. The termP(I | S, E, H, L, B) alone, for example, us&® = 32 parameters, one for each
joint value of S, F, H, L and B. Thus, the removal of a hidden variable from the model, maylte
in a network structure that is significantly more complex &ad almost no structure (most nodes
are connected to most of the other nodes). Such a model ismhptess interpretable, but is also
less appealing in terms of inference, and can greatly de&te our ability to learn from data.

Let us now reconsider the structure of the cancer domaingirgil.1(a), where th€ancer
node now has three values: none, mild and severe. A slightiye rknowledgeable physician of
the 19th century is already aware of the existence of canaeddes not differentiate between
different severities, since cancer always leads to deathig¢i century). Just as in the case of the
16th century physician, this lack of knowledge may resuli skewed understanding of the world.
For example, the marginal distribution Bfeeding and chronicindigestion can be very different
for mild and severe cases of cancer. Our physician consalecancer cases as a whole, and thus
might deduce that there is a direct correlation betweerettves nodes thaCancer cannot mediate.
Similar considerations for other variables may lead thesfulign to construct the model shown in
Figure 1.1 (c). This model is even more complex than the modestructed without th€ancer
node. It has less structure and significantly more parasietdrus, knowing the number of distinct
values a hidden variable has can be just as important as kgaiout its existence and the relation
of that hidden variable to the rest of the variables in the aiom

Both of the above examples motivate our goal of learning nigldem variables and correctly
determining their cardinality. The benefit of learning swaehables is twofold: First, learning these
variables effectively can result in a succinct model forespnting the distribution over the known
entities, which in turn facilitates efficient inference antust estimation. Second, by learning new
hidden variables, we can improve our understanding of tineadim, potentially revealing important
hidden entities. Considering the above examples, it isugtrising that the importance of incorpo-
rating hidden variables in the model was recognized earlyndhe probabilistic graphical models
community (e.g., [Spirtes et al., 1993, Pearl, 2000]), andthrearlier in the philosophical, statisti-
cal and social sciences and in particular in the usBtoictural Equation ModelfNright, 1921].

6 INTRODUCTION

What is surprising, is that despite the influx of researcHdarning probabilistic graphical models
in recent years, few works address the challenge of leamemghidden variables in these models.

Imagine a tool that would have revealed the structure artireity of the Cancer variable to
those early physicians and the implications of such a todd.the goal of this dissertation to present
methods that will form the first step towards this goal, ingatoilistic graphical models.

1.3 Road Map of Our Methods

Learning new hidden variables involves three central ehgkes. The first is the correct placement
of the hidden variable within the structure of the model. Wit an initial “intelligent” guess, there
is little hope that standard search algorithms will be ablécbrrect” the structure. On the other
hand, it is unreasonable to assume that any method will lgetalgerfectly position a new hidden.
Thus, a good initial placement of a hidden variable must beved by an effective structure
adaptation algorithm. Second, as discussed above, detagrthe cardinality of a new hidden
variable can have an effect on the learned structure thasisag important as the discovery of the
hidden variable. We can expect a new hidden variable to leetefé only if it is of approximately
the correct cardinality. Third, even if a new hidden varailplaced approximately correctly within
the structure and with a reasonable cardinality, then tirsg point of its parameters can have a
significant effect on the network learned by learning aldponi that follow this initial construction.

In coping with these tasks we take a pragmatic view of the Iprolof learning new hidden
variables. That is, unlikeausality oriented works (e.g., [Spirtes et al., 1993, Pearl, 20008,
want to add a new hidden variable whenever it improves thdigtiens of our model. In taking
this pragmatic view, we must also consider the possibiligt a2 hidden variable will not be useful
if its incorporation into the model is not followed by an effiwee learning procedure. Thus, to
learn hidden variables in practical real-life domains, westralso cope with the practical problem
of optimization. Specifically we want to address the problentocal maxima that abound in the
presence of hidden variables, and that can trap the leapnowgdure resulting in inferior models.
We now briefly outline the methods explored in this dissemteto handle all of these tasks.

As a preliminary, in Chapter 2 we review the foundations afgabilistic graphical models with
an emphasis on a probabilistic interpretatiorBalyesian networksWe present definitions as well
algorithms for inference, parameter estimation and atradiearning that are used throughout the
rest of the dissertation.

In Chapter 3 we address the problem of local maxima in geparaimeter estimation and struc-
ture learning. The basic idea is that by a re-weighting ofdam e.g., by strengthening of “good”
samples and weakening of “bad” ones, we can guide the leppmocedure in desirable directions.
We present thaMeight Annealingnethod that is related both to annealing methods [Kirpiatric
et al., 1994, Rose, 1998] and the boosting algorithm [Schaapid Singer, 1999]. We demonstrate

INTRODUCTION 7

the effectiveness of the method for parameter learning motitlinear probability distributions, for
structure search with complete data and for structure Baarthe presence of hidden variables.
We also show the applicability of the method to general lisgrscenarios that are not limited to
probabilistic graphical models.

In Chapter 4 we introduce the first and most straightforwaethwd for introducing new hidden
variables into the network structure. The motivation fag thethod comes from the phenomena
exemplified in our discussion of the cancer domain in Secti@ In that example, th€ancer
node was the keystone of a succinct and desirable représantdthe domain. WheRancer was
hidden, much of the structure was lost. In particular, audigvas formed over all of its children.
We show that this phenomena is formally a potential resulihefremoval of a hidden variable
from the domain. Thus, a clique like structure can be usedsasietural signature to suggest new
putative hidden variables. In our method, we search for sigtatures and reverse engineer the
hidden variable. We show that this method is able to recoasgynthetic hidden variables. We
further show that in real-life domains, the method is ablentmoduce new novel hidden variables
that improve the prediction of unseen samples, and haveaalipg interpretation.

In Chapter 5 we present a complementing technique for datergthe cardinality of the hidden
variable. Our method starts with an excessive number afsfat the hidden variable, and proceeds
by bottom up agglomeration of states. Intuitively, two asadre merged if their role in the training
distribution is similar, and they can be approximated raabty by a single state. We show how this
intuition can be instantiated so that the algorithm is edfitiin practice. We demonstrate that this
method, in conjunction with the hidden variables discovagorithm, is further able to improve the
quality of the learned model.

In Chapter 6 we present a new approach that concurrenthesskels all of the challenges we
face. Our method is based on the following idea: a model tedopns well on training data
is one that captures the behavior of the observed variablesfferent instances. On the other
hand, in order to generalize to unseen samples, we wantdetftve specifics of the training data
and capture the regularities of the domain. We define a balaetween these two competing
factors using thdnformation Bottleneckramework of Tishby et al. [1999], and formally show
that it is directly related to the standard EM objective [ester et al., 1977, Lauritzen, 1995], for
learning the parameters of Bayesian networks with hiddeiais. This formulation allows us to
use continuation [Watson, 2000], where we define a smootisitran between an easily solvable
problem to the hard learning objective. By tracking the gatlocal maximum between these two
extremes, the method is able to bypass local maxima and fgefarable models. Importantly,
this same approach also facilitates learning of new hidderables and their cardinality, using
emerging information signals. Not unlike the structurginsiture used in Chapter 4, these signals
are information theoretic “evidence” that a hidden vamaisl potentially missing from the domain.
We demonstrate the effectiveness of the method on a rangeaféal-life problems.

8 INTRODUCTION

The final method we present in Chapter 7 specifically addsessechallenge of learning con-
tinuous variables networks. In these networks, learnirtg won-Gaussian conditional probability
distributions is often impractical even for relatively dhdomains. We address this added chal-
lenge together with the task of learning new hidden varmbM/e first present a general method
for significantly speeding the search in this scenariolifatihg learning of large scale domains.
The basic idea is straightforward: instead of directly estihg the benefit of different structures (a
costly procedure), our method efficiently approximates lig@nefit, and allows the search procedure
to concentrate only on the most promising candidate strestumportantly, our formulation also
offers a guided measure for introducing new hidden vargini® the network structure. We demon-
strate the effectiveness of the method on large scale prsblgth linear and non-linear conditional
probability distributions.

Finally, in Chapter 8, we summarize and discuss our differegthods, their relation to each
other, and their relation to other approaches for learnawg Inidden variables. We conclude with fu-
ture prospects for the problem of learning new hidden véeghwhich continues to pose significant
theoretical as well as practical challenges.

Chapter 2

Probabillistic Graphical Models

Probabilistic graphical models are natural for modeling iikh and complex world around us. Us-
ing a graphical model, we can encode the inherent strucfuteealomain and utilize this structure
to perform different task efficiently such as probabilishference and learning. Specifically, for
a given domain we are interested in modeling the joint distibn over a set of random variables
X ={Xy,..., Xy} that are part of the domain. Even for the simplest model wh#reariables
are binary valued, representing the joint distributionrabe domain requires the specification of
probability for 2% different assignments. Obviously, this is infeasible withtaking advantage of
regularities in the domain. A key property of all probaltitisgraphical models is that they encode
conditional independence assumptions in a natural maaner,use these independence proper-
ties to compactly represent a joint distribution. Graphivadels also facilitate the treatment of
uncertainty over these variables via standard probabilstinipulations and allow us to easily in-
corporate prior knowledge both about the parameters andtste of the model. Finally, exploring
the qualitative graph structure and the quantitative patarization learned from observed data can
reveal inherent regularities and enrich our knowledge efdbmain.

Specific forms of graphical models suchtdaslden Markov ModelgHMMs) [Rabiner, 1990]
and Decision TreegBuntine, 1993, Quinlan, 1993] have been long used in varitields inde-
pendently. The foundations for general probabilistic reg@ models emerged independently in
several communities in the early 80’s. In a seminal bookrIFRaarl, 1988] set the basis for much
of modern research of both directed Bayesian networks addeated Markov networks. Since
then, in addition to a wide variety of applications in numerdields (see, for example, [Heckerman
et al., 1995b]), the field of research of probabilistic giaphmodels has seen exponential growth,
including: a variety of specific forms of graphical modelstsasMultinets[Geiger and Heckerman,
1996] andMixture Models[Cheeseman et al., 1988]; a multitude of algorithmic intimves such
as theStructural EM(SEM) algorithm [Friedman, 1997, Meila and Jordan, 1998e3%on et al.,

9

10 PROBABILISTIC GRAPHICAL MODELS

Earthquake Burglary

Earthquake
Burglary

(@) (b)

Figure 2.1: (a) An example of a simple Bayesian network stinecfor a burglary alarm domain.
This network structure implies several conditional indefence statement§® L B),Ind(A L
R | B,E),Ind(R 1L A,B,C | E), andInd(C L B,E,R | A). The joint distribution has the
product formP (A, B,C,E,R) = P(B)P(E)P(A|B,E)P(R|E)P(C|A). (b) Anl-map of the
distribution defined by (a).

1998] and variational approaches for learning [Jordan .et1898]; several generalizing frame-
works such a€hain GraphgLauritzen and Wermuth, 1989Dynamic Bayesian NetworkBean
and Kanazawa, 1989] aifobabilistic Relational ModelfFriedman et al., 1999a]. Although many
of the methods in this dissertation apply to most forms obphulistic graphical models, most of the
results are demonstrated on the framework of directed Baye®tworks. In this chapter we pro-
vide a brief overview of this formalism and related algarith We describe additional background
material throughout the dissertation when relevant.

2.1 The Bayesian Network Model

A Bayesian NetworkBN) is a compact representation of a joint distribution roaeset of random
variablest = {Xi, ..., Xn}. The model includes a qualitative graph structure that @éesdande-
pendence relations between the different variables andtitp@/e parameters that, together with
the graphs structure, define a unique distribution. We st#it a brief overview of how a graph
encodes the relations between the variables and then figrdedine the Bayesian network model.

2.1.1 Encoding Independencies

At the core of Bayesian networks is the notionconhditional independence

Definition 2.1.1: We say thaiX is conditionally independerdf Y givenZ if
P(X|Y,Z) = P(X|Z) whenP(Z) >0

and we denote this statement By= Ind(X L Y | Z). 1

PROBABILISTIC GRAPHICAL MODELS 11

Non
Descendent,

Descendent

Figure 2.2: lllustrative example of the Markov independestatementsX is independent of all its
non-descendents nodes in the grgplgiven its parent nodes. In contra&i,is not unconditionally
independent of any of its descendent nodes.

We explain this concept as it applies to graphs using theiclasexample from [Pearl, 1988] shown
in Figure 2.1 (a). The graph describes a simple house alajrddain that can be triggered either
by burglary (B) or by an earthquake (E). These events are eéendependent. If the alarm is
triggered by any of these causes or spontaneously, a cdlid@)the neighbor can be expected. In
addition, an earthquake is usually followed by a radio re®). The neighbor’s call is, obviously,
independent of a cause that might trigger the alarm if weadlreknow whether the alarm was
activated. Similarly, a radio report of an earthquake miglifiuence our belief concerning the
chances of burglary given that the alarm has been activhtgds no longer relevant if we actually
know whether an earthquake occurred. We now formalize timgitive independence statements
that underlie the above example.

Definition 2.1.2: Let G be aDirected Acyclic GrapHDAG) whose vertices correspond to random
variablest = {X;,..., Xx}. We say thej encodes a set d¥larkov independence statements
Each variableX; is independent of its non-descendants, given its parers in

VX, Ind(X; L NonDescendantsy, | Pa;)

and we denote the set of these statementda&ov(G). 1

Figure 2.2 illustrates the concept of the Markov independesiatements.

Using the rules of probability, we can infer additional ipdadence statements frovtarkovG).
For example, in Figure 2.1 (a), we can say thatil(A L R | E). This is follows fromInd(R L
A,B,C | E) = Ind(R L A | E) and symmetry of independence. Similarly, it is easy to sae th
all the independence statements we made in the case of thlatyualarm domain follow directly
from the Markov I-statements encoded in that graph.

12 PROBABILISTIC GRAPHICAL MODELS

The ability to infer independencies allow us to charactetie following useful notion

Definition 2.1.3: The minimal set of variables i&" that renderX; independent of the rest of the
variables given this set is called tivarkov Blanket(MB) of X; and is denoted b\MB;. By
definition

Ind(X; L X\ {X;,MB;} | MB;)

It follow directly from MarkovG) that for any general grapfi, MB; includes the parents of;,
the children ofX; and all of the children’s parents (spouses).

In general, there are numerous independence statementsathbe derived fronMarkov(G).
The notion ofd-separations used to determine whether a specific independence stattém& X |
Y | Z) holds. Briefly, X andY are d-separated give, if all undirected paths betweex andY
areblocked A path is blocked if it contains any of the following sub4psiof three nodes

1. U — Z; — Vsuchthatz; C Z.
2. U« Z; —V,suchthatz; Cc Z.
3. U — W « V, av-structure where no descendent &f is in Z.

If non of these occur in a path, it is not blocked, in which cAsandY arenot d-separated given
Z. D-separation can be computed efficiently in time that isdinin the number of variables in the
graphs [Geiger et al., 1990]. Note that d-separation orly t&s about independencies that must
follow from the graph structure that encodelarkov(()G). That is, if X andY are d-separated
givenZ thenInd(X L Y | Z) holds in the distributionP. However, if they are not d-separated, it
is not necessarily the case tHatd(X L Y | Z) does not hold inP. Thus, d-separation cannot rule
out additional independencies that may hold in the distioiouP and are not encoded in the graph
structure.

The following defines graph structures that cannot be dgjstshed by d-separation (or by any
other method that only uses information encoded in the gstpietureq):

Definition 2.1.4: We say thatj; andG, areindependence equivaleifit
Markov(G;) < Markov(Gs)

That is,Markov(G,) andMarkov(G-) imply they same set of independenciis.

Chickering [1995] offers an efficient method for testing wWiex two structures belong to the same
equivalence class.

PROBABILISTIC GRAPHICAL MODELS 13

®0 S0 @@

Figure 2.3: Three graph structures that ard-aflaps of the distributionP(X,Y) = P(X)P(Y)
whereX andY are independent. Only (a) is a minimahap of this distribution.

2.1.2 Independence Maplmap)

Since we are interested in graphs that encode a joint distsib P over the random variables, we
now define the relation between the graph structure and gimpility it encodes.

Definition 2.1.5: We say that the grap§ is anindependence maf+-map) of the distributionP
over the random variable¥ = {Xy,..., Xy} if

P = Markov(G)

This implies that all of the independencies that can be ddritomMarkoV(G) are satisfied byP.
Note, however, thaP may also include additional independencies. Consequehiycomplete
graph is an-map of any distribution. Furthermore, tHamap of a particular distributionP is not
unique. For example, there are three graphs that-araps of the distribution over two random
variablesX andY whereX andY are independent as shown in Figure 2.3.

The above suggest that we might want to define a stricteriorléetween the grapf and
the distributionP. Wheng is anl-map of P and the distribution does not satisfy any additional
independencies that are not encoded/byve say thatj is aPerfect Map(P-map of P. This turns
out to be too stringent as there are many distributions fachvh Bayesian networR-mapdoes
not exists such as a XOR relation between three random \esiaB®ther distributions can only be
captured by directed probabilistic graphical models amthoabe captured by undirectédarkov
NetworkgPearl, 1988]. Instead, we use the following notion

Definition 2.1.6: We say that the grap#i is aminimall-map of the distributionP over the random
variablest = {X;,..., Xy} if itis anl-mapof P and the removal of any edge from it renders it
a nont-mapof P. 1

It is easy to show that for a given distribution, the minirirahapis not unique and different min-
imal I-maps can vary significantly. Figure 2.1 (b) shows a graph strectat is an-map for the
distribution defined by Figure 2.1 (a) (the distribution ¥ahich this structure is -map. An im-
portant consequence bfnamess is that it allows us to decompose the distribufforspecifically,
thefactorization theorenstates that

14 PROBABILISTIC GRAPHICAL MODELS

Theorem 2.1.7: [Pearl, 1988]5 is anl-mapof P if and only if P can be written as

P(Xy,...,XN) = ﬁP(Xi | Pay) (2.1)
i=1

wherePa{ are the parents nodes of the variahigsin G.

This theorem is a direct consequence of the chain rule ofgtnitties and properties of conditional
independence.

2.1.3 Model Definition

We can now formally define the Bayesian network model.

Definition 2.1.8: [Pearl, 1988] ABayesian networ3 = (G, 6) is a representation of a joint
probability distribution over a set of random variablés = {X;,..., Xy}, consisting of two
components: Adirected acyclic graphy whose vertices correspond to the random variables and
that encodes thilarkov independence assumptions Markfy a set of parametersthat describe

a conditional probability distribution(CPD) P(X; | Pa;) for each each variabl&; given parents

in the graphPa;. In addition, we require that is anl-map of the distributionP represented by the
Bayesian networl

Using the factorization theorem, the two componegtandé, define a unique probability dis-
tribution that can be written as in Eq. (2.1). This is callbd ¢hain rule for Bayesian networks
This product form makes the Bayesian network representati@ joint probability compact, and
economizes the number of parameters. As an example, corisggint probability distribution
P(B,E,R, A, C) represented in Figure 2.1. By the chain rule of probabiityhout any indepen-
dence assumptions:

P(B,E,R,A,C) = P(B)P(E|B)P(R|B, E)P(A|B,E,R)P(C|B,E, R, A,C)

Assuming all variables are binary, this representatiomiregl + 2 + 4 + 8 4 16 = 31 parameters.
Taking the conditional independencies into account we adte w

P(B,E,R,A,C) = P(B)P(E)P(R|E)P(A|B, E)P(C|A)

which only requiresl + 1 + 2 4+ 4 + 2 = 10 parameters. More generally,¢f is defined overV
binary variables and its indegree (i.e., maximal numberasépts) is bounded b, then instead

of representing the joint distribution with¥ — 1 independent parameters we can represent it with
at most2X N independent parameters.

PROBABILISTIC GRAPHICAL MODELS 15

b e | Pla=false P(a=true

false false 0.96 0.04
false true 0.67 0.33
true false 0.91 0.09
true true 0.96 0.04

Table 2.1: A plausible conditional probability table (CPancoding the conditional probability
distribution (CPD) ofP(A | B, E) of the alarm domain of Figure 2.1

The graph structurg encodes independence assumptions and defines the qualitatiompo-
sition form of the distribution. To specify a unigue jointstlibution overX’, a quantitative para-
meterizatior¥ defines the conditional probability distributioy X; | Pa;), which can be of any
general form. For discrete variables, the most generaésgpitation is aonditional probability ta-
ble (CPT). Each row in the table corresponds to a specific josigasnentpa, to Pa;, and specifies
the probability vector forX; conditioned on its parents. For examplePi; consists ofK” binary
valued variables, the table will speci®f* distributions. Consider again the example of Figure 2.1
and the conditional probability distributioR(A | E, B). Table 2.1 encodes the intuition that the
alarm is somewhat likely to go off given that there was anheprake, very likely to be triggered if
there was a burglary and will probably not sound if neithethefse happened.

A full table form can describe any discrete conditional ritisttion but comes at a representa-
tional price: the number of free parameters is exponemtitié number of parents.

Obviously, in many scenarios more compact forms can be derexi according to additional
regularity that underlie® (X; | Pa;), and that is not captured by the structuregjofSeveral forms
try to cope with common scenarios: In some scenarios, onee s@riables is observed, a pre-
viously relevant variable becomes irrelevant. For examgilen that we observe heavy rain, our
decision to take an umbrella probably does not depend on ¢ineing forecast we hear earlier. This
phenomena is captured byCantext Specific Independen&Sl) representation for CPDs [Boultilier
et al., 1996] that is in fact a limited form of a decision tré&gefault tables [Friedman and Gold-
szmidt, 1996b] are suitable for cases where the probaldiigtiribution of X; given Pa; has some
default value excluding a small number of assignmezis noisy-ORCPDs are common in med-
ical domains and capture a scenario where on observatidnasia symptom, may be triggered
independently by a number of causes such as diseases [Baz., 1993]). The representation of
noisy-or CPDs is linear in the number of parents which malsuitable for large scale domains
(e.g., [Shwe et al., 1991]). Similarly, other form of noisgterministic functions can be considered
for a variety of scenarios.

Unlike the case of discrete variables, when the varidblend some or all of its parents are real
valued, there is no representation that can capture alittomal densities. A common choice is the
use oflinear Gaussiarconditional densities [Geiger and Heckerman, 1994], whezelependency

16 PROBABILISTIC GRAPHICAL MODELS

between a variable and its parents is modeled as linear. \&lhéme variables in a network have
linear Gaussian conditional densities, the joint densigr&’ is a multivariate Gaussian [Lauritzen
and Wermuth, 1989]. In many real world domains, such as imah@etworks or gene regulation
network models, the dependencies are known to be non-liGsgr example is a representation that
models a saturation effect such as a sigmoid CPD (e.g., [N88PR, Saul et al., 1996]).

2.1.4 Inference

A fundamental task in any graphical model is that of infeeend@hat is, we want to be able to
answer general queries of the fof{X | Z) whereX,Z C X, as efficiently as possible. Assume
for example, that we want to evaluate the probability ofiggth call from our neighboP(C) in
the model of Figure 2.1. By the complete probability formula

P(c) = Z P(b,e,a,r,c)

b,e,a,r

We can improve on this by utilizing the decomposition of thiaf probability which results in
P(c) =Y P(cla))_ P(e) Y P(b)Plalb,e)) P(rle)
a e b r

which is significantly more efficient. This procedure @ riable elimination(summation) is the
basis of all exact inference methods.

Different method designed for batch query processing attst of two variable elimination
computations includ8ucket EliminationfDechter, 1996] andunction Treege.g., [Jensen et al.,
1990]), and are widely used in numerous domain. Howevesetltannot overcome the fact that
inference in Bayesian networks is in general (excluding steuctured networks) NP-hard [Cooper,
1990] (it belongs, in fact, to #P).

Consequently, to cope with large scale networks, a rangpmaimate inference techniques
have been developed. These include instance or partiohel lmasthods such &ibbs samplingsee
[Neal, 1993] for an overview of inference sampling techeisjy variational approximation method
such as théMlean Fieldapproximation (see [Jordan et al., 1998] for an introdumtiand Loopy
Belief Propagation(e.g., [Murphy and Weiss, 1999] and references within). [é&/thiese methods
have shown great success in different scenarios, like exi@rence, approximate inference is NP-
hard [Dagum and Luby, 1997] and choosing the best methodfefeince for a particular task
remains a challenge.

PROBABILISTIC GRAPHICAL MODELS 17

2.2 Learning Parameters with Complete Data

A generative model, such as a probabilistic graphical modebne that explains, via its inner
constructs and parameters, how the observed data couldneeaged. As such, when learning a
probabilistic graphical model from data, we want it to failly capture the underlying distribution
P* that gave rise to the observations. That is, we want to lésrminimal decomposition structure
g that is anl-map of P* and we want to correctly quantify its parameters. Our abtlit do so

is obviously limited by the expressiveness of our model: Asuksed above, some generating
distributions cannot be captured faithfully by a Bayesiatwork, and others cannot be captured by
the formalism of undirected Markov networks. The choiceheftonditional probability distribution
representation may also limit our ability to capturé.

In practice, we face an even more fundamental problem: ratlze having access tB*, or
equivalently to an infinite number of samples generated bwét are given a finitéraining set
of samplesD = {x[1],...,x[M]}, that are independently drawn frof*. Using the limited
knowledge available to us vi®, our goal is to somehow learn a mod&l = (G, 6) that best
approximatesP*. This may require us to take into account particular phenmantbat arise irD
and are solely due to its finite nature. In particular, to dwier-fitting (see below), we may not
want to captureD exactly, either in terms of independence statements thdtihd@ or in terms of
the parameters of the model learned.

In this section we present the essentials of learning thenpaters of a Bayesian network when
the data icomplete That is, we assume that we are given (or have learned) tipd gteuctureg
and structurej and face the problem of learning the conditional probabdistribution parameters
6 or the Bayesian network mod8l. We start with themaximum likelihoodapproach for learning
parameters and then present a more robust Bayesian apphaadipically offers better general-
ization performance. In the next section we presenstioee base@pproach to learning structure.
In Section 2.4, we consider both of these tasks in the presainmissing value or hidden variables
and discuss complications that arise in this scenario.

2.2.1 Maximum Likelihood Estimation

Themaximum likelihood estimatiofMLE) approach is widely used in all fields of learning. At its
core is the intuition that a good model is one that fits the @ataell. That is we want to measure
the probability that the model gave rise to the observed data

Definition 2.2.1: Thelikelihood function L (6 : D), is the probability of the independently sampled
instances of given the parameterizatiah

M
L©:D) =[] P(xlm] | 0) (2.2)

m=1

18 PROBABILISTIC GRAPHICAL MODELS

where P(x[m| |) is the probability of them’th complete instance given the parameter of the
network. The log of that function or the thag-likelihood functionis

M
00 :D) = log P(x[m] | 0) (2.3)
m=1

In the MLE approach, we want to choose parame%h;at maximize the likelihood of the data:
0 = max L(0 : D) (2.4)

Eq. (2.4) describes optimization in a high dimensional spaen for relatively simple network
structures since we need to jointly optimize over the patarseof all the conditional probability
distributions. As in the case of representation and infegethe Bayesian network representation
offers a decomposition of this optimization task. We cantheelecomposition property of Eq. (2.1)
to write

M
L©:D) = [[Pxm]|o6)

wheref y, p,, are the parameters that encode the conditional probabityibution of X; given its
parentsPa; and

M
Li(0x,/pa; - D) = [[Plailm] | pay[m] : 0x,pa,) (2.5)
m=1

is thelocal likelihood functionfor X;. Thus, the global optimization problem is decomposed into
significantly smaller problems, where we optimize the patams of each conditional probability
distribution P(X; | Pa;) independently of the rest.

In the case of full table CPDs the local likelihood can beHartdecomposed. Suppose we
have a variableX; with its parentsPa;, and a parametet,, ., for each possible assignment to
combination ofz; and its parents. In Eq. (2.5), different assignments forcwh{; = z; and
Pa; = pa, contribute the same term to the product. Thus, if we grouplainassignments and

PROBABILISTIC GRAPHICAL MODELS 19

denote byS[z;, pa;| the number of these instances, we can write

Li(eXi\Pa(Xi) : D) = Hnemﬂpais[%’pai} (26)
pa; z;
where
Slei,pa)] = Y 1{x;[m] = x;, pa;[m] = pa,} (2.7)

and1 {} is the indicator function.

Proposition 2.2.2: The maximal likelihood estimation (MLE) of the parametdra 8ayesian net-
work with multinomial table CPDs is given by:

N S[xlv paz]

. = - - ¥ 2.8
Yoiten = 5= Sz, pay (28)

The countsS|z;, pa;] are thesufficient statisticef the dataD. These summarize all relevant infor-
mation from the individual data instance§l] . . . x[M] needed for maximum likelihood parameter
estimation of full conditional probability tables. Thusya different training set may lead to the
same maximum likelihood parameters if their marginal erogircountsS|z;, pa;] are the same for
all X; in the structure. Consequently, optimizing the likelihdadction is equivalent to finding the
best approximation for the empirical distribution conisteal by the independence assumptions of
g.

2.2.2 Bayesian Estimation

MLE estimation follows thd-requentisiapproach to statistics that relies solely on the observial da
This is intuitive since we directly measure the fit of the mddehe data. However, in practice when
data is both limited and noisy, this approach can suffer fover-fitting. That is, the model might fit
the data perfectly but have a poor generalization perfoomam unseen samples. Consider for ex-
ample, learning the parameters of the model in Figure 2.ftqa) alarm sounding in a typical week
in a suburb of Los Angeles. Even, in earthquake prone Caldpthere is a good chance that we will
have hundreds of burglaries and random alarm sounding araigiiogle instance of an earthquake.
In this case, using MLE would results iA(alarm=yes| Earthquake=yes= 0, which ignores our
prior intuition that there is a relation between an eartfguand the chance that the alarm will
sound. Conversely, it could be the case that during that seaek a 6.8 earthquake indeed sounded
all the alarms in the area. In this scenario, MLE would Bé&larm=yes| Earthquake=yes= 1,
which would probably not be realistic for the smaller morencoon earthquakes.

Therefore, in the (realistic) absence of endless and vda&encompassing all facets of the true
distribution, we would like to learn models that are moreusitto fluctuations in the training data

20 PROBABILISTIC GRAPHICAL MODELS

by incorporating prior knowledge into the parameter edfiomaprocess. We turn tBayesian esti-
mation which formulates this concept of prior belief in a prinegdlmanner. The core of Bayesian
estimation is thatprior to seeing the observed daiy we already had some initial prior belief
regarding the domain at hand. The prior belief is encoded tigtabution P(6). It can be very
informative such as a strong belief that it will not rain iet8ahara on any random day even before
we are actually “observe” the forecast. On the other handyiaformativeprior can also play an
important role. Consider, for example, a toss of a fair c@ur prior belief is uninformative in the
sense that we believe that bdthadsandtails are equally likely. In fact, we belief this so strongly
that seeing 27 heads and 73 tails in a 100 tosses will noyreladéinge this belief. In this case we
would like the seemingly uninformative prior belief to ctnaén MLE that will estimate a probabil-
ity of 0.73 for seeing tails. We would like the prior to help us avoid tlestthat is a results of any
finite dataset. (See [Gelman et al., 1995, Pearl, 1988] dederece within for an overview of the
Bayesian formalism and its relation to other approaches.)

Given our prior distributionP(¢) and the observed daf, we “update” our beliefs and use
Bayes ruleo compute thgoosterior distribution
PO | D)= (2.9)
The termP (D), called themarginal likelihood averages the probability of the data over all possible

parameter assignments. To estimate a value for the parmﬁemat will be used in the prediction
of the (M + 1)th sample, we average over possible values:

6= P(X[M+1]|D) = / P(X[M +1] | D,6)P(0 | D)P(6)d0 (2.10)

We now address the issue of choosing a convenient prior. \@htimating the parameters of
multinomial distributions, the common choice is the us®wofchlet Priors [DeGroot, 1989]. The
Dirichlet prior distribution for a multinomial variable¥ is defined by

P(0) = Dirichlet(al,...a") « Hﬂjaj_l (2.11)
J

wherea’ arehyper-parametershat correspond to the possible valuesXaf

In the case of MLE for full Bayesian networks, we have seenm ttina likelihood function de-
composes according to the networks structure. This allavgeth estimate the parametérs, pa,
for each family independently in Eqg. (2.4). For Bayesiainestion, we introduce an independence
assumption that will lead to a similar decomposability:

PROBABILISTIC GRAPHICAL MODELS 21

Definition 2.2.3: [Spiegelhalter and Lauritzen, 1990] A parameter pitgf) for a Bayesian net-
work is said to satisfyparameter independend&it can be written as

PO) = TT11 P ipa,)
i=1 pa;
The decomposition according to the network structure ikdajlobal parameter independence
The further decomposition according to the valpes is calledlocal parameter independende

Assuming parameter independence, for each multinomial @Rbe network, we can assign an
independent prior distributiofy ~ Dirichlet(awﬂpai, e a:vf{\pai)' The form of the Dirichlet prior
defined in Eq. (2.11) is surprisingly similar to that of thieelihood in Eq. (2.6). This leads to the
appealing property that Dirichlet is in factanjugateprior to the multinomial distribution. That is,
the form of the posterior and prior distributions are simila

Proposition 2.2.4: If P(0;) is Dirichlet(c,1pa,, - - - 04K |pa,) then the posteriotP(0; | D) is
Dirichlet(c1\pa, + Sz, Pa], . .. ok pa, + Slzix, pay]) whereS[z;x, pay] is the sufficient sta-
tistics derived fronD.

This important property now allows us, as in the case of Rsitipn 2.2.2, to compute Eq. (2.10) in
closed form:

Proposition 2.2.5: The Bayesian estimation for the parameters of a Bayesiamanktwith multino-
mial table CPDs using ®irichlet prior is given by:

~ Qg lpa, T Slx;, pa;]

z;|pay ([+] & | a[+] pa) le Oé;pﬂpai‘FS[l’i/,Pai] ()

Thus, the hyper-parametets, ., play a similar role to the empirical counts and are oftenrrefe

to asimaginary counts M’ = Zmi Qz,|pa, 1S theimaginary sample sizeThat is, using a Dirichlet
prior with the above hyper-parameters is equivalent tonge&i’ samples where the different as-
signment to the variables distribute according{o,,,. In order to ensure probabilistic coherence,
the hyper-parameters,,|,,, Mmust satisfy marginalization constraints, in accordanitb the net-
work structure. One way to ensure this is to use the BDe pHeckerman and Geiger, 1995] to
construct these hyper-parameters. We discuss the deftéis @rior in details in Section 2.3.1in a
more general context.

2.3 Structure Learning

In the previous section, we have assumed that the graphwsegtis given. In real-life, however,
it is rarely the case that this structure is known and we waké<o learn it from data. This task

22 PROBABILISTIC GRAPHICAL MODELS

is not only important from the perspective of gaining a battederstanding of the domain but also
has a significant impact on our ability to learn and the qualitthe model’'s prediction. A missing
edge can cut off important influencing factors while spusiedges leads to many parameters which
in turn lead to over-fitting and a degradation of the geneatiin capabilities of the model.

There are two basic paradigms for learning the structure Baygesian networks. The first
approach is &onstraint base@pproach that uses independence tests directly (e.gridSgei al.,
1993]): In short, based on some statistical test or oractst @f independence statements forms
the constraint set. A network structure to capture this Bebostraints to the best extent possible.
Although this approach is intuitive since Bayesian netwake, by definition, independence maps
of the distribution they represent, it suffers from high sitivity to the statistical test applied. In
this dissertation we adopt the commsrore basedpproach. In this framework, we define a score
that measures the compatibility of the model to the data laew $earch for the best scoring model.
As we will see below, this method is appealing statisticalty allows compromises in the choice
of edges at the cost of computational complexity.

The problem of searching for the best scoring structure ser@glly amodel selectioriask
and the role of the score is to efficiently guide us towardsreefieial structure. Consequently, all
common scores used in structure learning such as BIC [SefwdDL[Lam and Bacchus, 1994],
BDe [Heckerman et al., 1995a] and BGe [Geiger and Heckermh@®4] have certain appealing
properties. First, all scores follo@ccam’s Razarif two models achieve the same likelihood then
the simpler one will receive a higher score. TMaimum Description LengtfiMDL) score [Lam
and Bacchus, 1994], for example, encodes this directly:

g M byim(G) — DL(G) (2.13)

Scoreyrpr(G : D) =4(0,G:D) —

wherel is the number of instanceBim(G) is the number of parameters in the model &nbi(G)
stands for the description length@fand is the number of bits needed to encode the graph structure
Second, all scores do not distinguish betwaatependence equivalemtodels the are probabilisti-
cally indistinguishable (see Definition 2.1.4). Third, giva complete dataset, all scores decompose
according to the network structure and facilitate efficiemmputation of local structure changes.
This property is crucial (see Section 2.3.3) when learnirg dtructure of large real-life models.
Finally, if G* is the generating model, as the number of samples grows totynfall scores prefer

G* (or an equivalent model) to any other structure.

2.3.1 The Bayesian Dirichlet Equivalent Sample Size Score

The Bayesian Dirichlet equivalent sample si&De) or Bayesian score is based on the same prin-
ciples described in Section 2.2: we explicitly representantainty over both the structure and
parameters as a distribution and then combine out prioefseh(G) and P(6 | G) to compute a

PROBABILISTIC GRAPHICAL MODELS 23

posterior distribution
Scoreppe(G : D) = log P(D|G) + log P(G)

where thanarginal likelihoodP (D | G) averages the probability over all possible parametednati
of G:

P(D|Q) = /P(D 1G,0)P(0 G)db

The integration over all possible parameters gives the 8lagescore a bias towards simpler struc-
tures. When the model has many parameters, particulariyn e number of sample is small,
there are many different parameterizations for whit{D | G, 6), and consequently the integral
increases. On the other hand, when the probability of treegarameters is peaked (which happens
when the sample size is large), the effect of number of paemés reduced sincB(D | G,6) is
non-negligible only for few values. Thus the Bayesian séoherently takes care of the problem
of over-fitting a complex model to a small sample size. In,féatan be shown that, as the num-
ber of samples grows, that the BDe score is equivalent ttdihenum Description LengtiMDL)
score [Lam and Bacchus, 1994] that encodes this expliciifp an additive constant.

As in the case of parameter, estimation, the choice of pdetermines not just the score itself
but also the form that it can take. We require that the pritsfethe following intuitive property:

Definition 2.3.1: [Heckerman et al., 1995a] A parameter prior satigiig@mmeter modularityf for
any two graphgj; andgGs, if Pay" = Pa¥? then:

P(HXZ‘PaL | gl) = P(HXZ‘PaL | g2)

Priors that satisfy parameter modularity are cafiectorizedpriors [Cooper and Herskovits, 1992,
Heckerman et al., 1995a] and facilitate the decompositfdheoBayesian score:

Proposition 2.3.2: If the prior P(0 | G) satisfies global parameter independence and parameter
modularity then

P(D|G) H/ HP (zi[m] | pa;[m], Ox, |PaZ)P(9X \Paz)deX |Pa;
Ox, ilPa; m
SinceP (D | G) already prefers simple structures to complex ofi¥§;) is often taken to be uniform
and can thus be omitted from the score. In other cases, iniglgigiven as input and we assume
here that it can also be decomposed according to the netwadtige. We can thus decompose the

24 PROBABILISTIC GRAPHICAL MODELS

score into local contributions each depending only on tliiicgent statistics ofX; and its parents

Scoreppe(G : D) = Z FamScorepp.(X;,Pa; : D) (2.14)
7
This decomposition plays a crucial rule in Section 2.3.3 andbles us to devise efficient search
algorithms for network structures of high dimension.
Following Section 2.2.2, we use Dirichlet priors for tablB[Xs. In addition to the simplification
of computation they offer in the case of parameter estimatioey provide a simple closed form
expression for the local family score.

Theorem 2.3.3 [Heckerman et al., 1995a] Lé&tbe a network structure arfél¢ | G) be a parameter
prior satisfying parameter independence and parameteulardtgt. Using full table CPDs and a

Dirichlet prior with hyper-parametersy,,pa, } then:
P(a, x|pa —|—S[$Z,pa])
FamScorepp.(X;,Pa; : D) = log Op + log ‘
Z P(Oépa +S Z (:vi|paz-)

pPa;

(2.15)

wherel is the Gamma function anth,a, = >, @, |pa, andS[pa;] = > S[zi, pa;]

Proof: The proof outline is interesting in that it emphasizes thgeB@an perspective of computa-
tions. Using the chain rule, the posterior probability af thata can be written as

P(D|G) = P(X[m] | X[1],...,X[m —1],G)

1

—= =

P(X;[m] | X;[1], Pa;[1],. .., X;[m — 1], Pa;[m — 1], G)

7

1pa; \m:Pa;[m]=pa;

where the second line follows from decomposition accortlirthe network structure and rearrange-
ment of terms. We have already taken a Bayesian approachiputing each term in this product

which resulted in Proposition 2.2.5. Using this resultsiglavith some algebraic manipulation we
get the desired resull.

As noted above, a desired property is that the score reatsheptimum at the true generating
structure. That is, given a sufficiently large number of skasygraph structures that exactly capture
all independencies in the distributidh (areP-mays of P), will receive a higher score than all other
graphs. This concept is captured in the following definition

Definition 2.3.4: Assume that the structure of the model generating the oaisens isG*. We say
that our score isonsistentf, as M — oo, the following properties hold with probability asymptoti
to 1 (over possible choices of datagegyenerated frong;*)

PROBABILISTIC GRAPHICAL MODELS 25

e The structureg* will maximize the score

e All structures that are not equivalentd will have a strictly lower score

Another desired property is that the score be the same foBay@sian network models that are
independence equivalenBuch a property is callestructure equivalencef the score. In order to
achieve structure equivalence, we need to devise a set efdpgrameters so that our prior will not
bias the score between equivalent structures. This is\ahigsing aEBDe prior [Heckerman and
Geiger, 1995]: we define a probability distributiéti over X and an equivalent sample sié’ for
our set of imaginary samples. The hyper-parameters aredifamed to be:

Ay, \pa; — M- Pl(ffhpai)

Theorem 2.3.5; [Heckerman et al., 1995a] Given complete data, the Bayasiare with BDe prior
is both consistent and structure equivalent.

2.3.2 Scores For Continuous CPDs

Developing a Bayesian score for network with continuou$gghbility distribution is somewhat more
complex. For Gaussian network, the conjugate Normal Withamor (see [DeGroot, 1989]) plays
a similar role to Dirichlet priors in the case of discreteighles. Geiger and Heckerman [1994] use
this prior to develop a closed form Bayesian score calledtBe score. The specifics of this score
are somewhat detailed and we omit these as this score isediuthis thesis.

For general non-linear CPDs, however, there is no simplemgérfiorm of a Bayesian score.
Thus, itis common to to resort to an approximation of theBalyesian score that is easy to compute
in the general case, such as the Bayesian Information ©ritéBIC) score [Schwarz]

log M 1y (]

BIC(D,G) = m(?xﬁ(D :G,0) —

whereM is the number of instances i, andDim|[G] is the number of parameters ¢

2.3.3 Search Algorithm

Given the Bayesian score, or any other commonly used sceaenihg amounts to finding the
structureg that maximizes the score. Chow and Liu [Chow and Liu, 1968¢lshown that learning
the ML tree can be done efficiently using a maximum spannieg @approach [Cormen et al., 1990].
A similar method can be used to learn the maximal scoringftreany decomposable score. Yet,
despite extensions to particular scenarios (e.g., [Fréedet al., 1997]), learning the structure for a

26 PROBABILISTIC GRAPHICAL MODELS

Algorithm 1: Greedy Hill-Climbing Structure Search for Bayesian Natkgo
Input :D //training set
Go [/l initial structure
Output : A final structure G

gbest — gO
repeat
G— gbest
foreach Add,DeleteReverseedge in Gdo
G« Appl yOper at or (G)
if G" is cyclicthen continue
if Score(G" : D) > Score(Gpest : D) then
‘ gbest — g/
end
end foreach
until Gpesr == G
return Gpes:

general Bayesian network, even if the number of parentsigdd to two, is NP-hard [Chickering,
1996a].

Thus, we resort to a heuristic greedy search. We defseaech spacavhere eaclstatein this
space is a network structure. A setageratorsmanipulate a network structure to generate a set
of successostates. This defines a graph structure over possible statsdrks structures) where
neighboring states are two networks that are one operatay.aW perform a search, we start with
some initial structure (usually the empty graph) and applyesedy search scheme to traverse the
search space in order to locate a high scoring structure.

To facilitate tractable learning, local structure modifica operators are considered such as
Add DeleteandReversean edge. The decomposability of the score allows us to eftigievaluate
the benefit such a local structure change. For example, ifddeaaparent taX; we need only
recompute the relevant contribution to the scBaenScore(X;, Pa; : D). Furthermore, until an
additional parent is added £6; or an existing parent removed, the contribution of this afmrneed
not be recomputed.

Even when using local modifications, it is still impossilbbetitaverse the full search space even
for relatively small domains. Thus, we use a local searchqmore such as the greedy hill-climbing
algorithm: At each step we evaluate all possible local mewesperform the change that results in
the maximal gain, until we reach a local maximum. The prooedsioutlined in Algorithm 1.

The greedy nature of the algorithm is necessary to fa@lidrning in practice. However, it is
also means that we our final local maxima model is an infena. @' his problem is a central issue
when learning the structure for practically any real-lifenthin. Consequently, different methods
are applied to cope with this problem in the discrete segrabes

PROBABILISTIC GRAPHICAL MODELS 27

One way to reduce the sensitivity to local maxima is to stiesg the power of the greedy
algorithm at the cost of computational complexity. This ¢endone by using search algorithm
that are more exhaustive than greedy hill-climbing sucKdsestsearch and time limitetlerative
Deepeningsee [Cormen et al., 1990] and reference within for on oeswof search procedures).
An appealing alternative that directly confronts the logaxima is that of Tabu search [Glover
and Laguna, 1993]. This method keepthu listrecord of the lastV models visited and rather
than considering only moves that improve the best (localimaxmodel, it also considers moves
that improve any of thes& models. Tabu search is particularly effective in escapimglklocal
maxima and plateaus, depending on the size of the tabu list.

A different approach to cope with local maxima is to introgwstochasticity into the search
procedure. The simplest heuristic of this type is to is®lom restartsvhen encountering a local
maxima or plateau. At each random restart, several randarotstal changes are applied to the
best scoring structure, after which the search procedurént@s as usual. This approach suffers
from the fact that the “interesting range” of possible ramdmints is typically not known and many
of stochastic go to waste. Despite this, it is often extrgmekful in practice. Algorithm 2 outlines
the extension of the basic greedy hill climbing algorithmAdgorithm 1 to include tabu list and
random restarts. This algorithm is the basic search proeasked throughout this dissertation.

Other stochastic methods for escaping local maxima incthdébootstrap method [Efron and
Tibshirani, 1993, Friedman et al., 1999b] and various alimgalgorithms such as Determinis-
tic Annealing [Rose, 1998] and Simulated Annealing [Kirjikt et al., 1994]. We discuss these
methods in more details in Chapter 3 where they are partlgulelevant.

2.4 Learning with Missing Values and Hidden Variables

In real-life, the observed data is often partial. A patiemécord, for example, will probably never
contain results for all possible tests. Indeed, one of thamrtdges of probabilistic graphical models
is that, using the ability to perform inference relativeffigently, we can easily cope with missing
values. An important distinction should be made betweemrmbsions that arenissing at random
(MAR) and observations whose absence influences the dorRainexample, the presence or ab-
sence of a biopsy result is clearly not random and is relatéioet result of a preliminary blood test.
Yet, the vast majority of learning method adopt the MAR agsiion without which the learning
problem is practically unapproachable. In this dissertatve adopt the same assumption. We note,
however, that one way to partially cope with observatiort Hra not missing at random is to add
a "MISSING” state for the relevant variables (see [Rubin7@Sfor a discussion of this issue). In
addition to missing values, some of the variables may bedmd latent That is, we may never

28 PROBABILISTIC GRAPHICAL MODELS

observe these variables in the datRrobably the most common scenario involving a hidden vari-
able is that of clustering, where the class assignment aflifexts to be clustered is never observed.
More interestingly, we may want to take the user's “moodbiatcount when building a person-
alized web sales engine, but can expect never to observecthal atate of mind of the Internet
surfer.

In this section we give a brief overview of learniimgthe presencef missing values and hidden
variables. We assume that the hidden variables, if any, moek to exist and their cardinality is
given as input. It is the central goal of the dissertationXpl@e the significantly harder goal of
learning new hidden variables and their cardinality.

2.4.1 Parameter Estimation

Learning with missing values is significantly harder thaarténg with complete data since we no
longer have a closed form solution for estimating the patarsef the network. This is a result of
the fact that parameter independence does not necessadlaid the case of unrestricted multino-
mial distributions can no longer be decomposed into loctinagion problems. Optimization is
consequently in very high dimension. Furthermore, therpatar space typically contains many
local maxima. When some of the variables are hidden (theiemfation is missing altogether) we
further face the problem of multiplicity of both global amathl maxima that arises from possible
permutations of the values of these variables.

The most straightforward approach for parameter estimatith missing values is to use direct
optimization techniques such as gradient ascent and i@ntar(e.g., [Bishop, 1995]). In the case
of maximum likelihood estimation these methods can alse talkvantage of the network structure
in some cases (e.g., [Binder et al., 1997]). Unfortunateptimization if often computationally
demanding due to the large number of parameters and is higbhe to get stuck in inferior local
maxima. In the case of Bayesian estimation, we also faceutttieeir complication of optimizing
a poster over the network parametérsThis is usually infeasible and an approximation must be
used. A common solution is to resort taMaximum A-Posteriorcomputation which is similar
to the maximum likelihood case. Alternatively, we can useampled (particle) based stochastic
technique that is guaranteed to converge to the true postgrch assibbs samplinde.g., [Neal,
1993]). However, such a method can be extremely slow andas&nein impractical amount of time
to achieve reasonable accuracy.

One commonly used alternative is that is used throughostdissertation is th&xpectation
Maximization(EM) algorithm [Dempster et al., 1977, Lauritzen, 1995] eTitlea of EM is straight-
forward: since parameter estimation is easy when data iplete; we first “complete” the data

1We note that these variables are MAR by definition. Otherpésgngle “MISSING” value will be observed through-
out which will render the distribution of the variable noefid in terms of its ability to effect our prediction abib.

PROBABILISTIC GRAPHICAL MODELS 29

L(©/D)
L(©/D)

¢------
¢------
¢-—------
¢ ----

¢----

(@) (b)

Figure 2.4 lllustration of likelihood optimization usinga) Gradient Ascent that proceeds in the
direction of maximal change; (b) the Expectation Maxinmimat(EM) algorithm that locally ap-
proximates the likelihood using a concave function and thgimizes this concave lower-bound.

in the expectation step (E-step) by computing a posterstridution Q(H | O, 6,4) of the miss-
ing valuesH given the observation® and the current model at hand. We can then compute the
expected sufficient statistiby replacing Eqg. (2.7) with

Eo(1/0,0,,5)[S[7i, pay]] = Z Q(X; = x4, Pa; = pa; | o[m], 044) (2.16)

whereo[m] is them'th partially observed instance. These complete sufficiatistics can the be
used to optimize the parameters in the maximization stet@d) of the algorithm. The resulting
model is then used to repeat the E-step and so on until caanvegg It can be shown [Dempster
et al., 1977] that EM is equivalent to lower-bounding thelikood function at the current model
parameters via a concave function and then taking the mamiofuthis function as illustrated in
Figure 2.4. Consequently, the EM algorithm is guaranteéohpoove the likelihood of the observed
dataD at each iteration until convergence to a (typically) locaximum. EM and its variants
(e.g., [Neal and Hinton, 1998]) have proved to be surprigieffective in practice and are typically
used when the local distribution functions are in éxponential familyand sufficient statistics exist.
Generalizations of the EM algorithm using variational noglh have also been applied for complex
non-linear conditional probability distributions (e.faul et al., 1996, Diez, 1993]).

Like gradient methods, the EM algorithm also suffers from pnoblem of local maxima and
its performance depends on the starting point used. A &tifaigvard method often used to cope
with this is simply to run EM from multiple starting points@dchoose the best of the local maxima
solution. While there are no guarantees as to the numbendbma restarts needed for an effective
solution, this method can be surprisingly effective in ficc

2.4.2 Structure Learning

When learning structure in the presence of hidden varialskegace further complications. If we
use either the MDL score or the Bayesian score (BDe) themaddt step in the search procedure, we

30 PROBABILISTIC GRAPHICAL MODELS

need to estimate parameters using ones of methods desitrithedprevious section such as the EM
algorithm. Consider, for example, adding the first edge éostiarting point empty network. Choos-
ing the best such structure change requires that we conSideF) possible candidate structures.
Without the decomposability assumption that we had in tlse cd complete data, even evaluating
only the likelihood of each candidate becomes an expensolaboptimization procedure. Thus,

in the absence of prior constraints on the network structheg can significantly reduce the search
space, straightforward structure search is intractabéayninteresting domain.

As in the case of parameter learning, a solution that takearadge of the relative ease of
learning when data is complete is often used. Bteictural Expectation Maximizatio(SEM)
algorithm [Friedman, 1997] generalizes the idea of EM todbenario of structure learning. The
E-Step is identical to parametric EM where we use the cumadel to generate the distribution
Q(H | O,0,4), thus providing complete sufficient statistics as in EqL§2. In the M-Step we need
to optimize both the structure of the network and its paranset Given the “completed” dataset
of the E-Step, this is identical in form to structure leagnimith complete data. It is important to
note that the expected benefit by this approach is signifiqatiter than re-estimating the model
parameters and expected statistics afi@chchange in structure, the output of a single E-step is
used to performmanystructure adaptations (usually until convergence in ttaecbespace) often
leading to an order of magnitude and more improvement iningime.

The idea of Structural EM can also be applied for Bayesiamieg [Friedman, 1998]. Again,
once the expected sufficient statistics are computed in thtef;, we can proceed as if the data
were complete. Yet, even with this approximating algoritfdayesian learning is particularly chal-
lenging in the presence of missing values. Specifically, matation of the marginal likelihood is
intractable and we have to resort to one of several possie&imations [Chickering and Heck-
erman, 1996]. In this dissertation we use the empiricalfgative and computationally efficient
Cheeseman-Stuts approximation [Cheeseman et al., 1988jiscscenario.

PROBABILISTIC GRAPHICAL MODELS 31

Algorithm 2: Greedy Hill-Climbing Structure Search for Bayesian Nategowith Tabu list
and random restarts

Input :D /[training set
Go [/l initial structure
T_SIZE I size of tabu list

M_EXPAND // maximum number of expansions
M_RESTART // maximum number of restarts
R_MOVES /I number of random moves at each restart

Output : A final graph G

gbest — gO
gLoops «+— 0
eNum «— 0
while gLoops < M_LRESTART and eNum < M_EXPAND do
/l GREEDY with TABU
qSteps < 0
G— gbest
while gSteps < T_SIZE/2+1 and eNum < M_EXPAND do
foreach Add,DeleteReverseadge in Gdo
G« Appl yOper at or (G)
if G"is cyclicor in TABU listthen continue
eNum «— eNum +1
if Score(G’ : D) > Score(Gpest : D) then
gbest — g/
qSteps <— 0
else
‘ gSteps «— qSteps +1
end
end foreach
end

// RANDOM RESTART

G« Appl yOper at or (Gpest,R.MOVES)

if Score(G’ : D) > Score(Gpes; : D) then
gbest — g/
gLoops +— 0

else

‘ gLoops « gLoops +1

end

end

return Gpest

Chapter 3

Weight Annealing

Training in machine learning is usually posed as an optititngoroblem : that is, we search for a

hypothesis that maximizes a score on the training data.i3 hige for regression, classification and
density estimation, as well as most other machine learnioglems. (The obvious exception we

are ignoring is pure Bayesian learning, which involvesgradion instead of optimization, but that

is typically intractable.) Even for straightforward optzation objectives, in interesting hypothesis
spaces like decision trees, neural networks, and grapmicdels, the problem of finding a globally

optimal hypothesis is usually intractable. This is true thie one is searching for an optimal

combination of hypothesis structure and parameters @egision tree learning), or just optimizing

the parameters for a given structure (where the likelihaogttion is optimized). Therefore, most

training algorithms employ local search techniques sugradient descent or discrete hill climbing

to find locally optimal hypotheses (e.g., [Bishop, 1995heTdrawback is that local maxima are
abundant. Thus, local search often yields poor resultss Sitwation is particularly acute when

learning probabilistic graphical models in the presencenifsing data and hidden variables, as
discussed in Section 2.4.

In this chapter we consider annealing like strategies foagisg local maxima. Unlike standard
annealing approaches, we perturb the training data ratlaerthe hypothesis space directly. The
approach is applicable to a wide range of learning scenarigeneral, and for learning Bayesian
networks in particular. In Section 3.1, we present a briefkijpound on annealing algorithms.
In Section 3.2 we present the basics of our framework, faldwy two perturbation strategies in
Section 3.3. In Section 3.4 we analyze our approach usinglaaoning problem. In Section 3.5 we
apply our method to structure search, parameter estimatiwhthe combined task when learning
Bayesian networks. In Section 3.6, we briefly present aniegipn to an inherently different and
highly non-linear optimization problem. In Section 3.7 weelly discuss the relation of our method
to other annealing approaches as well as to boosting andtbamt We finish with a short discussion
in Section 3.8.

32

WEIGHT ANNEALING 33

Algorithm 3: Generic Annealing Algorithm
Input :D //training set
RY [linitial hypothesis
70 /linitial temperature
Output : An hypothesish

1 — 0
while r* > 0do
1 Rt — Opti m ze(7,k D)
771 Cool Down(%)
1—1+1
end
return b’

3.1 Annealing Algorithms

Tabu list and random restarts for discrete structure searudh multiple starting point EM for pa-
rameter estimation were discussed in Chapter 2 as simplefterdeffective methods for escaping
local maxima. When the optimization problem at hand is difficas is often the case for real-life
domains with hidden variables, more sophisticated tooésiradso be considered. The annealing
family of algorithms are probably the most commonly used to@void local maxima. The basic
idea behind these algorithms is to start by optimizing ateelaeasy to solve problem and gradu-
ally converge to a solution of the hard problem of interedgofithm 3 shows a generic annealing
procedure: At the heart of the algorithm is sogwoling policythat starts at a high temperature
70 and decreases the temperaturto 0. The optimization method involved in Line 1 introduces
stochasticity or regularization into the learning prodesa magnitude that is a function of the cur-
rent temperature’. The algorithm gradually converges on a solution of theinalgoptimization
problem atr = 0. Below, we briefly present the two most common annealing ouzh

The Simulated annealingSA) algorithm [Kirpatrick et al., 1994] and its variants niulate
the learning algorithm by allowing “illegal” or score deasng moves. The algorithm follows a
“propose, evaluate, reject” scheme: a random move is stegjesvaluated, and then accepted if it
improves the score, or with a probability that is proporéibio the decrease in score and the current
temperature. The acceptance probability is

1 AScore> 0
P(Accept) = L _
exp (—1AScorg otherwise

where AScore is the difference in score resulting from the moveuatad, andr is the current

34 WEIGHT ANNEALING

temperature. At high temperatures, practically any mowalisved while atr = 0, only score in-
creasing moves are accepted. Simulated annealing is ia fmcific instantiation of the Metropo-
lis procedure [Metropolis et al., 1953], and is thus a Markihain process where detailed balance
holds. Thus, Markov chain theory (see for example [Gilkd .etl896]), guarantees convergence to
the global maximum, if we start at a temperature that is safitty high and progress sufficiently
slowly. While this may seem promising, the challenge lieshia choice of an effective cooling
strategy (see [Laarhoven and Aarts, 1987] for an overviemethods). In practice, it is often not
possible to achieve good performance in reasonable tinraul&ied annealing has proved bene-
ficial in a variety of optimization tasks such as constraatisfaction and the traveling salesman
problem.

The Deterministic annealingDA) algorithm (e.g., [Rose, 1998]) is an annealing apphodat
incorporates entropy in the learning objective functiorstéad of stochasticity in the learning al-
gorithm. As with simulated annealing, the magnitude of tiisturbance” of the true objective is
proportional to the temperature When the system is cooled down, the entropy is lowered antil
7 = 0 the original objective is optimized. In addition, convange to the global maxima is again
guaranteed in theory, but in practice can be extremely\aiend time consuming. Deterministic
annealing has been used successfully for many problemsasuchustering (e.g., [Hofmann and
Buhmann, 1997]).

Somewhat surprisingly, both of these algorithms, whichadiren considered as state-of-the-art
optimization methods, have not been successful when aptitearning Bayesian networks (see
more details in Section 3.7). It is the goal of this chaptepriesent a different annealing approach
that is reminiscent of Boosting [Schapire and Singer, 188%] Bootstrap [Efron and Tibshirani,
1993], and is effective when learning Bayesian networks.

3.2 Weight Annealing

The most common scores used in machine learning@déiveon training data, which means that
the score of a hypothestson dataD = {x[1], ..., x[M]} is a sum of local scores on each individual
sample, plus an optional regularization penalty

Scordh,D) = > _scordh,x[m]) — penaltyh)

Such scores arise naturally in regression or classificatioblems, where the local score is typically
the negated prediction error, and in density estimatiorere/ihe local score is typically the log
likelihood. Although we will apply our techniques to morengeal, non-additive scores below, it
will be useful to keep additive scores as a simple example.

At the core of our method is a procedure feweightingof the training samples to create useful

WEIGHT ANNEALING 35

ascent directions in the hypothesis space. To do this, wmeangthe score so that it considers a
probability distributionw on the training examples, thus yielding

Score(h,D,w) = MZwm - scoréh, x[m]) — penaltyh) (3.1)

It is first important to understand intuitively how samplevegghting can help to escape local max-
ima. The key idea is that we can cause “informed” changes tode to the current hypothesis,
rather than arbitrarily alter it. If the hypothesis is pdben some training samples which contribute
strongly to the score are likely to be outliers that shoulditwn-weighted, whereas other samples
that do not contribute strongly should be up-weighted teeotfiheir true importance in the under-
lying distribution. That is, a poor hypothesis can fit oulibut under-represent samples that are
actually important. Understanding how the score is infleenby training samples can therefore
suggest plausible perturbations to the data so that supgsmmtheses are favored.

Our goal is to perturb the training data to allow the localrslkealgorithm to escape poor local
maxima, under the constraint that we ultimately find a hypsith that scores well on the original
training distribution. Therefore, the perturbations ddowot move the training data too far from
their original state, and eventually the data must be redttw its original form to ensure that the
final hypothesis is optimized on the correct distributiorhisTsuggests that we follow an anneal-
ing approach, where we allow the instance weights to chareggyfearly in the search, but then
eventually “cool” the weights towards the original distrilon.

Algorithm 4 outlines the generigVeight AnnealingWA) search procedure we suggest, gen-
eralizing on the basic annealing procedure of Algorithm Be Tree parameters in this procedure
are the annealing schedule aoling policy(Cooldown), the local search method (Optimize), and
the example reweighting scheme (Reweight). For the amgeatihedule, we follow a standard ini-
tialization and decay, starting with temperatuteand settingrt! = §7¢, with § = 0.9, unless
otherwise specified. (Note that this also requires that we $e zero once its value numerically
negligble). The optimization procedure depends, natyraii the learning problem at hand and is
different for learning parameters or learning structureteNhowever, that the optimization method
is used as a black box that doest use the temperature parameter. Rather, it is given a weighte
data on which it is applied without any need for modificatiémother issue to note is that the local
search can be interleaved with the example reweighting mymeays. For example, one could per-
form full local optimization between each reweighting stepperform only a partial optimization
between reweightings. We specify the details of how optatien is applied in section Section 3.5.

The final component of our search procedure is the reweigtiathod. In the next section
we consider two basic techniques for perturbing sample mgitp escape local maximandom
reweightingwhere weight profiles (vector of weight values for all ingtas) are randomly sampled,
and adversarial reweightingvhere the weight profile is updated to explicitly punish therent

36 WEIGHT ANNEALING

Algorithm 4 : Weight Annealing Search Procedure
Input :D //training set
w' // initial instance weights
RO [/ initial hypothesis
70 [l initial temperature
Output : An hypothesish

1— 0

while 7 > 0do
witl — Rewei ght (Scorew?’,7%,h?,D)
Rt — Opt i m ze(Scorew't! hi D)
71« Cool Down(%)
1—1+1

end

return b’

hypothesis, with the intent of quickly guiding the search taore promising solution. In both cases,
as the temperature is lowered, the weight profile is anneal@drds the original weights. This
ensures that the search eventually focuses on producirgygotions for the original distribution
of training samples.

Our basic approach has several benefits. First, the petitumischemes are general and can be
applied to a large variety of hypothesis spaces, eithelirmamis or discrete. Second, our approach
usesunalteredstandard search procedures to improve hypotheses at eeafioi, rather than em-
ploy the often wasteful “propose, evaluate, reject” cydlsimulated annealing approaches. Third,
because a perturbation of the training data can generategectmin of search steps in hypothesis
space, a single reweighting step can result in a hypothesisstvery different from the one consid-
ered at the outset (although its score might not be thatrdiit¢. Finally, in the adversarial variant,
the perturbations to the score are not arbitrary. Instéey, force the score to be more attentive to a
subset of the training instances, thus allowing the pdergoroblem at hand to explicitly affect the
annealing procedure.

3.3 Reweighting Strategies

3.3.1 Random Reweighting

The first reweighting approach we consider is a randomizethademotivated byiterative local
searchmethods in combinatorial optimization [Codenotti et a@96] and phylogenetic reconstruc-
tion [Nixon, 1999]. Instead of performing random steps ia ttypothesis space, we perturb the
score by randomly reweighting each training example. Gatdi hypotheses are then evaluated
with respect to the reweighted training set. That is, we usiadard optimization procedure and

WEIGHT ANNEALING 37

a score of the form of Eqg. (3.1), with the perturbed weightstamew. After each iteration is com-
plete, we repeat the process by independently sampling remme weights, re-optimizing the
hypothesis, etc., until the magnitude of the weight pesdtidn is zero.

For convenience, we require the weights to be a probabil&tridution over theM data in-
stances. To randomly create a vector of weights, we samgpie & Dirichlet distribution with
parameteis, so that

P(W =w) x Hwﬁ;l (3.2)

for legal probability vectors (see, for example [DeGro@&89]). Wheng is large, this distribution
peaks around the uniform distribution. Thus, if we @se 1/7¢, the randomly chosen distributions
will anneal towards the uniform distribution a$ decreases with the number of iteratiansAt

7t = 0 we will converge on the original optimization problem. Thheme, that we caRandom,
can also be applied to datasets with non-uniform initialgh&s. To do so, we note that for a
Dirichlet distribution of the form

P(W =w) x Hw?‘n’”ﬁ_l (3.3)
the maximum is achieved at
v — amd—1
" Zm’(am/ﬁ - 1)

Thus, if the original weight of sampte, is w?,, we choosey,, so that

amB—1 0

Yo (omB—1) "
for all m. Then, ass grows larger and the distribution peaks around its maximaanh weight will
converge to its original value. Note that thg,s are easily computed and that Eq. (3.2) is recovered

if the weights of all instances are equal.

The Random reweighting strategy can be applied to any optimizatiorctiem problem where
the objective can be expressed as a function of samples amdwbights. This make this strategy
applicable to a large number, if not most, learning problems

3.3.2 Adversarial Reweighting

The second reweighting approach we consider, is to updaightgein a way that directly chal-

lenges the current hypothesis. This approach is motivagetthd exponential gradient search of
Schuurmans et al. [2001] for constrained optimization fmois. We combine their technique with
an annealing process and modify it for a machine learningestnintuitively, one can challenge a
local maxima by calculating the gradient of the score widpezt to the weights and then updating

38 WEIGHT ANNEALING

the weights talecreasehe current hypothesis’ score. For example, on a trainingpsax|m| one
could consider the adversarial weight update

1 ¢ 7785007‘(3(]1, D,w)

Wy, < W, —

0wy,

which would explicitly make the current hypothesis appeas|favorable and hence less likely to
remain a local maximum. In this waycore(h, D, w) behaves somewhat like a Lagrangian, in
the sense that the local search attempts to maximize the swerh whereas the weight update
attempts taminimizethe score ovew, in an adversarial min-max fashion.

This general approach still has to be adapted to our needs, Wi want to anneal the weight
vector towards the original distribution. Therefore we addenalty for divergence betweerft!
and the original weightsv®. We use the Kullback-Leibler measure [Kullback and Leip951]
to quantify the divergence between these two weight diginhs. We heighten the importance
of this term as the temperature is cooled down by usgingL(w'*!||w®) where 3 o 1/7F1,
Second, to maintain positive weight values, we follow anomantial gradient strategy and derive a
multiplicative update rule in the manner of [Kivinen and Vaith, 1997]. This adds an additional
penalty term of the KL-divergence between successive weigttorsw't! andw?’. Combining
these leads to the following penalized score target functio

L(h,D,w'™) = nScore(h, D, w'™) + 8 KL(w'™!||w®) + v KL(w't||w?) (3.4)

wherel /3 and1/~ are proportional to the temperature and enforce proximitiie original weights
and the previous weights, respectively.

There are two ways to use this function to derive weight ugslat he first is to explicitly min-
imize the penalized score by solving fer' ™! in V.1 L(D, h, w*t1) = 0. If the score function
is convex inw (as is often the case) the solution can be quickly determiydteration. A second,
more expedient approach, is suggested by Kivinen and Warfta@87]: Instead of doing full op-
timization, we heuristically fix the gradient, L to its value atw’ and analytically solve for the
minimum of the resulting approximation (up to the step siammeter). This is tantamount to ap-
proximating the optimal update by taking a fixed step of girethe exponential gradient direction
from the current weight vectox’.

To derive the update formula, we first have to compute thevaive of L(h, D, wit!) with
respect to each of the instance weights. Uﬁﬁﬁﬂ = logz + 1, we can write

t+1
1 W
aKL(wt-l-l ||w0) 8Zm’ wf:/ IOg wY 57-1!-1
= = log +1

Akt Akt wd,

WEIGHT ANNEALING 39

and similarly for the derivative ok L(w!*!|lw!). Putting these together we get

OL(h, D, w't?) dScore(h, D, witt)

e =1 D] —i—(ﬂ—k’y)logwfjl—Blogw%—fylogw%—i-(?
m m
whereC = 3 + v is a constant. Fixind SCO"Z(LZL;?;WM) to 28eore| . and applying some algebraic

manipulations, we arrive at the multiplicative update form

__n AScore

Wit — a”l(wgn)%(wfn)ﬁﬁ o (Beely,) (3.5)

wherea!*! is a normalization constant. We refer to scheme\dsersary. We note that in the
update formulaﬁ”TV can in fact be written a€’ - 7 - n whereC' is some constant. Thus, we have a
degree of freedom that results from interchangeabilityheftemperature and the learning rate.
For convenience, we always uge= 1.

In sum, our second basic reweighting approach is to makersahi@ weight updates by fol-
lowing the negative gradient in a well motivated functiorhiSTapproach can be applied whenever
the original weighted score is differentiabhgth respect to the weightsor any fixed hypothesis.
Note this is a very weak requirement that is typically sa$fin machine learning scenarios. In
particular, differentiability with respect to the weightas nothing to do with the discreteness or
continuity of the hypotheses—it is a property of how theanse weights affect the score of a fixed
hypothesis. Thus, one could apply the adversarial rewiaiglaipproach to decision tree and neural
network training problems without modification.

An important distinction from th&andom reweighting approach is noteworthy: randomness is
replaced by a guided methodology where weights are pedudbeninimize an intuitive function.
While random may reach the best solution by chance, as wesesllin Section 3.5, th&dever-
sarial approach offers a far better average solution due to itsctobpedependent guidance. This
distinction also makes th&dversarial approach very different from other annealing approaches
that are oblivious to the current hypothesis in the searobgature.

3.4 Analysis of a Toy problem

As noted in Section 3.1, Markov chain theory (e.g., [Gilkslet1996]) guarantees convergence of
the annealing procedure to the global maximum if we start aifficiently high temperature and
cool down at a sufficiently slow rate. However, we usually dbmave any practical guarantees of
the performance of any annealing method. This is also the foaour Weight Annealing method.
Thus, in this section we analyzed a toy problem to shed sogh¢ din situations where we can
expect our method to work, and when we can expect it to fail.

Recall that in Section 3.2 we motivated sample reweightinthb fact that strengthening some

40 WEIGHT ANNEALING

examples and weakening others can transform the hypotoesisd a profitable direction. With this
in mind, we construct a toy example where the direct cornedpnce between maxima and samples
is made explicit. Consider a training dataset of poiits= {z1, ...,z }, a set of corresponding
weightsWW = {wy,...,wy}, and the following one-dimensional objective functioniwét single
free parametef

Scordd,D,w) = Z w; exp {—%(% — 9)2} (3.6)

Note that in this objective, each sample can potentiallptera local maxima associated with it and
that is nearby the value of the sample. Figure 3.1(a) show®Hbjective when the data set consists
of two pointsz; = 1 andxzy = 5 with weightsw; = 0.8 andwy = 0.2, respectively. Also shown
are the three extremum points of the function marked by tlsheath vertical lines. Our goal is to
learn the global maximuréh ~ x.

We now want to analyze how tifedversary method will behave given this particular objective.
Setting, for conveniencgl = v = 0.5/, the update equation Eq. (3.5) becomes

1
with o wy exp {—Texp {—§(m1 - 9)2}}

and similarly forwgﬂ, both of which are normalized to sum to 1. If the current pagtr? is at the
local maximum near, the inner exponent is approximately zero, awfldl x wyexp{—7}. In
contrast,wgrl x we exp {—7 - ¢} wherec < 1. Consequently, the reweighting step will diminish
wi and will enhancev, thus challenging the current hypothesis. Similarly, if terent hypothesis
is in the local maximum near,, the reweighting step will diminisk, and enhancey;. Formally,
we can guarantee the following:

Proposition 3.4.1: Let {1, z2} be two sample points such that — z;| < oo, and{w;, ws} be
their corresponding weights. In addition, let < z2 andw; > wo. Then, using the score defined
in EqQ. (3.6), there is a range of temperatufes 73] such that:

1. If & ~ x5 (is at the local maximum nearest i@) then, for anyr € [r;, 7., after the adver-
sarial reweighting step, the score function will have a gnglobal) maximum neat;.

2. If 8 ~ x; then, for anyr < 7, after the adversarial reweighting step, the score funrctioll
have two maxima near; and nearzs.

The consequence of the above proposition is that theresexisinge of temperature in which, after
adversarial reweighting, using simple gradient ascentropation will “shift” the parameters in
the direction of the true global maximum. Furthermore, fieiasuch a shift the temperature is only
lowered, then the parameters will not “escape” to an infeniaximum. If the temperature is further
lowered to zero usingnycooling policy, then using simple gradient ascent will cange to the true
global maximum.

WEIGHT ANNEALING

0.9

41

= OQOriginal
------ Local minima

0.9

= Original
Reweighted
Local minima

2 4 6 ° PR
X, Xy X,
@7 = (b)T =05
.. 1 :
0.9 u

=== Reweighted
------ Local minima

V‘.
»
'l.----'n--n!.."

4 6

(c)Tr=25

X,

=== Reweighted
------ Local minima

ot Te,

L4
-
5
-
h
o
5
«
s
H
v
-~
»
g
»
»
-
o
o
)
-
)
-
»
4
&
.’
0

%
.
)
-
Y
a
ry
-
%
-
>
“
-
-
D)
(]
%
-
-
-
-
ry
)
»

k)
“

"l
%

/

d)r =25

Figure 3.1: lllustration of adversarial reweighting onwapooblem: Two instances; = 1 andx, =
5 are weighted byy; = 0.8 andw, = 0.2, respectively. The objective score)s, wiexp{—%(:ni —
)2} with one free parametet. The figures show the score function before (solid blue) dtet a

(dotted red) adversarial reweighting at different tempees. The dahsed vertical lines mark the
local minima of the reweighted objective. (a)-(c) shows thange when the current hypothesis

(black circle) is ab® ~ ;. (d) shows the change when the current hypothesisd$ at z.

42 WEIGHT ANNEALING

We illustrate the proposition geometrically in Figure 34) shows the original objective func-
tion with two local maxima. (b) and (c) show the score functi®fore (solid blue line) and after
(dotted red line) reweighting when the current parametegsnaarz- (black circle). When the
temperature is low as in (b), the score function changedla éihd there are still two evident lo-
cal maxima after reweighting. When the temperature is seffity high as in (c), the reweighting
causes the rightmost maximum to disappear and gradiemtasdepush the parameters towards
the true global maximum. (d) shows what happens when the samgerature is used but the
current parameters are near. In this case, the leftmost maximum is indeed pushed dowmdsut
sufficiently to erase the local maximum. It can be computenhgarically that for any € [2.4,5.1]
the same phenomena occurs. (A similar geometrical compntaén be carried out to prove the
proposition for anyr; andzs.) The above formal guarantee can be extended to some extent

Proposition 3.4.2: Let z; < z5 < z3 be three distinct points, where:s — 21| < oo, and
{wy,we, w3} be their corresponding weights. Then, for the score of Ed)(3f it not the case
thatw; < we < ws Or wy > wy > ws then there is is a range of temperatures, 7] for which

1. Foranyr € (7, 71,], adversarial reweighting followed by gradient ascent wilhverge to the
parameters of the global maximum regardless of the initeabmeter value

2. For anyT < 73, adversarial reweighting followed by gradient ascent wit push the para-
meters away from the global maximum

Proof: (Outline) Assume, w.l.g., thab; > we, ws andwy < ws. Using Proposition 3.4.1, there
is a range[rlo,Tg] for which gradient ascent will progress from the parameter,do those atr;
but not the other way around (we loosely use the points hedenote the nearest local maxima).
Similarly, there is a rangbll, 7&] for which it is possible to move from the parametersgato those
at z3 but not the other way around. In addition, there exists stjcho that for anyr > 7! it is
also possible to move froms to 2. Using technical manipulations, it can be shown tat> 7.
From this we can conclude that there is a raqgle 7] of temperatures at which it will be possible
to move fromzs to 25 and then tar; but not the other way arouni.

It is insightful to understand why the above propositionuanteed to work only if the weights
are unordered. If, for example; > w-o > w3, then is could be the case that the temperature that
allows the parameters to be pushed fropto =, will also allow it to escape towards;. At the
same time, it could be that at a cold enough temperature, endseape tas will no longer be
possible, a move towards will no longer be possible as well. We can only still guarantieat if
the current parameter is near the global maximum at a lowgintemperature, it will stay there.

The above gives us the first clue to where adversary rewahtiay fail. In particular, it is not
only the magnitude of the local maxima but also their retasize that influences the behavior of
the algorithm. Another factor that influences the behavidhe algorithm can be the variance of

WEIGHT ANNEALING 43

= Original 4 = Original = Original
oor Local minima 09 R Reweighted R N O Reweighted
0.8 X ; T |- Local minima o8t /M™\ @ | Local minima__}{
07 4 0.7 g .,
06 06
05 05
04 04
03 03
02 s P 0.2 I~
0.1 ", 01f & N
0 . . ¢ 0 . . B o 0 ° .
0 2 4 8 0 2 4 8 0 2 4 8
Xy X, Xy X, X1 Xz
(@7 =0 (b) = 2.66 (©) T = 2.66

Figure 3.2: lllustration of adversarial reweighting on & foroblem: Two instances; = 1
andxo, = 6 are weighted byw; = 0.8 andw, = 0.2, respectively. The objective score is
> w,-eacp{—zixi(xi — 0)?} with one free parametet. The figures show the score function be-
fore (solid blue) and after (dotted red) adversarial rewtig at different temperatures. The dotted
vertical lines mark the local minima of the reweighted obyjex (a) shows the original “cold” func-
tion. (b) shows the change when the current hypothesiskldiacle) is atd® ~ x, and (c) shows
the change when the current hypothesis 68 at z .

each component in the score. Consider, for example, a Ilsligtiterent score where the variance
of each component is proportional to the value of the comedimg sample

Scordf, D, w) = Z w; eXp {—%(xl — 9)2} (3.7)

Figure 3.2 illustrates this example. In (b), we can see tieaktis a temperature= 2.66 for which
gradient ascent will not be able to “drift” from the inferioraxima to the global one. (c) shows that
a the same temperature it is already possible to move fromlthal maximum to the inferior one.
Intuitively, the narrower a component of the score is, th&ezat is to overcome its corresponding
maximum. Thus, the algorithm is sensitive not only to theigadf the global maximum, but to its
basin of attraction

The form of the scores of Eq. (3.6) and Eq. (3.7) we use fordhexample was chosen because
of the direct relation between a local maxima and a samptenthde some analysis possible. Gen-
eralizing Proposition 3.4.2 to more realistic scores ofialgproblems that arise in machine learning
remains a theoretical challenge. Another challenge is tergtand how our method behave when
multiple local maxima are present. In practice, as we detnatesin the next sections, adversarial
reweighting performs well on complicated and varied tafgettions with many local maxima.

44 WEIGHT ANNEALING

3.5 Learning Bayesian Networks

In this section we apply Weight Annealing to three basictagkearning Bayesian networks: struc-
ture search, parameter learning in the presence of missings or hidden variables and the com-
bined challenge of learning both structure and parametéedinish with evaluation on challenging
real-life data sets.

3.5.1 Perturbing Structure Search

We start by applying Weight Annealing to the problem of Iéagrthe structure of Bayesian net-
works with complete dat®. To guide the search procedure, we use the decomposabled®ie s
(see Section 2.3.1). A crucial property that we utilize wperturbing instance weights is that this
score, like other commonly used scores, is a functiosufficient statisticef the data. For models
in the exponential family, these sufficient statistics haveanonical form as a sum of functions
applied to particular instances. ThusSifs a sufficient statistic of interest, then

where s(x[m]) is a function of a particular training instance. For examffieS(D) counts the
number of times an event occurred in the data, thles) is an indicator function that returrisif
x satisfies the event, artdotherwise. When we perturb the score, we simply need to ghwihe
contribution of each instance. Thus, the perturbed statsst

S(D,w) =M w, - s(x[m]) (3.8)

wherel is the number of samples ardis a distribution over the training samples. Although the
BDe score itself is not additive, it is nevertheless defingdudficient statistics of the data and can
therefore be easily adapted to the weighted case.

The BDe score is also differentiable with respect to the Wsigf the training instances, which
allows us to apply adversarial reweighting. Using Eq. (R\&B can write the score for the entire
network structure; as

Scoreppe(G : D) = Z Z log - (S[l;)(a(:)_ai)()pai)) n Zlog I' (S[zs, pa;] + a(z;, pa;))

2 a] +o T (a{v:, pa)

The only expressions in the score that depend on the weigattha sufficient statistics counts
Slpa;] = >, wnm - P(Pa; = pa; | e,) Wheree,, is the evidence of the m'th instance, and

similarly for S[z;, pa;]. Using theDigamma function¥(z) = 1;((;’)) = (logT'(x)) [DeGroot,

WEIGHT ANNEALING 45

1989], the derivative of the score with respect to a speciéigitw,, is given by

OdScoreppr(G : D)

0wy,

>3 WSl pa] + alwi, pa) — W(Slpa] + a(pa;)| Pxi, pa; | em)

i pa; x;

which can readily be evaluated using a numerical approximab the Digamma function.

Experimental Evaluation

To evaluate the performance of structure learning with hegghnealing we start with the synthetic
Alarm network [Beinlich et al., 1989], where we can compare ouulisgo the generating model
that has the additional prior knowledge of the true structiWe compare our methods to a greedy
hill-climbing procedure that is augmented with a TABU-sdeamechanism and random restarts as
in Algorithm 2 in Section 2.3.3. We use a tabu list of size 20thw0 random moves at each of the
5 random restarts. This setting allows great flexibility hoe learning procedure and is competitive
with state-of-the-art methods. We apply our perturbati@ihmds following the outline specified in
Algorithm 4. We allow the search procedure to fully optimveigh respect to the perturbed weights
after each reweighting. When performing Weight Annealiwg, limit the tabu list to size 25 and
allow no random restart moves.

It is possible to evaluate the results both in terms of scoregaining data and generalization
performance on test data (average log-loss per instancall. df our experiments the two measures
correlate closely, and therefore we report only test sdbpaance. Figure 3.3 shows the progress
of the test set likelihood during iterations of the pertutibens. Shown are the average performance
of 100 runs of theRandom perturbation method (with the 20%-80% margin in gray) arelAd-
versary method, compared to the best of random restarts withoutifpations, and with similar
running times. Several conclusions are notable. Firsh petturbation methods solidly outperform
the random restarts method. In fact, both methods are aldatperform the true structure with
parameters that were estimated using the training &ibee¢). Second, the best model overall is
found by Random. However,Adversary is significantly better thamRandom'’s average perfor-
mance. This allows one to either invest a lot of time and ash@&superior model by performing
many random perturbation runs, or obtain a near optimattire with a singléAdversary run.

To emphasize this point, Figure 3.4 shows the cumulativiopeence of two different setups of
Random (different starting temperatures and cooling factors)e THss favorable line has a similar
running time toAdversary. The superioRandomtakes an order of magnitude longer for each run,
and often reaches what appears to be the achievable glokahora.

We also evaluated the performance of our methods for steisearch on a real-life data set.
Stock Data [Boyen et al., 1999] is a dataset that traces the daily chahg@ major US technology

46 WEIGHT ANNEALING

-1s2F T aememm==m===c

|
fiN
o
w

Likelihood

-15.4

! =+ Best of random restarts
" = = Avg. random reweighting
I — Adversary reweighting
2 R IR Silver Network
-15.5 1 1 1 1 1 T T I
5 10 15 20 25 30 35 40
Iterations

Figure 3.3: The progress of test set likelihood (log-lossmpe&ance) during iterations while learning
structure from complete data of thdarm domain. Compared are the true structure with trained
parametersSilver), the best of 100 runs of random restarts search withoutifietions, 100 runs
of the Random perturbation method and a single run of thdversary method. The gray area
marks the 20%-80% range of 1&&andom runs.

stocks for several years (1516 trading days). As shown iheTald, using our Weight Annealing
procedure leads to improvement of the performance of thesirmdunseen test data.

3.5.2 Perturbing Parametric EM

We now consider the application of the Weight Annealing fesrark to parameter estimation of
Bayesian networks in the presence of missing data or hiddeables. As discussed in Section 2.4,
this scenario raises many complications including ourilitalio perform maximum likelihood or
Bayesian estimation in closed form. However, weight pestion can easily be applied if we use
the Expectation MaximizatiodEM) algorithm to cope with this scenario. In particular, EMdes
expected sufficient statistic$ the data. The perturbed form of these statistics can baraut by
replacing Eqg. (3.8) with

EQ[S(D,w)] = MY wy Y s(x[m], o[m])Q(x[m] | o[m])

x[m]

WEIGHT ANNEALING 47

100~ e -
—_— ,
\ :
~ :
90~ SS :
\)
~ :
1 :
80 \
~ :
1 z
~ N
B 7ot . :
o \ :
S v
- [N z
= 60 L
= :
% N
N
® s0f A
= E
3
c 40F ~
()
o
pust z
& so- B
-
Best of random restarts : ‘I
20 = = Random reweighting (fast) : \
Random reweighting (slow)
= Adversary reweighting - '\
10 1 Silver network N 1
3 Y
~
I
1 J

0 1 1 z
-15.35 -15.3 -15.25 -15.2 -15.15
Log-loss/instance on test data

Figure 3.4. Cumulative performance on test data when legrtfie structure of the network with
complete data of th&larm domain. Ther-axis shows test-set likelihood (log loss per instance),
they-axis shows percent of runs that achieve that likelihoodgindr. Compared are the true model
with parameters trainegifver), the best of 100 random runs of the baseline greedy leamétgod,
100 random runs two instantiations of tReandom reweighting method, and a singkalversary
reweighting run.

where(is a posterior distribution ovex[m] given the current hypothesis and the partially ob-
served instance[m]. Note that the above form is a generalization of Eq. (2.18), enhances the
applicability of the approach to general learning scemsandh missing values or hidden variables.

It is clear that the maximum point of the expected score isim®imaximum point of the true
score (for otherwise one iteration suffices to get to thealataximum). Thus, the expected score
is biased. In general, this bias is towards models that aserire sense similar to the one with which
we computed the expected sufficient statistics. This sugdest we do not necessarily want to find
the optimum of the expected score within EM iterations. dadt we apply a limited number of
EM iterations (e.g., one) within each optimization stephe Weight Annealing procedure shown
in Algorithm 4, and then reweight the instances. The gengealurbation scheme is otherwise
unchanged.

48

Percent at least this good

0
-15.3

=
S
3

©
S

@
3
T

‘.
=]
T

@
3
T

@
3
T

»
S
T

w
S
T

N
S

=
o

Standard EM

- - Random reweighting
— Adversary reweighting

L [Golden Network

L
-15.25

L
-15.2

L
-15.15

L
-15.1

L
-15.06

L
-15

!
-14.95

Percent at least this good

=
S
3

)
]

®
3

~
=)

@
3

@
S
T

N
]

w
8
T

N
S
T

=
)
T

WEIGHT ANNEALING

'

+=1 SEM

= = Random reweighting SEM
— Adversary reweighting SEM
“““ Golden network

0
-15.1

Il)
-15.025 -14.95

Log-loss/instance on test data

(b) Structural EM runs

Log-loss/instance on test data

(a) Parametric EM runs

Figure 3.5: Cumulative learning performance on test dateeigged from the synthetiglarm net-
work. Thez-axis shows test-set likelihood (log loss/instance),jitexis shows percent of runs that
achieve that likelihood or higher. Compared are 100 run& @fche baseline learning method,
computationally intensivRandom perturbations anddversary, as well as th&olden model that
generated the training and test instances. (a) Shows sdsulparameter estimation where four
central variables were hidden in the training set and truecttre is used. (b) Shows results for
estimation of the parameters as well as the structure frensdine dataset.

Experimental Evaluation

We examine our method on the synthelilarm network. Figure 3.5(a) compares 100 random runs
of standard parametric EM, computationally intendR@ndom perturbation, and aAdversary
run. Because of the limited number of EM iteratioAslversary takes only about 15 times longer
than a single parametric EM run, aRé&ndom takes around 50 times longer than a single EM run.
We can clearly see the advantage of Atversary method, which achieves what appears to be the
attainable global maximum using the finite training set.sTtheximum is reached by only a few of

the random EM an&andom perturbation runs, and is not far from the true structureardmeters
(Golden) that generated the test data.

3.5.3 Perturbing Structural EM

The final and most difficult task we explore for Bayesian neksds that of learning both the
parameters and the structure of the model. As in the caseraimgder estimation, the use of the
Structural EM (SEM) approach [Friedman, 1997, 1998] facilitates the Usé/eight Annealing:
Like EM, the algorithm is based on expected sufficient dtetigshat can be readily perturbed.

WEIGHT ANNEALING 49

Experimental Evaluation

The setting is identical to the one used in the EM runs, but lse attempt to learn the topology
of the network. The starting point of the search is a striectuhere all the hidden variables are
parents of all the observed nodes. Figure 3.5(b) shows @tivellresults for 100 random runs for
the syntheticAlarm example. The Structural EM runs have a very low variance aadaarse
than over 90% of thd&Random perturbation runs. As with parametric EM, but more markedly
the Adversary method dominates random reweighting. Note that it halvesdibtance from the
baseline performance to the performance of the true network

3.5.4 Evaluation of real-life domains

To conclude the evaluation of Weight Annealing for learnBayesian networks, we consider a
number of real-life datasets where we learn both the strei@nd parameters.

e TheSoybean [Michalski and Chilausky, 1980] disease database from fBerblachine learn-
ing repository contains 35 variables relevant for the dwsghof 19 possible plant diseases.
There are 307 training instances and 376 test instancdsnvaily missing values.

e TheAudiology data set [Bareiss and Porter, 1987] from the UCI machinailegurepository,
contains 69 variables relevant to ilinesses relating tachogly disfunctions. There are only
202 training instances an 26 test instances with numerossimgi values.

e Rosetta’s compendium [Hughes et al., 2000] consists of ggpeession data of 600Bac-
charomyces cerevisiagenes (variables) and 300 experiments (samples). We usqutdh
processing of Pe’er et al. [2001] to discretize the data amtentrated on 37 genes which
participate in thestationary phasetress response that they identify.

For each data set we performed 5-fold cross validation angbaced the log-loss performance on
independent test data. Table 3.1 summarizes the resultswrSare results for best of random
restarts Structural EM runs, average and 80% valuésofdom perturbation runs, and thdver-
sary method. Both perturbation methods achieve superior reguliandom restarts Structural EM.
Similar to what was observed in structure search, it is sionest possible to reach a superior model
to Adversary by performing manyRandom perturbation runs.

In all domains, the perturbation methods improves over #seline. For the challenging prob-
lem of learning structure in the presence of hidden varg@atiies improvement is quite significant.
For theSoybean dataset, for example, an average improvemerii. td bits per instance over a
test set with 376 test instances, means that the unseenesaarplmore the2™® more likely given
the model learned by the adversarial perturbation methaldfive to the best of state-of-the-art
Structural EM runs with Tabu list and random restarts.

50 WEIGHT ANNEALING

Table 3.1: Summary of results on independent test data ¥eraledata sets for the structure search
and structural EM problems. Shown are log-loss per instanhgaprovement in performance with
respect to the best of the random restarts baseline. Cothpegdhe mean of thRandom pertur-
bation method (along with the0% mark) and théddversary method.

Domain | Random | 80% | Adversary
Search| Stock —-0.02 | +0.01 +0.03
Alarm +0.15 | +0.18 +0.17
SEM | Rosetta | —0.05 | 4+0.27 +0.09
Audio +0.00 | 40.39 +0.23
Soybean| +0.19 | +0.32 +0.19
Alarm +0.25 | 4+0.31 +0.33

3.6 Learning Sequence Motifs

All of our case studies so far have addressed unsupervigeitylestimation problems in the form
of learning Bayesian networks. To demonstrate the wideaapgplicability of Weight Annealing,
we now examine a completely different discriminative l&agrscenario. The problem is to perform
non-linear logistic regression in order to firejulatory motifan DNA promoter sequences; i.e., ,
short subsequences that regulate the expression of gengzarticular, a motif is defined as a
relatively short signature of about 8-20 nucleotides (DN#&drs) that appears somewhere in the
DNA sequence—the exact location of which is unknown and eap from sequence to sequence.
An example of a motif might be the sequem®@GCGT. Unfortunately, most known motifs are not
preserved perfectly in the DNA, and one generally has tavaltor substitutions in one or several
positions. Accordingly, the common representation of aihmas aweight matrix[Durbin et al.,
1998] which describes the weight of each of the four pos4iN letters for each position within
the motif. Intuitively, a subsequence that has a large sulettelr weights is said to match the motif.
We use the notation;[z] to denote the weight of the letterin the:'th position.

Following Barash et al. [2001] and Segal et al. [2002], wergethe basic training problem in
discriminative terms. Givev promoter sequences, ..., sy, where then’th sequence consists
of K letterss,, 1 ..., s, Kk, and a set of of training labels, ..., Ix, wherel; is 1 if the sequence
is regulated by the motif and if it is not (these labels can be obtained from different djatal
experiments), we wish to maximize the log-1ds§ P(l, | s,) where

Plly = 1] Suts- -, Snic) = logistic | log | = > exp{ Y wilSn,]}
i %

andlogistic(z) = —— is the logistic function ana is a threshold parameter. Segal et al. [2002]
1+e

WEIGHT ANNEALING 51

-0.25 w — = ‘
Conjugate Gradient <
Adversarial @
Random ——

-0.3 E é 1

-0.35 1

] <&
g >
8
£ 04r- = i]
3 °® >
8 o
: s o
T 045 - é 1
<
Io’ ;
o
-
0.5 - 1
o
>
-0.55 | 1
™
062

FKH2 SWI6 FKH1 ACE2 MCM1 MBP1 SWI4 SWI5 NDD1

Figure 3.6: Performance of different methods in the motidiifig task for 9 data sets. Theaxis
corresponds to the different datasets, and,taeis reports training log-likelihood per instance. We
report the performance of the baseline conjugate ascethioghefdversarial reweighting, and Ran-
dom reweighting. The box plot show the range between 20%et8®86 of 50 Random reweighting
runs, and the narrow lines on top of the box show the besttrektiiese 50 runs.

address this problem in two stages. First, they search @ibr $toring seeds by considering all short
words of length 6 using the method of Barash et al. [2001]. nTler each seed they construct a
weight matrix of 20 positions that embodies the seed comnsessquence in the middle positions
(the weights in flanking positions were initialized to 0)n&illy, the use conjugate gradient ascent
with line search [Price, 1992] to maximize the log-likeldtbscore.

We adopt the same procedure augmented with our weight pation methods. After each
weight perturbation, we perform a line search in the diogctf the gradient of the likelihood with
respect to the reweighted samples. After the end of thermpsithedule, we apply a final conjugate
gradient ascent to find the local maxima in the vicinity of fimal point of the search.

We applied this procedure to the 9 training sets generatedglthe analysis that Segal et al.
[2002] performed on DNA-binding experiments of Simon et[2D01]. We report the results in
Figure 3.6. As one can see, both Random and Adversarial gltirgg are consistently better than
the baseline approach. In some cases (ACE2, SWI4, SWI5) dverBarial reweighting achieves
scores better than all of the random runs, in others (FKH1DMOt is better than at least 80% of
the random runs, and only in two (FKH2, MBP1) it is worse th@#aBof the random runs.

52 WEIGHT ANNEALING

3.7 Relation to Other Methods

Annealing Algorithms
Both our reweighting strategies share the generic anmeéiamework outlined in Algorithm 3.
Several differences from the standard algorithms are waoting: Our method changes the op-
timization space of the learning procedure by perturbireygbal functional. Simulated Anneal-
ing [Kirpatrick et al., 1994], on the other hand, changes thée5wf the game” by allowing moves
that decrease the score with proportion to the current testyre. This approach is often extremely
effective when a small number of score decreasing movesddeateto escape an inferior local
maxima. However, the approach suffers from two main drak&aEirst, the perturbation is inde-
pendent from both the problem and the hypothesis in corttrabe guided adversarial reweighting
method. Second, the “propose, evaluate, reject” cycletenofvasteful. This is particularly true
if the evaluation of candidate hypothesis is costly, as ésdhse when evaluating the benefit of
Bayesian network structures. We have applied simulate@éaimy as described by Heckerman
et al. [1995a] for all the experiments in the previous sestidHowever, using a range of parameters
(around those they suggest), we get significantly worsdtsghian the baseline search method. This
is consistent with the results of Chickering [1996b], whondastrated that using multiple restarts
greedy hill-climbing is more effective than simulated aaliveg when learning Bayesian networks.
Deterministic Annealin§Rose, 1998] is even more closely related to our method. bikeap-
proach, it uses a black-box optimizer and applies it to aupeed problem. The perturbation of the
score is done by explicitly introducing entropy into theeagitjve in a magnitude that is proportional
to the current temperature. This added component servesm®athing factor of the landscape
to be optimized. Somewhat surprisingly, despite successghier tasks such as classification, ap-
plication of Deterministic Annealing for learning Bayesiaetwork Ueda and Nakano [1998] have
not been promising. In particular, Whiley and Tittering{@02] have demonstrated why learning
Bayesian networks with hidden variables using Determmi&hnealing is problematic. Finally,
despite the obvious similarity between our objective fimcand that of Deterministic Annealing,
the rationale for the scores used in the two cases is quiteretiit. It is unclear if there are deeper
connections between the two methods.

Boosting

There are interesting relationships between the advartsaveighting and ensemble learning meth-
ods such as boosting [Schapire and Singer, 1999]. Both mietlrare the central idea that at each
step the weights of the samples that are not predicted weahdogurrent hypothesis are amplified.
However, there are some fundamental differences. On aitivetievel, both methods are inherently
different in the motivation for this reweighting. In the easf boosting, the goal is to concentrate on
the hard samples. In the case of adversarial reweightiegydhl is to challenge the current hypoth-
esis and put its robustness to a test. Another differend¢®idibosting attempts to build a weighted

WEIGHT ANNEALING 53

ensemble of hypotheses that achieves a good score, wheeeareweliberately seeking a single
hypothesis. On a technical level, boosting derives its imteigpdates by differentiating the loss of
an entire ensemble [Mason et al., 2000], whereas our wegldtaes are derived by taking only the
derivative of the score of the most recent hypothesis. déstargly, although we do not exploit a
large ensemble, we find that our method still produces hygseath that generalize well to unseen
test data. Although initially surprising, this phenomerisrexplained by the fact that adversarial
reweighting of samples discovers hypotheses that obtamd goores while simultaneously being
robust against perturbations of the training data, whiaifers obvious generalization benefits.

Bootstrap

Our method is also reminiscent of the Bootstrap approactirohtand Tibshirani [1993]. Bootstrap
is a statistically motivated approach that can be used twageaonfidence measures for features of
Bayesian networks learned from data [Friedman et al., 1J998lshort, this approach uses several
random re-samplings of the data to learn different netwoianfidence measures from these net-
works can then be used to learn more robust models bypassing sf the local maxima that are
a result of problematic noise in the data. Although both mashmanipulate a black-box optimiza-
tion procedure by effectively altering the weights of imstes, there are several inherent differences.
Rather than using an annealing procedure, the bootstrapagiplearns many models from inde-
pendent datasets that are sampled from the original tpitiéta. This re-sampling procedure is
oblivious to the target function as well as to the perforneantthe hypothesis. Furthermore, in-
stead of a single hypothesis that is a local maximum of thgirai problem, the bootstrap approach
generates an ensemble of hypotheses, each optimizingesediffand slightly perturbed problem.
These need to be merged into a single hypothesis using spessible approaches (e.g., [Friedman
et al., 1999hb)).

3.8 Discussion

In this chapter we presented a general, annealing like, adefitr escaping local maxima. The
essence of ouweight AnnealindWA) approach is to perturb the relative weight of the tragni
instances in a gradually diminishing magnitude. Thus, weupe the target function rather than
the optimization procedure, and look for optimal solutiaishe perturbed problem. As we have
shown, such perturbations allow one to overcome local maxinseveral learning scenarios. On
both synthetic and real-life data, our approach seems thttesignificantly improved models when
learning the structure of Bayesian networks with completedearning parameters with missing
data, and learning both parameters and structure. The ymprents are particularly impressive for
the complex problem of learning both structure and pararmetéih hidden variables, where the
problem of local maxima is acute.

The perturbation of instance weights is particularly ative in its applicability for a wide range

54 WEIGHT ANNEALING

of learning problems. It is not only easy to find reweightesians of standard learning scores, but
sample weights are also easily incorporated into nonalrildarning procedures such as EM. In
doing so, one can exploit the expected sufficient statisticefficient search, and then perturb the
expected score to find models that have a better score. Weacethpvo strategies for generating the
sequences of weights during annealingndomized reweightingndadversarial reweightingOur
results show that both approaches dominate the straw-maultiple restart search. Randomized
reweighting can sometimes achieve better performancehlsutnight require performing several
annealing runs. The deterministic adversarial strategytia advantage of achieving comparable
performance in a single run.

The random reweighting approach we introduced has alsodm#ied in Friedman et al. [2002]
as well as Barash and Friedman [2002] for learning phylotetrees and context-specific cluster-
ing models, respectively. Both papers report significamtromements when using Weight Anneal-
ing.

One avenue that we did not explore is the combination of aoraed element within the de-
terministic adversarial strategy. It is also clear thatrimalistic applications, we need to tune the
implementation to reduce the number of iterations. This mamone by incorporating more so-
phisticated cooling strategies from the simulated anngditerature (e.g., [Laarhoven and Aarts,
1987]) or the deterministic annealing literature (e.gQg$R, 1998]). It is also worth exploring im-
proved ways to interleave the maximization and the rewgighdteps. This may lead to significant
improvement in performance, possibly at a marginal contfmtal cost. Finally, the empirical
success of these methods raises the challenge of providbegter theoretical understanding of
their effectiveness. This is particularly intriguing fdret adversarial reweighting strategy that has
similarities to boosting and multiplicative update stggg¢s. Despite the interchangeability of the
temperature and the learning rate, the analysis of thedeoaetdoes not seem to directly apply to
our setting.

Chapter 4

Discovering Hidden Variables: A
Structure-Based Approach

Our main goal in this dissertation is to learn new hiddenaldés. This involves determining the
existence of a variable, inserting it effectively into thetwork structure, and setting its cardinality
in the case of discrete variables. Obviously, all thesestaskl significant difficulties to the already
complex problem of learnin the presencef hidden variables, when they are known to exists.
In Chapter 1, we qualitatively discussed why hidden vaeslshould not be ignored: In theory, we
can still construct a network that captures all the depetidsrin the marginal distribution over the
observed variables. However, as we illustrated in Figutddr.the cancer domain, this can result in
a model that is less desirable in terms of representaticihcantains significantly more parameters
and edges than the succinct model with the hidden variable.

When a hidden variable is known to exist, we can introduceti the network and apply
known Bayesian networks learning algorithms. If the nekagiructure is known, algorithms such
asEM [Dempster et al., 1977, Lauritzen, 1995]gradient asceniBinder et al., 1997] can be used
to learn parameters. If the structure is not known Streictural EM (SEMAalgorithm of [Friedman,
1998] can be used to perform structure learning with missiai;.. However, we cannot simply
introduce a “floating” hidden variable and expect the seafgbrithm to place it correctly. In fact,
if the hidden variable is placed where it does not improvdikedihood of the model, there is a good
chance it will be disconnected by the local search algorithiter which it will never be worthwhile
to reconnect it to the network structure. Thus, in applyingse algorithms we implicitly assume
that some other mechanism introduces the hidden varialalpgroximately the right location in the
network structure. Our goal in this chapter is then to anstwefollowing two questions:

e Should we introduced a new hidden variable into the netwtitictire?
e Where should we initially place it within the network struict?

55

56 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

Parents of H Parents of H

N\ A\ /

all parents connected
to all children

/1 '\
Children of H Clique over
children of H
(a) Original network (b) After removal off

Figure 4.1: Schematic illustration of Proposition 4.1.8) $hows a network fragment where a
hidden variableH separates between some of its parents and children. (b)ssti@wesulting
network fragment wheti/ is not included in the structure and we require that no newpeddence
assumptions are introduced into the network structure.

(We defer the task of learning the cardinality of the hiddariable to Chapter 5.) We investigate
what is arguably the most straightforward approach for @ntlythe existence of a hidden variable.
We formally show that the phenomena demonstrated in Figdreahd briefly mentioned in Heck-
erman [1998], is a typical effect whenever a hidden varigbtemoved from the network structure.
Based on this fact, our approach tries to reverse engineeplienomena to suggest new hidden
variables, and is roughly as follows: We begin by using addamh Bayesian network model se-
lection algorithm to learn a structure over the observedhlodes. We then search the structure for
substructures, which we cakmi-cliquesthat are potentially induced by a hidden variable. We
temporarily introduce the hidden variable in a way thatraltee sub-structure, and then continue
learning based on that new structure. If the resulting giredmproves the score, we keep the hid-
den variable. Surprisingly, this basic technique does eelrsto have been pursued. We provide a
concrete and efficient instantiation of this approach amsvdiow to integrate it with existing learn-
ing algorithms such as the Structural EM algorithm. We apqly approach to several synthetic
and real-life datasets, and show that it often provides a goitial placement for the new hidden
variable. We can therefore use it as a preprocessing stetrfiactural EM, substantially reducing
the search space of the algorithm.

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 57

4.1 Detecting Hidden Variables

In the example of Figure 1.1 discussed above and that mesivair approach, the hidden variable
“Cancer” is the keystone for the conditional independerssimptions in the network. Without it,
many of the independencies of Figure 1.1(a) simply do nad.héls a consequence, the marginal
distribution over the remaining variables has almost nacétire and includes many edges, creating
an undesirable representation. We can show that this ptemeis a typical effect of removing a
hidden variables:

Proposition 4.1.1: (see Figure 4.1 for illustration)

LetG be a network over the variable¥ = {X,..., Xx}, H. LetZ be the conditional indepen-
dence statements — statements of the fbud(X L Y | Z) — that are implied by and do not
involve H. LetG’ be the graph oveX, ..., Xy that contains an edge frot¥; to X; wheneveg
contains such an edge, and in additigif: contains a clique over the children &f, andG’ contains
an edge from any parent df to any child of H. Then, there exists a distributioR(X’, H) such
that G is anl-mapof P(X, H) andG’ is a minimall-mapof P(X) = ", P(X, H).

Proof: To prove thaly’ is anl-map we need to show that the independence statements encoded in
G’ indeed hold inP(X). To show that it is a minimalkmap we need to prove that removing any
edge fromg’, renders it a no-map of P(X).

We start with the latter task. Clearly, any ed§e — X; in the original networki must also
be included ing’, since the existence of such an edge means th&{iti, H) (of which G is an
I-map), X; and X; may be dependent, even when conditioned on all other vagablhus, only
the edges we added in the constructiongbimay be suspected as being redundant. Consider an
edgeP; — C}, from some a paren®; of i to some childC; of H. In the original structure there
existed a path’, — H — Cj;. To renderP; andC; independent this path (and possibly others)
must be blocked (see discussion of d-separation in Sectioh)2 This only occurs iff is observed.
Thus, whenH is not included in the model, we cannot guarantee that thvesevariables are not
dependent making the eddg «— C; necessary to ensutenamess ofG’ with respect taP(X’).
Similarly, consider the patt; < H — C; between two children off. The original structuré;
implies that unlesg/ is observed(; andC; cannot be declared independent. Thus, either- C;
or C; « Cj is requires. This holds for any two children Bfin the original structure.

We now show that the independencies encoded ihold in P(X’). Obviously we need only
consider independencies that were added as a result oitlozakof . The removal off from the
structure can only effect independencies of variablds lies in some path between these variables.
All such paths must pass either through parent# pits children, or both. I is at the bottom of
a v-structureP;, — H « P; along this path, it blocks the dependency since it is unekserThis
only adds dependencies to those encoded and does not effedtmamess. IfH lies along the
path so that’;, — H — (), the removal offf can introduce a new independency betwégand

58 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

(@) (b)

Figure 4.2: (a) A semi clique that is missed by our algorithmd B composed of two 5-cliques that
are relatively sparsely connected. (b) A 4-clique struetuith one edge missing. This is a slightly
relaxed version of aemi-clique that is still accepted by our algorithm.

C; (or ancestors of’; and descendants ¢f;). However, the edgé’;, — C; directly cancels this
potential independence (which is exactly why it was regufe minimality). A similar argument
for the case of a path that passes throagh— H — C}, shows that no new independencies are
introduced ing’, and thus it is afrmapof P(X). I

Our strategy is to define an approach that will suggest catalididden variables by finding
structures characterized by the above proposition in theegbof a learning algorithm. That is, we
will first learn a network using a standard structure leagratgorithm, and then look for substruc-
tures that are potentially a results of a missing hiddenatéei In practice, it is unreasonable to
hope that there is an exact mapping between substructuathate the form described in Propo-
sition 4.1.1 and hidden variables: Learned networks ardyramn exact reflection of the minimal
I-map for the underlying distribution. We therefore use mewhat more flexible definition, which
allows us to detect potential hidden variables:

Definition 4.1.2: A semi-cliques a set of nodeS where each nod& € S is linked to more than
more than half of the nodes # That is,

) 1
AdS(S)] > 58

where|S| is the number of elements in the &andAdj%(S) are the adjacent nodes (neighbors)
of X in the graphg that are in the se$. I

We propose a simple heuristic for finding semi-cliques ingteph. We first observe that each
slightly stricter version of a semi-clique must contaisesedwhich is easy to spot; this seed is a
3-vertex clique.

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 59

Algorithm 5: FindHidden
Input :G // anetwork structure
Output : A list of candidate children sets (semi-cliques) for hidderiables ing

CliquelList — empty list
SeedList «— all 3-cliques inG

foreach seed in SeedList do
clique «— Expandd i que(seed,G)
if si ze(clique) > MIN_CLIQUE SIZEthen
‘ Insertclique into CliqueList
end if
end foreach
return CliqueList

Procedure: ExpandClique
Input : seed // alist of variables
g I/l a network structure
Output : A semi-cliqgue expanded froseed

SemiClique « seed

repeat
foreach variable X not in SemiClique do
if 1 sSeni Cl i que(SemiClique UX) then
SemiClique «+ SemiClique UX
end if
end foreach
until SemiClique not expanded
return SemiClique

60 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

Proposition 4.1.3: A setS of N nodes where each node has more tt@ﬁj, must contain a full
clique of size 3.

Proof: Consider a semi-cliqu8 with V nodes, and leK; be an arbitrary node in itX; must have
at IeastL% + 1] neighbors in the semi-clique. Léf; be one ofX;’s neighbors (adjacent nodes).
X; must also have at Ieapg + 1| neighbors in the semi-clique. But there are at niést L% +1]
nodes that are not neighborsw‘ofHence,Adjg(i(S) andAdjg(j(S) cannot be disjoint. Any node
in the intersection, together with; and X ;, forms the required 3-cliqud.

The first phase of the algorithm is outlined in Algorithm 5islstarts with an exhaustive search
for all 3-cliques in the graph (by definition all of these atgoasemi-cliques). The algorithm then
tries to expand each of them into a maximal semi-clique ineedy way using the procedus-
pandClique At each iteration this procedure attempts to add a nodegtdcilrrent” semi-clique.

If the expanded set satisfies the semi-clique property, itherset as the new current semi-clique.
These tests are repeated until no additional variable cacldbed to the semi-clique. The algorithm
outputs the expansions found based on the different 3eligaeds”. We note that this greedy
procedure does not find all semi-cliques. The exceptiongygieally two semi-cliques that are
joined by a small number of edges, making a larger legal sfimie. These cases, an example of
which is illustrated in Figure 4.2(a), are of less interestduse they are less likely to arise from
the marginalization of a hidden variable. In practice, wevala little leeway when searching for
semi cliques, also accepting structures where each nodmisected to exactly half of the other
nodes. This allow us to captures structures such as a 4echgth just one edge missing as shown
in Figure 4.2(b).

In the second phase, we convert each of the semi-cliquesttacusecandidatecontaining a
new hidden node, reverse engineering the phenomena of $ftiopc4.1.1. Supposs is a semi-
clique so that we suspect all of the variableglimay be the children of an unknown hidden variable
H. We introduce such aH into the network structure and (ensuring acyclicity)

e makeH the parent of all variables i
e remove all edges between the variableSin
e replace each edge — S;, from some parenk; (that is not inS) to a childS; by P, — H.

This process results in the removal of all intra-cligue edged makeg{ a proxy for all “outside”
influences on the nodes in the semi-clidiie

Our goal is to provide an efficient and effective startingyéor the structure learning algorithm
that will follow the introduction of a new hidden variablago the network structure. Thus, it is
useful to analyze the complexity of our algorithm. The fitage finds all the 3-cliques in the graph.
This is done using a greedy algorithm that examines all plesgiairs of parents and children for

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 61

each node. In theory, for a network withnodes this stage requires the enumeration ofth&'3)
possibilities. In practice, however, since the number oépts and children in a typical network can
be bounded by a small constant, the complexity is almosatinethe number of nodes. Next, we
try to expand each 3-clique by gradually adding relatedatdes from the network. If the network
is represented efficiently, checking the neighborhooda is linear in the size of our current
semi-clique. The algorithm can, in principle, requivé iterations before convergence; in practice,
the number of iterations is linear in the size of the sengu@i Thus the actual cost of this stage is
typically O(C?), whereC is the size of the semi-clique. Breaking up the semi-clighe process
described above for making its proxy for outside influence), requires scanning of thgesdand
deciding which ones to leave and which to change or removis. réquiresO(|E|) + O(C) steps,
whereF is the set of edges of the network.

In the third phase, we evaluate each of the candidate stascttonstructed with new hidden
variables in an attempt to find the most useful one. Thereeareral possible ways in which these
candidates can be used by the learning algorithm. We exathiae approaches. The simplest
assumes that the network structure, after the introducifaghe hidden variable, is fixed. In other
words, we assume that the true structure of the network exithdhe result of applying our trans-
formation to the input network. We then simply fit the paraengtuusing EM, and score the resulting
network. (As discussed in Section 2.4, to score candiddtes a hidden variable is added, we
need to resort to an approximation of the marginal likelgholm here, we use the Cheeseman-Stuts
approximation [Cheeseman et al., 1988].) To determineédfhiiden variable is beneficial, we
compare this score to the score of the network without thedrid/ariable.

We can improve on this method substantially by noting thatsimnple transformation of the
semi-clique does not typically recover the true underlystigicture of the original model. In our
construction, we chose to make the hidden varidblidne parent ofill the nodes in the semi-clique,
and eliminateall other incoming edges to variables in the clique. Clearkg ¢nstruction is very
limited. There might well be cases where some of the edgeseirtlique are warranted even in
the presence of the hidden variable. It might also be the ttedesome of the edges frofi to the
semi-clique variables should be reversed. Finally, it @ipible that some nodes were included in
the semi-clique accidentally, and should not be directlyatated withH. We could therefore allow
the learning algorithm to adapt the structure after the dmideariable is introduced. In the second
approach we use Structural EM [Friedman, 1998] to fine-tumaxmdel for the part of the network
we just changed. More specifically, sinée directly effects only its Markov blanket variables
MBy, we allow the structure search to change the parents only ahd each of the variables in
MBy. This restriction substantially reduces the search sptitesearch algorithm but still offers
flexibility of structure adaptation. In the third approaete allow full structural adaptation over the
entire network. This offers greater flexibility, but is comationally more expensive. We examine
the merit of these different approaches in Section 4.2.

62 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

To summarize ouFindHidden approach: In the first phase we analyze the network learned
using conventional structure search to find semi-cliquas itidicate potential locations of hidden
variables. In the second phase we convert these semi-sligteestructure candidates (each contain-
ing a new hidden variable). Finally, in the third phase wduate each of these structures (possibly
using them as a seed for further search) and return the @stgaetwork we find.

4.2 Experimental Results

Our aim is to evaluate the success of our procedure in de¢ebidden variables. To do so, we
evaluated our procedure on both synthetic and real-lifa dats. The synthetic data sets were
sampled from Bayesian networks that appear in the litezatWWe then created a training set in
which we hid one variable. We chose to hide variables that'eeatral” in the network (i.e.,
variables that are the parents of several children). Théhetin data sets allow for a controlled
evaluation, and for generating training and testing dats &feany desired size. However, the data
is generated from a distribution that indeed has only a sihgiiden variable. A more realistic
benchmark is real data, that may contain many confoundithgeimces. In this case, of course, we
do not have a generating model to compare against. We nofiyttiscuss the different dataset we
consider and the variables we hide in the case of synthetiadts.

e Alarm is a 37-node network [Beinlich et al., 1989] that models raing of ICU patients.
We hid the variables HR, Intubation, LVFailure, and Ventui/, I, L, V in Figure 4.3).

e Insuranceis a 27-node network developed to evaluate driver’'s insig@pplications [Binder
et al., 1997]. We hid the variables Accident, Age, MakeMode&ld VehicleYear 4, G, M,
V in Figure 4.4).

e Stock [Boyen et al., 1999] is a real-life dataset that traces thly daange of 20 major US
technology stocks for several years (1516 trading days)esé&tvalues were discretized to
no change”, and “down”.

three categories: “up”,

e TB [Behr et al., 1999] is a real-life dataset that records miation about 2302 tuberculosis
patients in the San Francisco county (courtesy of Dr. PataliSStanford Medical Center).
The data set contains demographic information such as geagie ethnic group, and medical
information such as HIV status, TB infection type, and otiest results.

In each data set, we applied our procedure as follows. RFuestised a standard model selection
procedure to learn a network from the training data (withaoy hidden variables). In our im-

plementation, we used the standard greedy hill-climbintp WABU search (see Chapter 2). We
supplied the learned network as input to the semi-cliquediety algorithm which returned a set of
candidate structure with a new hidden variable. We then eseti candidate as the starting point

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 63

Original ¢ Naive 0 FindHidden +

Lo
8 © o 0 0 A A——
Eo.os 0.05 o o 8 +
O o o
é 0--"'E"9---+-- O_j.___+__+___.l.__ -0.04 a
(@)]
° ¢ g
c-0.05 O o005 o 008
5 - \
|_
HoVo L H v L 1 H v L I
500 1000 5000
0.4 o
@ o 03 © 0.04 o
2 0.02
& 0.2 o 0.2 + + +
g + (| <> <> o or---3----- -+
3 o
3 = M o4+ * 0.02
© of—--%-- B---- R .
" OF=""*""5"7 04
O o o o
HoVo L H v L 1 H VvV L 1
500 1000 5000

Figure 4.3: Comparison of the different approaches fortle@m domain, where 4 variables were
hidden: HR, Ventlung, L VFailure andlntubation. Training sets are of sizes 500,1000 and 5000
training instances, and test sets are all with 10,000 sanjiach point corresponds to a network
learned by one of the methods. The log-likelihood per irestanf train data, and test log-loss per
instance appear on the top and bottom row, respectivel\l ¢maphs, the scale is normalized to the
performance of the network with no hidden variable (dashesldt “0").

for a new learning phase. We use the second variant of StalidM discussed in Section 4.1,
where the algorithm is allowed to adapt only the parents efNtarkov blanket variables of the
new hidden variable (we discuss the other variants belowy.FindHidden procedure returns the
highest-scoring network that results from evaluating fifferegnt putative hidden variables.

To gauge the quality of our learning procedure, we compartativo straw-man approaches.
The Naive straw-man [Friedman, 1998] initializes the learning witmetwork that has a single
hidden variable as parent of all the observed variableshelh fapplies Structural EM to get an
improved network. This process is repeated several timberaveach time a random perturbation
(e.g., edge addition) is applied to help the algorithm esdapal maxima (see Algorithm 2 in
Section 2.3.3). Th@riginal straw-man, which applied only in synthetic data set, is ®the true

64 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

Original © Naive 0 FindHidden +

<
yo!
S 0.05 o 0.3
@] L i +
c 0 o)
© o050 B % 102
= +
&> 01 E 1 0.1 (|
2 015 u|
£ OF------ + -
S -0.2 O
|_
A G M V Stock TB
o)
os| * * o +
o O + 4 0.3
8 0.4 <+
= 0.2
> 0.3
% 0.2 1 0.1 O p
& o1t O] +
0 ____________
0r---- = EETTEEETE
A G M V Stock TB

Figure 4.4: Comparison of the different approaches forlttsairance domain with 1000 train-
ing instance, as well as the real-life datasgtsck andTB. In the insurance network, 4 variables
were hidden:Accident,Age, MakeModel and/ehicleYear. Each point corresponds to a network
learned by one of the methods. The log-likelihood per instaof train data, and test log-loss per
instance appear on the top and bottom row, respectivelyl ¢maphs, the scale is normalized to the
performance of the network with no hidden variable (dashreaddt “0").

generating network structure. That is, we take the origmedvork (that contains the variable we
hid) and use standard parametric EM to learn parameters fonis straw-man corresponds to cases
where the learner has additional prior knowledge aboutttinetsire of the domain.

Figure 4.3 compares the different methods for four diffex@miables that were hid in th&larm
network. Shown are the results of train (top) and test (lboftperformance against the baseline
performance of the network with no hidden variables. Whengared to ouFindHidden model,
theNaive model is more expressive and it is given greater flexibilityeiarning the structure. Thus,
it is not surprising that on training data, the lesser theas) the better its performance. However,
on unseen test data, oemdHidden method is consistently better than both the baseline method
and theNaive straw-man (excluding one case). The difference is oftetedarge: a model that is

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 65

151+
[]
D -153
£
T
=
1)
c
o
2
S -155¢
o9
oo
1571 ® @
-15.7 -15.5 -15.3 -15.1

Constrained

Figure 4.5: Test log-loss per instance of the unconstraseatich vs. the constrained search variants
of FindHidden. Shown are the experiments (each circle) for 4 variablehaftarm network for
training sets ranging from 500 to 10000 instances.

better than another by.1 in log-loss per instance, for the test setl6f 000 samples, 2! as
likely to have generated the unseen test data. The supgdfindHidden compared to thélaive
straw-man supports the hypothesis that it is not only imgrdrto add a hidden variable, but also
to provide it a reasonable initial placement within the retastructure. Note, that as the number
of training samples gets larger, and as can be expectedifftiedces in performance between all
methods gets smaller.

The results for 4 different variables that were hidden inltiirance domain as well as the
two real-life datasetStockandTB are shown in Figure 4.4 and are equally encouraging. However
for the TB domain, theNaive straw-man was superior to our method. One possible exbemnist
that because the TB domain is relatively small (11 varigbeaive is able to take advantage of its
greater flexibility.

As discussed in Section 4.1, there are three ways that anlgaatgorithm can utilize the original
structure proposed by our algorithm. In all of our experitsethe variant that fixed the candidate
structure after the introduction of the hidden variabled Barned parameters for it resulted in
scores that were significantly worse than the networks fdwyrttie variants that employed structure
search. The networks trained by this variant also performech worse on test data. This highlights
the importance of structure search in evaluating a potehiglen variable. The initial structure
candidate is often too simplified; on the one hand, it foromsrhany independencies among the
variables in the semi-clique, and on the other, it can addiaey parents to the new hidden variable.

66 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

ANAPHYLAXIS

(c) After FindHidden insertion (d) After final structure adaptation

Figure 4.6: Structure changes during thedHidden algorithm when applied to the synthetic
Alarm network using 1000 training samples. Dashed nodes and stiggsthose removed from
the original structure. (a) the original structure; (b) staucture after HR was hidden and the
structure adapted using Structural EM; (c) insertion ofa helden variable byrindHidden; (d)
final structure after Structural EM was applied to (c).

To compare the two variants that do use structure searchird=-45 compares the test log-loss
performance of the unconstrained variant of our methodhesvariant that adapts the only structure
of the Markov blanket of the new hidden variable. In many saiee variant that gives Structural

EM complete flexibility in adapting the network structure diot find a better scoring network than

the variant that only searches for edges in the vicinity efriew variable. In the cases it did lead to
improvement, the difference in score was relatively sniilhce the variant that restricts Structural
EM is computationally cheaper (often by an order of magmjudre believe that it provides a good

tradeoff between model quality and computational cost.

We also want to qualitatively evaluate the ability of our huet to reconstruct the approximately
correct structure. To do so, we examine the performandérafHidden on the synthetic Alarm
network. Figure 4.6 shows the progress of the structurenduhie algorithm in the first such exper-
iment. Starting with the original structure (a), StructlEd was not able to overcome the missing

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 67

HIDDEN
(MARKET TREND)

all other nodes

Figure 4.7: Schematic illustration of the model learned-imdHidden for the Stock dataset.

HR node and aemi-cliqueis clearly evident (b). Insertion of a new hidden variablkerdetection
of FindHidden (c) seems reasonable but leaves a lot to be desired when ceoinjmathe origi-
nal structure. Final structure adaptation using Struttk recovers the original structure almost
perfectly (d).

The structures found by our procedure when applied to ieatthta are also quite appealing.
For example, in the stock market data, our procedure carstathidden variable that is the parent of
several dominant stocks at the time: Microsoft, Dell, 3CQ@ig Compaq, as shown in Figure 4.7.
A plausible interpretation of this variable is “strong” rkat vs. “stationary” market. When the
hidden variable has the “strong” value, all the stocks haghdr probability for going up. When
the hidden variable has the “stationary” probability, tnetocks have much higher probability of
being in the “no change” value. We do note that in the learretdiorks there were still many edges
between the individual stocks. Thus, the hidden variabieeseas a general market trend, while the
additional edges make better description of the correlatimetween individual stocks. The model
we learned for the TB patient dataset was also interestidgsashown in Figure 4.8. One value of
the hidden variable captures two highly dominant segmdritsegpopulation: older, HIV-negative,
foreign-born Asians, and younger, HIV-positive, US-botadks. The hidden variable’s children
distinguished between these two aggregated subpopudatising theHIV-result variable, which
was also a parent of most of them. As we show in Chapter 5, wieeallow the hidden variables
to have a larger number of states, it is able to improve thisidivinto subpopulations, and leads to
overall improvement in prediction.

68 DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH

ethnic

smpros
homeless .

‘ pob
h

ivres

disease_site

ethnic
smpros disease_site clustered

clustered

homeless

gender

(a) Original Structure (b) AfteFindHidden

Figure 4.8: Structure of the TB patient real-life domaindvefand after th&indHidden algorithm.

4.3 Discussion

In this chapter, we proposed a simple and intuitive algorifbr introducing new hidden variables
into a Bayesian network structure. First, a standard sedgdrithm is used to learn the structure
over the domain. Our method then searches for structurahsiges that are potentially left by a
hidden variable that is missing from the network structufesuch signals are found, we propose
a candidate hidden variable, after which we allow the stmgctearning algorithm to fine tune the
network structure. We presented synthetic and real-lifgedrments showing that our approach
improves the performance of the models learned, and is &ssitt guide for the structure learning
algorithm.

The main assumption of our approach is that we can find “stracsignatures” of hidden
variables via semi-cliques. As we discussed above, it isalistic to expect the learned netwark
to have exactly the structure described in Propositiorfi4@n the one hand, learned networks often
have spurious edges resulting from statistical noise, lvimight cause fragments of the network to
resemble these structures even if no hidden variable idvi@slo On the other hand, there might be
edges that are missing or reversed. Spurious edges aradbdsrpatic: At worst, they will lead us
to propose a spurious hidden variable which will be elingdaby the subsequent evaluation step.
Our definition of a semi-clique, with its more flexible strut, partially deals with the problem of
missing edges. However, if our data is very sparse, so thatlatd learning algorithms will be very
reluctant to produce clusters with many edges, the appreagtropose will not work.

Our approach can be further explored in several directidfisst, the structural signature a

DISCOVERING HIDDEN VARIABLES: A STRUCTURE-BASED APPROACH 69

hidden variables “leaves” behind encompasses not just-skumies but a largemany parent —
many childrenconfiguration. Detecting this signature effectively migliow us to expand the
range of hidden variables we discover. Second, our cligsesdering procedure is based solely
on the structure of the network learned. Additional infofima, such as the confidence of learned
edges [Friedman et al., 1999b, Friedman and Koller, 2008jhtielp the procedure avoid spurious
signatures. Finally, as noted above, our method can onlpjléed when data is sufficient so that the
structural signatures manifest. Methods that can deal sp#rse data are of great importance and
pose a different challenge. In Chapter 6 we explore a methatdlises a more flexible information
theoretic signature for the presence of a hidden variable.

Chapter 5

Adapting the cardinality of hidden
variables

In the previous chapter we presented the first method fonilegunew hidden variables using struc-
tural signatures. While the problem of learning the numbiestates of a hidden variable may seem
relatively negligible in respect, this is far from true. kct, we may be better off ignoring a hid-
den variable whose dimensionality is too low altogether:iddln variables that is not expressive
enough may not be able to capture the regularities of thenatigtructure. At the same time, by
incorporating the hidden variable into the network streetave needlessly increase the complexity
of the model thus limiting our ability to learn. This phenamaes illustrated in Figure 1.1 (c) and
can occur, for example, if the independencies in the trugettre (a) hold only if th&Cancer node
has several distinct values such{adlone, Lung, Leukemia, Prostate, Bredstand do not hold
whenCancer is a{ Yes, No} binary valued variable. A hidden variable that is too exgpkescan

be an equally bad choice — each redundant state can resudiny radundant parameters when the
variable has many children and parents, leading to estmaiat is not robust. Thus, as discussed
in Chapter 1, the dimensionality of a hidden variable caretasignificant effect on the complexity
of the model, its performance and its representation qualibnsequently, the problem of deter-
mining the cardinality of a hidden variables is crucial bathen the initial (or fixed) structure is
supplied by the expert, and when a new hidden variable iedotred into the network structure,
e.g., using the method of the previous chapter.

In this chapter, we propose an agglomerative, score-bggaach for determining the cardi-
nality of hidden variables. Our approach starts with theimaknumber of states possibly needed,
and merges states in a greedy fashion. At each iteratiorealforithm, it maintains for each train-
ing instance a hard assignment to the hidden variable. Wwisan score the data usiogmplete
data scoring functions that are orders of magnitude more effidiesn standard EM-based scores
for incomplete data. The procedure progresses by choosegvo states whose merger will lead

70

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 71

to the best improvement (or least decrease) in the scoreseTdteps are repeated until all the states
are merged into one state. Based on the scores of interraesi@ges, we choose the cardinality
of the hidden variable that corresponds to the best scoresh®de that networks learned from the
intermediate stages are also good initial starting pomt&M runs that fine-tune the parameters.

We then move on to consider networks with multiple hiddena@es. As we show, we can
combine multiple invocations of the single-variable paae to learn the interactions between
several hidden variable. Finally, we combine our methodhwhie method of the previous chapter
for learning new hidden variables, and show that this leadsdrning models that perform better
on synthetic and real-life data.

5.1 Learning the Cardinality of a Hidden Variable

As in Section 4.1, we motivate our approach by consideringldem variableCancer that is the
keystone for the conditional independence assumptiondeacim the network of Figure 1.1(a). In
addition, we also assume that the presence of the hiddesiblatiy itself is not sufficient: the full
expressiveness of the hidden variable is also crucial #oirtiependencies to hold. Without it, many
of these independencies simply do not hold, and the mardisalbution over the remaining vari-
ables has almost no structure, resulting in an undesirapiesentation, as shown in Figure 1.1(c).
We conjecture that this phenomena is a potential effect nétracting a network with a hidden
variable of reduced cardinality

Conjecture 5.1.1: Let G be a naive Bayes network over the variablés= {X;,..., Xy}, H,
where H is of cardinality K and is the parent of all the variables . Let L be the number of
parameters in the network. Further require thatis not greater than the number of parameters
needed to represent the complete marginal distributiorr dveThat isL < [, | Val(X;)|, where
| Val(X;)| is the cardinality ofX;.

Then, a naive Bayes mod&! where H is replaced byH’ with a cardinality smaller thank,
has less parameters than the degrees of freedom of the mahdistribution overX’ of the original
modelg.

This conjecture, if true, implies that if the cardinality Af is reduced, and we want to represent
the marginal distribution ovet’, we will not be able to preserve all independencie§ jisimilarly

to the case of Proposition 4.1.1. The exception, of couss&hien the cardinality off’ is an over
representation, in which case the number of parameterimtidel is larger than the number of
parameters required to represaniy marginal distribution ovef’. To prove the above conjecture,
we need to show that the number of parameters in a distribugpresented by the new model
P(X,H') = P(H")[], P(X; | H'), is smaller than the degrees of freedom in the distributibn o

72 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

the original model. Computing the degrees of freedom of avomdt is not easy, and we briefly
discuss the works that touched on that seemingly simpleHallenging task.

Geiger et al. [1996] introduced the notion effective dimensionalitpf models with hidden
variables: They consider the polynomial transformatiotbwieen the network paramete®& and
the parameters of the true marginal distributiBx'). For example in the naive Bayes model
P(x1) = > On0,, - The number of degrees of freedom of this transformatiohéseffective di-
mensionality of the network, and is equal to the rank of ttowBin of the transformation. As they
show, this rank is a constant almost everywhere in the spgfguarameters. Thus, by computing the
rank of the Jacobian f@omeparameterization, one can numerically determine the @feedimen-
sionality of the network. For a network with a binary hiddearigble H with N binary children,
they are further able to lower bound the rankZly which potentially leaves only one redundant
parameter. While this implies our conjecture for such neksiothis case is trivial from our per-
spective since lowering the number of states of the hiddeabla will results in a useless hidden
variable with a single state. Unfortunately, even for simphive Bayes models with a cardinality
greater than two, they are only able to compute the rank ofdeebian numerically. Settimi and
Smith [1998] formally characterizes the case of a singlééidvariable with two children and the
case of a hierarchical model where each binary hidden Jarteds at most three neighbors. Other
works (e.g., [Geiger and Meek, 1998]) are aimed toward dterizing the differences in the space
spanned by different models with hidden variables, but dgpravide an analytical alternative to the
numerical computation of the effective dimensionality ahadel. And so, proving the conjecture
formally for any non-trivial model remains a challenge. ®e practical side, Kocka and Zhang
[2002] suggested a method for combining several simple d®on the effective dimensionality in
order to better evaluate it. In their work, they numericaialuated the effective dimensionality
of many naive Bayes models of different cardinalities ofhidelen variable as well as its children.
A closer inspection of their results, shows that our conjecholds empirically in the cases they
examine. Intuitively, we also expect the conjecture to Hoidnore general structures: if the hidden
variable is not part of an over-represented structure, vpotmesize that decreasing the number of
its states will lead to deterioration of the effective reganetation strength of the model.

5.1.1 The Agglomeration Procedure

The above discussion motivates the need to determine tmahty of a hidden variable, as it may
have a significant effect on the model learned. Our goal igltiess the following problem: We are
given training dat&d of samples from¥ = {X;,..., X}, and a network structur@ over

X and an additional variablé/. We need to determine what cardinality Bf leads to the best

scoring network. A straightforward way to solve this prables as follows: We can examine all
possible cardinalities ol up to a certain point. For each cardinality we can apply the EM

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 73

Algorithm 7. Agglomeration Tree
Input : H // a hidden variable
MBy // the Markov blanket variables df

D /I A dataset with M instances wherfé is unobserved
Output : An agglomeration tree

[/l initialization
Oyp < {1...L}, an ordering of unique assignmentsNdByy in D
form — 1toM do
‘ og [M] < Oy p [MBy[m]] [/ initial value is index ofM By assignment
end
for{+— 1toLdo
Create Node(l)
Node(l).Children— 0
end

/l agglomeration
fora +— 1tolL-1do
(i,7) < Best Merge(D,H,0p)
Create Node(- j)
Node¢;).Children— { Node¢) U Node(j) }
foreachoy [m] == i or j do
| ou [m]=i-j
end foreach
end
return last node created

algorithm to learn parameters for the network containkgvith & states. Since EM might get
stuck in local maxima, we should perform several EM runs fdifferent random starting points.
Given the parameters for the network, we can approximatsdbee of the network witlt states
for H using, say, the Cheeseman-Stutz approximation [Cheesetan 1988]. At the end of the
process, we return the cardinalityand network parameters that received the best score.

The above approach is in common use in probabilistic clumgelgorithms, e.g., [Cheeseman
et al., 1988]. The central problem of this approach is itsaestiveness. The EM algorithm is time
consuming as it requires inference in the Bayesian netweok simple Naive-Bayes networks that
are used in clustering, this cost is not prohibitive. Howgireother network structures the cost of
multiple EM runs can be high. Thus, we strive to find a methad finds the best scoring cardinality
(or a good approximation of it) significantly faster. We nowggest an approach that works with
hard assignments to the states of the hidden variables.appreach is motivated lggglomerative
clustering methodée.g., [Duda and Hart, 1973]) afdhyesian model mergintgchniques from the
HMM literature [Stolcke and Omohundro, 1993].

74 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

@295

HFH| ((8) +10.6

LFL[((3)+38.4) |LFN @ LFH @

LTN| [HFL H,F.N @ HT.L @
NFEN| | LTL N,F,H @

N,FL] [NT,L

(b)

Figure 5.1: (a) fragment of the synthe#darm network showing the variablelYPOVOLEMIA
and its Markov blanket. (b) Trace of the agglomeration pssde a simple synthetic experiment:
We sampled 1000 instances from thiarm network, and then hid the observations of the variable
HYPOVOLEMIAIn the data. We then attempted to reconstruct its cardyndtiich leaf in the tree

is annotated with the values of the variables in the Markewkét (LVEDVOLUME,LVFAILURE
and STROKEVOLUME). Circle nodes correspond to states tasiilt from merging operations.
They are numbered according to the order of the merging tipesaand are annotated with the
change in score incurred by the merge. At each stage, theernbagen is the one that produces the
largest increase (or smallest decrease) to the score. ®bobilered nodes correspond to the final
cardinality chosen.

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 75

The general outline of the approach is as follows: At eactafiten we maintain a hard as-
signment toH in the training data. We initialize the algorithm with a \&bie H that has many
states (we describe the details below). We then evaluatecibre of the network with respect to
the dataset that isompleted by the current assignment. Next, weergetwo states of to form
a variable with smaller cardinality, resulting in a new gasnent function. In doing so, we choose
the merge that leads to the best improvement (or least dexraathe score. We repeat this process
until H has a single state. Finally, we return the number of statbat received the highest score.
The overall algorithm is summarized in Algorithm 7. Figur& Shows a concrete example of the
tree built during such an agglomeration process. Givenuti@fglomeration tree returned by the
algorithm, we can easily recover the best scoring cardindl the specific example shown in the
figure, the cardinality is three, and its states correspornthé double bordered nodes. Note that
further merges of these three states lead to a decreasesodiee Next, we consider in more detail
the different parts of our algorithm.

5.1.2 Scoring of a Merge

We start by describing how merging of states is carried out. répresent an assignment&fin
the M instances oD as a mapping y from {1, ..., M} to the set of values of the hidden variable
Val(H). That is,orr[m] is the value offf assigned to the:'th instance.

Definition 5.1.2: In amergeof two states of andj of H

1. The valug and; of H are replaced with a new state that we denote by
(this is in effect a new random variable).

2. A new assignmenty (i, j) is created.

o)] = i if oglm]=1i or og[m]=j
At orlm] otherwise

Our task now is to evaluate the usefulness of a metgg, j). In fact, at each iteration of the
algorithm we need to evaluate a quadratic number (in the purmmbstates) of these merges, and
thus efficient evaluation is crucial. Sinceg (7,) assigns a specific state &f for each instance,
it completesthe training dateD. Thus, we can apply a standard complete data score function,
such as the BDe score (see Section 2.3.1), to our now cordpiietia set. Recall that when the
data is complete, the BDe score can be evaluated efficiamityosed form and depends only on
simple sufficient statisticwvectors. In fact, these sufficient statistic§y;, pa;], count the number
of occurrences of an assignment to a varialileand its parents independently for each value of

76 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

X;. This makes the BDe scotecally decomposable That is, when the distribution of a state
changes, we only need to recompute the sufficient statsbicesponding to this state. Thus, when
merging states we actually do not need to modify the traigia@. Instead, we simply apply the
merging operation on the sufficient statistics that comadpto H and its children. That is, we set
S[hi.;, pag] = S[hi,pag] + S[hj, pag] for each assignmemiay to the parents off. Similarly
we compute the sufficient statistics féf's children and their families.

Concretely, the difference between the BDe score after af@dthe merge of statésand; is
only in the terms wheré/ appears:

Scorgype(Gi.j : D) —_ScoregDe(gm :D) =

L(St[hij,pag]) (St [hi,pay]) L(S*[hj,pag])
2 pay 108 Tathypan)) 198 Talhopan)) — 108 Tl pan)) | T
ac,H=i T'(S*[c,pac,H=i
ZC Z:paC log W + Z IOg (((C[PI;QH =1 Jj)]))
ac, (ST [e,pac,)
—log gt — 37 log T lopees)

I(a(pac,H=j (S*[e,pac,H=j])
—log F(S+]fpac,H=Jj]) —2clog F(a(c,pzcﬂ:jj))

where the first summation corresponds to the familfZaind its parents, and the second summation
is over allC that are children off and corresponds to the families of the childrentbiand their
parents. To ensure probabilistic coherence of the BDe,psiorilarly to the empirical sufficient
statistics, the new prior counts atéh;.;) = «(h;) + a(h;). The countsS™[z] = S[z] + a(x)
correspond tdotal statistics that include both the empirical counts and thegimary prior counts.

In addition to decomposability, the terms correspondinthestates and;j were already cal-
culated in previous steps and can be cached. Thus the chatige score resulting from a merge
only requires computation of the new terms that corresporithé new states - j, which can be
computed rapidly irO(|Pag| +) [Pac|) time. This make our overall cubic (in the number of
states) algorithm tractable in practice.

5.1.3 Initialization

Having described the agglomeration process and how a megmored, we now address the im-
portant issue of how to initialize the statesif Naively, we could assign a distinct statefbffor
each sample i®. In this case we can sét(x[m] | h[m]) = 1, in which case knowing the value of
H will deterministically determine the values of all otheriadbles in the sample, thus maximizing
the likelihood. This may be problematic since bottom up aggiration take€)(S?), wheresS is
the number of initial states, and is not practical even fodioma size datasets. To improve on this
naive approach, recall that, conditioned on the MarkovHh#aonf H (MBy), H is independent of

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 77

all other variables in the network. Thus, intuitively, wemmt need more states féf then there are
distinct assignments tvBy in D. To formalize this intuition, we will show that if the algtiim
is initialized naively as described above, then the initi@rges will necessarily agglomerate states
corresponding to instances with identiddiBg. Thus, we will be able to circumvent these initial
merges by simply using a single state for all of these ing®snc

We are interested in comparing different candidate mergaparticular stage of the algorithm
to identify the optimal such merge. Since all these mergad te the same change in terms of
model complexity, we are interest in the change to the likoald that these merges incur. (This is
in contrast to the BDe model selection score we used in Sebtib.1 to identify the overall best
cardinality.) We denote by.(6 : D, o) the likelihood of the data augmented by the assignment
to H in the different instances defined by;. We denote byAL(# : D,ox(i,7)) the change in
likelihood resulting from the merge of stateand;j of H. The following identifies the best merge
at a particular point (e.qg., start) of the agglomeratiorcpss:

Proposition 5.1.3: Let G be a network over the discrete variablés= {X;,..., Xy}, H. LetD
be a set of\/ instances, where all the variables & are observed, and/ is never observed. Let
H haveK distinct states andz be an assignment for each instaneeof a value forH such that
om[m] = m (the value off in each instance is simply the index of that instance). Fn&tm,
andmo be two instances, where the assignment to the Markov blaakietblesM By of H in both
instances is identical.

Then, assumingraximum likelihood(ML) or Bayesian estimatioparameters
AL(Q:D,O’H(ml,mg)) > AL(@:’D,O’H(mZ‘,m]')) VZ,]#Z

That is, merging two states corresponding to two instanatsidentical MByg values, will lead to
an improvement in likelihood that is as good or better thay ather possible merge of two states.

Proof. For clarity we consider the case of maximum likelihood pasters. The proof for the
Bayesian case is identical. Using the factorization th@o(&q. (2.1)), we can write the log-
likelihood of the data given the model (Eqg. (2.2)) as

M N
L0 :D,on) = Z log P(h[m] | pay,[m] : O jpa,) + Y _ log P(zi[m] | pa;[m] : 6, pa,)
m= =1

We note the following (using Proposition 2.2.2)
e The only terms that involvé{ in the last summation correspond to the childrerof

¢ When we merge two statésndj, only the likelihood of the corresponding instances change

78 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

e By construction ob g, each value off deterministically determines the rest of the variables,
so thatP(c[m] | pa,.[m],or[m]) = 1 for all childrenC of H and allm.

1
S[pay,[m]]
number of times that specific assignment appeaf3.in

e By construction otry, P(him] | pa,[m]) = for eachm, whereS|pa;,[m]] is the

We now consider the difference in log-likelihood as a ressolta merge of two stateisandj in
different cases:

Case 1: The value oM By is identical in both assignments

In this case P(c[m] | pa.[m],on[m]) = 1 is still true for both the’th and j'th instance after the
merge, since the value of the children in these two instaisddsntical. Now,P(h[i-j] | pay[i]) =
m since the state - j now appears twice out &f[pa,[i]] different instances with the same
assignment t@®ay (and similarly for thej’'th instance). Thus, the difference in log-likelihood is:

AL(0:D) = 2log%

1
pay] — 2log 5[7 = 2log?2 (5.1)

pa|il]
where we have used the fact that,, [i] = pa,,[J].

Case 2: The value oM By is identical in both assignments, except for the value dPay
Similarly to the previous case, the only change is in the g@hdlty of H given its parents. The
difference in log-likelihood is:

1 1
Al(6:D) = 210gs[pahm1+5[pahun‘<1°gm“"gm>

= 2log2 — (2loa(S[pay,] + Slpayls]]) — log S[pay i) ~ log S[pay]
< 2log?2

where the last inequality follows from properties of the function.

Case 3: The value oM By is different in both assignments, but is the same foPay;

In this caseP(h[i] | pay[i]) does not change for eithérndj, so that the change in likelihood is
the same as in Eqg. (5.1), except that the first term is mudtiptiy P(c | pa,). Since that term can
only be smaller or equal to 1, the change in the likelihoodtrbassmaller than in case 1.

Case 4: The value of bothPay and the rest of M By is different in both assignments

The fact that the increase in likelihood in this case is senathan in the first scenario follows
immediately from the combination of cases 2 and 3, where t@nge resulting fronP(h[i] |
pay (i) is further decreased by (c | pa,). I

Once we merge two states with identical Markov blanket ass@nts, we can apply the propo-
sition again to the new hidden variable with the revisedestaBy applying the above proposition

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 79

repeatedly, it immediately follows that, as long as sucht@atibn exists, the agglomeration pro-
cedure will choose to merge two states corresponding tanoss where the assignment for the
MBy is identical. Thus, if there aré distinct assignments fa¥IByy in D, we can in fact save
M — L agglomeration steps: instead of starting withstates for the hidden variables, we can start
with L distinct states, whereg [m] will be equal to the state correspondinghéBg [m]. As the
agglomeration procedure is cubic in the number of initiatesd, the improvement we gain is quite
significant as typically we hav&l > L.

5.2 Properties of the Score

It is worthwhile to consider the properties of score in orttereveal the typical behavior we can
expect to see when applying our procedure. Recall that téngcfunction trades-off between the
likelihood of the data and the complexity of the model. Whenaensider plots of score v#l’s
cardinality, three effects that come into play.

1. When merging states @, the number of parameters in the network is reduced. Thesgyv
positive contribution to the score since the complexityheftnodel is lowered. The magnitude
of this effect is linear in the number of states and it is lanjed has more parents and
children. Each additional state &f creates an additional set of parameters for each of the
joint assignments off’s parents. Similarly, each additional statesrbtreates an additional
set parameters for each of the joint assignments of the gaoérach child”' of H.

2. WhenH has fewer states, it is easier to describe its distributionl thus its entropy given
its parents is lower. Thus, the likelihood term associatéth the conditional probability
distribution of H given its parent$’(H | Pay) can only improve after each merge operation.
This effect rises dramatically as the number of states ammes 1 but effect only a single term
in the likelihood.

3. When H has many states, it can provide better prediction of itsdohiid. In fact, in our
initialization point, H's children are a deterministically determined Bys state (sinced
has a state for each joint assignment to the Markov blankéthen the number of states
is reduced, the predictions @f’s children become more stochastic and their likelihood is
reduced. Thus, after a merge, the likelihoodH3$ children can only decrease. This effect is
dramatic when the number of states approaches 1, and inflsi¢he terms in the likelihood
corresponding tall of H’s children. For interesting hidden variables that haveydidren,
this effect will dominate as the number of states grows small

This suggests that the score will first increase due to therdegvcomplexity and better repre-
sentation off, will then slow down but still increase due to the steady iedin model complexity.

80 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

-1.50
151}
o
o
O
9]
52|
— Agglomeration
= = Agglomeration + EM
------ Multiple starting point EM
-1.53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of states

Figure 5.2: Typical behavior of the score as a function ofrtmber of states in an agglomeration
run. Shown are the BDe score of the agglomeration methodeseinean-Stutz (CS) score of an EM
run that starts at agglomeration output, and CS score bastha dest EM run from multiple starting
points. The result shown are when learning the cardinafithe@STROKEVOLUMZEariable in the
syntheticAlarm network.

At some point, wher can longer properly predict its children, the score willsta decrease. As
we approach a single state and this effect is significantfyela we expect to see a drastic decrease
in the score. Figure 5.2 shows an example of the progres$ithre acore as the number of states is
diminished during the iterations of our algorithm. Also &imas the score of EM, invoked indepen-
dently for each cardinality value. In Section 5.4 we analyzmore detail the relation between the
methods.

5.3 Learning the Cardinality of Several Hidden Variables

In the previous section we examined the problem of learnivggdardinality of a single hidden
variable. What happens if our network contains severalegdtvariables? We start by noting that in
some cases, we can decouple the problem: If a hidden vardididel-separated (see Section 2.1.1)
from all the other hidden variables given the observed e then we can learn it independently.
More precisely, ifM By consists of observable variables only, we do not need toywalrout H'’s
interactions with other hidden variables.

However, when two or more hidden variables interact withheaztber, the problem is more com-
plex. A decision about the cardinality of one hidden vaeathn have an effect on the decisions

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 81

about other hidden variables. The standard EM approachnieEssanore problematic here since
the cardinality space grows exponentially with the numbdridden variables. Thus, we need to
consider a joint and efficient decision for all the interagtvariables. We now describe a simple
heuristic approach that attempts to approximate the caitlirassignment for multiple variables.

The ideas are motivated by a similar approach to multi-téeidiscretization [Friedman and Gold-
szmidt, 1996a].

The basic idea is to apply the agglomerative procedure gbitxaous section in a round-robin
fashion. At each iteration, we fix the number of states, aerdstate assignment to instances, for
all the hidden variables except for one. We apply the aggtative algorithm with respect to this
hidden variable. At the next iteration, we select anotheialsde and repeat the procedure. It is easy
to check that we should reexamine a hidden variable only afte of the variables in its Markov
blanket has changed. Thus, we continue the procedure untiidden variable has changed its
cardinality and state assignment.

One crucial issue is the initialization of this procedures $\Mggest to start in a network were all
hidden variables have a single state. Thus, in the initiahds of the procedure, each hidden variable
will be trained with respect to its observable neighbors.lyOm later iterations, the interactions
between hidden variables will start to play a role. It is e@assee that each iteration of this procedure
will improve the score of the completed data set specifiechbystate assignment functions of the
hidden variables. It immediately follows that it must come

5.4 Experimental Results and Evaluation

We set out to evaluate the applicability of our approach ious learning tasks. We start by eval-
uating how well our algorithm determines variable cardtgah synthetic datasets where we know
the cardinality of the variable we hid. We sampled instarfoes the Alarm network [Beinlich

et al., 1989], and manually hid a variable from the datasettM#n gave our algorithm the original
network and evaluated its ability to reconstruct the vdeialrardinality. Figure 5.2 shows a typical
behavior of the BDe score vs. the number of states. We repdfaite procedure with 24 variables
in the Alarm network. (We did not consider variables that were eithefslea had fewer than 3
variables in their Markov blanket.) Using training setshwit0,000 instances, the predictions of
cardinality can be broken down as follows:

e For 15 variables, the agglomerative procedure recoveredriginal cardinality.
e For 2 variables, the estimated cardinality had one stasettes the true cardinality.
e For 2 variables, the estimated cardinality had one additistate.

e For 5variables, the agglomerative procedure suggesteahplete collapse into a single state.
This is equivalent to removing the variable. A close looktat probabilities in the network

82 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

‘ Correct [1 missing state Collapse [1-2 extra states ‘

100% 17

80%

609%

40%

Percentage of 24 variables

20%

A
5

0% - L T T T T T T
500 750 1000 2500 5000 10000

Number of training samples

N
Ul
o

Figure 5.3: Predicted cardinality of the agglomeration hodtrelative to the true cardinality for
24 variables in thé\larm network as a function of the number of instances. For eaclpleasize,
shown is the fraction of variables reconstructed correatlyiables with a single states missing,
variables collapsed into a single states and other chaeggs én extra redundant state).

shows that these variables have little effect if any on tbleildren and thus they indeed seem
almost redundant. In order to confirm this claim, for eachhef five variables and for each
cardinality, we ran EM from multiple starting points to firftetbest scoring network. For all
the variables, the best score was achieved when the vaviaslieollapsed to a single state.

To summarize, for 19 of 24 of the variables we predicted threech or near-perfect cardinality. For
the other 5 variables, the characteristics of the data aveateak to reach statistically significant
results. We note that since this happens also when the nuoilsamples is large and the data
mirrors the generating distribution, our algorithm wasiatly able to detect (near) redundancies in
the generating distribution.

Next, we tested the effect of the training set size on thesisidas. We applied the agglomer-
ation method for all the above variables on training seth different sizes. Figure 5.3 shows the
deviation from the true cardinality as a function of therimag set size. We see that even for small
sample sizes, the prediction of the cardinality for manyaldes is either perfect or underestimates
the cardinality by one. As the number of samples diminisihmesge and more variables are collapsed

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 83

into a single state. This is no surprise as weaker statistigaals do not manifest when the number
of samples is small. In such a scenario, the data can indesgpbesented using less states.

We then compared our approach to the standard method ofa¢ivejudifferent cardinalities
using EM. We compared two variants of EM. In the first variavet,choose the best of multiple EM
runs from 5 different random starting points. In the secaagawt, we ran a single EM run, starting
from the parameters we learn from the completed data duhiegg¢glomeration step. Figure 5.2
compares the scores assigned to different cardinalitieéseogigglomerative approach and these two
EM variants for one of the hidden variables. Note that fomadithods the cask = 3, which is
indeed the original cardinality, received the highest scéiso note that the two EM variants give
similar scores. This suggests that the agglomerative apprfinds useful starting points for EM.

In terms of running time, each EM run for each cardinality histexample takes over 250
seconds. The agglomeration procedure takes a little oveiseoond to agglomerate the 15 initial
states. One might claim that for determining cardinalitysuiffices to run only few iterations of
EM, which are computationally cheaper. To test this, we riehvidith an early stopping rule. This
reduced the running time of EM to about 60 seconds for each IHmvever, this also resulted in
worse estimates of the cardinality than those made by thiemggative method. We conclude that
significant time can be saved by using our method to set thebauwf states and then apply a
single EM run for fine-tuning. This typical behavior was alveel when we hid other variables in
the Alarm network.

Next we wanted to evaluate the performance of our algoritimenndealing with multiple hidden
variables. To do so, we constructed a synthetic networkyshoFigure 5.4(a)), with several hidden
variables and generated a matching data set. Using thettuastuse as a starting point, we applied
our agglomerative algorithm followed by Structural EM gdiman, 1998]. As a straw-man we also
ran Structural EM with binary values for all hidden variabl®8ecause of the flexibility of Structural
EM and the challenging structure of our network, we can eixipet a learning algorithm that is not
precise, will quickly deviate from the true structure. Tlesulting structure is shown in Figure 5.4.
It is evident that the agglomeration method was able to tffdg handle several interacting hidden
variable. The cardinality was close to the original carliipavith extra states introduced to better
explain stochastic relations that do not appear randomartrtining data. The structure learned
using the binary model emphasizes the importance of detergiihe cardinality of hidden variables
as suggested in the example of Figure 1.1. In terms of lagdoere on test data, the model learned
with agglomeration was marginally superior to the originaddel with parameters trained. Both
models were significantly better than the model learned hiitary values for the hidden variables.

We now turn to the incorporation of the cardinality detenmgnalgorithm into the hidden vari-
able discovery algorithm introduced in the previous chapiaven a candidate networkjndHid-
den searches for semi-cliques and offers candidate hiddeahtas. We then apply our agglomer-
ation method to this candidate network to determine theigality of the hidden variable. Finally,

84 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

(h0)
(hiN Aha\ Ah3)

OO OXORDAORXORC

(a) original network

@V@?gﬂb

* *
.
"wanmnust® “" ;"
. .
....l.....lll-lnll-'--‘ ‘-I“‘
LI T Y YT LI

(b) learned with agglomeration

e Yagriny A

iy, "~-:.'.‘_'uu||.‘|,.‘.'-'n==--“';-_,.--'
tay, TCEggpans AR L e P T

ay, "terapananunst® onnt®®

(c) learned with binary states

Figure 5.4: Performance of the agglomeration algorithm aetavork with several interacting hid-
den variables.h0, h1, h2 and h3 have 3, 2, 4, and 3 states, respectively. The observed nogles a
all binary. Edges missing with respect to the original gatieg structure shown in (a) are dashed.

New edges that do not exist in the original model are dotted.

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 85

€ FindHidden
O with Agglomeration

— 0.1 0] 0.5

3

2 7]

8 008 0.4

)

=

E 0.06 0.3

o O

g)) 0.04 0.2

o = .

> 0.02 O 0.1

(@)

Original @ * * 0

o w 0 z v m n
I x e ®) (& = =

D D = O i
= = < = Z
< E Poa] 2]
L E S
> > =

Figure 5.5: Log-loss performance on test data offmelHidden algorithm with and without ag-
glomeration on synthetic and real-life data. Base line ésghrformance of the Original network
given as an input teindHidden

we allow Structural EM to fine-tune the candidate network. afvplied this to several variables in
the syntheticAlarm network. We also experimented on the following real-liféadsets:

e The Stock [Boyen et al., 1999] dataset traces the daily change of 20mt#$ technology
stocks for several years (1516 trading days). These statesdiscretized to three categories:

‘up’,

e TheTB [Behr et al., 1999] dataset records information about 2802rculosis patients in the
San Francisco county (courtesy of Dr. Peter Small, Stariféedical Center). The data set
contains demographic information such as gender, agdcajfoup, and medical information
such as HIV status, TB infection type, and other test results

no change”, and “down”.

e TheNewsdataset contains messages from 20 newsgroups [Lang, 19&5iepresent each
message as a vector containing one attribute for the newsgnod attributes for each word
in the vocabulary. We removed common stop words, and thaéeds@rords based on their
frequency in the whole data set. The data set used here ethheé group designator and the
99 most common words. We trained on 5,000 messages that aretemly selected.

Figure 5.5 shows the log-loss performance of the differeatded networks on test data. The
base line is the original network learned without the hiddariable and supplied as input Eond-
Hidden. The solid diamonds mark the score of the network learnel wihidden variable but

86 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

ethnic

—

pob

x-ray hivres '

smpros disease_site clustered

RS

ethnic

hivpos

homeless

hivres hivpos

clustered

disease_site

disease_site ’

gender homeless

gender

(a) Original Structure (b) AfteFindHidden (c) With agglomeration

Figure 5.6: Change in structure of tl@& network due to incorporation of the cardinality determin-
ing algorithm intoFindHidden. (a) Structure learned using the standard greedy algoatimirgiven
as input toFindHidden; (b) Model learned byrindHidden presented in Chapter 4 with a binary
hidden variable; (c) Structure learned BindHidden with agglomeration, resulting in a hidden
variable with 4 states.

without the agglomeration procedure (hidden variable listrily set to two states). The squares
mark the score of the networks learned with a hidden variableell as the agglomeration method.
As we can see, in all cases, the network with the suggestel@midariable outperformed the orig-

inal network. The network learned using agglomerationgreréd better than the learned network
with no agglomeration (excluding cases where the agglamearauggested exactly two states and
is thus equivalent to the no agglomeration run).

It is interesting to look at the structures found by our prhge. In the previous chapter, we
found an interesting model for the TB patient dataset shoene lagain for convenience in Fig-
ure 5.6(b). Recall that one state of this hidden variabldéurap two highly dominant segments
of the population: older, HIV-negative, foreign-born Assa and younger, HIV-positive, US-born
blacks. Figure 5.6(c) shows the model learned wherthdHidden algorithm of Chapter 4 was
combined with the agglomeration procedure. The model doesmly perform better on test data
(see Figure 5.5) but does indeed define 4 separate popstatld born, under 30 or over 60,
HIV-negative; US born, between 30 and 60 years, with highebability of HIV; Foreign-born,
Hispanics, with some probability of HIV; and Foreign-borksians, HIV-negative. Clearly, the
hidden variable in this case made a succinct but powerfuesgmtation plausible.

5.5 Discussion and Previous Work

In this chapter, we proposed an agglomerative, score-lmgg@oach for determining the cardinality
of hidden variables. We compared our method to the exha&ugpiproach for setting the cardinality
using multiple EM runs and showed its successfulness inrgéng competing learning models.

ADAPTING THE CARDINALITY OF HIDDEN VARIABLES 87

An important consequence is the plausibility of using thglameration method as a preprocessing
step to a learning algorithm, potentially saving significaomputational effort. The algorithm
proved robust to the number of instances in the traininglseias also able to deal effectively with
several interacting hidden variables. Finally, we evaddahe method as part of the hidden variable
detection algorithnirindHidden on synthetic and real-life data and showed improved peidoca

as well as more appealing structures.

The problem of determining the cardinality of a hidden Malgais as old as the use of hidden
variables in probabilistic models, as it arises in elemsntasks such as clustering. Consequently,
numerous heuristics have been suggested to cope with prabhearious clustering methods, rang-
ing from simple K-means to hierarchical and spectral chirsge(see [Milligan and Cooper, 1985]
for a survey of methods). In the discussion below, we comatmbn methods that are more relevant
to general Bayesian networks.

Several authors examined operations of value abstractidmedinement in Bayesian networks
[Chang and Fung, 1990, Poh and Horvitz, 1993, Wellman and1984]. These works use naive
step-by-step refinement and coarsening of hidden variavldsare concerned with the impact of
these operations on time of inference [Wellman and Liu, 1@8% on decision making in the
presence of utilities [Chang and Fung, 1990, Poh and Heri&93]. This is in contrast to our goal
of learning better models in terms of predictions on unseshdata. Decisions about cardinality
also appear in the context of discretization. In the caseonficuous variables, the discretization
of a variable can be modeled as adding a hidden variable. ¥éon@e, Friedman and Goldszmidt
[19964a] incorporated the discretization process into ¢laering of Bayesian networks by using the
score as a measure of the benefit of the particular disctietiza

In the context of learning hidden variables, most relevaatthe works of Stolcke and Omo-
hundro [1993, 1994], that learn cardinality in HMMs and pabllistic grammars using bottom up
state-agglomeration. They start by spanning all possthkes and then iteratively merge states us-
ing information vs. complexity measures. Our method is segaization of their method for any
Bayesian network structure.

Finally, Bayesian cardinality selection is addressed apbical models via variational Bayesian
learning by Attias [1999] (see more details in Chapter 8) améhgenious Markov chain approach
by Green [1995]. Although in theory applicable to any Bagesnetwork model, both of these
methods are practical only for naive Bayes and simple tghieal networks, and are intractable for
realistic complex domains.

The Structural EM algorithm of Friedman [1998] followed hetmethod for learning new hid-
den variables presented in the previous chapter, and alithghe agglomeration method presented
here, are all aimed toward learning non-trivial structuwétk hidden variables from data. The incor-
poration of hidden variables is essential both in improyingdiction on new examples, and to gain
understanding of the underlying interactions of the domaimese form the first general approach

88 ADAPTING THE CARDINALITY OF HIDDEN VARIABLES

for introducing new hidden variables into Bayesian networlk the next chapter we present a to-
tally different framework for learning hidden variablesheve the addition of new hidden variables
relies on information measures.

Chapter 6

Information BottleNeck EM

In Chapter 4, we presented a method for learning a hiddemhlariusing structural signatures.
One of the drawbacks of this approach is the rigid nature efdignal considered: an edge is
either present or it is missing. While this is appropriateewltraining data is plentiful, in real-
life data is often sparse and we need a softer measure thitiatas flexible decisions. In this
chapter we introduce a new approach for learning the pasmand structure of Bayesian networks
with hidden variables, as well as for learning new hiddenaldes and their cardinality using soft
information-theoretic measures.

We pose the learning problem as an the optimization of atéugetion that includes a tradeoff
between two information theoretic objectives. The firsieghye is to compress information about
the training data. Intuitively, this is required when we Wwém generalize from the training data
to new unseen instances. The second objective is to makddtierhvariables informative about
the observed attributes to ensure they preserveeiegantinformation. This objective is directly
related to maximizing the likelihood of the training datay &ploring different relative weightings
of these two objectives, we are able to bypass local maxirddeann better models.

Our approach builds on thaformation Bottleneckramework of Tishby et al. [1999] and its
multivariate extension [Friedman et al., 2001]. This framek provides methods for constructing
a set of new variabled' that are stochastic functions of one set of varialfeand at the same time
provide information on another set of variablés The intuition is that the new variabl&s capture
the relevant aspects &f that are informative abod. We show how to pose the learning problem
within the multivariate Information Bottleneck framewoakd derive a target Lagrangian for the
hidden variables. We then show that this Lagrangian is aeneitn of the Lagrangian formulation
of EM of Neal and Hinton [1998], with an additional regulaion term. By controlling the strength
of this information theoretic regularization term usingcale parametemwe can explore a range of
target functions. On the one end of the spectrum there isialttarget where compression of the
data is total and all relevant information is lost. On thecotixtreme is the target function of EM.

89

90 INFORMATION BOTTLENECK EM

This continuum of target functions allow us to learn using@pdure motivated by theeter-
ministic annealingapproach [Rose, 1998]. We start with the optimum of theatitarget function
and slowly change the scale parameter while tracking thal lmgtimum solution at each step on
the way. To do so, we present an alternative view of the opétion problem in the joint space of
the model parameters and the scale parameter. This pradaspealing method for scanning the
range of solutions as inomotopy continuatiofiWatson, 2000].

We generalize oumformation Bottleneck Expectation MaximizatigB-EM) framework for
multiple hidden variables and any Bayesian network strectlio make learning feasible for large,
real-life problems we show how to introduce variational @gpmation assumptions into the frame-
work. We further show that, similarly to the case of standaadametric EM, there is a formal
relation between the Information Bottleneck objective histcase and theariational EM func-
tional [Jordan et al., 1998].

We then extend the approach to deal with structure learnkgywe show, we can easily in-
corporate our method into the Structural EM framework tol eéth model selectionwith hidden
variables. In doing so, we perform continuation interlebwéth model selection steps that change
the structure and the scope of the model. On top of standarctste modification steps of adding
and removing edges, we introduce two model enrichment tpsrthat take advantage of emergent
information cues during the continuation process. The fipstrator can adapt the cardinality of a
hidden variable. Specifically, the cardinality of a hiddewiable can increase during the contin-
uation process, increasing the likelihood as long as it ieheial to do so. The second operator
introduces new hidden variables into the network structlméuitively, a hidden variable is intro-
duced as a parent of a subset of nodes whose interactionsaig explained by the current model.

We demonstrate the effectiveness of our Information Bt EM algorithm in several learn-
ing scenarios. First, we learn parameters in general Bayastworks for several challenging
real-life datasets and show significant improvement in gdization performance on held-out test
data. Second, we demonstrate the importance of cardiraléptation for good generalization. We
then show how our operator for enriching the network stmgctuith new hidden variables leads to
significantly superior models, for several complex ref@-problems. Finally, we show that com-
bining both structure enrichment and cardinality adaptatiesults in further improvement of test
performance.

The chapter is organized as follows. In Section 6.1, we gisbat background on thielul-
tivariate Information Bottleneckf Friedman et al. [2001]. In Section 6.2, we present thedbasi
framework of our IB-EM algorithm. In Section 6.3, we show httwcombine this algorithm with
continuation to bypass local maxima. In Section 6.4 we ektbe framework to multiple hidden
variables. In Section 6.5 we present the proofs of the fixtpeguation results and the technical
computations involved in continuation. In Section 6.6, veendnstrate the method for parameter
learning in real-life scenarios. In Section 6.7, we show loawmethod can be combined with the

INFORMATION BOTTLENECK EM 91

Structural EM algorithm to learn the structure of a netwoikhvhidden variables. In Section 6.8,

we take advantage of emergent structure during the coniimugrocess, and present a method
for learning the cardinality of the hidden variables. Welgphis method to real-life data in Sec-

tion 6.9. In Section 6.10, we address the model selectioltectyg of learning new hidden variables.

We present experimental evaluation for several real-litdolems in Section 6.11. In Section 6.12,
we give a brief overview of relevant works, and in sectionti®ec6.13 we end with a discussion

and future directions.

6.1 Multivariate Information Bottleneck

The Information Bottlenecknethod [Tishby et al., 1999] is a general non-parametriormétion-
theoretic clustering framework. Given a joint distributi@ (Y, X) of two variables, it attempts
to extract the relevant information th&t contains aboutX. We can think of such information
extraction as partitioning the possible valuegointo coarser distinctions that are still informative
aboutX. (The actual details are more complex, as we shall see ghoRbr example, we might
want to partition the words{() appearing in several documents in a way that is most relépdhe
topics (X) of these documents.

To achieve this goal, we first need a relevance measure betweeandom variableX andY
with respect to some probability distributiép(X, Y'). The symmetrienutual informatiormeasure
[Cover and Thomas, 1991]

Qz,y)
1o(X;Y) =) Qz,y)log ~— "~
¢ Z Q)Q(W)

is a natural choice as it measures the average number ofdstded to convey the information
X contains about” and vice versa. It is bounded from below by zero when the bbr$aare
independent, and attains its maximum when one variable é&earinistic function of the other.

The next step is to introduce a new variafile This variable provides thbottleneckrelation
betweenX andY. In our words and documents example, we Wb maintain the distinctions
between wordsY() that provide information for determining the topic of a dowent (X). For
example, the wordsmusic’ and ’lyrics’ typically occur together and are typical of the same topic,
and thus the distinction between them does not contributeetprediction of the topic. Atthe same
time, we want? to distinguish betweenmusic’ and ’politics’ as they correlate with markedly
different topics. Formally, we defing using a stochastic functio (7 | Y'). On the one hand we
want1 to compress’, while on the other hand we want it to preserve informatiaat th relevant
to X. Using the mutual information defined above, a balance batlgese two competing goals is

92 INFORMATION BOTTLENECK EM

Gin:Q

Figure 6.1: Definition ofj;, andG,,; for the Multivariate Information Bottleneck framewor;,,
encodes the distributioy that compresse¥. G,,; encodes the distributio® that we want to
approximate using).

achieved by minimization of the Lagrangian
LIQl=1o(Y;T) - plgo(T; X) (6.1)

where the parametét controls the tradeoff. Tishby et al. [1999] show that tharapt partition for
a given value ofj satisfies

Qlt 1) = 52 exp (~BDIQUX [DIQ(X)
where P
D(P(X)IQ(X)) = 3 P(x)log %

is the Kulback Leibler divergence between the distribidiehand @ over the set of random vari-
ablesX [Cover and Thomas, 1991]. Repeated iterations of theseiiegador allt andy converge
to a (local) maximum where all equations are satisfied. R@lchpplication of this approach for
various clustering problems was demonstrated in severgtsmMe.g., [Slonim and Tishby, 2000,
2001)).

The multivariate extension of this framework [Friedmanlet2001] allows us to consider the
interactions of multiple observed variables using sevbddileneck variables. For example, we
might want to compress word¥’} in a way that preserves information both on the topic of the
document ;) and on the author of that documetiy). In addition, there probably is a strong
correlation between the author and the topics he writestaldiuidently, the number of possible
interactions may be large, and so the framework allows upéaify the interactions we desire.
These interactions are represented via two Bayesian networhe first, calledy;,, represents
the required compression, and the second, cdllgg, represents the independencies that we are
striving for between the bottleneck variables and the targdables. In Figure 6.1G;, specifies
thatT is a stochastic function (compresses) of its parent in thplgr'. G,.; specifies that we want

INFORMATION BOTTLENECK EM 93

T to makeY and the variables(;’s independent of each other.
Formally, the framework of Friedman et al. [2001], attentptsinimize the Lagrangian

E(l) [g’L’I’H Gout] — Igin _ BIgout

where

79 = Z I(X;;Paf)

%

and the information is computed with respect to the profigbdistribution represented by the
network G. This objective is a direct generalization of Eq. (6.1), asdbefore, tractable self-
consistent equations characterize the optimal partitigpniNote that, as in the basic information
bottleneck formulation, the two objective of the above laangjian are competing. On the one hand
we want to compress the information between all bottlenesiablesT and their parents ig;,,.
On the other hand we want to preserve, or maximize, the irdbaom between the variables and
their parents irg,; .

Friedman et al. [2001] also present an analogous varidtmpmacipal that will be useful in our
framework. Briefly, the problem is reformulated as a tratibefween compression of mutual infor-
mation inG;, so that the bottleneck variable(%) help us describe a joint distribution that follows
that form of a target Bayesian netwogk,,;. Formally, they attempt to minimize the following
objective function

LP[Q,P] = 1o(Y;T) +vD(Q(Y,T,X)|P(Y, T, X)) (6.2)

where@ and P are joint probabilities that can be represented by the nésvof G;, andG,,,
respectively. The two principals are analogous under tresformations = % and assuming
¢ = Io(Y;T). See Friedman et al. [2001] for more details of the relatietwieen the two
principals.

The minimization of the above Lagrangian is over possiblapeterizations of)(7" | V) (the
marginalQ(Y, X) is given and fixed) and over possible parameterizationB(df, 7', X) that can
be represented by, ;. In other words, we want to compre¥sin such a way that the distribution
defined byg;, is as close as possible to desired distributiog gf. The analogous principal gives
us a new view on why these two objectives are conflicting: @emsa distribution that is consistent
with G;,, so thatT" is independent oK givenY. On the other hand, a distribution consistent with a
specific choice of,,; may require tha¥X is independent oY givenT". Constructing a distribution
where both of these requirements actually hold is not usefal results irf” that is equal to either
X orY, making this bottleneck variable redundant.

The scale parameterbalances the above two factors. Wheis zero we are only interested in
compressing the variablé and we resort to the trivial solution of a single cluster (oreguivalent

94 INFORMATION BOTTLENECK EM

parameterization). Whenis high we concentrate on choosigq7 | V) that is close to a distribu-
tion satisfying the independencies encoded/py:. Returning to our word-document example. We
might be willing to forgo the distinction betweefobtball’ and 'baseball’ in which case we would
set~ to a relatively low value. On the other hand, we might eventw@make a minute distinction
between Pentium’ and 'Celeron’ in which case we would setto a high value. Obviously, there is
no single correct value of but rather a range of possible tradeoffs. Accordingly, sshapproaches
were devised to explore the spectrum of solutions &aries. These include Deterministic anneal-
ing like approaches that start with small valueyohnd progressively increase it [Friedman et al.,
2001], as well as agglomerative approaches that start whiilgtdy refined solution and gradually
compress it [Slonim and Tishby, 2000, 2001, Slonim et al0220

6.2 Information Bottleneck Expectation Maximization

The main focus of the Multivariate Information Bottlenesleé is on distributiod)(7" | V') that is a
local maxima solution of the Lagrangian This distributi@mde thought of as a soft clustering of the
original data. Our emphasis in here is somewhat differentera datased = {x[1],...,x[M]}
over the observed variablé§, we are interested in learning a better generative moderithéasg
the distribution of the observed attributé&s That is, we want to give high probability to new
data instances from the same source. In the learned netttarkyidden variables will serve to
summarize some part of the data while retaining the relanémtmation on (some) of the observed
variablesX.

We start by extending the multivariate Information Botdek framework for the task of gener-
alization where, in addition to the task of clustering, we @iso interested in learning the generative
model P. We emphasize that this is a conceptually different taskpalticular, the common view
of the Information Bottleneck framework is as a non-paraimeénformation-theoretic method for
clustering (the obvious exception is the work of Slonim aneis4/ [2002] mentioned below). In
generative learning, on the other hand, we are interestatbaeling the distribution. That is, we
are ultimately interested iparameterizinga specific model so that our generalization prediction on
unseen future instances is improved. We start by consiglénis task for the case of a single hidden
variableT" and then, in Section 6.4, extend the framework to severaemdariables.

6.2.1 The Information Bottleneck EM Lagrangian

If we were only interested in thigaining data and the cardinality of the hidden variable allows it,
each state of the hidden variable would have been assignedliféerent instance. Consider, for
example, a variabl& with | T'| states that defines a soft clustering on the specific ideottityords
(Y) appearing in documents while preserving the informatielevant to the topicX) of these
documents. Now suppose we are given a set of instaRces{ word|i|, topic[i] } wherei goes from

INFORMATION BOTTLENECK EM 95

1 to M, the number of instances. [I'| = M then we could simply deterministically se{T =

i | word[i]) = 1 and then predictopic[i] perfectly. While this model achieves perfect training
performance, it will clearly have no generalization algfit Since we are also interested in unknown
future samples, we intuitively require that the learned etdtbrget” the specifics of the training
examples. However, in doing so we will also deteriorate gneyiously deterministic) prediction of
the observed variables. Thus, there is a tradeoff betweeodmpression of the identity of specific
instances and the preservation of the information reletatiite observed variables.

We now formalize this idea for the task of learning a geneeathodel over the variableX
and the hidden variablé&. We define an additional variablé to be the instance identity in the
training dataD. That is,Y takes values iq1,..., M} andY[m] = m. We defineQ (Y, X) to be
the empirical distribution of the variablé§ in the data, augmented with the distribution of the new
variableY". For each instancg, x[y| are the valueX take in the specific instance. We now apply
the Information Bottleneck framework with the grag@h, of Figure 6.1. The choice of the graph
Gout depends on the network model that we want to learn. We takebetthe target Bayesian
network, augmented by the additional varialble where we sefl” asY’'s parent. For simplicity,
we consider as a running example the simple clustering muidél,,; whereT" is the parent of
X1,...,X,. In practice, and as we show in Section 6.6 any choicg,gf can be used. We now
want to optimize the Bottleneck objective as defined by thesenetworks. This will attempt
to define a conditional probabilitg)(T" | Y) so thatQ(7,Y,X) = Q(T | Y)Q(Y,X) can be
approximated by a distribution that factorizes accordmg 4,:. This construction will aim to find
T that captures the relevant information the instance itlehés about the observed attributes. The
following proposition concretely defines the objectivedtion for the particular choice @;, and
Gout We are dealing with.

Proposition 6.2.1:
Let

1. Y be the instance identity as defined above;
2. G;, be a Bayesian network structure such that such #ha independent oX givenY’; and
3. Gt be a Bayesian network structure such thais a leaf withT" as its only parent.

Then, minimizing the Information Bottleneck objectivectiom in Eq. (6.2) is equivalent to mini-
mizing the Lagrangian

Lpw = 1Q(T5Y) — v (Egllog P(X, T')] — Eq[log Q(T)])

as a function of)(7' | Y) and P(X, T).

96 INFORMATION BOTTLENECK EM

Note that once the above conditions are satisfied, we chardtitrarily choose the structure of
Gout, Which encodes independencies of the distribuftowe ultimately wish to learn.
Proof. Using the chain rule and the fact thétand X are independent giveh in G,,;), we can
write P(Y, X, T) = P(Y | T)P(X,T). Similarly, using the chain rule and the fact thatandT’
are independent giveri in G;,, we can writeQ(Y, X, T) = Q(Y | T)Q(T)Q(X | Y). Thus,

QY | TQT)QX |Y)
P(Y | T)P(X,T)
= DY |T)|P(Y |T))

+ Eqllog Q(X | Y)]
+ Eq[log Q(T)]
— Eq[log P(X,T)]

DY, X, T)|P(Y,X,T)) = Egq|log

By settingP(Y | T') = Q(Y | T), the first term reaches zero, its minimal value. The secomd te
is a constant since we cannot change the input distribdiX | Y'). Thus, we need to minimize
the last two terms and the result follows immediat@ly.

An immediate question is how this target function relatestéamdard maximum likelihood learn-
ing. To explore the connection, we use a formulation of ENbidticed by Neal and Hinton [1998].
Although EM is usually thought of in terms of changing thegmaeters of the target functiof,
Neal and Hinton show how to view it as a dual optimizationfond an auxiliary distributior).
This auxiliary distribution replaces the given empiricatdbution Q(X) with a completed empir-
ical distribution@ (X, T"). Using our notation in the above discussion, we can writduhetional
defined by Neal and Hinton as

FQ,P] = Egllog P(X,T)]+ Ho(T' | Y) (6.3)

whereHg(T | Y) = Eg[—1og Q(T' | Y)], andQ(X,Y") is fixed to be the observed empirical dis-
tribution.

Theorem 6.2.2: [Neal and Hinton, 1998]f (Q*, P*) is a stationary point ofF, then P* is a
stationary point of the log-likelihood functidBg[log P(X)].

Moreover, Neal and Hinton show that an EM iteration corresisoto maximizingF [Q, P] with
respect ta(7" | Y') while holding P fixed, and then maximizing [Q, P] with respect taP while
holdingQ(T' | Y) fixed. The form ofF [Q, P] is quite similar to the IB-EM Lagrangian, and indeed
we can relate the two.

Theorem 6.2.3: Ly = (1 —)Ig(T;Y) —vF[Q, P]

INFORMATION BOTTLENECK EM 97

Proof: Plugging the identityHo (7' | Y') = —Egllog Q(T")] — 1o(T';Y') into the EM functional we
can write
FQ,P] = Egllog P(X,T)] — Egllog Q(T)] — 1o(T;Y)

If we now multiply this by~, and re-arrange terms, we get the form of Proposition 6I2.1.

As a consequencejinimizingthe IB-EM Lagrangian is equivalent tnaximizinghe EM func-
tional combined with an information theoretic regulari@atterm. Whery = 1, the solutions of
the Lagrangian and the EM functional coincide and findingcallaninimum ofL 3, is equivalent
to finding a local maximum of the likelihood function. Slonend Weiss [2002] provide a similar
result for the specific case where the generative model iscaureimodel of a univariat&. Their
formulation is different than ours in several subtle det#iat do not allow a direct relation between
the two methods. Nonetheless, both Slonim and Weiss [20@2]Theorem 6.2.3 show that for a
particular value ofy, the information bottleneck Lagrangian coincides withltkelihood objective
of EM. The main difference between the two results is theaof generative models, in our case
general multi-variate Bayesian networks, and in the casglaiim and Weiss [2002], univariate
mixture models.

6.2.2 The Information Bottleneck EM Algorithm

Using the above results, we can now describeltiiermation Bottleneck EMilgorithm given a
specific value ofy. The algorithm can be described similarly to the EM itenadiaf Neal and
Hinton [1998].

e E-step Maximize —Lg,, by varyingQ(7" | Y') while holding P fixed.
e M-step: Maximize — L z,, by varying P while holding@ fixed.

Note that the algorithm is formulated in terms of maximizing ;,, rather than minimizingC z,,
to enhance the relation between the Lagrangian and the Ed¢tolg.

The M-Step is essentially the standard maximum likelihoptihaization of Bayesian networks.
To see that, note that the only term that involves Eg[log P(X,T)]. This term has the form of a
log-likelihood function, wheré) plays the role of the empirical distribution. Since the rilgttion
is over all the variables, we can use sufficient statistic® dbr efficient estimates, just as in the
case of complete data. Thus, thé step consists of computing expected sufficient statisiiasng
@, and then using a closed form formula for choosing the patersmef P.

The E-step is a bit more involved. We need to maximize witipeestoQ (7" | Y). To do this
we use the following two results that are variants of Theoreinand Theorem 8.1 of Friedman
et al. [2001] and proved using similar techniques (see AgpeBi5.1 for the full proof).

98 INFORMATION BOTTLENECK EM

Proposition 6.2.4: Let L,, be defined vigj;, and G,,; as in Proposition 6.2.1Q(T | Y) is a
stationary point ofC), with respect to a fixed choice &fif and only if for all valuest andy of T’
andY’, respectively,

Qtly) = Q) P(x[y], 1)) (6.4)

Z(y,7)
whereZ(y, v) is a normalizing constant:

Z(y,7) =Y Q) T P(x[yl,t])

Note that, as can be expected from Theorem 6.2.3, when 1 the update equation reduces to
Q(t | y) x P(x[y],t) which is equivalent to the standard EM update equation.

Proposition 6.2.5: A stationary point ofZ ., is achieved by iteratively applying the self-consistent
equations of Proposition 6.2.4.

Combining this result with the result of Neal and Hinton thlabw that optimization of increases
F(P,Q), we conclude that both the E-step and the M-step increasg,, until we reach a station-
ary point. As in standard EM, in most cases the stationaryargence point reached by applying
these self-consistent equations will be a local maximum 6f;,,, or a local minimum of ,,.

6.3 Bypassing Local Maxima using Continuation

As discussed in the previous section, the parametealances between compression of the data
and the fit of parameters @,,;. When+~ is close to0, our only objective is compressing the
data and the effective dimensionality ‘Bfwill be 1, leading to a trivial solution (or an equivalent
parameterization). At larger valuespfve pay more and more attention to the distributiod;gf;,

and we can expect additional statesiofo be utilized. Ultimately, we can expect each sample to
be assigned to a different cluster (if the dimensionality/ chllows it), in which case there is no
compression o and the information about th&s is fully preserved. Theorem 6.2.3 also tells us
that at the limit ofy = 1 our solution will actually converge to one of the standard &Muitions. In
this section we show how to utilize the inherent tradeofedeined byy to bypass local maxima
towards a better solution at= 1.

Naively, we could allow a large cardinality for the hidderrighle, sety to a high value and
find the solution of the bottleneck problem. There are séwrewvbacks to this approach. First,
we will typically converge to a sub-optimal solution for theen cardinality andy, all the more so
for v = 1 where there are many such maxima. Second, we often do not trweardinality that
should be assigned to the hidden variable. If we use a cditglifer 1" that is too large, learning
will be less robust and might become intractableZ’lhas too low a dimensionality, we will not

INFORMATION BOTTLENECK EM 99

easy

LEM

Q
(@) (b) ()

Figure 6.2: Synthetic illustration of the continuation gess. (a) shows the easy likelihood function
at~ = 0 and the complex EM function at= 1. (b) spans the full range of functions and marks the
desired path for following the maximum. (c) demonstrateimgls step in the continuation process.

The gradienV g ,G is computed and then the orthogonal direction is taken.

fully utilize the potential of the hidden variable. We wollikk to somehow identify the beneficial
number of clusters without having to simply try many options

To cope with this task, we adopt thigeterministic annealingstrategy [Rose, 1998]. In this
strategy, we start withh = 0 where a single cluster solution is optimal and compressadotal.
We then progress toward higher valuesyofThis gradually introduces additional structure into the
learned model. Intuitively, the algorithm starts at a platere a single, easy to compute solution
exists, and tracks it through various stages of progregsammplex solutions hopefully bypassing
local maxima by staying close to the optimal solution at eadbie ofy. There are several ways of
executing this general strategy. The common approach iglgito increasey in fixed steps, and
after each increment apply the iterative algorithm to tatata (local) maxima with the new value
of v. On the problems we examine in Section 6.6, this naive apprdal not prove successful.

Instead, we use a more refined approach that utilioeginuation methodfor executing the
annealing strategy. This approach automatically tunesntagnitude of changes in the value-pf
and also tracks the solution from one iteration to the nestpdrform continuation, we view the
optimization problem in the joint space of the parametets~ann this space we want to follow a
smooth path from the trivial solution at= 0 to a solution aty = 1. Furthermore, we would like
this path to follow a local maximum of ;,,. As was shown above, this is equivalent to requiring
that the fixed point equations hold at all points along thé p&ontinuation theory [Watson, 2000]
guarantees that, excluding degenerate cases, such arpatbf fliscontinuities, indeed exists. Fig-
ure 6.2 shows a synthetic illustration of the setup. (a) shtwe likelihood function of the two
extremes of the easy solution-at= 0 and the EM function af = 1 in the joint(y, Q)-space. (b)
shows the range of solutions between these extremes and tharklesired path we would like to
follow.

100 INFORMATION BOTTLENECK EM

We start by characterizing such paths. Note that once we éxptrameter§)(7 | V), the
M-step maximization of the parametershhis fully determined as a function @). Thus, we take
Q(T | Y)and~y as the only free parameters in our problem. As we have shoRroiposition 6.2.4,
when the gradient of the Lagrangian is zero, Eq. (6.4) hadedch value of andy. Thus, we want
to consider paths where all of these equations hold. Regimguterms and taking a log of Eq. (6.4)
we define

Giy(Q,7) = —1ogQ(t | y) + (1 —) log Q(t) + vlog P(x[y],y) — log Z(y,) (6.5)

Clearly, G, (Q,~) = 0 exactly when Eq. (6.4) holds for allandy. Our goal is then to follow an
equi-potential path where alf, , (@, v) functions are zero starting from some small valuey afp
to the desired EM solution at= 1.

Suppose we are at a poif@o, vo), whereG, ,(Qo,vo) = 0 for all ¢ andy. We want to move
in a directionA = (d@, dv) so that(Qo + dQ,~o + dv) also satisfies the fixed point equations. To
do so, we want to find a directiofy, so that

Vta Y, VnyGt,y(QOa ’YO) A= 0 (66)

whereVq G, ,(Qo,70) is the gradient o7, , (Qo,~0) With respect to the parametets and .
Computing these derivatives with respect to each of thenpetiers results in a derivative matrix

aGt K aGt, 5
Hy (@) :< a&ﬁ,ﬁy)) 4(22) > (6.7)

Rows of the matrix correspond to each of the= |T'| x |Y'| functions of Eq. (6.5), corresponding
to joint combinations of theéT'| states of the bottleneck variabfe and the|Y| = M number of
possible values of the instance identity variableThe columns correspond to tlieparameters of
Q@ as well asy. The entries correspond to the partial derivative of thefion associated with the
row with respect to the parameter associated with the calumn

To find a directionA that satisfies Eq. (6.6) we need to satisfy the matrix equatio

Hyy(Qo,70)A =0 (6.8)

In other words, we are trying to find a vector in the null-spatél; ,,(Qo, v0)(Qo, Y0). The matrix
HisanL x (L + 1) matrix and its null-space is defined by the intersectiof ¢dngent planes, and

is of dimensionL + 1 — Rank H,,(®,~)). Numerically, excluding measure zero cases [Watson,
2000], we expect Rarl; ,(Qo,70)) to be full,i.e, L. Thus, a unique line that (up to scaling)
defines the null space, and we can choose any vector alongifolldow the path to our target
objective aty = 1 we choose the direction that always increasdsve discuss the choice of the

INFORMATION BOTTLENECK EM 101

length of this vector below). Returning to Figure 6.2, (t)strates this process. Shown is joint
(v, @)-space with the grey-level denoting the value of the likaditi function. At each point in the
learning process the gradient Gfis evaluated and the orthogonal direction is taken to folibev
desired path.

Finding this direction, however, can be costly. Notice tHat,(Q,) is of sizeL(L + 1). This
number is quadratic in the training set size, and full corapom of the matrix is impractical even
for small datasets. Instead, we resort to approximatfifag(Q,~) by a matrix that contains only
the diagonal entrie% and the last columw. While we cannot bound the extent of
this diagonal approximation, we note that the diagonal $eane also the most significant ones and
many off diagonal terms are zero. Once we make the approximate can solve Eq. (6.8) in time
linear inL. (See Appendix 6.5.3 for a full developmentidfand the computation of the orthogonal

direction.)

Note that once we find a vectdx that satisfies Eq. (6.8), we still need to decide on its length
or the size of the step we want to take in that direction. Theeevarious standard approaches, such
as normalizing the direction vector to a predetermined. sit@wever, in our problem, we have a
natural measure of progress that stems from the tradeofietkfy the target Lagrangiafy,, ,
wherel (T';Y') increases whef’ captures more and more information about the samples dtlming
annealing procedure. That is, the “interesting” steps @nl&arning process occur whefil’; V)
grows. These are exactly the points where the balance betthieetwo terms in the Lagrangian
changes and the second term grows sufficiently to allow tBetérm to increasé(7’;Y). Using
I(T;Y') to gauge the progress of the annealing procedure is apgestice it is a non-parametric
measure that does not involve the form of the particularitigion of interestP. In addition, in
all runsI(T;Y) starts ab, and is upper-bounded by the log of the cardinalityy'aind we are thus
given a scale of progress.

With this intuition at hand, we want to normalize the stepesi®/ the expected change in
I(T;Y). Thatis, we calibrate our progress with respect todbtial amount of regularization
applied at the current value of At regions wherd (T';Y") is not sensitive to changes in the pa-
rameters, we can proceed rapidly. On the other hand, if sthalhiges in the parameters result in
significant changes df(7";Y"), then we want to carefully track the solution. Figure 6.@sttates
the difference between using a predetermined stepafd partitioningl (7';Y") in order to deter-
mine the step size. Itis evident the usii@’; Y) causes the method to concentrate on the region of
interest in terms of rapid change of the Lagrangian.

Formally, we comput&’, ./ (7'; Y') and rescale the direction vector so that
(Vorlo(T;Y)) -A=e (6.9)

wheree is a predetermined step size that is a fractiorogf/7|. We also bound the minimal and

102 INFORMATION BOTTLENECK EM

15 15

I(T;Y)
I(T;Y)

0.5 0.5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Y Y
(@) (b)

Figure 6.3: lllustration of the step size calibration pmgeBoth graphs show the change in infor-
mation betweerf” andY as a function ofy. The circles denote values ofto be evaluated. (a)
shows naive calibration when fixed steps are taken inythenge. (b) shows calibration that uses
fixed steps in the information range. The grey circle shovwesrégion of dramatic change of the
Lagrangian.

maximal change iny so that we do not get trapped in too many steps or alternatoxedrlook the
regions of change.

Finally, although the continuation method takes us in thresd direction, the approximation as
well as inherent numerical instability can lead us to a stibog path. To cope with this situation,
we adopt a commonly used heuristic used in Deterministiealimg. At each value of, we slightly
perturb the current solution and re-iterate the self-aiest equations to converge on a solution. If
the perturbation leads to a better value of the Lagrangiatake it as our current solution.

To summarize, our procedure works as follows: we start witk= 0 for which only trivial
solutions exists. At each stage we compute the joint doeatf v andQ (7 | V') that will leave the
fixed point equations intact. We then take a small step indinection and apply IB-EM iterations
to attain the fixed point equilibrium at the new valueyofWe repeat these iterations until we reach

v =1.

6.4 Multiple Hidden Variables

The framework we described in the previous sections cafyemstommodate learning networks
with multiple hidden variables simply by treatiigas a vector of hidden variables. In this case, the
distribution Q(T | Y') describes thgint distribution of the hidden variables for each valueYof
and P(T, X) describes their joint distribution with the attribut¥sin the desired network. Unfor-
tunately, if the number of variabléE is large, the representation @{T | Y') grows exponentially,
and this approach becomes infeasible.

One strategy to alleviate this problem is to fol@€T | Y') to have a factorized form. This

INFORMATION BOTTLENECK EM 103

Figure 6.4: Definition of networks for the Multivariate Imfoation Bottleneck framework with
multiple hidden variables. Shown afg, with the mean fieldassumption, and a possible choice for
gout-

reduces the cost of representi@gand also the cost of performing inference. As an example, we
can require thaf)(T | Y) is factored as a produ¢f; Q(7; | Y'). This assumption is similar to the
mean field variational approximatiofe.g, Jordan et al. [1998]).

In the Multivariate Information Bottleneck framework, f@ifent factorizations of)(T | Y) cor-
respond to different choices of networlis,. For example, the mean field factorization is achieved
wheng,, is such that the only parent of ea€his Y, as in Figure 6.4. In general, we can consider
other choices where we introduce edges between the ditféfsn For any such choice &;,,, we
get exactly the same Lagrangian as in the case of a singlemigatiable. The main difference is
that since) has a factorized form, we can decompds€¢T;Y). For example, if we use the mean
field factorization, we get

Io(T;Y) = Z’Q(Ti;Y)

Similarly, we can decomposEg[log P(X,T)] into a sum of terms, one for each family in.
These two factorization can lead to tractable computatfahefirst two terms of the Lagrangian
as written in Proposition 6.2.1. Unfortunately, the lastrteEq[log Q(T)] cannot be evaluated
efficiently. Thus, we approximate this term a3 Eg[log Q(7;)]. For the mean field factorization,
the resulting Lagrangian (with this lower bound approximat has the form

Loy = Z 1o(T;Y) — (EQ[log P(X,T)] - Z Eq[log Q(Ti)]> (6.10)

The form of£,,,, is valid, if Proposition 6.2.1 still holds for the case of tiple hidden vari-
ables. This is immediate if we make the following requireisgrimilar to those made for the case
of a single hidden variable:

1. Y is the instance identity;

104 INFORMATION BOTTLENECK EM

2. G, is a Bayesian network structure such that all of the varg@afileare independent ok’
givenY’; and

3. G, IS @ Bayesian network structure such thais a child of T and has no other parents.
This implies that inG,.:, Y is independent of alK givenT.

The last requirement is needed so that we carP$gt | ') = Q(Y | T') in the proof of Proposi-
tion 6.2.1. As in the case of a single hidden variable, we acamcharacterize fixed point equations
that hold in stationary points of the Lagrangian.

Proposition 6.4.1: Let EEM be defined via,;, andG,,; as in Eq. (6.10). Assumingraean field
approximation forQ(T | Y), a (local) maximum ot;M is achieved by iteratively solving the
following self-consistent equations for every hiddenalaie ; independently.

Qlti |y) = mmml—” exp {(YEP ()}

where
EP (ti,y) = Eq(ryt,) [log P(x[y], T)]

whereZ (i, y,) is a normalizing constant and equals to

Z(i,y,7) = > Q) exp {+EP (#},y) }

See Appendix 6.5.2 for the proof.

The only difference from the case of a single hidden varmiden the form of the expectation
EP (t;,y). It is easy to see that when a single hidden variable is cereid andEP (¢;,y) =
log P(x]y], t), the two forms coincide. Itis also easy to see that this tezoothposes into a sum of
expectations, one for each factor in the factorizatiof? ofVe note that only terms that average over
factors that involvel’; are of interest IrEP (¢;,y). All other terms do not depend on the valuelof
and can be absorbed by the normalizing constant. TEBSt;, y) can still be computed efficiently.

A more interesting consequence (see theorem below) of thisigkion is that when = 1,
maximizingﬁgM is equivalent to performingnean field EMJordan et al., 1998]. Thus, by using
the modified Lagrangian we generalize this variationalrieay principle, and as we show below
manage to reach better solutions.

The formulation is easily extensible to a general variaiocsmpproximation ofQ) wheregG;,
allows, in addition to the dependence of ed¢lon Y, dependencies between the differétis. In
this case, we get

Io(T;Y) = > 1o(Ti; Paj™)

2

INFORMATION BOTTLENECK EM 105

Similarly, Eg[log P(X,T')] decomposes according to tjwent families of 7; in P and in(). That
is, each term in the decomposition dependgd grits parentsPafZ’" in G;n, and its parentPaZ.gW in

Gout- As in the case of the mean field variational approximatiba,last termEg[log Q(T')] cannot
be evaluated efficiently. We approximate it using a decotitipaghat follows the structure df;,

as

Eollog Q(T)] ~ Y Eq |log Q(T; | TN Paf™) (6.11)

We can now reformulate the results of Theorem 6.2.3 for thisegal case

Theorem 6.4.2: Let Q(T | Y) decompose according to any structug, where all 7;’s are
descendents d&f and replaceEg[log Q(T)] by a decomposition as defined in Eq. (6.11). Then for
the resulting Lagrangian

+

Loy =1-7) Z IQ(TZ‘?Paigm) —1F(Q, P

whereF T [Q, P]is defined as in Eq. (6.3), except that the above decompoéitidoothE [log P(X, T)]
andHq(T | Y) is used.

Proof: This is a direct result of the fact that in the proof of Theorér®.3, no assumptions were
made of the form of). I

The above theorem extends the formal relation of the Infiomaottleneck target Lagrangian
and the EM functional for any form of variational approximat encoded byg;,. In particular,
when~ = 1, finding a local minimum ofZ,,, is equivalent to finding a local maximum of the
likelihood function when the same variational approximatis used in the EM algorithm. Similarly,
we can derive the fixed point equations with each for differehoices ofG;,. The change to
Proposition 6.4.1 is simply a different decomposition ¥ (i, y)

To summarize, the IB-EM algorithm of Section 6.2.2 can bélygeneralized to handle multi-
ple hidden variables by simply altering the formEP (¢;, y) in the fixed point equations. All other
details, such as the continuation method, remain unchanged

6.5 Proofs and Technical Computations

6.5.1 Fixed point equations:Single Hidden Variable

Proposition 6.2.4: Let L, be defined viaj;, and G,,; as in Proposition 1.Q(T | Y) is a
stationary point of ;,, with respect to a fixed choice &fif and only if for all valueg andy of T’
andY, respectively,

Qt |y) = Q(t)' 7 P(x[y], 1))

Z(y,7)

106 INFORMATION BOTTLENECK EM

where andZ (y, v) is a normalizing constant and equals to
)= QW) TPyl) (6.12)
tl

To prove the proposition we use the following

Lemma 6.5.1:[El-Hay and Friedman, 2001] Le)(X) be a joint distribution over a set of random
variablesX, that decomposes according@X) = [[, Q(X; | U;). Then

o)

OEq[f(X)]
0Q(; | u;)

= QW) Eq(.jz;un [f (X)] + EQ[
The following is an immediate results of that fact taatt) = 5>, Q(y')Q(t[y")

oQ(T)
9Q(to | yo)

We use this and an instantiation of the above lemma to pravéotiowing:

Q(yo)L{T =to} (6.13)

Lemma 6.5.2: Dl (T-Y) Qltoluo)
QYY) olYo
5QUo Ty~ 2% G ()
Proof: We definef (T, Y) = log Q%;Fé@) = log Q&ZK) so that using Eq. (6.13), we can write
of(r.Yy) 0logQ(T|Y) 0dlogQ(T)
9Q(to | yo) — 9Q(to | o) 9Q(to | yo)
_ _ Q(yo) _
Qo ’yo)l{T_to’Y— ’ Q(to)l{T_tO}
Plugging this into Lemma 6.5.1, we get
QUY)
olo(T;Y) { QT | Y)] 9log =G
9Q(to | yo) R Q(T) T |:6Q(t073/0)
_ Q(to | yo) Q(yo)
= Qly)log =55 + Qluo ZQ Qto 195
B Q(to | yo)
= Qlu)log =57 =+ Qly [- ZQ Qlto | y]
B Q(to | vo) _
= Q(yo)log Qlio) + Q(yo) [1 — 1]
B Q(to | yo)
= Q(yo)log Qo)

INFORMATION BOTTLENECK EM 107

Using Eq. (6.13) and Lemma 6.5.1 wifi7, Y") = log Q(T'), the following is immediate

Lemma 6.5.3:
0Eq[log Q(T)] 1 -
900 1) Q(yo) log Q(to) + Q(to)MQ(yo) = Q(yo) [log Q(to) + 1]

Proof of the proposition: We want to findQ (7" | Y') that are stationary points of the Lagrangian
L and where the constrain}s, Q(t | y) = 1 hold for anyy. Thus, using Lagrange multipliers,
we want to optimize

L =1g(T;Y) -~ (Egllog P(X,T)] — Eq[log Q(T)]) + Y _ A, <Z Q' | y) — 1)

SinceP is fixed, using Lemma 6.5.1 witfi(Y, X, T') = log P(X, T'), we can write

0Eqg[log P(X,T)]
9Q(to | yo)

Combining this with Lemma 6.5.2 and Lemma 6.5.3, we get

= Q(yo) log P(x[yo]; to)

OLpum

3000 |90 — Qo) llog Qlto | yo) = (1 =) log Q(to) + v = ylog P(x[yol. fo)] + Ay

Dividing by Q(yo) and equating t0, we get after rearranging of terms
Q(tolyo) = Mo/ LW 1Q(t0)' =7 P(x[yol, o) (6.14)

This must hold for any valug, andyy. Using)_, Q(t | yo) = 1 we get

eMvo/Qyo)+y — 1

- 2 QWY P(x(yol,)

We get the desired result by plugging this into Eq. (6.14).

6.5.2 Fixed point equations:Multiple Hidden Variable

Proposition 6.4.1: Let EEM be defined vig;, andG,,; as in Eq. (6.10). Assumingraean field
approximation forQ(T | Y), a (local) maximum oﬁ;M is achieved by iteratively solving the
following self-consistent equations for every hiddenafale i independently.

1

. _ =y YEP (t;,y)
Q(ti | v) Z0,9,7) Q(t;) eXp

108 INFORMATION BOTTLENECK EM

where
EP (t;,y) = Eq(rpt, 4 llog P(x[y], T)]

whereZ (i, y,~) is a normalizing constant and equals to

Z(i,y,7) ZQ 17 exp BP(60)

Proof: Using themean fieldassumption, the information and entropy terms in the Lagjean
decompose as follows

Loy = Z'Q 1Y) — <EQ[10gP (X, T ZEQ log Q(T;)])

When computing the derivative with respect to the parammeién specific variable$;, the only
change from the case of single hidden variable, is in thealve of Eq[log P(X, T")] given fixed
P. Again using Lemma 6.5.1 withi(Y, X, T') = log P(X,T') we get

OEo|log P(X, T)]
dQ(tio | vo)

= EQ(T|ti0,0) 108 P(x[yo], T)]

from which we get the change from Proposition 6.2.4 to Pritioms6.4.1 for the case of multiple
hidden variabled

6.5.3 Computing the Continuation Direction

We now develop the formulas needed to perform continuatiodescribed in Section 6.3 for the
case of a single hidden varialdlé Consider again Eqg. (6.5), where we now write the normatinat
term Z(y,~y) explicitly:

Gry(Q,7) = —logQ(t|y)+ (1 —)logQ(t) + vlog P(x[yl, 1)

—log Z exp(1=7) 108 Q(t')+ylog P(x[y],t') (6.15)
t/

Z(y,Y)

We want to compute the derivative 6% , (Q,) with respect to the parameters apdaind and then
use the orthogonal direction for continuation. The willld@ a direction in which the fix point
equations remain unchanged, and the local maximum is tlacke do so, we start by expressing
log P(x[y], t) as a function of the parametefs

INFORMATION BOTTLENECK EM 109

The maximum likelihood parameterslof P(X, T') for the conditional distribution of the chil-
drenX; of T'in G,,; are
>y QWA Y)1{zily] = zi. pay[y] = pa;} + a(zi, pa;,t) N(x;, pay,t)

Peeest = S QWU L {pa] — pat +apan) . Npant) O

wherel {} is the indicator functione() are the hyper-parameters of the Dirichlet prior distribati
(see Section 2.2.2) an®l are used to denote the total counts (including prior) useegtmation.
Similarly the maximum likelihood parameters of the digttibn of T" given its parents are

_ X, QR {paly] = pai} + a(pact) _ N(pay,t) (6.17)

pn, = >, Q)1 {pa,y] = pa;} + a(pay) N(pay)

We now consider each termd# , (@, v) and compute its derivative with respect to these parameters

of Q.

f 0log P(x[yl,t)

Computation o 9Q(tolyo)

The derivatives of the parameters expressed in Eq. (6.&6) ar

aezL |pa;,t
9Q(tolyo)

= N(Q;fg,?,)t)Q [L{zi[yo] = i, pay[yo] = pa;} N(pay, t) — 1{pa;[yo] = pa;} N'(z;, pa;, t)

= Q(yO)}\‘;f’;ﬁg};paZ’} (1 {zi[yo) = zi} N(pay, t) — N (x4, pay, t))
(6.18)
fort = tg and is zero otherwise. Similarly, the derivatives of theapagters of Eq. (6.17) is

Qo)

8etlpat _ Q(yo) [1{pa;[yo] = pa,} N(pa;) — 0] = N(pay) 1{pa;[yo] = pa;} (6.19)

0Q(to | yo) N (pay)?

fort = tg, and is zero otherwise. The log-probability of a specifitanse can be written as

log P(x[y],t) =10g Oypa, [y] + > 108 0s,ipa, e W] + > 10804 pa, V] (6.20)
’iECht i?ét,Cht

whereCh; denotes the children d&f in G, andf,,, [y] is the parameter corresponding to the
values appearing in instange We note that the last summation does not depend on the pargme

110 INFORMATION BOTTLENECK EM

Q(t | y), and by plugging Eq. (6.18) and Eq. (6.19) into Eq. (6.20)get
0 IOg P(X[y]7 t) _ 1 80t|l)at [y] + 1 80$i‘pai7t [y]

9Q(to | yo) Oupa, ly] 9Q(to | yo) Oz, |pa, t[y] OQ(to | yo)

{pa,[yo]=pa,[y]}
= Q(%0) | Npar)ypm w0l

+ Tiecn, HemligRabll (1 {wily) = wilyol} N (pay, £) — N (o, pay, M

1€Chy

= Q(y0)D(y, 1)

(6.21)
where in the last line we usB(y, t) to denote the expression in the square brackets.
Computation of %W
Using Eq. (6.13) from Section 6.5.1 and the above, we camwrit

9 (1 —7)log Q(¢) + ylog P(x[y], t) [1 —7]
= —— +D(y,t 6.22
S0 T2 Qo) | Gy + 1Pw:) (6.22)

We can now use Eq. (6.22) to write the derivativeAtfy, v) since it is a summation over similar
expressions

S ot expﬂ—'”1°gQ<t0>+’”°gP<XWO>Q(yo)[o +fyD(yo,to)}

= 75 Q) Q(to) TP (xy), o) [5(t0)+’yD(yo,to)] (6.23)
= Qo)Qto | o) |35 +7D(wo.to)|

v

where the last equality follows from Proposition 6.2.4.

f 0G1,y(Q,7)
0Q(tolyo)

We combine Eg. (6.22) and Eq. (6.23) to write

aGt,y(Q> /7)
9Q(to | vo)

Computation o

11—~
m +vD(yo, to) (6.24)

=—-1{y=vo} +Qyo) [1 — Q(to | yo)]
Computation of 810%727(%’7)

The only term that is not immediate is the derivativeZgfy, v) with respect toy

dlog Z(y,)
Iy

— E (1=7) log Q(t")+ log P(x[y] .t/ 1 / /
= eXp og Q(t") + log P(x|y], t

=3 Q) Py,) [log Q) + log P(x[yl,)]

INFORMATION BOTTLENECK EM 111

=3 Q(t'ly) [log P(x[yl. #') — log Q(t")]

from which follows

Lt% {YQ’ 2 _ log Pxy], t) — log Q(t) - >_Q(t'ly) [log P(x[y).t') ~log Q(1)] (6.25)

Computation of the continuation direction

We can now compute all the elements of the derivative mafrimp (6.7)

— [9G4 (Q7))|9Gy(Q,
Ht,y(Q»’V)_(85((t\y;/)) tg-(y A/)>

To compute the orthogonal direction to the derivative, wees&q. (6.8)

H(Q,v)A=0

As noted in Section 6.3, this can be prohibitively expenaive we resort té¢7 (Q, v) with a diagonal
approximation for elements (ﬁ% computed in Eq. (6.24). We denote by the diagonal
entry forY = yandT =t andhg,t the corresponding derivative with respecttoNe then have to

solve a set of equations of the form
diyhye + dvh;t =0

whered; , andd,, are the elements ak. Settingd, = 1 (an equivalent solution up to scaling) we
get the unique solution

Normalizing A using the derivative of (T';Y) as described in Eq. (6.9) can now be easily com-
puted given the Lemma 6.5.2 in Section 6.5.1.

Multiple Hidden Variables

When computing the derivative with respect to the parameetesociated with a specific hidden vari-
ablet;, the only change iy, , (Q,) is thatlog P(x[y], t) is replaced by the terfag s, ., [log P(x[y], T)].
In this case we simply compute the expectation of Eq. (6.2&) theT’s that are in the Markov
blanket oft;. The rest of the details remain the same.

112 INFORMATION BOTTLENECK EM

sinQIe IB-EM ~85 hburé

4335F Lumes b3
each exact EM ST A
> 17 hours _exe="*2 0=/

IIIIII * ~

sttt _-mean field EM

e
- ~2.6 hours
-434.5 ’

Test LL / instance

]
-435.5

0 20 40 60 80 100
Percentage of random runs

(@) (b)

Figure 6.5: (a) A quadrant based hierarchy structure withi@den variables for modelintp x 16
images in thdigit domain. (b) Test log-loss of tHB-EM algorithm for the model of (a) compared
to the cumulative performance of 50 random EM and mean field &hd.

6.6 Experimental Validation: Parameter Learning

To evaluate the IB-EM method for the task of parameter leggnive examine its generalization
performance on several types of models on three real-lifeséés. In each architecture, we consider
networks with hidden variables of different cardinalityheve for now we use the same cardinality
for all hidden variables in the same network. We now brieflgalibe the datasets and the model
architectures we use.

e The Stock dataset records up/same/down daily changes of 20 major ¢f8dkgy stocks
over a period of several years [Boyen et al., 1999]. Theitrgiset includes 1213 samples
and the test set includes 303 instances. We trained a NaiyesBadden variable model
where the hidden variable is a parent of all the observations

e The Digits dataset contains 7291 training instances and 2007 teanhtcesd from the USPS
(US Postal Service) dataset of handwritten digits (see/htpw.kernel-machines.org/data.html).
Animage is represented by 256 variables, each denotingdlydeyel of one pixel in 46 x 16
matrix. We discretized pixel values into 10 equal bins.

On this dataset we tried several network architectures fifdtés a Naive Bayes model with a
single hidden variable. In addition, we examined more cexplierarchical models. In these
models we introduce a hidden parent to each quadrant of thgemecursively. The 3-level
hierarchy has a hidden parent to each 8x8 quadrant, and tiogimea hidden variable that is
the parent of these four hidden variables. The 4-level rubgastarts with 4x4 pixel blocks
each with a hidden parent. Every 4 of these are joined intax8m8adrant by another level
of hidden variables, totaling 21 hidden variables, astiaisd in Figure 6.5(a).

INFORMATION BOTTLENECK EM 113

e TheYeast dataset contains measurements of the expression of the'8pdast genes in 173
experiments [Gasch et al., 2000]. These experiments me#seiyeast response to changes
in its environmental conditions. For each experiment theression of 6152 genes were
measured. We discretized the expression levels of gereringes down/same/up by using a
threshold of one standard deviation from above and belowédne’s mean expression across
all experiments. In this dataset, we treat each gene as tanaasthat is described by its
behavior in the different experiments. We randomly pamiéid the data into 4922 training
instances (genes) and 1230 test instances.

The model we use for this dataset has an hierarchical steuetith 19 hidden variables in
a 4-level hierarchy that was determined by the biologicglegxbased on the nature of the
different experiments, as illustrated schematically igufé 6.6. In this structure, 5-24 simi-
lar conditions (filled nodes) such as different hypo-osmstiocks are children of a common
hidden parent (unfilled nodes). These hidden parents areinturn children of further ab-
straction of conditions. For example, the heat shock and $teack with oxidative stress
hidden nodes, are both children of a common more abstratiioea. A root hidden vari-
able is the common parents of these high-level abstractlohgtively, each hidden variable
encodes how the specific instance (a gene) is altered inldant groups of conditions.

As a first sanity check, for each model (and each cardinafibjidilen variables) we performed
50 runs of EM with random starting points. The parameterlsaisied in these different runs have
a wide range of likelihoods both on the training set and tis¢ $et. These results (on which we
elaborate below), indicate that these learning problerashallenging in the sense that EM runs
can be trapped in markedly different local maxima.

Next, we considered the application of IB-EM on these prolsleWe performed a single IB-EM
run on each problem and compared it to the 50 random EM rudsalao to 50 random mean field
EM runs. For example, Figure 6.5 compares the test set peafore (log-likelihood per instance)
of these runs on thBigit dataset with a 4-level hierarchy of 21 hidden variables ®ithiates each.
The solid line shows the performance of the IB-EM solutiory at 1. The two dotted lines show
the cumulative performance of the random runs. As we cantBedB-EM model is superior to
all the mean field EM runs, as well as all of the exact EM rungufé 6.6 shows the result for the
biological expert constructed hierarchy Ydast dataset with binary variables. As can be seen, in
this harder domain, the superiority of the exact EM runs owean field EM runs is more evident.
Yet, the IB-EM run which also use the mean field approximatierstill able to surpass all of the
50 random exact EM runs.

It is important to note the time required by these runs, aladPentium 1V 2.4 GHz machine.
For theDigit dataset, a single mean field EM run requires approximaté&yh@urs, an exact EM
run requires roughly 17 hours, and the single IB-EM run rezgijust over 85 hours. As the IB-EM

114 INFORMATION BOTTLENECK EM

single IB-EM ~6 hours
WES———
»“"
Pt =4
o exact EM R Il
© 14851 > 60 hours/run,.esss**" P
= e ’
I} oo 1"
7] o =
E 1495 K ,————]
~ 14 H ’_/ mean field EM
= PUg ~0.5 hours/run
- S/
7] o,
) -15051 &
»
~ o
]
H
1515 §
]
= L L L L
0 20 40 60 80 100

Percentage of random runs

(b)

Figure 6.6: (a) A structure constructed by the biologicgdezkfor theYeast dataset based on prop-
erties of different experiments. 5-24 similar conditiofiled nodes) are aggregated by a common
hidden parent (unfilled nodes). These hidden nodes are éhegsschildren of further abstraction
nodes of similar experiments, which in their turn are clafdof the single root node. (b) Compar-
ison of test performance when learning the parameters dafttheture of (a) with binary variables.
Shown is test log-likelihood per instance of tliBeEM algorithm and the cumulative performance

of 50 random EM as well as 50 random mean field EM runs.

run reaches a solution that is better than all of this runsiférs an appealing performance to time
tradeoff. This is even more evident for tiYeast dataset where the structure is somewhat more
complex and the difference between exact learning and tlae firedld approximation is greater. For
this dataset, the single IB-EM is still superior and takemiicantly less time than a single exact

EM.

Figure 6.7 compares the test log-likelihood per instanctopaance of our IB-EM algorithms
and 50 random EM runs for a range of models for $teck, Digit and Yeast datasets. In most
cases, IB-EM is better than 80% of the EM runs and is often asl @o better than the best of
them. The advantage of IB-EM is particularly pronounced tfee more complex models with
higher cardinalities. Table 6.1 provides more details @sthruns including train performance
and comparison to 50 random mean field EM runs.

We also compared the IB-EM method to the perturbation metifi@didan et al. [2002]. Briefly,
their method alters the landscape of the likelihood by pbitig the relative weight of the samples
and progressively diminishing this perturbation as a facfothe temperature parameter. In the
Stockdataset, the perturbation method initialized with a stgrtemperature of and cooling factor
of 0.95, had performance similar to that of IB-EM. However, the ragrntime of the perturbation
method was an order of magnitude longer. For the other datase considered above, running
the perturbation method with the same parameters proved tmpractical. When we used more
efficient parameter settings, the perturbation methodifopaance was significantly inferior to

Train Log-Likelihood

Test Log-Likelihood

Model || IB-EM Random EM Mean Field EM IB-EM Random EM Mean Field EM

%< 100% 80% | %< 100% 80% %< 100% 80% | %< 100% 80%
Stock
C=3 -19.91 | 62% -19.90 -19.90 -19.90 76% -19.88 -19.89
C=4 -19.47 | 98% -19.46 -19.52 -19.52 96% -19.52 -19.62
C=5 -19.16 | 94% -19.15 -19.24 -19.31 98% -19.30 -19.39
Digit
C=5 -429.95| 36% -428.67 -429.11 -439.91 | 56% -439.03 -439.47
C=10 -411.44| 100% -411.72 -413.96 -425.33 | 100% -425.36 -427.0%
DigH3
c=2 -442.02| 100% -442.02 -442.29 100% -442.03 -442.2(] -450.812| 92% -450.76 -450.92 82% -450.76 -450.84
C=3 -428.77| 100% -428.85 -429.02 100% -428.83 -429.0% -437.798| 98% -437.74 -438.20 98% -437.74 -438.04
DigH4
c=2 -425.43| 100% -425.54 -425.81 100% -425.61 -425.94 -433.279| 100% -433.30 -433.5% 100% -433.40 -433.71
C=3 -407.60| 100% -407.75 -408.56 100% -408.49 -408.83 -415.798| 100% -415.88 -416.48 100% -416.37 -416.77
Yeast
c=2 -148.13| 100% -148.32 -148.79 100% -148.89 -149.7] -147.48 | 100% -147.51 -147.87 100% -147.92 -148.78
C=3 -139.44| 100% -139.58 -140.0% 100% -140.09 -140.87 -138.38 | 100% -138.57 -139.00 100% -139.06 -139.92
C=4 -136.36| 100% -136.72 -136.97 100% -137.72 -138.2§ -135.65 | 100% -135.96 -136.16 100% -136.92 -137.34

Table 6.1: Comparison of the IB-EM algorithm, 50 runs of EMwiandom starting points, and 50 runs of mean field EM fromsiume
random starting points. Shown are train and test log-likedd per instance for the best and 80th percentile of theorardins. Also shown is
the percentile of the runs that are worse than the IB-EM tesDlatasets shown include a Naive Bayes model foBtioek dataset and thBigit
dataset; a 3 and 4 level hierarchical model for Ehgit dataset DigH3 andDigH4); and an hierarchical model for théeast dataset. For each
model we show several cardinalities for the hidden vargldbown in the first column.

N3 XO3IN3TL1LO9 NOILYINHOLNI

GTT

116 INFORMATION BOTTLENECK EM

o - -136
8 -18.8 ﬁ
< -410
1)
c -140 i
: -19.21
'8 L
-144
8 -19.6 -420
o)
=
= -148
! 20
o ¥
o L
- — Range of random EM runs 430
(7] L - 20%-80% precentile 52
2 204 X IB-EM
C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10 C=5 c=10 cC=2 cC=3 c=2 c=3 C=4
Stock Digit Digit Hier Yeast

Figure 6.7: Comparison of log-likelihood per instance fstformance of the IB-EM algorithm
(black "X’) and 50 runs of EM with random starting points. Thertical line shows the range of
the random runs and boxes mark the 20%-80% range. Datasets gR-axis) include a Naive
Bayes model for th&tock dataset and thPigit dataset; a 4 level hierarchical model for thigit
dataset Digit Hier); a hierarchical model for th¥east dataset. For each model we show several
cardinalities for the hidden variables, shown in the x-axis

that of IB-EM. These results do not contradict those of Hligd al. [2002] who showed some
improvement for the case of parameter learning but mairdysed on structure learning, with and
without hidden variables.

To demonstrate the effectiveness of the continuation ndeti® examindB-EM during the
progress ofy. Figure 6.8 illustrates the progression of the algorithmtlenStock dataset. (a)
shows training log-likelihood per instance of parameterisiiermediate points in the process. This
panel also shows the values pfevaluated during the continuation process (circles). &hwesre
evaluated using the predicted changd (@’; Y') shown in (b). As we can see, the continuation
procedure focuses on the region where there are signifibamiges in (7';Y) approximately cor-
responding the areas of significant changes in the liketihor both theStock andDigit datasets,
we also tried changing naively from0 to 1 as in standard annealing procedures, without per-
forming continuation. This procedure often “missed” theesior local maxima even when a large
number (1000) ofy values were used in the process. In fact, in most runs théisegere no better
than the average random EM run emphasizing the importantteeafontinuation in the annealing
process.

6.7 Learning Structure

Up until now, we were only interested in parameter learninigwever, in real life it is often not
the case that the structure is given. A structure that isitople will not be able to faithfully cap-
ture the distribution, while an overly complex structurdldeteriorate our ability to learn. In this

INFORMATION BOTTLENECK EM 117

Best of EM

Train likelihood
I(T;Y)

Figure 6.8: The continuation process for a Naive Bayes moddhe Stock data set. (a) Shows
the progress of training likelihood as a functionnro€ompared to the best of 50 EM random runs.
Black circles illustrate the progress of the continuationcedure by denoting the value pfat the
end of each continuation step. Calibration is done usingrinition between the hidden variafile
and the instance identify shown in (b) as a function of.

section we consider the case where the set of hidden vasigblexed and their cardinalities are
known, and we want to learn the network structure. Cleallig problem is harder than simple
parameter learning, which is just one of the tasks we havertfomn in this scenario. The common
approach to this model selection task is to use@e-based approackhere we search for a struc-
ture that maximizes some score. Common scores such as theddbe[Heckerman et al., 1995a]
balance the likelihood achieved by the model and its coniyglekhus, model selection is achieved
independently of the search procedure used (see Sectidor2rdre details).

We now aim to extend thiB-EM framework for the task of structure learning using a score-
based approach. Naively, we could simply consider diffestmuctures and for each one apply the
IB-EM procedure to estimate parameters, and then evalisagemeralization ability using the score.
Such an approach is extremely inefficient, since it spendsnatnivial amount of time to evaluate
each potential candidate structure. In this work we adeoeadtrategy that is based on the Struc-
tural EM framework of Friedman [1997]. In Structural EM (s®ection 2.4), we use the completion
distribution(that is a result of the E-Step to comp@tgected sufficient statisticEhat is, instead
of Eq. (2.7) we use Eq. (2.16), where in our case the compleatistributionQ(H | O,0,4) is
simply Q(T | Y). These statistics are then used inMestepwhen structure modification steps are
evaluated. Thus, instead of assuming that the target steugs,,; is fixed, we define the Lagrangian
as a function of the paifG,..,¢). Then, in the M-step, we can consider different choice§ Qf
and evaluate how each of them changes the score. Given tleetedpstatistics, the problem is
identical in form to learning from a fully observed datased @omputation of the score is similar.
This facilitates an efficient greedy search procedure tbas local edge modification to the network
structure. The EM procedure of Section 6.2.2 is thus revaseidllows:

118 INFORMATION BOTTLENECK EM

e E-step: Maximize —L,, by varyingQ(T | Y') while holding P fixed.
e M-step: While holding(fixed:

— Search for the structur@,,,; of P that maximizes Scogpe(G : D), using the sufficient
statistics ofQ).

— Maximize — L ;,, by varying the parameters éf using the structurg,,; selected.

In practice, since the BDe score is not a linear function efghfficient statistics, we approx-
imate it in theM-step using the Cheeseman-Stutz [Cheeseman et al., 1988] apmaton. It is
important to note the distinction between the optimizatiétthe Lagrangian and that of the score.
Specifically, optimizing the Lagrangian involves maxintiaa of the likelihood along with an infor-
mation theoretic regularization term that does not depen&.dOn the other hand, optimization of
the structure is performed using the BDe model selectioneschis is mathematically valid since
each optimization step is ignorant of the inner mechanicthefother step. However, one might
wonder why the use of a score is needed at all if regularizati@lready present in the form of the
information theoretic term in the Lagrangian. Itis easynderstand the reason for this if we look at
the final stage of learning when= 1. At this point, as we have shown, optimizing the Lagrangian
is equivalent to optimizing the EM objective. Using the sashgctive to adapt structure will result
in dense structures. In particular, it will be beneficial tldan edge between any two variables
that are not perfectly independent in the training data.sTthile the regularization encoded in the
Lagrangian is needed to smooth the parametric EM problengdehselection regularization via a
score is also needed to constrain the network structure.

Using the Structural EM framework allows us to apply our feavork to structure learning and
to use various search operators as simple plug-ins. Forgdayesian networks, for example, one
can consider the standard add, delete and reverse edg¢oopetde only requirement in this case
is that a hidden variable is constrained to be non-leaf, iithvbase it becomes redundant and can
be marginalized out. In addition, as in the case of learnmgmeters, we are still guaranteed to
converge for a given value of. However, as in parametric EM, convergence is typically local
maximum. In fact, the problem now has two facets: First, locaxima that result from evaluation
of @ in the E-step. Second, local maxima in the discrete stracdaarch space due to the greedy
nature of the search algorithm.

Although the method described above applies for any Bayesavork structure, for concrete-
ness we focus on learnirigerarchiesof hidden variables in the following sections. In this sudss
of networks each variable has at most one parent, and thentgaas to be a hidden variable. This
implies that the hierarchy of hidden variables capturesdgendencies between the observed at-
tributes. Since we are dealing with hierarchies we consdarch steps that replace the parent of a

INFORMATION BOTTLENECK EM 119

Effective Cardinality

0 0.2 0.4 0.6 0.8 1

Y

Figure 6.9: Effective cardinality as a functionpfiuring the learning process for ttock dataset
using a Naive Bayes model. Cardinality is evaluated usioglldecomposition of the BDe score.

variable by one of the hidden variables. Such moves preskeveverall hierarchy structure, repo-
sitioning a single observed variable, or a sub-hierarchg. apply these steps in a greedy manner,
from the one that leads to the largest improvement, as lotigea®sulting hierarchy is acyclic.

6.8 Learning Cardinality

Inreal life, itis often the case that we do not know the caatiiy of a hidden variable. In a clustering
application, for example, we typically do not know of a bediafinumber of clusters and need to
either use some arbitrary choice or spend time evaluatingrakepossibilities. Naively, we might
try to set a high cardinality so that we can capture all padénlusters. However, this approach can
lead to bad generalization performance due to over-repiasen. The discussion in Section 6.3 on
the behavior of the model as a functionpprovides insight on the effect of cardinality selection.
When examining the models during the continuation proocssspbserve that for lower values of
~ the effectivecardinality of the hidden variable is smaller than its caadity in the model (we
elaborate on how this is measured below). Figure 6.9 showsgample of this phenomenon for the
Naive Bayes model of th8tock dataset. Thus, limiting the cardinality of the hidden vilgais in
effect similar to stopping the continuation process at sgmeel. This is, by definition, equivalent
to using a regularized version of the EM objective, which aanid overfitting.

The most straightforward approach to learning the caritynaf a hidden variable is simply to
try a few values, and for each value apply IB-EM indepengentVe can then compare the value
of the EM objective (aty = 1) corresponding to the different cardinalities. Howeveodels with
higher cardinality will achieve a higher likelihood and Mftus always be chosen as preferable by
the Lagrangian, at the risk of overfitting the training data.the previous section we discussed
the use of a model selection score as a measure for prefemmgetwork structure over another.

120 INFORMATION BOTTLENECK EM

The same score can also be readily applied for this scenfdardinality selection. Whether the
complexity is a result of a dense structure or an increasedbeu of parameters due to a high
cardinality of a variable, all common scores balance thelilikbod with the model complexity,
either explicitly as in the case of the MDL score [Lam and Bars; 1994] or implicitly as in the
case of the Bayesian (BDe) score [Heckerman et al., 1999a]s, Tsimilarly to structure learning,
we use the Lagrangian when estimating parameters and ttire szore when performing the black-
box model selection step. One problem with this simple agghas that it can be extremely time
consuming. If we want to try< different cardinalities for each hidden variable, we havedrry
out|H|¥ independent IB-EM runs, whetél | is the number of hidden variables.

The intuition that the “effective” cardinality of the hiddevariable will increase as we consider
larger values ofy suggests that we increasing the model complexity duringah&nuation process.
A simple method is as follows. At each stage allow the modebdra, seemingly redundant, state
for the hidden variable. As soon as this state is utilized,ineeease the cardinality by adding a
new “spare” state. The annealing process, by nature, atitaiha utilizes this new state when it
is beneficial to do so. The task we face is to determine whethalktates of a hidden variables
are being utilized and therefore a new redundant state tededntuitively, a state of a variable is
being used if it captures a distinct behavior that is notwagat by other states. That is, for any state
i, no other statg is similar.

To determine whether staies different than all other states, we start by evaluatirg dbst
that we incur due to the merging of stataith another statg. We denote by’Aj a new state that
combines both and;j and alter so that

QT =ij|Y=y)=QT=i|Y=9)+Q(T=j|Y =y) (6.26)

We then use this to reestimate the parameter? iof the M-step, and examine the resulting change
to the Lagrangian. As shown in Slonim et al. [2002], the défece in the Lagrangian before and

after the merge is a sum of Jensen-Shannon divergence teat®s¢asure the difference between
the conditional distribution of each child variable givée two states of the hidden variable. This is
in fact the change in likelihood of the model resulting froranging the states and can be computed
efficiently.

Now that we have the change in the Lagrangian due to the niedfistatei with statej, we
have to determine whether this change is significant. Asdjra@oted, using more states will always
improve the likelihood so that the difference in the Lagtiangs not sufficient for model selection.
Instead, we can use the BDe score to take into account botmgrevement to the likelihood and
the change in the model complexity as in Elidan and Friedrd@8]]. One appealing property of
the BDe score is that it ically decomposableThat is, Eq. (2.15) decomposes according to the
different values of each variables. Thus, the differendevéen the BDe score after and before the

INFORMATION BOTTLENECK EM 121

merge of statesand; is only in the terms wher& appears.

Scor@De(% : D) — Scorgpe(Gij : D) =
T(N*+ (T=i,j.par)) DN+ (T=ipa)) T(N*+(T'=j par))
2 pas 108 Tar=ijpa)) 198 T(aT=ipar)) — 18 T(aT=jpa) |

ac,T'=t, (N ac,T=1,
ZC zpac log F(Z(\HEIZpac T= zjj)) + Z log lg‘(a((g pZC,T z,j))))
i)

PV (epae,T=1))
22108 Tate pac =)

I'a(pac,T=

— 108 TN Gae =)

ac,T= LIV (e:pac, =
log W S logw

where the first summation correspond to the famil{'aind its parents, and the second summation
is over allC that are children of" and corresponds to the families of the childrerifoéand their
parents.N*(z) = N(z) + a(z) and correspond twtal count statistics that include the imaginary
prior counts (see Section 2.2.2). As all the terms are fanstbf these simple sufficient statistics,
the above difference can be computed efficiently. More@im the case of the likelihood compu-
tation, the sufficient statistics needed when merging tatestare simply the sum of the statistics
needed for scoring the individual states. Thus, we canyeegdluate all pairwise state merges to
determine ifanytwo states ofl” are similar.

To summarize, the resulting procedure is as follows. Wé stdin a binary cardinality for the
hidden variables at = 0. At each stage, before is increased, we determine for each hidden
variable if all its states are utilized: For each pair of ssaive evaluate the BDe score difference
between the model with the two states and the model with #estmerged. If the difference
is positive for all pairs of states then all states are cared utilized and a new state is added.
Optimizing the Lagrangian using IB-EM will utilize this nestate automatically when it will be
beneficial to do so, causing the introduction of a new “spatate, and so on.

In an early work leading to the formulation of the InformatiBottleneck framework, [Pereira
et al., 1993] used a similar idea to gauge the effective nurobelusters. Briefly, for each cluster
a slightly perturbed cluster (twin state) was incorporatetihe model allowing each cluster to split
into two distinct ones. Similar procedures were used in Detastic annealing [Rose, 1998] and
later Information Bottleneck implementations [Tishby et H999, Slonim et al., 2002]. The method
we presented in this section differs in two important aspdeirst, we use a model selection score to
determine when it is beneficial to declare that a redundasted is actually being used. This allows
us to avoid using an arbitrary distance measure to deterintm® clusters diverge. Second, the
above allows us to use a single redundant cluster rathegttvaim for each state, which significantly
reduces the model complexity. While this may not be cruciatandard clustering scenario, it is of
great importance for the large models with many hidden téegathat we consider in this paper.

122 INFORMATION BOTTLENECK EM

Train LL / instance
©
— 4
Train LL / instance
R
5

-19.5¢

-20.5F — Fixed cardinality
X Adaptive cardinality

Test LL / instance
&
&

Test LL / instance

—— Fixed cardinality
1950 X Adaptive cardinality
0 5 10 15 éo 25 30 0 1‘0 éO éO 4‘0 50 éO 7‘0 80
Cardinality Cardinality

(a) Stock (b) Yeast

Figure 6.10: Evaluating adaptive cardinality selectiontfee Stock and theYeast datasets with a
Naive Bayes model. The 'X’ marks the performance of runs withptive cardinality selection. The
line shows performance of individual runs with a fixed caatity. The top panel shows training set
performance, and the bottom one test set performance.

6.9 Experimental Validation: Learning Cardinality

We now want to evaluate the effectiveness of our method faptag cardinality during the anneal-
ing process. For this, we would like to compare the cardipalind model achieved by the method
to naive selection of the cardinality. To make this feasitle look at the context of a Naive Bayes
model with a single hidden variable for ti&tock and theYeast dataset introduced in Section 6.6.
We trained the models using the IB-EM algorithm where thel@rdvariable was assigned a fixed
cardinality, and repeated this for different cardinaditieNVe then applied our adaptive cardinality
method to the same model. Figure 6.10 compares the adaptidmality selection run ("X’ mark)
vs. the fixed cardinality runs for both datasets. As we cantbeeadaptive run learns models that
generalize nearly as well as the best models learned witt izedinality. These results indicate
that our method manages to increase cardinality while iingck high likelihood solution, and that
the decision when to add a new state manages to avoid addingp states.

A more complex scenario is where, for tieast dataset, we learn the hierarchy supplied by
the biological expert for 62 of the experiments. In this arehy there are 6 hidden variables that
aggregate similar experimentsHeat node that aggregates 5 of these hidden variables and a root
node that is the parent of boHeatand the additionaNitrogen Depletiomode. Figure 6.11 shows
the structure along with the cardinalities of the hiddemalaes learned by our method and compares
the performance of our method to model learned with diffefexed cardinalities. As can be seen
in (b), the performance of our final model is close to the optiperformance with fixed cardinality.
(c) shows that this is achieved with a similar complexitytte simpler of the superior models (at a
fixed cardinality of 10).

INFORMATION BOTTLENECK EM 123

4 k - J
U OO 0o OOV TOCO000000000D0ODCVVUVVOOOOO0CCOO0000DDOD

(a)
. — Fixed Cardinality
8 ,} | =~ Adaptive Cardinality

@ =}
e o
] -
g - X 15F
£ 4
= 2
4 o
iy £ 1f
5 <
7] =
]
T : — 1 8

— Fixed Cardinality 3 05

50 = = Adaptive Cardinality | 1 | _____
Il Il Il Il L L L L L 1 L L L L L L L
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Cardinality Cardinality
(b) (€)

Figure 6.11: Cardinality learning for théeast dataset on the structure provided by the biological
expert. (a) shows the structure along with the nodes arewtaith the cardinality learned by
our adaptive approach. (b) shows the test set log-liketihperformance of models learned with
different fixed cardinalities (solid line). The horizontddshed line marks the performance of our
adaptive cardinality method. (c) shows plot the number ohpeters for each of these models
(solid line) with the dashed horizontal line marking the tnegmof parameters of the model learned
by our method.

6.10 Learning New Hidden Variables

The ideas presented in Section 6.7 are motivated by theHattrti real life we are typically not
given the structure of the Bayesian network. The situat®aofien even more complex. Hidden
variables, as their name implies, are not only unobservéddualso be unknown entities. In this
case, we do not even know which variables to include in oureho@hus, we want to determine
the number of hidden variables, their cardinality, thelatien to the observed variables, and their
inter-dependencies. This situation is clearly much morepiex than structure learning and might
seem hopeless at first. However, as in the case of cardirsalaptation discussed in Section 6.8,
we can use emergent cues of the continuation process toswygeffective method.
Recall the behavior of our target Lagrangian as a functiory.ofor small values ofy, the

emphasis of the Lagrangian is on compressing the instamcgity] and the hidden variables are
(almost) independent of the observed attributes. Thus$jsstage, a simple model would be able

124 INFORMATION BOTTLENECK EM

¢ oo (x)

Figure 6.12: Example of enrichment with new hidden varialile as parent of a subsét of the
observed variableX; ... X,,.

to perform just as well as a complex one. In fact, to increasening robustness, we will want
to favor the simpler model and avoid redundant represematicomplexity. As we increase,

the hidden variables start capturing properties of the.dmtahis scenario the need for the more
complex structure becomes relevant as it will allow ther@eay procedure to improve performance.

The above intuition suggests that at small values efe start with a simple hierarchy (say,
one with only a single hidden variable). When the contiraratieaches larger values of the
Lagrangian can tolerate more complex structures. Thus, arg W0 adapt the complexity of the
hierarchy as we progress. To do so, we consider a searchtap#rat enriches the structure of
hierarchy with a new hidden variable. (This operator is mindhe spirit of the “top-down” strategy
explored by Adachi and Hasegawa [1996] in learning evohatig trees.)

Suppose that we want to consider the addition of a new hidddahles into the network struc-
ture. For simplicity, consider the scenario shown in Figud, where we start with a Naive Bayes
network with a hidden variabl@} as root and want to add a hidden variaffleas a parent of a
subsetC of T7’s children. Intuitively, we want to select a subgetthat is not “explained well” by
T, and where we expect to gain a lot by the introductiofafFormally, we evaluate the change in
our target Lagrangian as the result of insertibgnto the network structure

Loy — ‘C/EM =
—1g(T2;Y) + vEq[log P'(T | Ty) —log Q(T2) + Y- e llog P'(X; | T) —log P(X; | T1)]]

whereP and P’ are the models before and after the change to the netwopeatgely. The term
log P(X; | T1) can be readily evaluated from the current model for e&cke C and the terms
1o(T>;Y) and Eg[log Q(7%)] can be easily bounded. However, to evaluateP’(T» | 1) or

Y icclog P'(X | Ty) we need to actually chood®, addT to the current structure and optimize
Q(T» | Y). This can be too costly as the number of possible sulSetain be large even for
a relatively small number of variables. Thus, we want to somaeapproximate the above terms
efficiently using only the current model. The following bauallows us to do so by bounding the

INFORMATION BOTTLENECK EM 125

contribution of a hidden variable.

Proposition 6.10.1:Let P be a Bayesian network model with a hidden variabjeand denote by
C an observed subset @i’s children. LetP’ be the result of replacin@ as a parent ofC by 75,
making7s; a child of 77 and optimizing the parameters of the model using the I1B-Eddrahm for
any value ofy. Then

EqllogQ(C | T1)] > Eq | > log P/(X; | Tp) +log P'(Ty | Th)
i€C

Proof: Using the chain rule and positivity of entropy, we can write

EQllog Q(C | Ty)] = —Hg(C | Th)

= —|Ho(C, Ty | T) — Ho(Ts | C,Tl)}

> —Ho(C. T, | 1)

= :HQ(C | T2, T1) + Ho (T3 | Tl)}

__ Z Ho(Xi | X1 ... X, 1,T5,Ty) + Ho(Th | Tl)]
1€C

> — _Z HQ(XZ‘ | Tg) + HQ(T2 | Tl)]
i€C

=Eq | log P'(X; | Ty) + log P'(Ty | T1)
1€C

The last inequality result from the fact that entropy coodiéd on less variables can only increase.
The final equivalence is a result of the construction of th&tdp of IB-EM, where&) is used when
in the optimization of the parameters Bf. I

The above proposition provides a bound on the extent to waiciden variable induces cor-
relations in the marginal distribution. The result is itite — the contribution of insertion of a
new hidden variable cannot exceed the entropy of its childieen their current hidden parent. If
we use the bound instead of the original term, we get an guimcstic estimate of the potential
profitability of adding a new hidden variable. However, thergrios we are interested in are those
in which the information between the hidden variable ancthi#dren is high and the entropy of
the hidden variable is low (or there would be no need for ihim hetwork). In such cases, we can
expect the bound to be tight in both inequalities.

The above bound provides us with an information signal faamee new hidden variables.
In practice, searching for the best sub6etan be impractical even for relatively small networks.
Instead, we use the following greedy approach: first, fohdadden variable, we limit our attention
to up to K (we use 20) of its children with the highest entropy indiaths We then consideall

126 INFORMATION BOTTLENECK EM

0.9 Total]

c e J
Sor T e |
g
5 =X 5 X1 Ty) |
‘€ 05/
C_U J
2 K
§ 0.3+' _
01 ,,.;"«'"‘" =TT T IEX JXHT 1)
(b) 0 . 6.2 6.4 o 6 0.8 1
Gamma
(©)

Figure 6.13: Synthetic example demonstrating the infolomagignal for adding new hidden vari-
ables. (a) shows the original structure that generatedaimples. (b) shows the structure used in
learning without the hidden variablg. (c) shows the information as a functionpbetween the
hidden variables and the observed variables. As learniogresses, the total information rises and
the distribution of the direct children @f, is captured significantly better (dotted). The information
with the original children off; (dashed) remains small.

three-node subsets of these children whose entropy legsekpaome threshold (see details in the
experiments below). Intuitively, such seeds will captimedore of the signal needed to attract other
nodes when structure change is allowed.

Another complication in using the above signal is a consecgi®f the annealing process itself.
For small values ofy we can expect, and indeed we wafjtto smooth out all statistical signals.
This will make most subsets appear equally appealing fangddhidden variable, sincg will not
be informative about them. In Section 6.3, we have shownlihél’; T') is a natural measure for
the progress of the continuation process. To demonstratpitenomenon in the structure learning
scenario, Figure 6.13 shows a simple synthetic experimbetevthe samples were generated from
the structure shown in (a) and a Naive Bayes model witdewras used when learning. (c) shows
the information between the hidden varialleand the observed children (solid), its direct children
in the generating distribution (dotted) and the childreriipf(dashed). Up to some point in the
annealing process, the information content of the hiddeiabi is low and the information with
both subsets of variables is low. When the hidden varialdégssto capture the distribution of

1In synthetic experiments for different structures wheeertbtwork size still made computations feasible, thesethre
node seeds always included two or three variables of thenaptarger subset.

INFORMATION BOTTLENECK EM 127

the observed variables, the two subsets diverge and Whileaptures its original direct children
significantly better, the children df, still have high entropy givel;. Thus, we want to start
considering our information “cue” only when the hidden paireecomes meaningful, that is only
whenlg(Y'; T7) passes some threshold.

Finally, we note that although the discussion so far assuiregdve have a Naive Bayes model
and considered the addition of a single new hidden vari#likeeasily generalized for any forms of
P where inP’ we separate a hidden variablesfirfrom its observed children by introducing a new
hidden variable.

To summarize, our approach for learning a new hidden vaial{br several such variables) is
as follows: At each value of, we first evaluatd o (Y;T") to determine if it is above the threshold,
signifying that the hidden variable is capturing some ofdistribution over the rest of the variables.
If this is the case, we greedily search for subsets of cmldrfethe hidden variable that have high
entropy. These are subsets that are not predicted well byhidden parent. For the subset with the
highest entropy, we suggest a putative new hidden variahleid the parent of the variables in the
subset. The purpose of this new variable is to improve thdigtien of the subset variables, which
are not sufficiently explained by the current model. We thamtiaue with the parameter estimation
and structure learning procedure as is. If, after structearch, a hidden variable has at most one
child, it is in fact redundant and can be removed from thectiine. We iterate the entire procedure
until no more hidden variable are added and the structuraiteaprocedure converges.

6.11 Full Learning — Experimental Validation

We want to evaluate the effectiveness of our method whenilggastructure with and without the
introduction of new hidden variables into the model. We eixeah two real-life data sets: The
Stock dataset and th¥east dataset (see Section 6.6). For Yeast dataset we look at a subset of
62 experiments related to heat conditions and Nitrogenetiepl

In Figure 6.14 we consider average test set performance eB8ttitk dataset. To create a
baseline for hierarchy performance, we traifNaive hierarchy with a single hidden variable and
cardinality of 3 totaling 122 parameters. We start by evabgastructure learning without the in-
troduction of new hidden variables. To do this, we gener&&dandom hierarchies with 5 binary
hidden variables that are parents of the observed varianédsa common root parent totaling 91
parameters. We then use Structural EM [Friedman, 1997]dptatie structure by usingraplace-
parentoperator where at each local step an observed node caneéfddidden parents. As can
be seen in Figure 6.14, standard structure learning apfi¢ide 1B-EM framework significantly
improves the model’s performance. In fact, many of the 25loamruns with theSearch operator
surpass the performance of tNaive model using fewer parameters.

Next, we evaluate the ability of the new hidden variable @mrient operator to improve the

128 INFORMATION BOTTLENECK EM

-1951

Enrich + Search

-19.8 Search

Naive

-20.1

Test log-loss / instance

Enrich

-20.4 I L I
0 0.2 0.4 0.6 0.8 1

Percentage of runs

Figure 6.14: Comparison of performance on8teck data set of Naive hierarchiNgive), 25 hier-
archies with replace-parent sear&eérch) , hierarchy learned with enrichment operatn(ich)
and hierarchy learned with enrichment and replace-paearth Enrich+).

model. We denote binrich the IB-EM run with the automatic enrichment operator. Wealeroy
Enrich+Search the run with this operator augmented with structure segpelnators in the M-steps.
As can be seen in Figure 6.14, the performanc&mfich by itself was not able to compete with
the Naive or theSearch method. This is not surprising as we cannot expect the irdtion signal

to introduce “perfect” hidden variables into the hierarcmgdeed, when combining the enrichment
operator with structure adaptatioBr(rich+Search), our method was able to exceed all other runs.
The learned hierarchy had only two hidden variables (réggionly 85 parameters). These results
show the enrichment operator effectively added usefuldnddariables and that the ability to adapt
the structure of the network is crucial for utilizing thesdden variables to the best extent.

There are two thresholds used by our algorithm for learnieqy hidden variables. First, as
noted in Section 6.10, due to the nature of the annealingepsow/e consider adding new hidden
variable only when the informatioh, (Y";7") of a hidden variabld in the current structure passes
some threshold. In the results presented in this sectionsea@dthreshold of 20% of the maximum
value the information can reach which is limited by the caatity of 7. Lowering this threshold
to as far as 10% or raising it to 40% had negligible effect anrésults. We hypothesize that this
robustness is caused by the fact that, typically, the calitinof T will be much lower thany".
Thus, wherl" undergoes the transition from being redundant to beingnmétdive, its information
content rises drastically, even if it captures only a smaleat ofY.

The threshold used to limit the number of candidate sublsetgever, is more interesting. Recall
from Section 6.10 that the greedy procedure only considgosets whose entropy passes some

INFORMATION BOTTLENECK EM 129

,_.
®

A

&

expert model

of hidden vars
Test LL / instance
A
S

A
o
T

I I I I I I I I] I I I I I I I I I I
80 84 88 92 9% 100 80 84 88 92 9% 100
% of max entropy % of max entropy

(@) (b)

Figure 6.15: Learning new hidden variables for Yeast data set. (a) shows the number of variables
learned as a function of the threshold on the percentagetafmnof a subset used in the greedy
procedure. (b) shows the corresponding test set logi@etl per instance performance and the
performance of the model supplied by the biological expert.

threshold. More precisely, we consider only subsets whosegy passes some percentage of the
maximum entropy possible for this subset. Thus, using afdineshold potentially allows more
hidden variables. This is observed empirically in FigurEséa) for theYeast dataset. A possible
concern is that lowering the threshold too much will resirtsnany hidden variables leading to
overfitting. However, as is evident in Figure 6.15(b), everewthe number of hidden variables
is 20, these new variables are effective in that they impibxgegeneralization performance on
unseen test data. In fact, with just a few extra variables,noethod successfully surpassed the
performance of the structure supplied by the biologicakeixgbviously, at some point, having too
many variables will lead to overfitting. We could not examihis scenario due to the running time
required to learn such large networks.

To qualitatively assess the value of our method, we showgnr€i6.16 the structure learned for
the Stock dataset with binary variables and the entropy threshol@ts@5% (structures at 92.5%
and 97.5% were almost identical for this dataset). The eemergtructure is evident with the “High-
tech giants” and “Internet” group dominating the model. TW&ried” group contains “Canon” and
“Sony” that manufacture varied technology products sucklestronics, photographic, computer
peripheral, etc. The “Japanese” relation of “Toyota” tostieompanies was interestingly stronger
than the relation to the “Car” group.

Finally, we applied runs that combine both automatic calitip adaptation and enrichment of
the structure with new hidden variables. Table 6.2 showdrtdia and test performance for the
Stock dataset. Shown are several runs withEmgich operator and fixed cardinality. For each run,
the number of hidden variables added during the learninggs®(excluding the initial root node) is
noted. Also shown is the automatic cardinality method usiie@3De score along with the different
cardinalities of the 6 hidden variables introduced intorievork structure. The combined method
was able to surpass the best of the fixed cardinality moddisrins of test set performance with
fewer than 70% of the parameters. In addition, the fact thatcombined method improves test

130 INFORMATION BOTTLENECK EM

Varied
Compag OO DAL e [| [Cetseape>Cahoo) Camezon
@ Motorola @ Microsoft @ InfoSeek X Nissan X_Gateway
High-tech giants Cars Internet

Figure 6.16: Structure learned for tB¢éock dataset using the enrichment operator augmented with
structure search that use the replace-parent operatothé\hidden variables (circles) are binary
and the subset entropy threshold was set at 95%. The chitifreach leaf are annotated with a
plausible interpretation.

performance but has worse training likelihood, demonstrds ability to avoid overfitting.

6.12 Related Work

To define the IB-EM algorithm, we introduced a formal relatietween the Information Bottleneck
(IB) target Lagrangian and the EM functional. This allowesdaformulate an information-theoretic
regularization for our learning problem. Given this obijest we used two central ideas to make
learning feasible. First, following all annealing methpd® slowly diminish the level of “pertur-
bation” as a way to reach a solution of the hard objective oB&cwe use continuation to define a
stable traversal from an easy problem to our goal problem.

A multitude of regularization forms are used in machinereay, typically depending on the
specific form of the target function (see Bishop [1995] aridrences within). Information-theoretic
regularization has been used for classification with plrtiabeled data by Szummer and Jaakkola
[2002] and for general scenarios in Deterministic anngdliRose, 1998].

Of the annealing methods, the well knoimulated annealingKirkpatrick et al., 1983] is
least similar to ours. Rather than changing the form of tHealve function, Simulated annealing
allows the search procedure to make “downhill” moves witmsaiminishing probability. This

INFORMATION BOTTLENECK EM 131

Log-likelihood | # of # of
Cardinality Train | Test hiddens| parameters
2 -19.62| -19.62| 5 89
3 -19.32| -19.37| 5 146
5 -18.87| -19.04| 6 304
10 -18.53| -18.96| 5 769
20 -18.43| -18.98| 5 2340
BDe (9,6,7,7,7,7)|| -18.65| -18.94| 6 526

Table 6.2: Effect of cardinality when inserting new hiddemiables into the network structure with
theEnrich operator for thestock dataset. A 95% entropy threshold was used for the hiddeahleri
discovery algorithm. The table shows results for severalfisardinalities as well as the automatic
cardinality method using the BDe score. Shown is the loghiiood per instance for training as
well as test data, the number of hidden variables and the eunftparameters in the model. For
the automatic method, the cardinalities of each hidderaktiis noted.

changes the way the procedure traverses the search spaedlcavelit to potentially reach pre-
viously unattainable solutions. Several papers [Heckaratal., 1994, Chickering, 1996b, Elidan
et al., 2002] have shown that Simulated annealing is not&fewhen learning Bayesian networks.

Weight annealingElidan et al., 2002], on the other hand, skews the targettion directly by
perturbing the weights of instances in diminishing magites Thus, like our method it changes
the form of @ directly but does not use an information-theoretic regeddion. Weight annealing
can actually be applied to a wider variety of problems thanmethod, including structure search
with complete data. However, like other annealing methadsguires a cooling scheme. For the
large problems with hidden variables we explored in thisgpa@/eight annealing proved inferior
with similar running times, and impractical with the segisnof Elidan et al. [2002].

Finally, like our method, Deterministic annealing [Ros898&] alters the problem by explicitly
introducing an information-theoretic regularizationnterSpecifically, following the widely recog-
nized maximum entropy principl@Jaynes, 1957], deterministic annealing penalizes theatilgp
with a term that is the entropy of the model. A concrete apgitim of deterministic annealing to
graphical models was suggested by Ueda and Nakano [199&8}e¥én, when learning graphical
models, the deterministic annealing was not found to bergup® standard EM (e.g., [Smith and
Eisner, 2004]% In particular, Whiley and Titterington [2002], Smith andsBer [2004]) show why
applying deterministic annealing to standard unsupemMisarning of Bayesian networks with hid-
den variables is problematic. One possible explanatiomfoy our method works well for these
methods is the difference in motivation of the regularimatierm. Specifically, our term was moti-
vated by the need for generalization where one want to casaphe identity of specific instances.

2Smith and Eisner [2004] also suggest a variant of the detéstii annealing algorithm that appears to work well
but is only applicable in the context of semi-supervisedrg or when an initial informed starting point for the EM
algorithm is at hand.

132 INFORMATION BOTTLENECK EM

Another important difference between the two methods i ttk@ Weight annealing, deterministic
annealing requires the specification of a cooling policycihmakes it potentially impractical for
large generative problems. This problem may be avoidedyesmethod similar to the one we used
in this work. We leave this prospect as well as the challerfgeetier understanding the relation
between the entropy and information regularization teronguture study.

Continuation methods are a well developed field in mathas@atson, 2000]. While these
methods are used extensively and successfully to solvéigahengineering challenges such as
complex polynomial systems, they have not been frequersid un machine learning. Recently,
Corduneanu and Jaakkola [2002] used continuation to deterenbeneficial balance between la-
beled and unlabeled data. To our knowledge this is the firsk wolearning graphical models to
use continuation to traverse from an easy solution to theetEmaximum likelihood problem.

A complementary aspect of our work is the introduction of ificdtion operators for hidden
variables. Our method both for learning the cardinality dfiéden variable, and for introducing
new hidden variables into the network structure, relieshenannealing process and utilizes emer-
gent signals. The problem of evaluating the cardinality ofdden variable in a graphical model
was explored in several worke.), Chang and Fung [1990], Elidan and Friedman [2001]). The
work of Stolcke and Omohundro [1993] for HMMs was the first s& @valuation of pairwise state
merges to determine adapt the cardinality. In Elidan aneldanan [2001], we extend their method
for general Bayesian networks, and Slonim et al. [2002] w@seiilar approach within the Infor-
mation Bottleneck framework. All of these methods startwatlarge number of states, and then
apply bottom-up agglomeration to merge overlaps in thestpace and reduce redundancies. By
contrast, our method is able to take an “add-when-needqutbaph and state mergers are evaluated
not to collapse states but rather to determine if a new oneaded. Several papers also explored
methods for introducing new hidden variables into the nétvatructure, either for specific classes
of Bayesian networkse(g, Martin and VanLehn [1995], Spirtes et al. [1993], Zhang(2]) or
for general models using a structural signature approabtigitet al., 2001]. Our contribution in
enriching the structure with new hidden variables is twabfétirst, we suggested a natural informa-
tion signature as a “cue” for the presence of a hidden variabhlike the structural signature this
signature is flexible and is able to weight the influence ded#nt child nodes. Second, we use the
enrichment approach in conjunction with the continuatippraach for bypassing local maxima.
As in cardinality learning, we are able to utilize emergéaghals allowing the introduction of new
hidden variables into simpler models rendering them mdextfe.

6.13 Discussion and Future Work

In this chapter we addressed the challenge of learning masligh hidden variables in real-life
scenarios. We presented a general approach for learningatfaeneters of hidden variables in

INFORMATION BOTTLENECK EM 133

Bayesian networks and introduced model selection operdlat allow learning of new hidden
variables and their cardinality. We showed that the methabdesies significant improvement on
challenging real-life problems.

The contribution of this chapter is threefold. First, we madformal connection between the
objective functionals of the Information Bottleneck frammek [Tishby et al., 1999, Friedman et al.,
2001] and maximum likelihood learning for graphical modelhe Information Bottleneck and
its extensions are originally viewed as methods to undedsthe structure of a distribution. We
showed that in some sense the Information Bottleneck andmosx likelihood estimation are two
sides of the same coin. The Information Bottleneck focusethe distribution of variables in each
instance, while maximum likelihood focuses on the pro@cif this distribution on the estimated
model. This understanding extends to general Bayesiarnonetvthe recent results of Slonim and
Weiss [2002] that relate the original Information Bottleke@nd maximum likelihood estimation in
univariate mixture distributions.

Second, the introduction of the IB-EM principle allowed osuse an approach that starts with
a solution aty = 0 and progresses toward a solution in the more complex lapdsaiay = 1. This
general scheme is commoneterministic annealingpproaches [Rose, 1998, Ueda and Nakano,
1998]. These approaches “flatten” the posterior landscgpaising the likelihood to the power of
~. The main technical difference of our approach is the intotidn of a regularization term that
is derived from the structure of the approximation of thelyaiaility of the latent variables in each
instance. This was combined with a continuation method réretrsing the path from the trivial
solution aty = 0 to a solution aty = 1. Unlike standard approaches in Deterministic annealing
and Information Bottleneck, our procedure can automayiaidtect important regions where the
solution changes drastically and ensure that they areddaclosely. In preliminary experiment the
continuation method was clearly superior to standard dimgestrategies.

Third, we introduced model enrichment operators for insgrhew hidden variables into the
network structure and adapting their cardinality. Theseraijprs were specifically geared toward
utilizing the emergent cues resulting from the annealimocedure. This resulted in models that
generalize better and achieve equivalent or better resithsa relatively simple model.

The methods presented here can be extended in severalatisecFirst, we can improve the
introduction of new hidden variables into the structure tgnfulating better “signals” that can be
efficiently calculated for larger clusters. Second, we csaalternative variational approximations
as well as adaptive approximation during the learning mecéhird, we want to explore methods
for stopping aty < 1 as an alternative way for improving generalization periange.

Chapter 7

The “Ideal Parent” method for
Continuous Variable Networks

Up until now, we were mostly concerned with learning new kiddariables and coping with the
difficulties of attaining a favorable model in the presentenaltiple local maxima. In real-life do-
mains, we might have to start by facing the more fundamemndtddlpm of computational complexity.
This is particularly true when learning networks with contbus variables and varied conditional
probability distributions, which are being used in a widega of applications, including fault de-
tection €.g, [U. Lerner and Koller, 2000]), modeling of biological sggis €.g, [Friedman et al.,
2000]) and medical diagnosise.@, [Shwe et al., 1991]). Just as in Chapter 6 we addresseddhe pr
lem on learning hidden variables in conjunction with thelgpeon of local maxima, in this chapter
we address the problem of hidden variables in conjunctidh thie problem of computational com-
plexity, when applied to networks with continuous variable

When learning probabilistic graphical models, the tasktafcture learning is particularly de-
manding. As discussed in Chapter 2, this task is typicaftattrd as a combinatorial optimization
problem. This problem is typically addressed by heuristiareh procedures, such as greedy hill
climbing, that traverses the space of candidate structkneen this greedy approach can be ex-
tremely time consuming due to the time required to score eaodidate structure, particularly in
the presence of missing data or hidden variables. The isituean be even more acute if we want
to learn networks with continuous variables: If we limit sellves to networks witlinear Gaussian
conditional probability distributions [Geiger and Heakem, 1994], we can use sufficient statis-
tics to summarize the data, as is the case for discrete \esjadind use a closed form equation to
evaluate the score of candidate families. In general, heweve are also interested in non-linear
interactions. These do not have sufficient statistics, aqdire costly parameter optimization to
evaluate the score of a candidate family. These difficutmserely limit the applicability of stan-
dard heuristic structure search procedures to rich n@afimodels.

134

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 135

We present a general method for speeding search algorithmagdicture learning in continuous
variable networks. Our method can be applied to many fornasurfimodal parametric conditional
distribution, including the linear Gaussian model as wslin@any non-linear models. The ideas
are inspired from the notion gésiduesin regression [McCullagh and Nelder, 1989], and involve
the notion of “ideal parents”. For each variable, we cortdtanideal parent profileof a new
hypothetical parent that would lead to the best possibleigtien of the variable. We then use
this profile to efficiently select potential candidate p#setimat have a similar profile of values.
Using basic principles, we derive a similarity measure ttaat be computed efficiently and that
approximates the improvement in score that will result fritva addition of a candidate parent.
This provides us with a fast method for scanning many pakptrents and focus more careful
evaluation (exact scoring) to a smaller number of promisiagdidates.

The ideal parent profiles we construct during search alsaiggaew leverage on the problem
of introducing new hidden variables during structure lgagnBasically, if the ideal parent profiles
of several variables are sufficiently similar, and are nuotilsir to one of their current parents, we
can consider adding a new hidden parents for all these Vesialihe ideal profile allows us to
estimate the impact this new variable will have on the scamd,suggest the values it takes in each
instance. Thus, our method provides a guided approachtfodincing new variables during search,
and allows to contrast this with alternative search stesdomputationally efficient manner.

7.1 The “Ideal parent” Concept

We start with the task of speeding up the structure searahritigy for a Bayesian network with
continuous variables. The complexity of any such algoriiemooted in the need to score each
candidate structure change, which in turn may require mwaf parameter optimization. Thus,
we want to somehow efficiently approximate the benefit of eartdidate and score only the most
promising of these. The manner in which this will help us tecdiver new hidden variables will
become evident in Section 7.3.

7.1.1 Basic Framework

Consider addingZ as a new parent oK whose current parents in the network &fe Given a
training dataD of M instances, to evaluate the change in score, when using (Bes®&ire (see
Section 2.3.2), we need to compute the change in the lofiHded (see Section 2.2.1)

Axju(Z) = tx(UU{Z},0' : D) — (x(U,0: D) (7.1)

where# are the current maximum likelihood parameters for the famil X, andé’ are the maxi-
mum likelihood parameters after the addition/f The change in the BIC score is this difference

136 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

combined with the change in the model complexity penaltygerThus, to evaluate this difference,
we need to compute the maximum likelihood paramekérgiven the new choice of parents. Our
goal is to speed up this computation.

The basic idea of our method is straightforward — for a givariable, we want to construct
a hypothetical “ideal parenty” that would best predict the variable. We will then comparehea
existing candidate parerf to this imaginary one using a similarity meas@éy, z) (which we
instantiate below) and fully score only the most promisiagdidates. In order for this approach
to be beneficial, we will want the similarity score to approgte the actual change in likelihood
defined in Eq. (7.1).

Conditional Probability Distribution
To make our discussion concrete, we focus on networks whenepresenX as a function of its
parentsU = {Uy, ..., U} with a conditional probability distribution (CPD) that héme following
general form:

X =g(auy,...,aug : 0) + ¢ (7.2)

whereg is alink functionthat integrates the contributions of the parents with éattil parameters
0, «; that are scale parameters applied to each of the parents,thatlis a noise random variable
with zero mean. In here, we assume that Gaussian with variance?.

When the functiory is the sum of its arguments, this CPD is the standard lineass&an CPD.
However, we can also consider non-linear choices. ¢for example,

1

T fe oo 100 (7.:3)

glajuy,...,qpug : 0) =6y

is a sigmoid function where the responseXofo its parents’ values is saturated when the sum is far
from zero.

Likelihood Function
Given the above form of CPDs, we can now write a concrete fdrtheolog-likelihood function

M

x(U.0:D) =5 3 |log(2m) + loglo?) + 5(alm] ~ g(ulm) |

m=1

= —% [M log(27) + M log(o?) + % Z(m[m] - g(u[m]))2]

where, for simplicity, we absorbed each coefficientinto each value of.;[m]. Similarly, when
the new paren¥ is added with coefficient,, the new likelihood is

(x(Uu{Zz},0 : D)= —% [M log(27) 4+ M log(c?) + % Z(m[m] — g(um], azz[m]))zl

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 137

Consequently, the difference in likelihood of Eq. (7.1)dskhe form of
M
Axu(2) = 5 [log o2 —log 0'2]

—% é > (@[m] — g(um], azz[m]))* — = Y (z[m] — g(u[m]))*| (7.4)

The “Ideal Parent”
We now define the ideal parent fof

Definition 7.1.1: Given a dataseD, and a CPD forX given its parentdJ, with a link functiong
and parameter® anda, theideal parentY” of X is such that for each instanee,

xm] = glarus[m], ..., agug[m], y[m] : 0) (7.5)

Under mild conditions, th@leal parent profilg(i.e., value ofY” in each instance) can be computed
for almost any unimodal parametric conditional distribati The only requirement fromis that it
should be invertible w.r.t. each one of the parents. Noteiththis definition, we implicitly assume
thatz[m] lies in the image of. If this is not the case, we can substitafen] with =, [m], the point
in g's image closest ta[m]. This guarantees that the prediction’s mode for the cusendf parents
and parameters is as close as possibl¥ to

The resulting profile for the hypothetical ideal paréntis the optimal set of values for the
k + 1'th parent, in the sense that it would maximize the likelitiaif the child variableX. This is
true since by definitionX is equal to the mode of the function of its parents defined. bgtuitively,
if we can efficiently find a candidate parefitthat is similar to the hypothetically optimal parent,
we can improve the model by adding an edge from this parekt td/e are now ready to instantiate
the similarity measur€’(y, z). Below, we demonstrate how this is done for the case of arlinea
Gaussian CPD. We extend the framework for non-linear CP3&ation 7.5.

7.1.2 Linear Gaussian

Let X be a variable in the network with a set of parefiis and alinear Gaussianconditional
distribution. In this caseg; in Eqg. (7.2) takes the form

glaquy, ... aqpuy : 0) = Zaiui + 6y
i

To choose promising candidate parentsXqrwe start by computing the ideal parénfor X given
its current set of parents. This is done by inverting thedinek function g with respect to this

138 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

additional parent” (note that we can assume, without loss of generality, tleastiale parameter of
this additional parent i$). This results in

- Z ajujlm] — 6y (7.6)
J
We can summarize this in vector notation, by usihg (z[1],...,z[M]), and so we get
y=I—-Ud

wherel{ is the matrix of parent values on all instances, arid the vector of scale parameters.

Having computed th&leal parent profile we now want to efficiently evaluate its similarity to
the profile of candidate parents. Intuitively, we want thraikirity measure to reflect the likelihood
gain by addingZ as a parent oX . Ideally, we want to evaluata x|y (Z) for each candidate parent
Z. However, instead of reestimating all the parameters of2tAB after addingZ as a parent, we
approximate this difference by only fitting the scaling tacassociated with the new parent and
freezing all other parameters of the CPD (the coefficienapaters of the current parerits and
the variance parametes).

Theorem 7.1.2 Suppose thaK has parentdJ with a seta’ of scaling factors. Let” be the ideal
parent as described above, aidbe some candidate parent. Then the change in the log-ld@dih
of X in the data, when adding as a parent ofX, while freezing all parameters except the scaling
factor of Z, is

Cl(g,) EH&%X@X(U U {Z},9 U {OéZ} :D)—1x(U,0:D)

1 (7 2)?

202 7.7

Proof: In the linear Gaussian cagén] = z[m] — g(u[m]) by definition andg(u[m], a,z[m]) =
g(u[m]) + a,z[m] so that Eq. (7.4) can be written as

M
Axu(Z) == [logaz - loga —

5
) o 11 a1
7[logaz—loga}—§ (y-y—2azz-y+azz-z)——y-y (7.7)

Sinceo, = o this reduces to

Axu(Z:a,)=lx(UU{Z},0U{az}: D) —Ix(U,0:D)
1
_F(

—20,7 -+ a27 - Z) (7.8)

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 139

To optimize our only free parametat,, we use

aAX|U(Zaz) 1 o4 - Z 27
T e, 22 TFEUHE =0 = a= o

Plugging this into Eqg. (7.8), we get
C1(7, %) =max Axy(Z :)
1 7y, .
= [22 Z>.
207 (7z YT (

1@y
202 7.7

t\zl‘ Ny
(SIS
N———
(Y]
Y
Ny
v

The form of the similarity measure can be even further sifiegoli

Proposition 7.1.3 LetC4 (7, 2) be as defined above and tebe the maximum likelihood parameter
beforeZ is added as a new parent &f. Then

L. M (7-2)? M
Ci(y, %) = 7(5(7 = < cos” ¢y 2

)(G-9) 2

whereg; > is the angle between the ideal parent profile vegi@nd the candidate parent profile

Ny

vectorz.

Proof: To recover the maximum likelihood parameteroive differentiate the log-likelihood func-

tion as written in Eq. (7.4)

o D) e+ >] — gCulm))? = 0
= % = LS (alm] — g(ulm))? = —-7-7

m

where the last equality follows from the definitiong®fThe result follows immediately by plugging

this into Theorem 7.1.2 and the fact that? ¢;- = 20 1

Thus, there is an intuitive geometric interpretation to tieasure’; (v, 2): we prefer a profile?
that is similar to the ideal parent profile regardless of its norm: It can easily be shown that cy/
(for any constant) maximizes this similarity measure. We retain the lesstintiform of C (¥, 2)
in Theorem 7.1.2 for compatibility with later developments

Note that, by definition(’, (7, 2) is alower boundon A x|;(Z), the improvement on the log-
likelihood by addingZ as a parent oX: When we add the parent we optimize all the parameters,
and so we expect to attain a likelihood as high, or highen tha one we attain by freezing some
of the parameters. This is illustrated in Figure 7.1(a) fhats the true likelihood improvement

140 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

200 . 200

180 180

160 160

140 140
Szl D20t
= =
© 5]
= 1001 = 100} N
= = g
N 8or N eor e
(9)] (9)] - .

.
%
60 sen L, . 1 60 ¢ NI
s B . 0w { e -
t-:° o S, (S ‘0. .
a0t ’:- 3._ et ™ 1 a0t f,- il
0 ° .
201 The o2 — 201 -
. * .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
A Score A Score

Figure 7.1: Demonstration of the (&) and (b)C> bounds for linear Gaussian CPDs. Thaxis
is the true change in score as a result of an edge modificattmay-axis is the lower bound of this
score. Points shown correspond to several thousand edgéaatidns in a run of the ideal parent
method on real-lifévfeast gene expressions data.

vs. (] for several thousand edge modifications taken from an exygati using real life Yeast gene
expression data (see Section 7.6).

We can get a better lower bound by optimizing additional pexters. In particular, after adding
a new parent, the errors in predictions change, and so weeealjust the variance term. As it turns
out, we can perform this readjustment in closed form.

Theorem 7.1.4 Suppose thak has parentdJ with a seta of scaling factors. Let” be the ideal
parent as described above, adbe some candidate parent. Then the change in the log-li@dih
of X in the data, when adding as a parent ofX, while freezing all other parameters except the
scaling factor ofZ and the variance ok, is

Co(7,2) =maxlx(UU{Z},0 U{az}:D)—x(U,0 : D)

(e 2%

M .
=-3 log sin? bgz
whereg; > is the angle betweegiand 2.

Proof. To optimizes, we again consider Eq. (7.4) and set

Axu(Z2) M 1

—[7-7—20,2 G+ a%72-Z] =0
P, . Ug,[yy 22 g+ aiZ 7

Solving foro, and plugging the maximum likelihood parameterfrom the development af (¢, 2),

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 141

we get
1 1 (Z-9)?
2 . - o 25 I [
UZ:—[y-y—2azz-y+ozZz-z]:—[y-y— > 5

As we have shown abowe = ﬁgj 7 and similarly the variance term? “absorbs” the sum of
squared errors when optimized. Thus, the second term in/). ljecomes zero and we can write

Lo M
Co(y,2) = 3 [log(o?) — log(o?)]
_M log (717]) M log N M log <71 >
Ty S L E9z] T o 7.2 =9 o2 b
2 7q— (;Q 2 1— (;Zﬁ)iz)g@ 2 1 — cos? ¢y 2

Itis important to note that both; andC'y are monotonic functions é;ﬁ;ﬁ and so they consistently
rank candidate parents of the same variable. However, whegompare changes that involve
different ideal parents, such as adding a parenKtocompared to adding a parent #5,, the
ranking by these two measures might differ. And&ecan provide better guidance to some search
algorithms since

Ci(y,7) < C2(¥, 2) < Axju(2)

This that this is true due to the choice of parameters we ér@eeach of these measures. Indeed,
Figure 7.1(b) clearly shows thék is a tighter bound thaé',, particularly for promising candidates.

7.2 ldeal Parents in Search

The technical developments of the previous section showwieacan approximate the score of
candidate parents foX by comparing them to the ideal paréritusing the similarity measure. Is
this approximate evaluation useful?

When performing a local heuristic search, at each iteratieiave a current candidate structure
and we consider some operations on that structure. Thesatiops might include edge addition,
edge replacement, edge reversal and edge deletion. Weaddily igse the ideal profiles and similar-
ity measures developed to speed up two of these: edge addittbedge replacement. In a network
with NV nodes, there are in the order@f N2) possible edge additioné)(E - N) edge replacement
whereE is the number of edges in the model, and ofly~) edge deletions and reversals. Thus
our method can be used to speed up the bulk of edge modifisatmmsidered by a typical search
algorithm.

When considering adding an edge— X, we use the ideal parent profile f&f and compute

142 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

its similarity to Z. We repeat this for every other candidate parentXorWe then compute the
full score only for the K most similar candidates, and ingb&m (and the associated change in
score) to a queue of potential operations. In a similar waycan utilize the ideal parent profile
for considering edge replacement f&r Suppose thal/; € U is a parent ofX. We can define the
ideal profile for replacind/ while freezing all other parameters of the CPDXof

Definition 7.2.1: Given a dataseD, and a CPD fotX given its parentdJ, with a link functiong,
parameter# andca, thereplace ideal parent” of X andU; € U is such that for each instanee,

z[m] = glaqui[m], ..., ai_1Ui—1, ¥ip1Uit1, - - - apug[m], y[m] :) (7.9

The rest of the developments of the previous section rerhaisame. For each current parenfof
we compute a separate ideal profile - one corresponding tacespent of that parent with a new
one. We then use the same policy as above for examining eepkaa of each one of the parents.

For both operations, we can tradeoff between the accuraoyroévaluations and the speed of
the search, by changing, the number of candidate changes per family for which we admp
full score. UsingK = 1, we only score the best candidate according to the ideahpamethod
ranking, thus achieving the largest speedup, Howevere sinc ranking only approximates the true
score difference, this strategy might miss good candidatésing higher values of< brings us
closer to the standard search algorithm both in terms of reelextion quality but also in terms of
computation time.

In the experiments in Section 7.6, we integrated the chadgssribed above into a greedy hill
climbing heuristic search procedure. This procedure alsonénes moves that remove an edge
and reverse and edge, which we evaluate in the standard vis@ygréedy hill climbing procedure
applies the best available move at each iteration (amorsgttiat were chosen for full evaluation)
as in Algorithm 1. The ideal parent method is independenhefspecifics of the search procedure
and simply pre-selects promising candidates for the sesgurithm to consider.

7.3 Adding New Hidden Variables

Somewhat unexpectingly, the “ideal parent” method alseradf natural solution to the difficult
challenge that is in the heart of this thesis - that of datgatiew hidden variables. Specifically, the
ideal parent profiles provide a straightforward way to fincdewland where to add hidden variables
to the domain in continuous variable networks. The intuiti® fairly simple: if the ideal parents
of several variables are similar to each other, then we kiawd similar input is predictive of all
of them. Moreover, if we do not find a variable in the networéttls close to these ideal parents,

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 143

then we can consider adding a new hidden variable that willesas their combined input, and, in
addition, have an informed initial estimate of its profile.

To introduce a new hidden variable, we would like to requiia it will be beneficial for several
children at once. The difference in log-likelihood due taiad a new parent with profil€ is the
sum of differences between the log-likelihoods of familtds involved in:

L
Ax,,..x(Z2) =) Axu,(2)

where we assume, without loss of generality, that the mesntfethe cluster ar&y,..., Xy. To
score the network witly as a new hidden variable, we also we need to deal with theelifte in the
complexity penalty term, and the likelihood Bfvariable as a root variable. These terms, however,
can be readily evaluated. The difficulty is in finding the geofi that maximizesAy, . x, (Z2).
Using the ideal parent approximation, we can lower bourslithprovement by

L Lo (Z-)2
ZCI(:JHZ)EZ—Q Era— éAXl,...,XL(Z) (710)

— 204 Z-Z
K

and so we want to find* that maximizes this bound. We will then use this optimizedrzbas our
approximate cluster score. That is we want to find

g LG TyyTz
o _ = 7.11
z arg m?x ZZ: 201'2 N arg m?x T ()

where) is the matrix whose columns agg/c;. z* must lie in thecolumn sparof) since any
component orthogonal to this span increases the denomiofatioe right hand term but leaves the
numerator unchanged, and therefore does not obtain a maxinwe can therefore express the
solution as:

= Yi -

* = = = 7.12

z ZZ: vi - Vi (7.12)
wherev'is a vector of coefficients. Furthermore, the objective in[#dL1) is known as thRayleigh
quotientof the matrix)))” and the vectof. The optimum of this quotient is achieved whén
equals the eigenvector 9f)” corresponding to its largest eigenvalue [Wilkinson, 1968jus, to
solve forz* we want to solve the following eigenvector problem

(ny)z;’k = \z*

Note that the dimension &P)7 is M (the number of instances), so that, in practice, this prable
cannot be solved directly. However, by plugging in Eq. (7, 1ultiplying on the right by, and

144 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

definingA = YT), we get a reduced generalized eigenvector problem
AAT = NAY

Although this problem can now be solved directly, it can behier simplified by noting tha# is
only singular if the residue of observations of two or morealaes are linearly dependent along
all of the training instances. In practice, for continuousafales,A is indeed non-singular, and we
can multiply both sidesi—! and end up with a simple eigenvalue problem:

AT = \U

which is numerically simpler and easy to solve as the dinwensf A is L, the number of variables
in the cluster, which is typically relatively small. Once ¥ied the L dimensional eigenvectar*
with the largest eigenvalug*, we can express with it the desired parent proffle

We can get a better bound &y, x, (Z) if we useC, similarity rather thanC;. Unfortu-
nately, optimizing the profile’ with respect to this similarity measure is a harder problbat ts
not solvable in closed form. Since the goal of the clustentifieation is to provide a good starting
point for the following iterations that will eventually galathe structure, we use the closed form
solution for Eqg. (7.11). Note that once we optimized the pecfiusing the above derivation, we
can still use the”s similarity score to provide a better bound on the qualityhis$ profile as a new
parent forXy,..., X.

Now that we can approximate the benefit of adding a new hiddesnpto a cluster of variables,
we still need to consider different clusters to find the mestdficial one . As the number of clusters
is exponential, we adapt a heuristigglomerative clusteringpproaché€.g, [Duda and Hart, 1973])
to explore different clusters. We start with each variatdean individual cluster and repeatedly
merge the two clusters that lead to the best expected imprenein the BIC score (or the least
decrease). This procedure potentially involé@SV?3) merges, wheréV is the number of possible
variables. We save much of the computations by pre-comgtiigmatrix)’”) only once, and then
using the relevant sub-matrix in each merge. In practicetithe spent in this step is insignificant
in the overall search procedure.

7.4 Learning with Missing Values

Once we add a hidden variable to the network structure, isesyeent structure search, we have to
cope with missing values, even if the original training da&s complete. Similar considerations
can arise if the dataset contains partial observations miesof the variables. To deal with this

!In the Generalized Eigenvector Problemve want to find eigenpairs\, 7)) so thatB7 = AA% holds.

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 145

problem, we use the Expectation Maximization approach [pstar et al., 1977] and its application
to network structure learning [Friedman, 1997] (see SeQid for more details).

How can we combine the ideal parent method into this strattdM search? Since we do
not necessarily observe neith&rnor all of its parents, the definition of the ideal parent carive
applied directly. Instead, we define the ideal parent to betbfile that will match the expectations
given(). That is, we choosg[m] so that

Eqlz[m] | Do] = Eqlg(crur[m], ..., agux[m],y[m] : 0) | D,
In the case of linear CPDs, this implies that
¥ = Eq[T | Do] — Eq[U | DoJa

Once we define the ideal parent, we can use it to approximategels in the expected BIC score
(given Q). For the case of a linear Gaussian, we get terms that ar&asitmiC; andC, of Theo-
rem 7.1.2 and Theorem 7.1.4, respectively. The only chantiet we apply the similarity measure
on the expected value affor each candidate parefit. This is in contrast to exact evaluation of
Eo [AX|UZ | D,], which requires the computation of the expected sufficieatistics of U, X,
and Z. To facilitate efficient computation, we adopt an approxgnezariationalmean-fieldform
(e.g, [Jordan et al., 1998, Murphy and Weiss, 1999]) for the pamteThis approximation is used
both for the ideal parent method and the standard greedypagipiused in Section 7.6. This results
in computations that require only the first and second mostfeneach instancem], and thus can
be easily obtained fror®.

Finally, we note that the structural EM iterations are giillaranteed to converge to a local
maximum. In fact, this doesot depend on the fact thdt; andC, are lower bounds of the true
change to the score, since these measures are only useestgrepromising candidates which are
scored before actually being considered by the searchitigor Indeed, the ideal parent method
is @ modular structure candidate selection algorithm andbeaused as a black-box by any search
algorithm.

7.5 Non-linear CPDs

We now address the important challenge of non-linear CPiDthd class of CPDs we are consid-
ering, this non-linearity is mediated by the link functignwhich we assume here to be invertible.
Examples of such functions include the sigmoid functiormgihan Eq. (7.3) and hyperbolic func-
tions that are suitable for modeling gene transcriptiorulegon [Nachman et al., 2004], among
many others. When we learn with non-linear CPDs, paramstanation is harder. To evaluate a
potential parenf for X we have to perform non-linear optimizationg, conjugate gradient) of all

146 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

of the« coefficients of all parents as well as other parametes bf this case, a fast approximation
can boost the computational cost of the search significantly

As in the case of linear CPDs, we compute the ideal parentigipliy invertingg. (We assume
that the inversion off can be performed in time that is proportional to the caléoadf ¢ itself as
is the case for the CPDs considered above.) Suppose we aid@ang the addition of a parent to
X in addition to its current parenis, and that we have computed the value of the ideal pasenlt
for each samplen by inversion ofg. Now consider a particular candidate parghtvhose value
at them'th instance isZ[m]. How will the difference between the ideal value and the eatZ
reflect in prediction ofX for this instance?

As we have seen in Section 7.1, in the linear case, the diftergm| — y[m] translated through
g to a prediction error. In the non-linear case, the effechefdifference on predicting’ depends on
other factors, such as the values of the other parents. Thiseeonsider again the sigmoid function
g of Eq. (7.3). If the sum of the arguments gas close to0, theng locally behaves like a sum of
its arguments. On the other hand, if the sum is far fignthe function is in one of the saturated
regions, and big differences in the input almost do not chahg prediction. This complicates our
computations and does not allow the development of sirhjlaneasures as in Theorem 7.1.2 and
Theorem 7.1.4 directly.

We circumvent this problem by approximatiggwith a linear function around the value of the
ideal parent profile. We use a first-order Taylor expansiog arfound the value of and write

L oo L L 0g(u,y
(. 2) ~ g,) + (2 -) 22527

As aresult, the “penalty” for a distance betwetsndy depends on the gradient @at the particular
value ofg/, given the value of the other parents. In instances wheréédhgative is small, larger
deviations betweeg[m] and z[m] have little impact on the likelihood of[m], and in instances
where the derivative is large, the same deviations may leawtse likelihood.

To understand the effect of this approximation in more dletai consider a simple example
with a sigmoid Gaussian CPD as defined in Eq. (7.3), whéreas no parents in the current net-
work and Z is a candidate new parent. Figure 7.2(a) shows the sigmaictibin (dotted) and
its linear approximation at* = 0 (solid) for an instance wher& = 0.5. The computation of
Y = log (g5 —1) = 0 by inversion ofy is illustrated by the dashed lines. (b) is the same for a
different sample wher& = 0.85. In (c),(d) we can see the effect of the approximation foséhe
two different samples on our evaluation of the likelihooddtion. For a given probability value,
the likelihood function is more sensitive to changes in thki@ of 7 aroundY whenX = 0.5
when compared to the instande= 0.85. This can be seen more clearly in (e) where equi-potential
contours are plotted for the sum of the approximate lodiliked of these two instances. To re-
cover the setup where our sensitivity fodoesnot depend on the specific instance as in the linear

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 147

X =0.85
1 1 ; ;
~ | ! |
~—~ L G i
N o5 N G
(@) (@) L o : i
L ‘0" 1 |
ot 1
0 0 Mhuasee®”, ‘ 1.Y(0.85)
4 2 0 2 4
Z
2 2
g 8a
o © o
£ o £ S +
T I SR
x X = X
5= -
0 0
3.52 3.37
o
2.31 g
) 2.26
N S
1.1 X 115
N
-0.11 0.04
-1.85 -0.64 0.58 1.79 -0.é6 -0‘.3 0:27 6.83
Z (X=0.5) Z X 00,5
(e) ()]

Figure 7.2: A simple example of the effect of the linear appration for a sigmoid CPD wher&

has no parents in the current network afis considered as a new candidate parent. Two samples
(a) and (b) show the functiop(y;,...,yx : 0) = elmwo for two instances wher& = 0.5
and X = 0.85, respectively, along with their linear approximation a¢ itleal parent valu&™ of

X. (c) and (d) show the corresponding likelihood function @sdapproximation. (e) shows the
equi-potential contours of the sum of the log-likelihoodtloé¢ two instances as a function of the
value of Z in each of these instances. (f) is the same as (e) when theaxiskewed using the
gradient ofg with respect to the value daf.

148 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

case, we consider a skewed versionof dg/0y rather thanZ directly. The result is shown in
Figure 7.2(f). We can generalize the example above to dp\akimilarity measure for the general
non-linear case

Theorem 7.5.1 Suppose thak has parentdJ with a seta of scaling factors. Let” be the ideal
parent as described above, afithe some candidate parent. Then the change in log-likeliteddd

in the data, when adding® as a parent ofX, while freezing all other parameters, is approximately
. o q 1
Ci(Fog'(7),Z0d(9)) - 553 (k1 — k2). (7.13)
whereg’'(9) is the vector whose:'th component i€)g(au, y) /0y |g[m) ym|, @do denotes component-
wise product. Similarly, if we also optimize the variandert the change in log-likelihood is ap-
proximately

Co(Fo g (i), 70 g'(7)) — - log — (7.14)

In both cases,

do not depend o#.

Thus, we can use exactly the same measures as before, ehatepet“distort” the geometry with
the weight vector/(y) that determines the importance of different instances. pfwaimate the
likelihood difference, we also add the correction term whi a function ofk; andk,. This cor-
rection is not necessary when comparing two candidatesh@ésame family, but is required for
comparing candidates from different families, or when addiidden values. Note that unlike the
linear case, our theorem now is approximate by definitiontduke linear approximation af.

Proof: Using the general form of the Taylor linear approximationdmon-linear link functiory,
Eqg. (7.4) can be written as

Axu(Z)

M 2 171 1
NG loe s =g | T - 9@ 9) — (0eF =) 0 09 — 17— 9@

M, o 1 1 B
=4 log % — o~ [02(2009)* = 20:(Z0 0g) - (0 D) + (§09)*] + 55 [— g(W)]”

— [#— g(u)]? (7.15)

[OZEE* N g* — 20[25* . :lj* + g* * g*] + 20_

2 9,2
o 207

where we use the fact that- g(d, ¢/) = 0 by construction ofj, and we denote for clarity, = yodg

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 149

andz, = 7o dg. To optimizea, we use

0A Z 1 2 - 7,
02ul?) Lz s 0ng) = a= T
da, 20 A A
Plugging this into Eq. (7.15) we get
1 (Z-9,)? 1 . . 1 .. o
A) T — — [T —
X\U() 22 7, -7 952 Yu " Yx T 902 [g(d)]

oL 1
= C1 (Y, Zx) — ﬁ(kl — ko)

which proves Eq. (7.13). When we also optimize that variaasenoted before, the variance terms
absorbs the sum of squared errors, so that

1 — — (g*g*)z
=g [
* *

Plugging this into Eqg. (7.15) results in

M o?
Axju(2)~—log 7
| 2 o2
2 = 2
— M iog [Z g((l;)]g o= o [9(12] -
— — * Yx — — Zx Yx
L A=A y*'y*l—ﬁ]
1 - 2 -
S loe gy T gl - g(wl" - 5 log(si - 1)
ZxZxYxYx
Lo, M.k
= Co(Y, 24) — o5 log k‘_;

As in the linear case, the above theorem allows us to effigienaluate promising candidates for
the add edgestep in the structure step, and tleplace edgestep can also be approximated with
minor modifications. As before, the significant gain in spisgtiat we only perform few parameter
optimizations (that are expected to be costly as the numbparents grows), rather that(V)
such optimizations.

Adding a new hidden variable with non-linear CPDs introduitether complications. We want
to use, similarly to the case of a linear model, the structw@e of Eqg. (7.10) with the distorted
C1 measure. Optimizing this measure has no closed form soliidhis case and we need to
resort to an iterative procedure or an alternative appration. We use an approximation where the
correction terms of Eq. (7.13) are omitted so that a form ithatmilar to the linear Gaussian case
is used, with the “distorted” geometry gf Having made this approximation, the rest of the details

150 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

are the same as in the linear Gaussian case.

7.6 Experiments

We now examine the impact of the ideal parent method in twiingst In the first setting, we use
this method for pruning the number of potential moves thatemaluated by greedy hill climbing
structure search. We apply this learning procedure to cetamlata (and data with some missing
values) to learn dependencies between the observed wiabi the second setting, we use the
ideal parent method as a way of introducing new hidden viasaland also as a guide to reduce the
number of evaluations when learning structure that inwhelden variables and observed ones,
using a Structural EM search procedure.

In the first setting, we applied standard greedy hill clingbsearch Greedy) and greedy hill
climbing supplemented by the ideal parent method as disdussSection 7.21¢eal). In using
the ideal parent method, we used thg similarity measure (Section 7.1) to rank candidate edge
additions and replacements, and then applied full sconmgto the topK ranking candidates per
variable.

To evaluate the impact of the method, we start with a syrttetperiment where we know the
true underlying network structure. In this setting we caaleate the magnitude of the performance
cost that is the result of the approximation we use. (We emarttie speedup gain of our method
on more interesting real-life examples below.) We used waordt learned from real data (see be-
low) with 44 variables. From this network we can generataskts of different sizes and apply
our method with different values df. Figure 7.3 compares the ideal parent method and the stan-
dard greedy procedure for linear Gaussian CPDs (left cojuand sigmoid CPDs (right column).
Using K = 5 is, as we expect, closer to the performance of the standaetgrmethod both in
terms of training set [(a),(e)] and test set [(b),(f)] pen@ance thenk' = 2. For linear Gaussian
CPDs test performance is essentially the same for both metHdsing sigmoid CPDs we can see
a slight advantage for the standard greedy method. Wheridevimg the percent of true edges
recovered [(c),(g)], as before, the standard method showe sadvantage over the ideal method
with K = 5. However, by looking at the total number of edges learnel(f(}], we can see that the
standard greedy method achieves this by using close to 508 edges than the original structure
for sigmoid CPDs. Thus, advantage in performance comes ighacbhmplexity price (and as we
demonstrate below, at a significant speed cost).

We now examine the effect of the method on learning from litaldatasets. We base our
datasets on a study that measures the expression of thesbgdast genes in 173 experiments
[Gasch et al., 2000]. In this study, researchers measurpegsion of 6152 yeast genes in its
response to changes in the environmental conditions,tiegith a matrix of173 x 6152 measure-
ments. In the following, for practical reasons, we use twe eégenes. The first set consists of 639

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 151

Train

107 — Ideal K=5
Gold
100 1000 100 1000

(@) (e)

Test
Test

100 1000 100 1000

(b) (f

(9

15

Total
Total

100 1000 100 1000

(d) (h)

Figure 7.3: Evaluation ofdeal search on synthetic data generated from a real-life likevort
with 44 variables. We compatdeal search withK' = 2 (dashed) and< = 5 (solid), against the
standardGreedy procedure (dotted). The figures show, as a function of thebeurof instances
(z-axis), for linear Gaussian CPDs: (a) average training lkglihood per instance per variable;
(b) same for test; (c) fraction of true edges obtained imledrstructure; (d) total number of edges
learned as fraction of true number of edges. (e)-(h) samsdanoid CPDs.

152

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

Ideal K = 2 vs Greedy Ideal K = 5 vs Greedy
Dataset vars | inst train test edge move eval SL train test edge move eval sp
Linear Gaussian with complete data
AA 44 173 | -0.024 0.006 87.1 965 3.6 p -0.008 0.007 94.9 96.5 9.3 P
AACond | 173 | 44 -0.038 0.082 922 92.6 1.2 P -0.009 0.029 96.9 98.2 29 p
Met 89 173 | -0.033 -0.024 88.7 91.5 1.6 B -0.013 -0.016 945 969 44 p
Met Cond | 173 | 89 -0.035 -0.015 91.3 98.0 1.0 » -0.007 -0.023 98.9 98.5 2.4 p
Linear Gaussian with missing values
AA 354 | 173 | -0.101 -0.034 81.3 95.2 0.4 b -0.048 -0.022 90.7 96.0 0.9 b
AACond | 173 | 354 | -0.066 -0.037 74.7 875 04 14-0.033 -0.021 86.3 101.1 16 11
Sigmoid with complete data
AA 44 173 | -0.132 -0.065 49.7 59.4 20 38-0.103 -0.046 60.4 77.6 6.1 18
AACond | 173 | 44 -0.218 0.122 62.3 76.7 1.0 36-0.150 0.103 73.7 79.4 23 21
Met 89 173 | -0.192 -0.084 47.9 583 09 65-0.158 -0.059 56.6 69.8 26 29
Met Cond | 173 | 89 -0.207 -0.030 60.5 69.5 0.8 5B-0.156 -0.042 69.8 77.7 22 29

Table 7.1: Performance comparison of theal parent search witk = 2, K = 5 andGreedy on
real data setsrars- number of variables in the datasitst - the number of instances in the dataset;
train - average difference in training set log-likelihood pertamee per variablégst- same for test
set;edges percent of edges learned by Ideal with respect to thosadedry Greedymoves per-
cent of structure modifications taken during the seagwgh]- percent of moves evaluatesheedup

- speedup of Ideal over greedy method. All numbers are agsrager 5 fold cross validation sets.

genes that participate in general metabolic proceddes)(and the second is a subset of the first
with 354 genes which are specific to amino acid metaboli&) (We choose these sets since part
of the response of the yeast to changes in its environmemiiaring the activity levels of different
parts of its metabolism. For some of the experiments belosvfogused on subsets of genes for
which there are no missing values, consisting of 89 and 44égaespectively). On these datasets
we can consider two tasks. In the first, we treat genes adlesiand experiments as instances. The
learned networks indicate possible regulatory or funei@onnections between genes [Friedman
et al., 2000]. A complementary task is to treat the 173 expents as variableond). In this case
the network encodes relationships between different tiomdi

In Table 7.1 we summarize differences betweenGhneedy search and th&leal search with
K set to2 and5, for the linear Gaussian CPDs as well as sigmoid CPDs. She€'4 similarity
is only a lower bound of thd3IC score difference, we expect the candidate ranking of the two
to be different. As most of the difference comes from fregzgome of the parameters, a possible
outcome is that the Ideal search is less prone to over-fitlimgeed as we see, though the training
set log likelihood in most cases is lower for Ideal searcé tést set performance is only marginally
different than that of the standard greedy method, and sftepasses it.

Of particular interest is the tradeoff between accuracy spekd when using the ideal parent
method. In Figure 7.4 we examine this tradeoff in four of théadsets described above using linear
Gaussian and sigmoid CPDs. For both types of CPDs, the peafare of the ideal parent method
approaches that of Greedy &Sis increased. As we can expect, in both types of CPDs the ideal

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 153

T —

01 //é/v 20

v

0.2 4
== Amino .
o =7~ Metabolism
g =¥~ Conditions (AA) 3r
< -B- Conditions (Met) a
01 =
= o Ll
i) =
Q
— greedy . % 1
§ ;{k—:ﬂ
n L L L L 0 L
1 2 3 4 5 1 2 3 4 5
K K
(a) Gaussian performance (b) Gaussian speedup
_8 0.1 ./‘\G* R 100
_8 == Amino
= Metabolism g
g —¥~ Conditions (AA) greedy| O
= 0| -8 Conditions (Met) o 60
2 7]
<
17
g

0 5 10 15 20 0 5 10 15 20
K K
(c) sigmoid performance (d) sigmoid speedup

Figure 7.4: Evaluation oldeal search on real-life data using 5-fold cross validation. ai@rage
difference in log likelihood per instance on test data whearding with linear Gaussian CPDs
relative to theGreedy baseline ¢-axis) vs. the number of ideal candidates for each family
(z-axis). (b) Relative speedup ov&reedy (y-axis) againstK (x-axis). (c),(d) same for sigmoid
CPDs.

parent method is faster even far = 5. However, the effect on total run time is much more pro-
nounced when learning networks with non-linear CPDs. Ia taise, most of the computation is
spent in optimizing the parameters for scoring candidate®l so, reducing the number of candi-
dates evaluated results in a dramatic effect. This speednpri-linear networks makes previously
“intractable” real-life learning problems (like gene réafion network inference) more accessible.

In the second experimental setting, we examine the abifiguo algorithm to learn structures
that involve hidden variables and introduce new ones duhiegearch. In this setting, we focus on
two layered networkw/here the first layer consists of hidden variables, all ofohldre assumed to
be roots, and the second layer consists of observed vasiaBlach of the observed variables is a

154 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

FKH1 FKH2 MCM1 SWI4 MBP1 ACE2 SWIS
(@)
- =201
S 3
2 2
kS 2.
D -40: S
S 15
= 7
g o
-60 10 100 Io 100
Instances Instances
(b) (c)

Figure 7.5: Evaluation of performance in two-layer netwexiperiments using synthetic data gen-
erated from theold structure with 141 variables shown in (a), which was curdgd biological
expert. (b) average log likelihood per instancet@ining data {-axis) for Greedy , Ideal search
with K = 2 andldeal search withK' = 5, when learning with linear Gaussian CPDs against the
number of training samples:{axis). (c) Same fotestset.

leaf and can depend on one or more hidden variables. Leasnttignetworks involves introducing
different hidden variables, and determining for each oletwvariable which hidden variables it
depends on.

To test the performance of our algorithm, we used a netwgr@ltgy that is curated [Nachman
et al., 2004] from biological literature for the regulatiohcell-cycle genes in yeast. This network
involves 7 hidden variables and 141 observed variables.edfaéd the parameters for the network
from a cell cycle gene expression dataset [Spellman et 298]1 From the learned network we
then sampled datasets of varying sizes, and tried to rectbatregulation structure using either
greedy search or ideal parent search. In both search pnesede introduce hidden variables in a
gradual manner. We start with a network where a single hid@eiable is connected as the only
parent to all observed variables. After parameter optitidnawe introduce another hidden variable
- either as a parent of all observed variables (in greedyhgasr to members of the highest scoring
cluster (in ideal parent search, as explained in Section W8 then let the structure search modify

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 155

+
X Full Ideal K=2 ;'(‘
o 0.3 | 4 Greedy + Ideal new vars X]
o
G | i
3
>
8 0.2r 7
c
]
—
) i i
§=
3
S ot +]
s | * x]
§ * ¥ Greed
< o Y
L]]] L L max
2 5 2 5 2 5 Pparents
AA Sigmoid AA Gaussian AA Cond Gaussian

Figure 7.6: Structure learning of bipartite networks whbeparents are new hidden variables and
the children are the observed variables. The differentseé#taof the baker's Yeast includ&A
with 44 variables for both Gaussian and sigmoid GaussiansCRB Cond with 173 variables and
Gaussian CPDs. For each datasets a structure with up to 2 pakbts was considered. Shown
are the test log-likelihood per instance per variable iadab the baseline of the standard greedy
structure learning algorithm.

edges (subject to the two-layer constraints) until no berafinoves are found, at which point we
introduce another hidden variable, and so on. The seangfirtates when it is no longer beneficial
to add a new variable.

Figure 7.5 shows the performance of the ideal parent seaittha standard greedy procedure
as a function of the number of instances, for linear GausSiBDs. As can be seen, although
there are some differences in training set likelihood, tegrmance on test data is essentially the
same. Thus, as in the case of the yeast experiments corsaleoee, there was no degradation of
performance due to the approximation made by our method.

We then considered the application of the algorithms to-lifsadatasets. Figure Figure 7.6
shows the test set results for several of the datasets oaie's yeast [Gasch et al., 2000] described
above, for both Gaussian and sigmoid Gaussian CPDs. Thedall parent method (blue '+") with
K = 2 and the ideal method for adding new hidden variables is stardly better than the baseline
greedy procedure. To demonstrate that the improvementdsga part due to the guided method for
adding hidden variables we also ran the baseline greedgguoe for structure changes augmented

156 THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS

with the ideal method for adding new hidden variables (redl.’Xs can be seen, the performance
of this method is typically slightly better than the full mlenethod, since it does not approximate
the structural adaptation stage. In this setup, the onfgréifice from the greedy baseline is the way
that new hidden variables are introduced. Thus, thesetsesupport our hypothesis that the ideal
method is able to introduce effective new hidden varialitest, are preferable to a hidden variables
that are naively introduced into the network structure.

We also considered the application of our algorithm to tla-lie cell-cycle gene expression
data described above with linear Gaussian CPDs. Althougld#ia set contains only 17 samples,
it is of high interest from a biological perspective to trydainfer from it as much as possible on
the structure of regulation. We performed leave-one-oos<wvalidation and compared the ideal
parent method with = 2 and K = 5 to the standard greedy method. To help avoid over-fitting,
we limited the number of hidden parents for each observeiblarto 2. In terms of training
log-likelihood per instance per variable, the greedy metisabetter than the ideal method byt
and0.42 bits per instance, fol = 5 and K = 2, respectively. However, its test log-likelihood
performance is significantly worse as a result of high owéng of two particular instances, and
is worse by0.72 bits per instance than the ideal method with= 5 and by0.88 bits per instance
than the ideal method withl = 2. As we have demonstrated in the synthetic example above, the
ability of the ideal method to avoid over-fitting via a guidsgiarch, does not come at the price of
diminished performance when data is more plentiful. Whendhserved variables were allowed
to have up to 5 parents, all methods demonstrated ovewfittihich for Greedy was by far more
severe.

The superiority of the sigmoid Gaussian over the Gaussiadeinfor the AA dataset (in the
order of 1 bit per instance per variable) motivates us toymitearning of models with non-linear
CPDs. We could not compare the different methods for thetaligtasets as the greedy method did
not complete runs given several days of CPU time. We belieakthe ability of the ideal method
to avoid over fitting will only increase its strength in thesere challenging cases.

7.7 Discussion and Future Work

In this chapter we set out to learn continuous variable nedsvavith hidden variables. Our con-
tribution is twofold: First, we showed how to speed up stnoetsearch, particularly for non-linear
conditional probability distributions. This speedup ised#ial as it makes structure learning feasi-
ble in many interesting real life problems. Second, we prieska principled way of introducing
new hidden variables into the network structure. We used@dneept of an “ideal parent” for both
of these tasks and demonstrated its benefits on both syntredireal-life biological domains. In
particular, we showed that our method is able to learn neddrid/ariables that improve the perfor-
mance. In addition, it allowed us to cope with domains whileegreedy method proved too time

THE “IDEAL PARENT” METHOD FOR CONTINUOUS VARIABLE NETWORKS 157

consuming.

The unique aspect of the Ideal Parent approach is that itdges on the parametric structure
of the conditional distributions. In here, we applied thppach in conjunction with a greedy
search algorithm. However, it can also be supplemented tyy miner search procedures, such as
simulated annealing, as a way of speeding up evaluationrmofidgate moves. Of particular interest
is how our method can help methods that inherently limit #arch to promising candidates such
as the “Sparse Candidate” method of Friedman et al. [1999c].

Both of the CPDs we examined are specific instancegeoferalized linear model@GLMs)
[McCullagh and Nelder, 1989]. This class of CPDs uses a fongt that is applied to the sum of
its arguments, called tHank functionin the GLM literature. However, we can also consider more
complex functions, as long as they are well defined for anireltsumber of parents. For example,
in [Nachman et al., 2004] models based on chemical reactiodeta are considered, where the
function g does not have a GLM form. An example of a two variable functibthis type is:

Y1y2
(14+y1)(1 +y2)

g(y1,y2:0) =10

We also note that GLM literature deals extensively witheati#int forms of noise. While we focus
here on the case of additive Gaussian noise, the ideas wegadygre can be extended to many of
these noise distributions.

Few works touched on the issue of when and how to add a hiddesbleain the network
structure €.g, [Elidan et al., 2001, Elidan and Friedman, 2003, Martin "adLehn, 1995, Zhang,
2004]). Only some of these method are potentially appleablcontinuous variable networks, and
none have been adapted to this context. To our knowledgeisttine first method to address this
issue in a general context of continuous variable networks.

Many challenges remain. First, we can further improve tleedpmf our method by considering
the K most promising candidates ot possible structure change rather than for each family inde-
pendently. This can potentially lead to another order ofmitage speedup in the search procedure.
Second, the Ideal Parent method can be combined as a plog-tarididate selection with other
innovative search procedures. Third, we want to adapt otieddor additional and more complex
conditional probability distributions (e.g., [Nachmaragt 2004]), and extending it to multi-modal
distributions. Fourth, we want to improve the approximatior adding new hidden variables in the
non-linear case. Finally, it might be possible to leveragah® connection to Generalized Linear
Models for handling more elaborate noise models.

Chapter 8

Discussion

8.1 Summary

In this dissertation we have addressed the challenge afitepnew hidden variables in probabilistic
graphical models in general, and Bayesian network in paatic In doing so we were interested in
answering three main questions:

¢ Whether a new hidden variable is needed?
e How a hidden variable should be integrated into the netwtrtctire?
e What cardinality should be assigned to a discrete hiddeablaf?

In addition, we were also concerned with the problem of lmcakima that is present in practically
any learning scenario of Bayesian networks, and that iscpdatly acute in the presence of hidden
variables.

We first presented an annealing like strategy for coping ieithl maxima in a general setting.
OurWeight Annealingnethod is based on re-weighting of samples in a graduallyniining mag-
nitude, and is reminiscent both of boosting algorithms dredtootstrap method. The approach
is applicable for most sample based algorithms and its sgops beyond probabilistic graphical
models. We demonstrated its effectiveness both for legriBayesian network and for an unrelated
optimization problem.

In Chapter 4, we presented what is arguably the most stfaigldrd approach for learning
new hidden variables. OwfindHiddenapproach reverse engineers structural signatures that are
potentially left by a hidden variable. We demonstrated hamdRidden is able to improve both
the quantitative prediction and the qualitative appeal ofleils learned from real-life data. This
approach was complemented in Chapter 5 by a simple aggltiorepproach for automatically
determining the cardinality of a hidden variable. We showed this method, in conjunction with
the basic FindHidden algorithm, is able to further imprdwve quality of the models learned.

158

DISCUSSION 159

A completely different approach for learning hidden valéabis thelnformation Bottleneck
EM (IB-EM) algorithm presented in Chapter 6. This approachmfaly relates the Information
Bottleneck framework [Tishby et al., 1999] and the EM alton [Dempster et al., 1977]. This
facilitates an annealing like continuation approach farméng the parameters of a Bayesian network
with hidden variables. Furthermore, “information sigmati are used both to introduce new hidden
variables into the network structure and adapt their cafitjn We generalized our framework to
handle multiple hidden variables and variational appr@tions enabling us to cope with large scale
domains. The main benefit of our construction is that it deatls the problem of learning hidden
variables and local maxima concurrently. We assesseddiff@spects of our approach on several
challenging real-life datasets and showed its effectigerie learning state-of-the-art models.

In the final chapter, we explored a framework specificallyrggdaoward domains with contin-
uous variables. In this scenario, when dealing with intergsnon-linear conditional probability
distributions, we also face the problem of computationahplexity even for relatively small net-
works. Ourldeal Parentmethod is able to significantly speed up structure searchisnstenario
by approximating the true score of candidates structuresihéh allow the black-box search pro-
cedure to consider only the approximately best candidatgsortantly, the same construction also
offers a guided method for inserting new continuous hidderables into the network structure, and
initializing their parameters. We demonstrated the eilfeoess of the method on several complex
datasets.

8.2 The Method of Choice

The different characteristics of the methods presentelisndissertation make them applicable in
different scenarios. Thus, when approaching a new domaenneed to consider the method of
choice for the particular task at hand.

Once the decision to insert a hidden variable is made, anditial placement in the network
is determined, we have several ways of proceeding to leardist possible model. Aside from
standard methods for escaping local maxima (see Chaptee2)an augment the search procedure
both with theWeight Annealingnethod of Chapter 3 and with thieformation BottleneckIB-EM)
framework of Chapter 6. Both of these method are similar &t they manipulate the data distri-
bution, albeit in quite different forms. In Weight Annealithis is done directly by perturbing the
weight of the training instances. In the IB-EM frameworke titata distribution is regularized by
an information-theoretic term that competes with the stathdEM learning objective. In compar-
ing these methods on small domains, as discussed in Chapiégight Annealing was similar in
performance to IB-EM. However, the significantly slowerming time of Weight Annealing made
it impossible to evaluate its effectiveness on large scadblpms. The source of this difference
is rooted in the use of guided continuation in the IB-EM meth@ther than an arbitrary cooling

160 DISCUSSION

policy in the case of Weight Annealing. In fact, in early esipents of the IB-EM method itself,
a naive annealing approach required significantly moreesyof learning to reach models that are
comparable with those learned using the continuation agpr.o Still, Weight Annealindhas sev-
eral important merits: First, unlike IB-EM, it can be appli® the problem of structure learning of
Bayesian networks even when the data is complete with effeptsults. Second, it is applicable
to a wide range of learning problem beyond the scope of legrprobabilistic graphical models.
Third, it is simple to implement and can be combined with nindestk-box optimization algorithms.

We also presented a few possible approach for learning reaehivariables. ThEindHidden
approach of Chapter 4 is based on structural signaturesamiiMo significant benefits: First, it can
be applied to any domain, be it discrete, continuous or dybBiecond, it is simple to implement
and can be used as a modular “add-on” to the search procetiangever, there are also several
drawbacks: First, the approach is rigid in nature, and is gensitive to the presence or absence
of edges. Second, it is effective only when the structughaiures manifest. That is, the method
is expected to work only when the data is not too sparse. Whenamber of samples relative to
the number of parameters is small, we need to consider a nexiblé measure for the presence of
hidden variables. This is likely to occur when our domaintaors many variables. Itis in this same
scenario that we can also expect the problem of local maxinbe tmore pronounced. The IB-EM
method of Chapter 6 offers a measure for detecting new higdeables that is based on “soft”
information-theoretic signatures for the case of dischatielen variables. It also copes explicitly
with the problem of local maxima, via a continuation appigamnd can incorporate variational ap-
proximations such asiean fieldo facilitate learning in complex domains. Just as the imfmiion
bottleneck framework was recently generalized for Gangdistributions [Chechik et al., 2003], the
IB-EM framework can be theoretically generalized to theegafdinear Gaussian networks, as long
as we can bound the information and entropy terms. Howeesrerglization of the Information
Bottleneck to additional types of distributions requirastltier research. Thieleal Parentmethod
of Chapter 7, is specifically geared toward networks withticoous variables, and in particular to
models that use a complex conditional probability distiitiu such as a sigmoid. In addition to of-
fering an appealing method for learning new hidden varabieontinuous variable networks, this
method also offers a significant speedup in the search puogetihis can be extremely important in
complex continuous domains due to the non-linear naturkeopirameter optimization procedure.
In summary, when the data is relatively plentiful, usingdHindden is a simple and effective choice.
In this scenario, we also expect the problem of local maxirizetless acute so that using standard
methods such as random restarts should be sufficient. Wieemuthber of variables is large and
the data is relatively sparse, we have to resort to more @pthniques such as IB-EM tateal
Parent depending on the type of variables in the domain.

Another choice we have to make in the case of a discrete higdegable is how to set its
cardinality. The agglomeration technique of Chapter 5{reghtforward, easy to implement, and

DISCUSSION 161

can be used independently of the search procedure or thediegtwhich new hidden variables are
introduced. For example, it can be used in conjunction viiehRindHidden algorithm for detecting
new hidden variables. While the agglomeration procedunebegpotentially slow, we used Markov
blanket properties to significantly reduce its complexityoractice, making the procedure efficient
compared to the other components of the learning procedinkke the bottom up agglomeration
approach, IB-EM can take advantage of the annealing precestapt the cardinality in a top-down
fashion. Aside from this, the methods are similar and bothaiBkelihood vs. model complexity
score to determine if the cardinality of hidden variableidtidoe changed. An important benefit that
the agglomeration method offers, is that it suggests a Lsgftting point for the parameterization
of the hidden variable. As was shown in Chapter 5, this is ifgo in guiding the EM algorithm
toward superior models. The top-down approach, on the tidned has the benefit of an “add when
needed” approach offering greater robustness during tmaifeg process. Limited experiments
with IB-EM, but when the agglomeration method was used terd@ne the cardinality of the hidden
variable, produced similar results to IB-EM’s top-down ag@xh for determining the cardinality, but
at a greater computational cost. Further research is néededer to characterize the differences
between these two approaches.

8.3 Previous Approaches for Learning Hidden Variables

Hidden variables can have a profound effect on how we int¢fgause” and “effect”. Consider an
extremely simplistic example of a cancer domain shown inf&@.1, where we want to determine
whether (a) smoking is a direct effect of cancer or, (b) tleists a hidden genetic tendency causing
both to appear correlated. The answer to this question lasdebated endlessly in U.S. courts and
has monumental financial consequences. Itis also of grgatrtance in terms of our understanding
of the domain. Obviously, practically any causal and diatistreatment of a domain must account
for the possibility of unknown hidden variables that affdoé observed entities. Consequently,
it is no surprise that the importance of hidden variablesfftuéncing and often enablintausal
identifiability was recognized long before the ‘birth” of probabilistic ginecal models in the 1980s.
Hidden, orlatentvariables play an important role in many statistical modaigl in particular in
Structural Equation Model§SEM) [Wright, 1921], that have dominated causal analysthé social
and behavioral sciences in the past decades. The basicdadlradated by these models were later
extended into the more general setting of probabilistiphieal models, whether they are given a
causal interpretation or not (see [Pearl, 1998] on theiogldietween the two framewaorks).

The importance of hidden variables was also widely recaghin early research of proba-
bilistic graphical model research [Pearl, 1988, Spirtealet1993]. Pearl [2000] presents many
causal constructs in which hidden variables play an intggrd, and these variable are the basis of
many common and empirically successful models sudHidden Markov Modelge.g., [Rabiner,

162 DISCUSSION

o S T S
(@)

(b)

Figure 8.1: Two plausible causal networks: In (agraoking is a direct cause dfancer. In (b), a
common hidden genetic trait influences the tendency botmtike and to have cancer.

1990]), as well as various clustering models (e.g., [Duda Hart, 1973]). As in statistics, it is
usually assumed that the decision of whether to include @enidvariable into the model or not, is
a preprocessing step that relies on expert prior knowledgehniques such as tigtructural EM
algorithm [Friedman, 1997], allow manipulation of the stire with a hidden variable in such a
scenario. This can enable us to learn useful models evee hiilor knowledge about the hidden
variable is not precise.

The fundamental question addressed in this dissertatiowever, is more demanding. The
guestion of whether it is worthwhile to deal with hidden ediles of which we have no knowledge,
has received little attention. Not surprisingly, the firsirks to tackle this challenge treat Bayesian
networks as causal models. In our work we have taken a mogenaitic approach to hidden vari-
ables, and refrain from causal interpretation of the graplctire. Yet, it is worthwhile to note
some of these works, several of which can be applied diréctly Bayesian network, whether it
is interpreted causally, or solely as an independence mag. qliestion of determining the car-
dinality of a hidden variable has been given significantlyrenattention as it inherently arises in
common tasks such as clustering. We discussed the mosamelefithese methods in Chapter 5,
and elaborate here only on methods for learning new hiddeables.

In theory, the full Bayesian framework (e.g., [Cooper anddKevits, 1992, Heckerman et al.,
19954a]) is all we need for learning networks with hidden ablés: We can consider a probability
distribution over all possible sets of parameters and &tras, as well as the number of hidden
variables and their cardinality. Unfortunately, compiatas within the full Bayesian framework are
typically intractable, due to the need to integrate ovepaisible models. To compute the poste-
rior of a model, two major schemes are typically used. Fivigtrkov Chain Monte Carlo methods
(e.g., [Gilks et al., 1996]) potentially achieve exact tesand can offer aanytimesolution. For
non trivial models, however, these methods require vaspodational resources to achieve reason-
able accuracy. This is particularly true in the presencddifdn variables and if the number of such
variables and their cardinality is unknown (e.g., [Gred84]). Second, the Laplace approximation
and its variants (see [Chickering and Heckerman, 1997] tmmaparison of different methods), of-
fer efficient closed form posterior computations. Howetlgse methods assume that the posterior

DISCUSSION 163

is a normal distribution, and are only asymptotically aeter In practice, both scheme are used
for relatively simple cases, such as mixture models. Motently, Attias [1999] has suggested a
theoretically elegant approach for learning new hiddematées and estimating their cardinality.
He suggests ¥ariational Bayesapproach that draws on variational algorithms in graphicadlels
(e.g., [Jordan et al., 1998]) and Bayesian methods for mextuodels [Waterhouse et al., 1996]. The
idea is to assume independence of the posterior of the hidd&bles and the unknown parameters,
and use an EM like algorithm for iteratively and analytigadistimate the full posterior. Thus, the
approach assumes a decomposition of the distributionrrttha choosing a specific (e.g., normal)
functional form. The method is successfully applied to mmi&tmodels and the source separation
problem when the number of sources is unknown, but it is Igtilited to relatively simple mod-
els with few variables. Unfortunately, all of the above aipds to approximate the full Bayesian
approach are still limited by the computational needs ofalyorithm when applied to real-life
network. Thus, practical heuristic methods were develapeastder to cope with the challenge of
learning new hidden variables in practice.

Spirtes et al. [1993] suggest an approach that is based astramt-based model selection.
Their algorithm defines a set of conditional independentias(above some significance threshold)
hold in the data. They then try to find a structure consistétit these constrains, and are able to
detects patterns of conditional independencies that cgrbengenerated in the presence of hidden
variables. A hidden variable is then introduced to accoanttfese independencies, and parameters
of the augmented structure are estimated. This approaférstdifom several limitations. First,
as for all constraint-based techniques, the dependencite idata that are going to be used are
selected using a fixed a priori threshold. Second, the apprizasensitive to failure in few of the
multiple independence tests it uses. In contrast, scoredoamethods allow a smoother trade-off
between fit to the data and model complexity. Third, theirhdtonly detects hidden variables that
areforcedby the qualitative independence constraints. It cannaaliaituations where the hidden
variable provides a more succinct model of a distributicat tan be described by a network without
a hidden variable as in the example of Figure 1.1.

Later, in a series of works, Spirtes et al. [1995] suggestedlt@rnative framework for learn-
ing with hidden variables. Rather than learning structarthée space obirected Acyclic Graphs
(DAGS), where there are infinitely many possibilities todrmorate hidden variables, they use a
representation called RBartial Ancestral Graph(PAG). Briefly, a PAG represents a subset of an
equivalence class of DAGs that may include (infinitely maliglden variables and selection bias
variables. All DAGs represented by a PAG share a common ctegigtics: they arel-separation
equivalent over th@ebservedset of variables. Unlike DAGs with hidden variables, the bemof
PAGs is finite, and like DAGs they facilitate a relatively effint search. PAGs are used mostly
to learn causal ancestor-descendant relations and toagstitre effect of interventions. The main
drawback becomes evident when we want to treat graphicaklmad probabilistic independence

164 DISCUSSION

maps, rather than as causal models. In this case, a single@A(&present many DAG models that
are quite different in terms of the distribution they repms(they are d-separation equivalent only
over the observed set of variables). In particular, bothefdf the cancer domain shown in Fig-
ure 1.1(a,b) and that motivated the need for hidden vasalalee d-separation equivalent over the
observed variables. Thus, while learning a PAG for thesemhodels may be effective for asserting
properties such as “smoking precedes lumps”, it cannoepigfjure 1.1(a) that is more succinct,
and is desirable both in terms of learning robustness aretinst of qualitative modeling.

Martin and VanLehn [1995] use an approach that is based onise correlations. First, a
“dependency” graph is built in which there is an edge fraimo Y if their correlation is above
a predetermined threshold. They then construct a two-¢ayaetwork that contains independent
hidden variables in the top level, and observable nodeseitbdttom layer, such that every depen-
dency between two observed variables is “explained” byadtlene common hidden parent. This
approach suffers from three important drawbacks. Firstpés not eliminate from consideration
correlations that can be explained by direct edges betweewpliserved nodes. Thus, redundant
clusters are formed even in cases where the dependencidsedaily explained without them.
Second, since it only examines pairwise dependenciesyitataletect conditional independencies,
such asInd(X L Y | Z) that can be the result of data created frola—~ Z — Y structure.
(In this case, it would learn a hidden variable that is theeptof all three variables.) Finally, this
approach learns a restricted form of networks that requiraisy hidden variables to represent de-
pendencies among variables. Thus, it has limited utilitgistinguishing “true” hidden variables
from artifacts of the representation. Furthermore, in da@io, one of the basic motivations for using
hidden variables — to achieve an effective and succincesstation — is lost.

Finally, in a series of works, Zhang [2004] explored seaérators that are specifically tailored
for learningHierarchical Latent Clas§fHLC) models. They define equivalence of HLC models
and suggest operators of parsimonious HLCs that changerépd docally and efficiently. As
they, show, a structural EM like variant can be used for egridLCs in practice. While their
method is appealing in its approach, it is not clear thatsuigerior to simple methods for learning
hierarchical clustering models. Furthermore, their meétb@annot be generalized to structures with
hidden variables that are not hierarchical.

The common limitation of the above works is that they are iapple, either by definition or
because of practical considerations to specific scenanddimited network structures. It was the
primary goal of this dissertation to present general megtbdt can be applied to relatively large
scale models, and without the controversial treatmentefitbdel as a causal one.

DISCUSSION 165

8.4 Future Prospects

The task of learning new hidden variables in probabilistapdpical model in general, and Bayesian
networks in particular, is a central and elusive challendéis dissertation offers the first step
toward methods that treat this problem in a general conéegt,(Bayesian networks) without posing
restrictive constraints on the model.

The next natural step is to consider the application of ththaus presented here for a wider
variety of models. This includes extensions to both und@anodels (e.g., [Pearl, 1998]) and
Probabilistic Relational Model$PRMs) [Friedman et al., 1999a]. In the casdBHEM, such ex-
tensions appear more subtle than for the other methodsrnpeesia this dissertation. Specifically,
in relational models, the instance identity takes on a difie meaning: each object of each class
has an identity value and the data involves a single instaflois requires some adaptations to the
framework that change the semantics of the hidden varidide.undirected models we can use a
Chain Graph[Buntine, 1995] forG,,; to encode the independencies of the target model and those
required by the IB-EM framework. This somewhat complicatemputations but may lead to an
effective way of learning challenging undirected modeisgigontinuation.

— as a compression mechanism for the instance identity. Ifloemation Bottleneckrame-
work, on which this method relies, is inherently directedt$rconstruction, and need to be revisited
for undirected models.

Less clear, but of significant importance, is the extensiatiné hybrid models that allows both
discrete and continuous variables. Despite recent pregndearning methods for these networks
(e.g., [Lerner, 2002]), our understanding of how such a dorshould be approached remains
limited. Adapting methods for learning new hidden variahlethis scenario remains an important
challenge.

Several drawbacks of the different methods discussed itidhe8.2, may be overcome with
further investigations: Instead of the rigid structurajrsiture currently used byindHiddento
detect new hidden variables, we might be able to use softdemdfe measures of edges and a
weighted measure for clique like structures. This will pigly result in an algorithm that is still
simple and easy to implement and that at the same time canpiechpn the case of sparse data.
Another direction is to extend oWeight Annealingpproach to utilize continuation. This will rid
the algorithm of an arbitrary cooling policy and will pot&ily results in comparable running times
to IB-EM. This can have important ramifications as Weight @aling is already used successfully
in various learning problems [Friedman et al., 2001, BaeghFriedman, 2002].

Another important avenue of research is to improve our #texl understanding of the methods
presented in the dissertation. TWeight Annealindoy problem presented in Chapter 3, hints of a
possibility of characterizing families of distributionsrfwhich the algorithm provably works; The
IB-EM framework offers the potential of adapting the theory tatiehal models; Thédeal Parent

166 DISCUSSION

approach can be extended to encompass a wider family oftemmaliprobability distributions, such
as those that use multiplicative Gaussian noise.

Today, numerous challenging applications of graphical @sdse manually constructed hidden
variables to augment the expressiveness of the model. Uribalief that the methods presented
in this dissertation will pave the way to learning flexibl®@pabilistic models with effective hidden
variables. It is our hope, that in this process, the hiddetabkes learned will not only increase
measurable qualitative performance, but also shed ligimesnand interesting domains.

Notation

XY, Z...
X,Y,Z...
Val(X)

Ty Yy 2.

X, Y,Z...

(X LY)
Ind(X LY | Z)
P(X)
P(X,Y,Z..)
P(X 1Y)

o s
JL']

Sc;rc (G : D)

random variables or their corresponding nodes in the nétwor
sets of random variables or their corresponding nodes in¢hgork
the set of possible values of a discrete variakile

assignments to random variables

joint assignments to sets of random variables

independence of (sets of) random variables

conditional independence of (sets of) random variables
probability density of (sets of) random variabl€3 is used to denot® (X))
joint probability density of several (sets of) random valés
conditional probability density aX given'Y’

a Bayesian network

the set of all variables in the netwofkX 1, ..., Xx}

the graph structure of a network

the parameters of a network

parameter of the CPD of;

parameter corresponding to the valugsandpa, in the CPD ofX;
the parents variables of the variabtg in G

the children variables of the variablé; in G

the family of X; in G (itself and its parents)

the adjacent variables t&; in G (its parent and children)

the Markov blanket variables of; in G (its parent, children and their parents)
an assignment to parents &f;

number of variables in the network

the training data set

number of instances in training set

the sufficient statistics count ef; andpa, in D

hidden variables

observed variables

the value ofx in them'th sample

them/'th partially observed instance

likelihood of the data gived andG

log-likelihood of the data giveAl andG

local likelihood of X;’s family

local log-likelihood ofX;’s family

estimated parameters

hyper-parameters corresponding to jitie value in a multinomial distribution
hyper-parameters corresponding to jlie value of X;

score ofG givenD

167

Bibliography

J. Adachi and M. Hasegawa. Molphy version 2.3, programs foleoular phylogenetics based on
maximum likelihood. Technical report, The Institute of t&tical Mathematics, Tokyo, Japan,
1996.

H. Attias. Inferring parameters and structure of latenialde models by variational bayes. In
K. Laskey and H. Prade, editoBroc. Fifteenth Conference on Uncertainty in Artificial étit-
gence (UAI '99) pages 21-30, San Francisco, 1999. Morgan Kaufmann.

Y. Barash, G. Bejerano, and N. Friedman. A simple hyper-ggdamapproach for discovering
putative transcription factor binding sites. In O. Gasaral B. M. E. Moret, editorsilgorithms
in Bioinformatics: Proceedings of the First Internationdforkshop number 2149 in LNCS,
pages 278-293. Springer, 2001.

Y. Barash and N. Friedman. Context-specific Bayesian dingtéor gene expression datdournal
of Computational Biology9:169-191, 2002.

R. Bareiss and B. Porter. Protos: An exemplar-based legapprentice.Proc. 4th International
Workshop on Machine Learningages 12-23, 1987.

M. Behr, M. Wilson, W. Gill, H. Salamon, G. Schoolnik, S. Rarahd P. Small. Comparative
genomics of bcg vaccines by whole genome dna microaBeience284:1520-1523, 1999.

I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The AMARoOnNitoring system: A case
study with two probabilistic inference techniques for behetworks. InProc. 2'nd European
Conference on Al and Medicineolume 38, pages 247-256. Springer-Verlag, Berlin, 1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptivebpbilistic networks with hidden
variables.Machine Learning29:213-244, 1997.

C. M. Bishop. Neural Networks for Pattern Recognitio®@xford University Press, Oxford, United
Kingdom, 1995.

168

BIBLIOGRAPHY 169

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Qert-specific independence in
Bayesian networks. In E. Horvitz and F. Jensen, editrsg. Twelfth Conference on Uncertainty
in Artificial Intelligence (UAI '96) pages 115-123, San Francisco, 1996. Morgan Kaufmann.

X. Boyen, N. Friedman, and D. Koller. Discovering the hiddmucture of complex dynamic sys-
tems. In K. Laskey and H. Prade, editdPspc. Fifteenth Conference on Uncertainty in Artificial
Intelligence (UAI '99) pages 91-100, San Francisco, 1999. Morgan Kaufmann.

W. Buntine. Learning classification trees. In D. J. HandtardArtificial Intelligence Frontiers in
Statistics number Il in Al and Statistics, pages 182—-201. Chapman & Handon, 1993.

W. Buntine. Chain graphs for learning. In P. Besnard and $ikklaeditorsProc. Eleventh Con-
ference on Uncertainty in Artificial Intelligence (UAI '95pages 4654, San Francisco, 1995.
Morgan Kaufmann.

K. Chang and R. Fung. Refinement and coarsening of bayestsonks. In P. P. Bonissone,
M. Henrion, L. N. Kanal, and J. F. Lemmer, editoByoc. Sixth Annual Conference on Uncer-
tainty Artificial Intelligence (UAI '90) pages 475-482, San Francisco, 1990. Morgan Kaufmann.

G. Chechik, A. Globerson, N. Tishby, and Y.Weiss. Gausgi&rination bottleneck. In S. Thrun,
L. K. Saul, and B. Scholkopf, editorgydvances in Neural Information Processing Systems 16
Cambridge, Mass., 2003. MIT Press.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and [2eRran. Autoclass: a Bayesian
classification system. IRroc. Fifth International Workshop on Machine Learnjmmages 54—64.
Morgan Kaufmann, San Francisco, 1988.

D. M. Chickering. A transformational characterization gle/alent Bayesian network structures.
In P. Besnard and S. Hanks, editdPsoc. Eleventh Conference on Uncertainty in Atrtificial Inte
ligence (UAI '95) pages 87-98, San Francisco, 1995. Morgan Kaufmann.

D. M. Chickering. Learning Bayesian networks is NP-commletn D. Fisher and H. J. Lenz,
editors,Learning from Data: Artificial Intelligence and Statistids pages 121-130. Springer-
Verlag, New York, 1996a.

D. M. Chickering. Learning equivalence classes of Bayesi&twork structures. In E. Horvitz and
F. Jensen, editor®roc. Twelfth Conference on Uncertainty in Artificial Idigénce (UAI '96)
pages 150-157, San Francisco, 1996b. Morgan Kaufmann.

D. M. Chickering and D. Heckerman. Efficient approximatidosthe marginal likelihood of in-
complete data given a Bayesian network. In E. Horvitz andeRsdn, editorsProc. Twelfth
Conference on Uncertainty in Artificial Intelligence (UAI6), pages 158-168, San Francisco,
1996. Morgan Kaufmann.

170 BIBLIOGRAPHY

D. M. Chickering and D. Heckerman. Efficient approximatidios the marginal likelihood of
Bayesian networks with hidden variablédachine Learning29:181-212, 1997.

C. K. Chow and C. N. Liu. Approximating discrete probabilitistributions with dependence trees.
IEEE Trans. on Info. Theoryl4:462—-467, 1968.

B. Codenotti, G. Manzini, L. Margara, and G. Resta. Pertimha An efficient technique for the
solution of very large instances of the TSRNFORMS Journal on Computing(2):125-133,
1996.

G. F. Cooper. The computational complexity of probabiistiference using Bayesian belief net-
works. Artificial Intelligence 42:393-405, 1990.

G. F. Cooper and E. Herskovits. A Bayesian method for thedtioin of probabilistic networks
from data.Machine Learning9:309-347, 1992.

A. Corduneanu and T. Jaakkola. Continuation methods foingiketerogeneous sources. In
A. Darwich and N. Friedman, editorBroc. Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI '02) pages 111-118, San Francisco, 2002. Morgan Kaufmann.

T.H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsMIT Press, Cambridge,
Massachusetts, 1990.

T. M. Cover and J. A. ThomasElements of Information Thearndohn Wiley & Sons, New York,
1991.

P. Dagum and M. Luby. An optimal approximation algorithm faysian inference.Artificial
Intelligence 93(1-2):1-27, 1997.

T. Dean and K. Kanazawa. A model for reasoning about pensistand causatiorComputational
Intelligence 5:142-150, 1989.

R. Dechter. Bucket elimination: A unifying framework forgirabilistic inference. In E. Horvitz
and F. Jensen, editorBroc. Twelfth Conference on Uncertainty in Artificial Idigénce (UAI
'96), pages 211-219, San Francisco, 1996. Morgan Kaufmann.

M. H. DeGroot.Probability and StatisticsAddison Wesley, Reading, MA, 1989.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeliab from incomplete data via the
EM algorithm. Journal of the Royal Statistical Socie® 39:1-39, 1977.

F. J. Diez. Parameter adjustment in Bayes networks: Thergjezezl noisy or-gate. In D. Hecker-
man and A. Mamdani, editor®roc. Ninth Conference on Uncertainty in Artificial Intgiince
(UAI '93), pages 99-105, San Francisco, 1993. Morgan Kaufmann.

BIBLIOGRAPHY 171

R. O. Duda and P. E. HarfPattern Classification and Scene Analysiohn Wiley & Sons, New
York, 1973.

R. Durbin, S. Eddy, A. Krogh, and G. MitchisorBiological Sequence Analysis : Probabilistic
Models of Proteins and Nucleic Acid€ambridge University Press, 1998.

B. Efron and R. J. TibshiraniAn Introduction to the BootstragChapman & Hall, London, 1993.

T. El-Hay and N Friedman. Incorporating expressive graghicodels in variational approxima-
tions: Chain-graphs and hidden variables. In J.S. Breed®aKoller, editorsProc. Seventeenth
Conference on Uncertainty in Artificial Intelligence (UA1L), pages 136-143, San Francisco,
2001. Morgan Kaufmann.

G. Elidan and N. Friedman. Learning the dimensionality afdein variables. In J.S. Breese and
D. Koller, editors,Proc. Seventeenth Conference on Uncertainty in Artifiaidlligence (UAI
'01), pages 144-151, San Francisco, 2001. Morgan Kaufmann.

G. Elidan and N. Friedman. The information bottleneck EMbalpm. In C. Meek and U. Kjeerulff,
editors,Proc. Nineteenth Conference on Uncertainty in Artificialeligence (UAI '03) pages
200-208, San Francisco, 2003. Morgan Kaufmann.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discoverinidden variables: A structure-based
approach. InT. K. Leen, T. G. Dietterich, and V. Tresp, editddvances in Neural Information
Processing Systems idages 479-485, Cambridge, Mass., 2001. MIT Press.

G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Dat&pbation for escaping local maxima
in learning. InProc. National Conference on Artificial Intelligence (AABR), pages 132-139.
AAAI Press, Menlo Park, CA, 2002.

N. Friedman. Learning belief networks in the presence osmigvalues and hidden variables. In
D. Fisher, editorProc. Fourteenth International Conference on Machine Inég, pages 125—
133. Morgan Kaufmann, San Francisco, 1997.

N. Friedman. The Bayesian structural EM algorithm. In G. Bofer and S. Moral, editors,
Proc. Fourteenth Conference on Uncertainty in Artificialdiigence (UAI '98) pages 129-138,
San Francisco, 1998. Morgan Kaufmann.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian netvetaksifiers.Machine Learning29:
131-163, 1997.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learninglpabilistic relational models. In
Proc. Sixteenth International Joint Conference on Artifidntelligence (IJCAI '99) pages 1300—
1309. Morgan Kaufmann, San Francisco, 1999a.

172 BIBLIOGRAPHY

N. Friedman and M. Goldszmidt. Discretization of contins@itributes while learning Bayesian
networks. In L. Saitta, editoRroc. Thirteenth International Conference on Machine lreag,
pages 157-165. Morgan Kaufmann, San Francisco, 1996a.

N. Friedman and M. Goldszmidt. Learning Bayesian networkh t@cal structure. In E. Horvitz
and F. Jensen, editorBroc. Twelfth Conference on Uncertainty in Artificial Idigénce (UAI
'96), pages 252-262, San Francisco, 1996b. Morgan Kaufmann.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis viittyesian networks: A bootstrap
approach. In K. Laskey and H. Prade, editdPspc. Fifteenth Conference on Uncertainty in
Artificial Intelligence (UAI '99) pages 196-205, San Francisco, 1999b. Morgan Kaufmann.

N. Friedman and D. Koller. Being Bayesian about Bayesiawaordt structure: A Bayesian approach
to structure discovery in Bayesian networkéachine Learning50:95-126, 2003.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bagesetworks to analyze expression
data. Computational Biology7:601-620, 2000.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multiate information bottleneck. In
J.S. Breese and D. Koller, editorByoc. Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI '01) pages 152—-161, San Francisco, 2001. Morgan Kaufmann.

N. Friedman, I. Nachman, and D. Pe’er. Learning bayesianar&tstructure from massive datasets:
The “sparse candidate” algorithm. In K. Laskey and H. Prad#ors,Proc. Fifteenth Conference
on Uncertainty in Artificial Intelligence (UAI '99)pages 206—215, San Francisco, 1999c. Morgan
Kaufmann.

N. Friedman, M. Ninio, I. Peer, and T. Pupko. A structural Eliglaithm for phylogentic inference.
Journal of Computational Biology:331-353, 2002.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. Beg, G. Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the respdngeast cells to environmental
changesMolecular Biology of the Cell11:4241-4257, 2000.

D. Geiger and D. Heckerman. Learning gaussian networks. lopez de Mantaras and D. Poole,
editors,Proc. Tenth Conference on Uncertainty in Artificial Intgéince (UAI '94) pages 235—
243, San Francisco, 1994. Morgan Kaufmann.

D. Geiger and D. Heckerman. Knowledge representation dedeimce in similarity networks and
Bayesian multinetsArtificial Intelligence 82:45-74, 1996.

BIBLIOGRAPHY 173

D. Geiger, D. Heckerman, and C. Meek. Asymptotic model sigledor directed networks with
hidden variables. In E. Horvitz and F. Jensen, editBrec. Twelfth Conference on Uncertainty
in Artificial Intelligence (UAI '96) pages 283—-290, San Francisco, 1996. Morgan Kaufmann.

D. Geiger and C. Meek. Graphical models and exponentialligeniln G. F. Cooper and S. Moral,
editors,Proc. Fourteenth Conference on Uncertainty in Artificiatditigence (UAI 98) pages
156-165, San Francisco, 1998. Morgan Kaufmann.

D. Geiger, T. S. Verma, and J. Pearl. Identifying independen bayesian network&letworks 20:
507-534, 1990.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. RubBayesian Data AnalysisChapman & Hall,
London, 1995.

W.R. Gilks, S. Richardson, and D.J. Spiegelhalkéarkov Chain Monte Carlo Methods in Practice
CRC Press, 1996.

F. Glover and M. Laguna. Tabu search. In C. Reeves, edModern Heuristic Techniques for
Combinatorial ProblemsOxford, England, 1993. Blackwell Scientific Publishing.

P.J. Green. Reversible jump Markov chain Monte Carlo coatput and Bayesian model determi-
nation. Biometrikg 82:711-732, 1995.

D. Heckerman. A tutorial on learning with Bayesian networksM. |. Jordan, editorlearning in
Graphical ModelsKluwer, Dordrecht, Netherlands, 1998.

D. Heckerman and D. Geiger. Learning Bayesian networksifecation for discrete and Gaussian
domains. In P. Besnard and S. Hanks, editéhsc. Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI '95) pages 274—-284, San Francisco, 1995. Morgan Kaufmann.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bsdge networks: The combination
of knowledge and statistical data. In R. Lopez de Mantari$ D. Poole, editors?roc. Tenth
Conference on Uncertainty in Artificial Intelligence (UA4), pages 293-301, San Francisco,
1994. Morgan Kaufmann.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bdge networks: The combination
of knowledge and statistical datlachine Learning20:197-243, 1995a.

D. Heckerman, A. Mamdani, and M. P. Wellman. Real-world mapions of Bayesian networks.
Communications of the ACN38, 1995b.

T. Hofmann and J. M. Buhmann. Pairwise data clustering bgrdshistic annealinglEEE Trans-
actions on Pattern Analysis and Machine Intelligent®:1-14, 1997.

174 BIBLIOGRAPHY

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. $ttong C. D. Armour, H. A. Bennett,
E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, [5lade, P. Y. Lum, S. B.
Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakrabudrt8imon, M. Bard, and S. H. Friend.
Functional discovery via a compendium of expression pfikell, 102(1):109-26, 2000.

E. T. Jaynes. Information theory and statistical mechartysical Reviewl06:620-630, 1957.

F. V. Jensen.An introduction to Bayesian NetworkdJniversity College London Press, London,
1996.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesiantungden causal probabilistic networks
by local computationsComputational Statistics Quarterl$(4):269-282, 1990.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. Aroituction to variational approx-
imations methods for graphical models. In M. I. Jordan,@gitearning in Graphical Models
Kluwer, Dordrecht, Netherlands, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimizatiby simulated annealingScience220
(4598):671-680, 1983.

S. Kirpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimipatby simulated annealingcience220:
671-680, May 1994.

J. Kivinen and M. Warmuth. Exponentiated gradient versaslignt descent for linear predictors.
Information and Computatiqri32:1-63, 1997.

T. Kocka and N. L. Zhang. Dimension correction for hieracethiatent class models. In A. Darwich
and N. Friedman, editor®roc. Eighteenth Conference on Uncertainty in Artificialelitigence
(UAI’02), pages 267-274, San Francisco, 2002. Morgan Kaufmann.

S. Kullback and R. A. Leibler. On information and sufficienéynnals of Mathematical Statistics
22:76-86, 1951.

P. Laarhoven and E. AartsSimulated Annealing: Theory and Applicationdohn Wiley & Sons,
New York, 1987.

W. Lam and F. Bacchus. Learning Bayesian belief networks:approach based on the MDL
principle. Computational Intelligencel0:269-293, 1994.

K. Lang. Learning to filter netnews. Rth International Conference on Machine Learnipgges
331-339. Morgan Kaufmann, San Francisco, California, 1995

S. L. Lauritzen. The EM algorithm for graphical associatinndels with missing dataComputa-
tional Statistics and Data Analysi$9:191-201, 1995.

BIBLIOGRAPHY 175

S. L. Lauritzen and D. J. Spiegelhalter. Local computatisitis probabilities on graphical structures
and their application to expert systendsurnal of the Royal Statistical Socie® 50(2):157-224,
1988.

S. L. Lauritzen and N. Wermuth. Graphical models for asdmria between variables, some of
which are qualitative and some quantitativennals of Statistigsl7:31-57, 1989.

U. N. Lerner. Hybrid Bayesian Networks for Reasoning about Complex BstdPhD thesis,
Dept. of Computer Science, Stanford University, 2002.

J. Martin and K. VanLehn. Discrete factor analysis: Leagnimdden variables in Bayesian net-
works. Technical report, Department of Computer Scienegydysity of Pittsburgh, 1995.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functionaldgmt techniques for combining hy-
potheses. IMdvances in Large Margin Classifie®lIT Press, 2000.

P. McCullagh and J.A. Neldefseneralized Linear Model€Chapman & Hall, London, 1989.

M. Meila and M. I. Jordan. Estimating dependency structera hidden variable. In M. I. Jordan,
M. J. Kearns, and S. A. Solla, edito’sdvances in Neural Information Processing Systems 10
pages 584-590, Cambridge, Mass., 1998. MIT Press.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Bglland E. Teller. Equation of state
calculation by fast computing machinekurnal of Chemical Physic21:1087-1092, 1953.

R. Michalski and R. Chilausky. Learning by being told andriéieg from examples: An exper-
imental comparison of the two methods of knowledge acdaisiin the context of developing
an expert system for soybean disease diagndsiternational Journal of Policy Analysis and
Information Systemg(2), 1980.

G. W. Milligan and M. C. Cooper. An examination of procedufesdetermining the number of
clusters in a data seRsychometrika50:159-179, 1985.

K. Murphy and Y. Weiss. Loopy belief propagation for approgie inference: An empirical study.
In K. Laskey and H. Prade, editoBroc. Fifteenth Conference on Uncertainty in Artificial éht
ligence (UAI '99) pages 467—-475, San Francisco, 1999. Morgan Kaufmann.

I. Nachman, A. Regev, and N. Friedman. Inferring quantitathodels of regulatory networks from
expression dateBioinformatics 20(Suppl 1):S1248-1256, 2004.

R. M. Neal. Connectionist learning of belief networlégtificial Intelligence 56:71-113, 1992.

R. M. Neal. Probabilistic inference using Markov chain Mo@arlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, Univerdifjooonto, 1993.

176 BIBLIOGRAPHY

R. M. Neal and G. E. Hinton. A new view of the EM algorithm thastifies incremental and other
variants. In M. . Jordan, editokearning in Graphical ModelsKluwer, Dordrecht, Netherlands,
1998.

K. C. Nixon. The parsimony ratchet, a new method for rapicsipaony analysis.Cladistics 15:
407-414, 1999.

J. Pearl.Probabilistic Reasoning in Intelligent Systenmidorgan Kaufmann, 1988.

J. Pearl. Graphs, causality, and structural equation rmod@cioligical Methods and Research
1998.

J. Pearl.Causality: Models, Reasoning, and Inferen@ambridge Univ. Press, 2000.

D. Pe'er, A. Regev, G. Elidan, and N. Friedman. Inferringreativorks from perturbed expression
profiles. Bioinformatics 17(Suppl 1):5S215-24, 2001.

Fernando Pereira, Naftali Tishby, and Lillian Lee. Disttibnal clustering of English words. In
31st Annual Meeting of the ACpages 183—-190, 1993.

Kim Leng Poh and Eric J. Horvitz. Reasoning about the valweofsion-model refinement: Meth-
ods and application. In D. Heckerman and A. Mamdani, editBrec. Ninth Conference on
Uncertainty in Artificial Intelligence (UAI '93)pages 174-182, San Francisco, 1993. Morgan
Kaufmann.

W. H. Price.Numerical Recipes in QCambridge University Press, Cambridge, 1992.

J. R. Quinlan.C4.5: Programs for Machine Learnindviorgan Kaufmann, San Francisco, Califor-
nia, 1993.

L. R. Rabiner. A tutorial on hidden Markov models and selgetpplications in speech recognition.
Proc. IEEE 77(2):257-286, 1990.

K. Rose. Deterministic annealing for clustering, compesclassification, regression, and related
optimization problemsProc. IEEE 86:2210-2239, 1998.

D. R. Rubin. Inference and missing daBiometrica 63:581-592, 1976.
S. Russell and P. NorwidArtificial Intelligence: A Modern ApproachParentice Hall, 1995.

L. Saul, T. Jaakkola, and M. Jordan. Mean field theory for sighbelief networks. Journal of
Artificial Intelligence Researgh#:61-76, 1996.

R. E. Schapire and Y. Singer. Improved boosting algorithisiagiconfidence-rated predictions.
Machine Learning37(3):297-336, 1999.

BIBLIOGRAPHY 177

D. Schuurmans, F. Southey, and R. Holte. The exponentiatiegradient algorithm for heuristic
Boolean programming. IRroc. Seventeenth International Joint Conference on Aidifintelli-
gence (IJCAI '01)pages 334-341, San Francisco, 2001. Morgan Kaufmann.

G. Schwarz. Estimating the dimension of a modginals of Statistics6:461-464, 1978.

E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller.nFrgromoter sequence to expression:
A probabilistic framekwork. In Gene Myers, Sridhar HannghhSorin Istrail, Pavel Pevzner,
and Michael Waterman, editorBroceedings of the Sixth Annual International Conferenge o
Computational Biology (RECOMB '02pages 263—-272. ACM Press, New York, 2002.

R. Settimi and J. Q. Smith. On the geometry of bayesian gcaphodels with hidden variables.
In G. F. Cooper and S. Moral, editofBroc. Fourteenth Conference on Uncertainty in Acrtificial
Intelligence (UAI '98) pages 472—-479, San Francisco, 1998. Morgan Kaufmann.

M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J.idtz, H.P. Lehmann, and G.F.
Cooper. Probabilistic diagnosis using a reformulationhef tNTERNIST-1/QMR knowledge
base. I. The probabilistic model and inference algorithiiethods of Information in Medicine
30:241-55, 1991.

I. Simon, J. Barnett, N. Hannett, C.T. Harbison, N.J. Ripdid.. Volkert, J.J. Wyrick, J. Zeitlinger,
D.K. Gifford, T.S. Jaakkola, and R.A. Young. Serial regigiatof transcriptional regulators in
the yeast cell cycleCell, 106:697-708, 2001.

N. Slonim, N.Friedman, and T.Tishby. Agglomerative mutiate information bottleneck. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editékdyances in Neural Information Processing
Systems 14ages 929-936, Cambridge, Mass., 2002. MIT Press.

N. Slonim and N. Tishby. Agglomerative information botéehk. In S. A. Solla, T. K. Leen,
and K. Miller, editorsAdvances in Neural Information Processing Systemgages 617-623,
Cambridge, Mass., 2000. MIT Press.

N. Slonim and N. Tishby. Data clustering by markovian retepraand the information bottleneck
method. In T. K. Leen, T. G. Dietterich, and V. Tresp, editéddvances in Neural Information
Processing Systems i®3ages 640-646, Cambridge, Mass., 2001. MIT Press.

N. Slonim and Y. Weiss. Maximum likelihood and the infornoatibottleneck. In S. Becker,
S. Thrun, and K. Obermayer, edito’sdvances in Neural Information Processing Systems 15
pages 351-358, Cambridge, Mass., 2002. MIT Press.

N. A. Smith and J. Eisner. Annealing techniques for unsupedvstatistical language learning. In
Proc. 42nd Annual Meeting of the Association for Compuretid.inguistics 2004.

178 BIBLIOGRAPHY

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. lyer, K. AndédsB. Eisen, P. O. Brown, D. Bot-
stein, and B. Futcher. Comprehensive identification of cgtle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridizatiMolecular Biology of the Cell9(12):
3273-97, 1998.

D. J. Spiegelhalter and S. L. Lauritzen. Sequential updaifrconditional probabilities on directed
graphical structureNetworks 20:579-605, 1990.

P. Spirtes, C. Glymour, and R. Schein€ausation, Prediction and SearcNumber 81 in Lecture
Notes in Statistics. Springer-Verlag, New York, 1993.

P. Spirtes, C. Meek, and T. Richardson. Causal inferenchdrptesence of latent variables and
selection bias. In P. Besnard and S. Hanks, edifens;. Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI '95) pages 499-506, San Francisco, 1995. Morgan Kaufmann.

A. Stolcke and S. Omohundro. Hidden Markov Model inductignblyesian model merging. In
Stephen José Hanson, Jack D. Cowan, and C. Lee Giles,sdittwvances in Neural Information
Processing Systemeolume 5, pages 11-18. Morgan Kaufmann, San Mateo, CA,.1993

A. Stolcke and S. Omohundro. Inducing probabilistic gramsviay bayesian model merging. In
Proc. Second International Conference on Grammaticalrénfee pages 106-118, New York,
1994. Springer-Verlag.

M. Szummer and T. Jaakkola. Information regularizatiorhvpiartially labeled data. In S. Becker,
S. Thrun, and K. Obermayer, edito’sgdvances in Neural Information Processing Systems 15
pages 640-646, Cambridge, Mass., 2002. MIT Press.

B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. rhmg mixtures of Bayesian
networks. In G. F. Cooper and S. Moral, editdPsoc. Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI '98) pages 504-513, San Francisco, 1998. Morgan Kaufmann.

N. Tishby, F. Pereira, and W. Bialek. The information batdek method. In B. Hajek and R. S.
Sreenivas, editor®roc. 37th Allerton Conference on Communication, Contral €omputation
pages 368-377. University of lllinois, 1999.

R. Parr U. Lerner and D. Koller. Bayesian fault detection drajnosis in dynamic systems. In
Proc. of the Seventeenth National Conference on Artificitdlligence (AAAl)pages 531-537,
2000.

N. Ueda and R. Nakano. Deterministic annealing EM algorithieural Networks11(2):271-282,
1998.

BIBLIOGRAPHY 179

S. Waterhouse, D. Mackay, and T. Robinson. Bayesian mefloodsixtures of experts. In D. S.
Touretzky, M. Mozer, and M. E. Hasselmo, editodslvances in Neural Information Processing
Systems ages 351-357, Cambridge, Massachusetts, 1996. MIT.Press

L. T. Watson. Theory of globally convergent probabilityeohomotopies for non-linear program-
ming. Technical Report TR-00-04, Department of Computéer®e, Virginia Tech, 2000.

M. P. Wellman and C.-L. Liu. State-space abstraction foitiamgy evaluation of probabilistic net-
works. In R. Lopez de Mantaras and D. Poole, editBrec. Tenth Conference on Uncertainty in
Artificial Intelligence (UAI '94) pages 567 — 574, San Francisco, 1994. Morgan Kaufmann.

M. Whiley and D. M. Titterington. Applying the deterministannealing expectation maximization
algorithm to Naive Bayes networks. Technical Report 02-&p&rtment of Statistics, University
of Glasgow, 2002.

J. Wilkinson. The algebric eigenvalue problertladeron Press, Oxford, 1965.
S. Wright. Correlation and causatiodournal of Agricultural Researgt20:557-585, 1921.

N.L. Zhang. Hierarchical latent class models for clustealgsis. Journal of Machine Learning
Research5:697—723, 2004.

