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Abstract

A seriousproblemin learningprobabilisticmod-
els is the presenceof hiddenvariables. These
variablesarenot observed,yet interactwith sev-
eralof theobservedvariables.Detectinghidden
variablesposestwo problems: determiningthe
relationsto othervariablesin the modelandde-
terminingthenumberof statesof thehiddenvari-
able.In this paper, we addressthelatterproblem
in thecontext of Bayesiannetworks.Wedescribe
anapproachthatutilizesascore-basedagglomer-
ativestate-clustering.As we show, this approach
allows us to efficiently evaluatemodelswith a
range of cardinalities for the hidden variable.
We show how to extend this procedureto deal
with multiple interactinghiddenvariables. We
demonstratetheeffectivenessof thisapproachby
evaluatingit on syntheticandreal-life data. We
show that our approachlearnsmodelswith hid-
denvariablesthatgeneralizebetterandhavebet-
ter structurethanpreviousapproaches.

1 Introduction

In thelastdecadetherehasbeenagreatdealof researchfo-
cusedon theproblemof learningBayesiannetworks from
data(e.g.,[11]). An importantissueis theexistenceof hid-
den(latent) variablesthatarenever observed,yet interact
with observedvariables.Hiddenvariablesoftenplayanim-
portantrole in improving thequality of the learnedmodel
and in understandingthe natureof interactionsin the do-
main. A crucial problemis the questionof how to deter-
minethedimensionalityof a hiddenvariable.This issueis
relevantbothwhenlearningwith fixedstructure(e.g.,one
assessedby an expert)andin caseswherethe learningal-
gorithmattemptsto introducenew variables.

Thenumberof statesa hiddenvariablehascanhavesig-
nificanteffecton theperformanceof themodelandalsoon
its complexity. For example,Figure1 demonstratesacom-
monphenomenon:Whenstatesof a parentvariable � are
merged, � ’s childrenmay no longerbe conditionally in-
dependentgiven � . As a consequence,morecomplicated
networks,wherethereareedgesamongchildren,might be
neededto describethedomain.This phenomenonis more
pronouncedwhen the variable � also hasparents. The
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Figure1: Illustrationof thechangein anetwork thatmight
resultsfrom themergingof two statesof a parentvariable.

child variablesare no longer separatedfrom their ances-
torsby � , andsoadditionaledgesareneeded.We cansee
thatthecorrectdeterminationof thecardinalityof ahidden
variablecanaffect the complexity of the learnednetwork,
which in turn hasimportantramificationson robustnessof
learnedparameters,andcomplexity of inference.

In this paper, we proposeanagglomerative,score-based
approachfor determiningthe cardinality of hiddenvari-
ables.Our approachstartswith the “maximal” numberof
statespossibleandmergesstatesin a greedyfashion. At
eachiterationof thealgorithm,it maintainsfor eachtrain-
ing instancea “hard” assignmentto the hiddenvariable.
Thus,we canscorethe datausingcompletedata scoring
functionsthatareordersof magnitudemoreefficient than
standardEM-basedscoresfor incompletedata.Theproce-
dureprogressesby choosingthe two stateswhosemerger
will lead to the best improvement(or least decrease)in
the score. Thesestepsarerepeateduntil all the statesare
mergedinto onestate. Basedon the scoresof intermedi-
ate stages,we choosethe cardinality of the hiddenvari-
able.Weshow thatnetworkslearnedfrom theintermediate
stagesarealsogoodinitial startingpointsfor EM runsthat
fine-tunetheparameters.

Wethenmoveonto considernetworkswith multiplehid-
denvariables.As weshow, wecancombinemultiple invo-
cationsof thesingle-variableprocedureto learntheinterac-
tionsbetweenseveralhiddenvariable.Finally, wecombine
ourmethodwith thestructuraldetectionof hiddenvariables
of Elidanet al. [7] andshow thatthis leadsto learningbet-
terperformingmodels,on testandreal-life data.

2 Background

2.1 Learning Bayesian Networks

Considera finite set �! � �#" ��������� �%$&� of discreteran-
domvariableswhereeachvariable�%' maytakestatesfrom



afinite set,denotedby (&)+* � �%' � . A Bayesiannetworkis an
annotateddirectedacyclic graphthatencodesa joint prob-
ability distribution over � . Thenodesof the graphcorre-
spondto the randomvariables�#" ��������� �,$ . Eachnodeis
annotatedwith aconditionalprobabilitydistribution(CPD)
that represents- � � '/.10325476 � , where 0829476 denotesthe
parentsof �%' in : . A Bayesiannetwork ; specifiesa
uniquejoint probabilitydistributionover � givenby:

- � �#" ��������� �%$ �  $<
'>= " -

� � '?. 08294 6 �
The graph : representsconditional independenceprop-
erties of the distribution. Theseare the Markov Inde-
pendencies: Eachvariable � ' is independentof its non-
descendants,givenits parentsin : . Oneimplicationof the
Markov independenciesis that a variable � ' interactsdi-
rectly only with its Markov Blanket. This blanket includes
the � ' ’s parents,children,andspouses(additionalparents
of childrenof �%' ). We denoteby @BAC4 6 the variablesin
theMarkov Blanketof � ' .

We are interestedin learningBayesiannetworks from
examples. Assumewe are given a training set D  ��EGFH��IJ���������?EGF KLI � of instancesof � , that were sampled
from anunknown distribution. We want to find a network; that bestmatches D . If the structureof the network is
givento us,we canusethemaximumlikelihoodapproach
to estimatethe parameters.A morechallengingproblem
is to learnthe structureof the network. The commonap-
proachto this problemis to introducea scoringfunction
thatevaluatescandidatenetworkswith respectto thetrain-
ing data,and then to searchfor the bestnetwork accord-
ing to this score. A commonlyusedscoringfunction to
learn Bayesiannetworks is the Bayesianscoring (BDe)
metric [12] which we denoteby ScoreBDe. This scoring
metric usesa balancebetweenthe likelihood gain of the
learnedmodelandthecomplexity of thenetwork structure
representation.

An importantcharacteristicof thescorefunctionwe use
is thatwhenthedatais complete(that is, eachtraining in-
stanceassignsvaluesto all the variables)the scoreis de-
composable. More precisely, thescorecanberewritten as
thesum

Score
� :NMOD �  QP 'SR5TVU�WYX�ZO[]\�^`_

� 032 4 6 MaD �b�
wherethecontributionof eachvariable�%' to thetotal net-
work scoredependsonly on thestatesof � ' and 0829476 in
thetraininginstances.Assuming082 4 6  Lc ,
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arehyper-parametersof the prior

distributionsover the parameterizations.The terms � F ��I
and � F 	&' �]��I are counts of the number of occurrences

of each event in the data. The vector of the counts� F � ' � 0325476 I is called a sufficient statistic vector for the
family - � �%' .+082 4 6 � .

Oncewespecifythescoringfunction,thestructurelearn-
ing taskreducesto a problemof searchingover thecombi-
natorialspaceof structuresfor thestructurethatmaximizes
the score. The standardapproachis to usea local search
procedure,suchasgreedyhill-climbing, that changesone
edgeata time.

The learningproblemis differentwhenthetrainingdata
is incomplete, thatis, someof thestatesin thetrainingdata
aremissing,or whenwe learna network thatcontainshid-
denvariablesthatarenotobserved.In thissituationthetask
is bothcomputationallyandconceptuallymuchharder. In
orderto learnparametersfor a givennetwork structure,we
canusethe ExpectationMaximization(EM) algorithmto
searchfor a (local) maximumlikelihood (or maximuma
posteriori)parameterassignment[5, 14].

In the presenceof incompletedata, scoring candidate
structuresis morecomplex. We cannotefficiently evaluate
the marginal likelihood andneedto resortto approxima-
tions.A commonlyusedapproximationis theCheeseman-
Stutz(CS) score[3, 4], which combinesthe likelihoods
of the parametersfound by EM, with an estimateof the
penaltytermassociatedwith structure.Thestructural EM
algorithmof Friedman[8] extendsthe ideaof EM to the
realmof structuresearch.Roughlyspeaking,thealgorithm
usesan E-stepas part of the structuresearch. The cur-
rent model— structureas well as parameters— is used
for computingexpectedsufficient statisticsfor othercan-
didatestructures.Thecandidatestructuresarethenscored
basedon theseexpectedsufficientstatistics.Thesearchal-
gorithmmovesto a new candidatestructure.We canthen
apply EM againfor the new structure,to get the desired
expectedsufficientstatisticsandscorenew candidatestruc-
tures.Thisalgorithmconvergestoa“local” maximum.The
searchspaceof this algorithmcontainsmany suchconver-
gencepoints,andsocareshouldbe taken in choosingthe
initialization point.

2.2 Detecting hidden variables in Bayesian networks

As mentionedin theintroduction,weareinterestedbothin
caseswherethehiddenvariableis givenbut its dimension-
ality is unknown andin constructingnew hiddenvariables.
For this purpose,we will usethemethodfor detectinghid-
denvariablesthat wassuggestedby Elidan et al. [7]. We
now briefly review thismethod.

Thegeneralideaof themethodis to detecthiddenvari-
ablesby finding structural signatures in a Bayesiannet-
work learnedover the observed variables. As Elidan et
al. show, the “signature” formed by removing a hidden
variable � is a clique over the children of � . How-
ever, whenreconstructingthenetwork from data,wemight
miss someedges. Thus, insteadof searchingfor perfect
cliques,the FindHidden algorithm searchesfor approxi-
matecliques(relaxationonthenumberof neighbors)called
semi-cliques. A semi-cliqueis a setof variablessuchthat



eachvariablehasanedgeto at leasthalf of thevariablesin
theset.

Oncea semi-clique � is found, a new hiddenvariable
is proposed.To evaluatethis variable,the algorithmcon-
structsanetwork, with a new variable�,� . Thisvariableis
madea parentof thevariablesin � . In addition,all edges
amongthesevariablesare removed. Then, the algorithm
appliesa constrainedversionof structuralEM to adaptthe
structurewith �%� andto estimateparametersfor the new
network. The scoreof the learnednetwork is thencom-
paredto thescoreof theoriginal one.Thechangein score
reflectstheutility of introducingthehiddenvariables.

The resultsof Elidan et al. show that this algorithmis
successfulin introducing hidden variablesand improves
performanceon testdata.

3 Choosing the Cardinality of a Hidden
Variable

Wenow addressthefollowingproblem.Wearegiventrain-
ing dataD of samplesfrom �� � � " ��������� � $ � , andanet-
work structure: over � andanadditionalvariable� . We
needto determinewhat cardinalityof � leadsto the best
scoringnetwork.

A straightforward way to solve this problemis as fol-
lows: We canexamineall possiblecardinalitiesof � up to
a certainpoint. For eachcardinality � , we canapply the
EM algorithmto learnparametersfor thenetwork contain-
ing � with � states. SinceEM might get stuck in local
maxima,we shouldperformseveral EM runsfrom differ-
ent randomstartingpoints. Given the parametersfor the
network, wecanapproximatethescoreof thenetwork with� statesfor � using,say, theCheeseman-Stutzapproxima-
tion [3]. At theendof theprocess,wereturnthecardinality� thatreceivedthebestscore.

This approachis in commonuse in probabilisticclus-
tering algorithms,e.g., [3]. The centralproblemof this
approachis its exhaustiveness.TheEM algorithmis time
consumingasit requiresinferencein theBayesiannetwork.
For simpleNaive-Bayesnetworks thatareusedin cluster-
ing, this costis not prohibitive. However, in othernetwork
structuresthecostof multiple EM runscanbehigh. Thus,
we strive to find a methodthatfindsthebestscoringcardi-
nality (or a goodapproximationof it) significantlyfaster.

We now suggestan approachthat works with hard as-
signmentsto the statesof the hiddenvariables. This ap-
proachis motivatedby agglomerative clusteringmethods
(e.g.,[6]) andBayesianmodelmerging techniquesfrom the
HMM literature[17].

Thegeneraloutlineof theapproachis asfollows.At each
iterationwe maintaina hardassignmentto � in thetrain-
ing data. We canrepresentthis assignmentasa mapping�5� from

�O����������K
, to the set (&)+* � � � . The assignment,� � ����� is thestatethat � holdsin the

���>���
instance.We

initialize the algorithm with a variable � that hasmany
states(we describethe detailsbelow). We then evaluate
thescoreof thenetwork with respectto thedatasetthat is
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Figure2: Traceof the agglomerationprocessin a simple
syntheticexample. We sampled1000 instancesfrom the
Alarm network, andthenhid theobservationsof thevari-
able HYPOVOLEMIA in the data. We then attemptedto
reconstructits cardinality. Eachleaf in the tree is anno-
tatedwith thevaluesof thevariablesin theMarkov Blanket
(LVEDVOLUME,LVFAILURE andSTROKEVOLUME).
Nodescorrespondto statesthat resultfrom merging oper-
ations. They arenumberedaccordingto the orderof the
merging operationsandareannotatedwith the changein
scoreincurredby the merge operation. Note that at each
stage,themergechosenis theonethatproducesthelargest
increase(or smallestdecrease)to the score. Diamond-
shapednodescorrespondto thefinal cardinalitychosen.

completedby � . Next, we merge two statesof � to form
a variablewith smallercardinality. This leadsto a new as-
signmentfunction. We then reevaluatethe network with
respectto this new assignment,andsoon. Thesestepsare
repeateduntil � hasasinglestate.Wereturnthenumberof
states� that receivedthehighestscore. Figure2 shows a
concreteexampleof thetreebuilt duringsuchanagglomer-
ationprocess.Wenow considerin morethedetailthesteps
in theprocess.

Westartwith theinitializationpointof thealgorithm,that
is settingtheinitial statesfor thevariable� . Recallthatthe
Markov blanket @�A�� of � separatesit from all othervari-
ables.This impliesthat two instancesin which @�A � has
the samestate,are identical from � ’s perspective. Thus,
the largestnumberof statesthat are relevant for a given
datasets,is the numberof distinct assignmentsto @�A��
in the data. We initialize � to have a statefor eachsuch
assignment.In the exampleof Figure 2 only 13 assign-
ments(out of 16 possible)wereobserved in the data. We
thenaugmentour training datawith theseassignmentsto� . Thatis, for eachassignment

� 
L(9)V* � @�A � � , wehave
a state

� j
andfor eachinstance

�
we set �5� ����� to bethe

state
� j

consistentwith theMarkov blanketassignmentof
instance

�
.



Oncewe set �5� ��� , we needto evaluateits usefulness.
Since,� � �}� assignsaspecificstateof � for eachinstance,
it completesthe training data �5� � D � . Thus, we can ap-
ply a standardcompletedatascorefunction(e.g.,BDe) to
our now completeddataset. Recall that whenthe datais
complete,ScoreBDe canbeevaluatedefficiently asa closed
form formula.Moreover, thescoredependsonly onthesuf-
ficientstatisticsvectors.Eachsuchvectorcountsthenum-
berof occurrencesof eachassignmentto a variableandits
parents.Wedenoteby � F � ' � 03254 6 I thesufficientstatistics
thatcorrespondto the family (thenodeandits parents)of� ' which we denoteby � 2�������� 4 6 . To evaluate � � , we
only needto considerfamiliesthat contain � : � 25������� �
and � 2���������� for eachchild   of � .

At eachiteration of the algorithm we chooseto merge
two statesof � , suchthat the resultingset of stateshas
the bestScoreBDe. Now, supposethat

� ' and
�Y¡

are two
statesof � thatwe wantto merge. This meansthat for all
instanceswhere � is assigned

� ' or
�Y¡

, we now assign�
to anew state,say

� '�¢ ¡ . Formally, wedefineanew function� �� , sothat � �� �����  � '�¢ ¡ if � � �����  � ' or if � � �����  �Y¡
, otherwise,� �� �����  �9� ����� . Wecanthenevaluate� ��

andcompareits scoreto the scoreof � � . This difference
is theimprovement(or loss)of themergeoperation.

We note that when merging stateswe actually do not
needto modify thetrainingdata.Instead,we simply apply
themergingoperationon thesufficientstatisticsthatcorre-
spondto � andits children.Thatis,weset� F � '�¢ ¡O�?£ 2 � I  ¤ F ¥§¦J�?£ 2 � I�h ¤ F ¥5¨���£ 2 � I for eachassignment

£ 2 � to the
parentsof � . Similarly wecomputethesufficientstatistics
for � ’schildrenandtheir families.

To determinethe best merge operation,the algorithm
considersall pairs of statesof � . This can potentially
lead to cubic running time (since each iteration require
quadraticamountof computation).However, with suitable
choiceof prior, we canshow that the BDe score(andthe
MDL score,aswell) are locally decomposable. To make
this moreprecise,supposethat � �� is the result of merg-
ing the states

� ' and
�Y¡

in �5� . Define ©�' y
¡  Score

� :ªM� � � �� �V� Score
� :NMO� � � � � . Thescoreis locally decom-

posableif ©�' y
¡

doesnotdependonotherstatesof � . Thus,
oncewe computethis changein scoreasa resultof merg-
ing « and ¬ , we do not needto recomputeit in successive
iterations.

A closerlook at thepropertiesof thescorerevealsthebe-
havior we canexpectto seewhenapplyingour procedure.
Recallthatthescoringfunctiontrades-off betweenthelike-
lihood of thedataandthecomplexity of themodel. When
we considerplotsof scorevs. � ’s cardinality, we observe
threeeffectsthatcomeinto play.

1. Whenmergingstatesof � , thenumberof parameters
in thenetwork is reduced.Thisgivesapositivecontri-
bution to thescoresincethecomplexity of themodel
is reduced.

2. When � hasfewerstates,theprobabilityof � ’s state
given its parentsis larger. Thus, the likelihoodterm
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Figure3: Typical behavior of thescoreasa functionof the
numberof statesin anagglomerationrun. BDescoreof the
agglomerationmethod,CSscorebasedon anEM run that
startsat agglomerationoutput,andCS scorebasedon the
bestEM run from multiple startingpoints. Theseresults
shown are for recovering the STROKEVOLUME variable
in theAlarm network.

associatedwith ¯® � «J°�± � improvesaftereachmerge
operation.

3. When � hasmany states,it canprovide betterpre-
diction of its children. In fact, in our initialization
point, � ’schildrenareadeterministicallydetermined
by � ’sstate(since� hasastatefor eachjoint assign-
ment to the Markov Blanket). When the numberof
statesis reduced,the predictionsof � ’s childrenbe-
comemorestochasticandtheir likelihoodis reduced.
Thus, after a merge, the likelihood of � ’s children
will decrease.

This suggeststhat the scorewill increaserapidly dueto
thecontributionof thefirst two effects,will thenslow down
but still increasedueto thesteadycontribution of thefirst
effect, and finally decreaseand,as we approacha single
state,indeed“plunge” dueto thethird effect.

Figure 3 shows an exampleof the graphwe get when
we track thescoreduring iterationsof thealgorithm. This
figurealsoshows therelationsbetweenthescoreour algo-
rithm assignsto eachcardinality � andtheoneassignedby
the standardtraditionalmethodthat runsEM at eachcar-
dinality. In Section5 we analyzein more detail the two
methods.

4 Deciding the Cardinality of Several
Hidden Variables

In the previous sectionwe examinedthe problemof de-
ciding the cardinality of a single hiddenvariable. What
happensif our network containsseveralhiddenvariables?
We start by noting that in somecases,we can decouple



the problem: If a hiddenvariable � is d-separated from
all the other hiddenvariablesby the observed variables,
then we can learn it independentof the rest. More pre-
cisely, if @�A � consistsof observablevariablesonly, we
donotneedto worry about� ’s interactionswith otherhid-
denvariables.

However, when two or more hidden variablesinteract
with eachothertheproblemis morecomplex. A decision
aboutthe cardinalityof onehiddenvariablecanhave ef-
fect on the decisionsaboutotherhiddenvariables. Thus,
we needto considera joint decisionfor all the interact-
ing variables.ThestandardEM approachmentionedat the
beginning of the last sectionbecomesmore problematic
heresincethe cardinalityspacegrows exponentiallywith
thenumberof hiddenvariables.We now describea simple
heuristicapproachthat attemptsto approximatethe cardi-
nality assignmentfor multiplevariables.Theideasaremo-
tivatedby a similar approachto multi-variablediscretiza-
tion [9].

Thebasicideais to applytheagglomerativeprocedureof
theprevioussectionin a round-robinfashion.At eachiter-
ation,we fix thenumberof statesandthestateassignment
to instancesfor all the hiddenvariablesbut one. We ap-
ply theagglomerativealgorithmwith respectto thishidden
variable. At the next iteration,we selectanothervariable
andrepeattheprocedure.It is easyto checkthatweshould
reexaminea hiddenvariableonly afteroneof thevariables
in its Markov Blankedhaschanged.Thus,we continuethe
procedureuntil no hiddenvariablehaschangedits cardi-
nality andstateassignment.

Onecrucial issueis the initialization of this procedure.
We suggestto startin a network wereall hiddenvariables
haveonestate.Thus,in theinitial roundsof theprocedure,
eachhiddenvariablewill be “trained” with respectto its
observableneighbors.Only in later iterations,the interac-
tionsbetweenhiddenvariableswill startto playa role.

It is easyto seethateachiterationof this procedurewill
improvethescoreof the“completed”datasetspecifiedby
the stateassignmentfunctionsof the hiddenvariables. It
immediatelyfollows thatit mustconverge.

5 Experimental Results and Evaluation

We setout to evaluatetheapplicabilityof our approachin
variouslearningtasks. We start by evaluatinghow well
our algorithmdeterminesvariablecardinality in synthetic
datasetswherewe know thecardinalityof thevariablewe
hid. We sampledinstancesfrom the Alarm network [1],
and manually hid a variable from the dataset. We then
gave our algorithmthe original network andevaluatedits
ability to reconstructthe variable’s cardinality. Figure 3
showsa typicalbehavior of theScoreBDe vs. thenumberof
states.We repeatedthis procedurewith 24 variablesin the
Alarm network. (We did not considervariablesthat were
eitherleafsor hadfew neighbors.)Usingtrainingsetswith
10,000instances,thepredictionsof cardinalitycanbebro-
kendown asfollows:
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Figure4: Deviationsof thepredictedcardinalityof theag-
glomerationmethodfrom the true cardinalityfor 24 vari-
ablesin theAlarm network asa functionof thenumberof
instances.Shown arecurvesfor true cardinality, collapse
into a singlestatesanda singlemissingstate(otherdevia-
tionswererare).

² For 15 variables,the agglomerative procedurerecov-
eredthecorrectcardinality.² For 2 variables,theestimatedcardinalityhadonestate
lessthanthetruecardinality.² For 2 variables,theestimatedcardinalityhadonead-
ditional state. Examiningthe network CPDssuggest
that childrenof thesetwo variablesarestochasticin
somestatesof theparents(with almostuniform prob-
ability). Initial stepsin the agglomerationattempted
to modelthis distribution, which leadto sub-optimal
aggregatestatesin laterphasesof theagglomeration.² For 5 variables, the agglomerative proceduresug-
gesteda completecollapseinto a single state. This
is equivalentto removing the variable. A closelook
at the probabilitiesin the network shows that these
variableshave little effect if any on their childrenand
thusthey indeedseemalmostredundant.In orderto
confirm this claim, for eachof the five variablesand
for eachcardinality, we ran EM from multiple start-
ing pointsto find thebestscoringnetwork. For all the
variables,thebestscorewasachievedwhenthevari-
ablewascollapsedto asinglestate.

To summarize,for 19of 24of thevariableswegot thecor-
rector near-perfectpredictionof cardinality. For theother
5 variables,thecharacteristicsof thedataaretwo weakto
reachstatisticallysignificantresults.

Next, wetestedtheeffectof thetrainingsetsizeonthese
decisions.Weappliedtheagglomerationmethodfor all the
abovevariableontrainingsetswith differentsizes.Figure4
shows thedeviation from thetruecardinalityasa function
of thetrainingsetsize. We seethatevenfor small sample
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determiningthecardinalityof hiddenvariables.(dashedlight edgesareedgesthatwereremoved,thin edgesareedgesthat
wereadded)

sizes,thepredictionsfor mostvariablesareeitherperfector
underestimatesthe cardinalityby 1. This canbeexpected
sincethe training set doesnot manifestrare assignments
to the Markov blanket of eachvariableandlessstatesare
neededto explain thedata.

We thencomparedour approachto thestandardmethod
of evaluatingdifferent cardinalitiesusing EM. We com-
paredtwo variantsof EM. The first, performedmultiple
EM runsfrom 5 differentrandomstartingpoints.Thesec-
ond variantperformeda singleEM run startingfrom the
parameterswe learnfrom the“completed”dataduringthe
agglomerationstep.Figure3 comparesthescoresassigned
to differentcardinalitiesby theagglomerativeapproachand
thesetwo EM variantsfor onevariable. Note that for all
methodsthe case�Ò �Ó , which is indeedthe correctcar-
dinality, receivedthehighestscore.Also notethat thetwo
EM variantsgive similar scores.This suggeststhat theag-
glomerativeapproachfindsusefulstartingpointsfor EM.

In termsof runningtime,eachEM run for eachcardinal-
ity in thisexampletakesover250seconds.Theagglomera-
tion proceduretakesalittle overonesecondto agglomerate
the 15 initial states. Onemight claim that for determin-
ing cardinality, it sufficesto run only few iterationsof EM,
whicharecomputationallycheaper. To testthis,werunEM
with anearlystoppingrule. Thisreduceddown therunning
time of EM about60 secondsfor eachrun. However, this
also resultedin worseestimatesof the cardinality, which
wereworsethanthesemadeby theagglomerativemethod.

We concludethatsignificanttime canbesavedby using
our methodto setthenumberof statesandthenapplyEM
for fine-tuning.This typical behavior wasobservedin sim-
ilar comparisonswhenwe hid othervariablesin theAlarm
network.

Next we wantedto evaluatethe performanceof our al-
gorithm whendealingwith multiple hiddenvariables.To
do so, we constructeda syntheticnetwork, shown in Fig-
ure 5(a)), with several hiddenvariablesand generateda
matchingdataset with the appropriatevariableshidden.
Usingthetruestructureasa startingpoint, we appliedour

agglomerative algorithmfollowed by structuralEM. As a
strawmanwe alsoapply a structuralEM with binary val-
uesfor all hiddenvariables. Becauseof the flexibility of
StructuralEM andthechallengingstructureof ournetwork,
we canexpectthata learningalgorithmthat is not precise,
will quickly deviatefrom thetruestructure.Theresultsare
summarizedin Figure5 where

�9Ô�������]�&Õ
and

� Ó have 3,
2, 4, and3 states,respectively, and the visible nodesare
all binary. It is evidentthat theagglomerationmethodwas
able to effectively handleseveral interactinghiddenvari-
able. The cardinalitywascloseto the original cardinality
with extra statesintroducesto betterexplain stochasticre-
lationsthatdo not look stochasticin thetrainingdata.The
structurelearnedusing the binary model emphasizesthe
importanceof determiningthe cardinalityof hiddenvari-
ablesassuggestedin theexampleof Figure1. In termsof
log-lossscoreon testdata,themodellearnedwith agglom-
erationwassuperiorto the original model that wasbetter
thenthemodellearnedwith binaryvalues.

Wenow turnto theincorporationof thecardinalitydeter-
mining algorithminto the hiddenvariablediscovery algo-
rithm of Elidanetal. [7] (seeSection2). Givenacandidate
network, FindHiddensearchesfor semi-cliquesandoffers
candidatehiddenvariables. It thenappliesour methodto
the candidatenetwork to determinethe cardinalityof the
hiddenvariable. Finally, we allow StructuralEM to fine-
tunethecandidatenetwork.

We applied this to several variables in the synthetic
Alarm network. We also experimentedon the following
real-life datasets: Stock Data: a datasetthat tracesthe
daily changeof 20 majorUS technologystocksfor several
years(1516 trading days). Thesestateswere discretized
to threecategories: “up”, “no change”,and“down”. TB:
a datasetthat recordsinformationabout2302tuberculosis
patientsin theSanFranciscocounty(courtesyof Dr. Peter
Small,StanfordMedicalCenter).Thedatasetcontainsde-
mographicinformationsuchasgender, age,ethnicgroup,
andmedicalinformationsuchasHIV status,TB infection
type, andother test results. News: dataset that contains
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Figure6: Log-lossperformanceon testdataof the Find-
Hidden algorithmwith andwithoutagglomerationonsyn-
theticandreal-lifedata.Baseline is theperformanceof the
Originalnetwork givenasaninput to FindHidden

messagesfrom 20 newsgroups[13]. We representeach
messageasa vectorcontainingoneattribute for thenews-
groupandattributesfor eachword in the vocabulary. We
removedcommonstopwords,andthensortedwordsbased
on their frequency in thewholedataset.Thedatasetused
hereincludedthe groupdesignatorandthe 99 mostcom-
monwords. We trainedon 5,000messagesthatwereran-
domly selectedfrom thetotal dataset.

Figure6 showsthelog-lossperformanceof thenetworks
on testdata. Thebaseline is the original network learned
without thehiddenvariableandsuppliedasinput to Find-
Hidden. Thesolid diamondsarethescoreof thenetwork
with thehiddenvariablebut noagglomeration(hiddenvari-
able is arbitrarily set to two states)and the squaresare
the network with hiddenvariablewith the agglomeration
methodapplied. As we cansee,in all cases,the network
with thesuggestedhiddenvariableoutperformedtheorigi-
nalnetwork. Thenetwork learnedusingagglomerationper-
formedbetterthenthelearnednetwork with noagglomera-
tion (excluding2 caseswheretheagglomerationsuggested
exactly two statesandis thusequivalentto theno agglom-
erationrun).

It is interestingto look at thestructuresfoundby ourpro-
cedure. Elidan et al. [7] found an interestingmodel for
the TB patientdataset. One stateof the hiddenvariable
capturestwo highly dominantsegmentsof thepopulation:
older, HIV-negative, foreign-born Asians, and younger,
HIV-positive,US-bornblacks.Thehiddenvariable’s chil-
dren distinguishedbetweenthe two aggregatedsubpopu-
lations using the HIV-result variable,which was also an
ancestorof several of them. They notedthat it is possi-
ble that additionalstatesfor the hiddenstatesmight have
furtherseparatedthesepopulations.Figure7 comparesthe
modellearnedby theFindHidden algorithmandthemodel

learnedwith the integrationof our agglomerative method.
The modeldoesnot only performbetteron testdata(see
Figure 6) but doesindeeddefine4 separatepopulations:
US born,under30 or over 60, HIV-negative;US born,be-
tween30 and 60 years,with higher probability of HIV;
Foreign-born,Hispanics,with someprobability of HIV;
andForeign-born,Asians,HIV-negative.

6 Discussion and Future Work

In this paper, we proposedan agglomerative, score-based
approachfor determiningthe cardinality of hiddenvari-
ables.Wecomparedourmethodto theexhaustiveapproach
for setting the cardinality using multiple EM runs and
showed its successfulnessin generatingcompetinglearn-
ing models. The importanceandplausibility of usingthe
agglomerationmethodasa pre-processingstepto a learn-
ing algorithmis animportantconsequence,thussaving sig-
nificant computationaleffort. The algorithm proved ro-
bust to the numberof instancesin the training set. It was
alsoableto dealeffectively with severalinteractinghidden
variables.Finally, we evaluatedthe methodaspart of the
hiddenvariabledetectionalgorithm FindHidden on syn-
theticandreal-lifedataandshowedimprovedperformance
aswell asmoreappealingstructures.

Several works arerelatedto our approach.Several au-
thorsexaminedoperationsof valueabstractionandrefine-
ment in Bayesiannetworks [2, 16, 15, 19]. Theseworks
weremostlyconcernedwith theramificationsof theseop-
erationson inferenceand decision making. Decisions
aboutcardinalityalsoappearin the context of discretiza-
tion. Although the datais observable,the introductionof
a discretizedvariablecanbe modeledasaddinga hidden
variable. For example,FriedmanandGoldszmidt[9] in-
corporatedthe discretizationprocessinto the learningof
Bayesiannetworks. Like our approach,they use a de-
composablescoreto trade-off betweenlikelihoodgainand
complexity penaltyresultingfrom a particulardiscretiza-
tion. Their approachto discretizingmultiple interacting
variablesis alsosimilar to ours.

In thecontext of learninghiddenvariables,themostrel-
evant are the works of Stolcke andOmohundro[17, 18].
In theseworks, they learn hidden Markov models and
probabilistic grammarby performing a bottom up state-
agglomeration.Similar to our method,they startby span-
ning all possiblestatesandtheniteratively merging states
usinginformationvs. complexity measures.Our work can
be viewed as a generalizationof their work by applying
it to generalBayesiannetworksandcombiningit with the
hiddenvariabledetectionalgorithm.

The structural EM algorithmof Friedman[8] followed
by the work of Elidan et al. [7], and with this work are
all aimedtowardlearningnon-trivial structureswith hidden
variablesfrom data.Theincorporationof hiddenvariables
is essentialboth in improving predictionon new examples
andto gainunderstandingof theunderlyinginteractionsof
the domain. We plan to continuethis researchproject in
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Figure7: Improvementin structureof theTB network dueto incorporationof thecardinalitydeterminingalgorithminto
FindHidden. Thehiddenvariableswith 4 statescapturesmoredistinctpopulationsandimprovesthepredictiveability of
themodel.

severaldirections.Weintendto exploreadditionalmethods
for detectingthe dimensionalityof hiddenvariablessuch
asestimatinginformationtheoreticmeasuresin situations
similar to thatof Figure1. In orderto dealeffectively with
sparsedatadomainswherestructuralsignaturesareweak,
further methodsfor the discovery of hiddenvariableneed
to be developed.Anotherdirectionis to extendthe meth-
odsfor learninghiddenstructurein moreexpressivemodels
suchasProbabilisticRelationalModels[10].
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