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Abstract

The recent growth in genomic data and measurements of genome-wide expression patterns
allows us to apply computational tools to examine gene regulation by transcription factors.
In this work, we present a class of mathematical models that help in understanding the con-
nections between transcription factors and functional classes of genes based on genetic and
genomic data. Such a model represents the joint distribution of transcription factor binding
sites and of expression levels of a gene in a unified probabilistic model. Learning a combined
probability model of binding sites and expression patterns enables us to improve the clustering
of the genes based on the discovery of putative binding sites and to detect which binding sites
and experiments best characterize a cluster. To learn such models from data, we introduce a
new search method that rapidly learns a model according to a Bayesian score. We evaluate our
method on synthetic data as well as on real life data and analyze the biological insights it pro-
vides. Finally, we demonstrate the applicability of the method to other data analysis problems
in gene expression data.

1 Introduction

A central goal of molecular biology is to understand the regulation of protein synthesis. With the
advent of genome sequencing projects, we have access to DNA sequences of the promoter regions
that contain the binding sites of transcription factors that regulate gene expression. In addition, the
development of microarrays allows researchers to measure the abundance of thousands of mRNA
targets simultaneously providing a “genomic” viewpoint on gene expression. As a consequence,
this technology facilitates new experimental approaches for understanding gene expression and reg-
ulation (Iyer et al. 1999, Spellman et al. 1998).

The combination of these two important data sources can lead to better understanding of gene
regulation (Bittner et al. 1999, Brazma & Vilo 2000). The main biological hypothesis underlying
most of these analyses is “Genes with a common functional role have similar expression patterns
across different experiments. This similarity of expression patterns is due to co-regulation of genes
in the same functional group by specific transcription factors.” Clearly, this assumption is only a
first-order approximation of biological reality. There are gene functions for which this assumption
definitely does not hold, and there are co-expressed genes that are not co-regulated. Nonetheless,
this assumption is useful in finding the strong signals in the data.
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Based on the above assumption, one can cluster genes by their expression levels, and then
search for short DNA strings that appear in significant over-abundance in the promoter regions of
these genes (Roth et al. 1998, Tavazoie et al. 1999, Vilo et al. 2000). Such an approach can discover
new binding sites in promoter regions.

Our aim here is complimentary to this approach. Instead of discovering new binding sites, we
focus on characterizing groups of genes based on their expression levels in different experiments
and the presence of putative binding sites within their promoter regions. The biological hypothesis
we described suggests that genes within a functional group will be similar with respect to both
types of attributes. We treat expression level measurements and information on promoter binding
sites in a symmetric fashion, and cluster genes based on both types of data. In doing so, our method
characterizes the attributes that distinguish each cluster.

Due to the stochastic nature of biological processes and experimental artifacts, gene expression
measurements are inherently noisy. In addition, identification of putative binding sites is also noisy,
and can suffer from both false positive and false negative errors. All of this indicates that using a
probabilistic model in which we treat both expression and pattern identification as random variables,
might lead to a better understanding of the biological mechanism as well as improve gene functional
characterization and transcription sites identification.

Using this probabilistic approach, we develop a class of clustering models that cluster genes
based on random variables of two types. Random variables of the first type describe the expression
level of the gene, or more precisely its mRNA transcript in an experiment (microarray hybridiza-
tion). Each experiment is denoted by a different random variable whose value is the expression level
of the gene in that particular experiment. Random variables of the second type describe occurrences
of putative binding sites in the promoter region of the genes. Again, each binding site is denoted by
a random variable, whose value is the number of times the binding site was detected in the gene’s
promoter region.

Our method clusters genes with similar expression patterns and promoter regions . In addition,
the learned model provides insight on the regulation of genes within each cluster. The key features
of our approach are: (1) automatic detection of the number of clusters; (2) automatic detection of
random variables that are irrelevant to the clusters; (3) robust clustering in the presence of many such
random variables, (4) context-depended representation that describes which clusters each attribute
depends on. This allows us to discover the attributes (random variables) that characterize each
cluster and distinguish it from the rest. We learn these cluster models using a Bayesian approach
that uses structural EM (Friedman 1997, Friedman 1998), an efficient search method over different
models. We evaluate the resulting method on synthetic data, and apply it to real-life data. Finally, we
also demonstrate the applicability and generality of the method to other problems and data sources
by introducing into the model data from phylogenetic profiling and clustering experiments by their
gene expression profiles.

In Section 2 we introduce the class of probabilistic models that we call Context-Specific Clus-
tering models. In Section 3 we discuss how to score such models based on data. In Section 4 we
describe our approach for finding a high-scoring clustering model. In Section 5 we evaluate the
learning procedure on synthetic and real-life data. We conclude in a discussion of related work and
possible extensions in Section 6.
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2 Context-Specific Clustering

In this section we describe the class of probabilistic models we to learn from data. We develop the
models in a sequence of steps starting from a fairly well known model for Bayesian clustering, and
refining the representation to explicitly capture the structures we want to learn. We stress that at this
stage we are focusing on what can be represented by the class of models, and we examine how to
learn them in subsequent sections.

2.1 Naive Bayesian Clustering

Let X�� � � � � XN be random variables. In our main application, these random variables denote the
attribute of a particular gene: the expression level of this gene in each of the experiments, and the
numbers of occurrences of each binding sites in the promoter region. Suppose that we receive a
dataset D that consists of M joint instances of the random variables. The m’th instance is a joint
assignment x��m�� � � � � xN �m� to X�� � � � � XN . In our application, instances correspond to genes:
each gene is described by the values of the random variables.

In modeling such data we assume that there is an underlying joint distribution P �X�� � � � �XN �
from which the training instances were sampled. The estimation task is to approximate this joint
distribution based on the data set D. Such an estimate can help us understand the interactions
between the variables. A typical approach for estimating such a joint distribution is to define a
probabilistic model that defines a set of distributions that can be described in a parametric form,
and then find the particular parameters for the model that “best fit” the data in some sense.

A simple model that is often used in data analysis is the naive Bayes model. In this model we
assume that there is an unobserved random variable C that takes values �� � � � �K , and describes
which “cluster” the example belongs to. We then assume that if we know the value of C , all the
observed variables become independent of each another. That is, the form of the distribution is:

P �X�� � � � �XN � �
X
k

P �C � k�P �X� j C � k� � � �P �XN j C � k� (1)

In other words, we estimate a mixture of product distributions.
One must also bare in mind that such models are not necessarily a representation of real biologi-

cal structure but rather a mathematical model that can give us insights into the biological connections
between variables. The independence assumptions we make are conditional ones. For example, we
assume that given the model, the genes are independent. That is, after we know the model, ob-
serving the expression levels of a single gene does not help predict better the expression levels of
another gene. Similarly, we assume that expression level of the same gene in different condition are
independent given the cluster the gene belongs to. This assumption states that the cluster captures
the “first order” description of the gene’s behavior, and we treat (in the model) all other fluctuations
as noise that is independent in each measurement.

We attempt to be precise and explicit about the independence assumptions we make. However,
we note that most clustering approaches we know of treat (explicitly or implicitly) genes as being
independent of each other, and quite often also treat different measurement of the same gene as
independent observations of the cluster.

The naive Bayes model is attractive for several reasons. First, from estimation point of view we
need to estimate relatively few parameters: the mixture coefficients P �C � k�, and the parameters
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of the conditional distributions P �Xi j C � k�. Second, the estimated model can be interpreted as
modeling the data by K clusters (one for each value k � �� � � � �K), such that the distribution of
different variables within each cluster are independent. Thus, dependencies between the observed
variables are represented by the cluster variable. Finally, this model allows us to use fairly efficient
learning algorithms, such as expectation maximization (EM) (Dempster et al. 1977).

The distribution form in Eq. (1) specifies the global structure of the naive Bayesian distribution.
In addition, we also have to specify how to represent the conditional distributions. For this purpose
we use parametric families. There are several of families of conditional distributions we can use for
modeling P �Xi j C � k�. In this paper, we focus on two such families.

If Xi is a discrete variable that takes a finite number of values (e.g., a variable that denotes num-
ber of binding sites in a promoter region), we represent the conditional probability as a multinomial
distribution

P �Xi j C � k� � Multinomial�f�xijk � xi � Val�Xi�g
for each value xi of Xi we have a parameter �xijk that denotes the probability that Xi � xi when
C � k. These parameters must be non-negative, and satisfy

P
xi
�xijk � �, for each k.

If Xi is a continuous variable (e.g., a variable that denotes the expression level of a gene in a
particular experiment), we use a Gaussian distribution

P �Xi j C � k� � N��Xijk� �
�
Xijk

�

such that

P �xi j C � k� �
�p

���Xijk

exp

�
��xi � �Xijk�

�

���
Xijk

�
�

We use the Gaussian model in this situation for two reasons. First, as usual, the Gaussian
distribution is one of the simplest continuous density models and allow efficient estimation. Sec-
ond, when we use as observations the logarithm of the expression level (or logarithms of ratios of
expression between a sample and a common control sample), gene expression has roughly noise
characteristics. We note however, that most of the developments in this paper can be achieved with
more detailed (and realistic) noise models for gene expression.

Once we have estimated the conditional probabilities, we can compute the probability of an
example belonging to a cluster:

P �C � k j x�� � � � � xN � � P �C � k�P �x� j C � k� � � �P �xN j C � k�

If the clusters are well-separated, then this conditional probability will assign each example to
one cluster with high probability. However, it is possible that clusters overlap, and some examples
are assigned to several clusters. If we compare the probability of two clusters, then

log
P �C � k j x�� � � � � xN �

P �C � k� j x�� � � � � xN �
� log

P �C � k�

P �C � k��
	
X
i

log
P �xi j C � k�

P �xi j C � k��
(2)

Thus, we can view the decision boundary between any two clusters as the sum of terms that
represent the contribution of each attribute to this decision. The ratio P �xi j C � k��P �xi j C �
k�� is the relative support that xi gives to k versus k�.
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2.2 Selective Naive Bayesian Models

The naive Bayes model gives all variables equal status. This is a potential source of problems for two
reasons. First, some variables should be considered as “noise” since they have no real interactions
with the other variables. Suppose that X� is independent from rest of the variables. By learning
K conditional probability models P �X� j C � ��� � � � � P �X� j C � K�, we are increasing the
variability of the estimated model. Second, since we are dealing with a relatively small number of
training examples, if we fail to recognize that X� is independent of the rest, the observations of
X� can bias our choice of clusters. Thus, a combination of many irrelevant variables might lead
us to overlook the relevant ones. As a consequence, the learned model discriminate clusters by the
values of the irrelevant variables. Such clusters suffer from high variability (because of their “noisy”
character).

If we know that X� is independent from the rest, we can use the fact that P �X� j C� � P �X��
and rewrite the model in a simpler form:

P �X�� � � � �XN � � P �X��
X
k

P �C � k�P �X� j C � k� � � �P �XN j C � k��

This representation of the joint probability requires less parameters and thus the estimation of these
parameters is more robust. More importantly, the structure of this model explicitly captures the
fact that X� is independent of the other variables—its distribution does not depend on the cluster
variable. Note that in this model, as expected, the value of X� does not impact the probability of
the class C .

In our biological domain, we expect to see many variables that are independent (or almost
independent) of the classification. For example, not all binding sites of transcription factors play
an active role in the conditions in which expression levels were measured. Another example, is
a putative binding site (suggested by some search method or other) that does not correspond to
a biological function. Thus, learning that these sites are independent of the measured expression
levels is an important aspect of the data analysis process.

Based on this discussion, we want to consider models where several of the variables do not
depend on the hidden class. Formally, we can describe these dependencies by specifying a set
G � fX�� � � � �XNg that represents the set of variables that depend on the cluster variable C . The
joint distribution then takes the form of

P �X�� � � � �XN j G� �

�
�Y
i��G

P �Xi�

�
AX

k

�
P �C � k�

Y
i�G

P �Xi j C � k�

�

We note that this class of models is essentially a special subclass of Bayesian networks (Pearl
1988). Similar models were considered for a somewhat different application in supervised learning
by Langley and Sage (1994).

We note again, that when we compare the posterior probability of two clusters, as in Eq. (2), we
only need to consider variables that are not independent of C . That is,

log
P �C � k j x�� � � � � xN �

P �C � k� j x�� � � � � xN �
� log

P �C � k�

P �C � k��
	
X
i�G

log
P �xi j C � k�

P �xi j C � k��
�

This formally demonstrates the intuition that variables outside of G do not influence the choice of
clusters.
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X � � X � � X � � X � �

C � � ��� ��� ��� ���

C � � ��� ��� ��� ���

C � � ��� ��� ���� ����

C � 	 ��� ��� ���� ����

C � � ��� ��� ���� ����

C � � ��� ��� ���� ����

X � � X � � X � � X � �

C � � ��� ��� ��� ���

C � � ��� ��� ��� ���

C � � ��� ��� ���� ����

(a) explicit table representation (b) default table

Figure 1: Example of two representations of the same conditional distribution P �X j C�.

2.3 Context-Specific Independence

Suppose that a certain binding site, whose presence is denoted by the variable X�, is regulating
genes in two functional categories. We would then expect this site to be present with high probability
in promoter regions of genes in these two categories, and to have low probability of appearing in the
promoter region of all other genes. Since X� is relevant to the expression level of (some) genes, it
is not independent of the other variables, and so we would prefer models where X� � G. In such a
model, we need to specify P �X� j C � k� for k � �� � � � �K . That is, for each functional category,
we learn a different probability distribution over X�. However, since X� is relevant only for two
classes, say � and �, this introduces unnecessary complexity: once we know that C is not one of the
two “relevant” function classes (i.e., C � �), we can predict P �X� j C� using a single distribution.

To capture such distinctions, we need to introduce a language that refines the ideas of selec-
tive naive Bayesian models. More precisely, we want to describe additional structure within the
conditional distribution P �X� j C�. The intuition here is that we need to specify context-specific
independences (CSI): once, we know that C �� f�� �g, then X� is independent of C . This issue has
received much attention in the probabilistic reasoning community (Boutilier et al. 1996, Chickering
et al. 1997, Friedman & Goldszmidt 1998).

Here, we choose a fairly simple representation of CSI that Friedman & Goldszmidt (1998) term
default tables. This representation is as follows. The structure of the distribution P �Xi j C� is
represented by an object Li � fk�� � � � � klg where kj � f�� � � � �Kg. Each kj represents a case that
has an explicit conditional probability. All other cases are treated by a special default conditional
probability. Formally, the conditional probability has the form:

P �Xi j C � k� �

�
P �Xi j C � kj� k � kj � Li
P �Xi j k �� Li� otherwise

It will be convenient for us to think of Li as defining a random variable, which we will denote Li,
with l 	 � values. This random variable is the characteristic function of C , such that Li � j if
C � kj � Li, and Li � l 	 � if C � k �� Li. Then, P �Xi j C� is replaced by P �Xi j Li�.
This representation requires l	� different distributions rather than K different ones. Note that each
of these conditional distributions can be multinomial, Gaussian, or any other parametric family we
might choose to use.

Returning to our example above, Instead of representing the probability P �X� j C� as a com-
plete table, as in Figure 1(a), we can represent it using a more succinct table with the cases �, � and
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the default f
� � � � �Kg as shown in Figure 1(b). This requires estimating a different probability of
X� in each of the first two clusters, and one probability of X� in the remaining clusters.

We note that in the extreme case, when Li is empty, then we are rendering Xi independent of
C . To see this, note that Li has a single value in this situation, and thus P �Xi j C� is the same for
all values C . Thus, since CSI is a refinement of selective Bayesian models, it suffices to specify the
choice Li for each variable.

Finally, we consider classifying a gene given a model. As in Eq. (2), the decision between two
clusters is a sum of terms of the form P �xi j C � k��P �xi j C � k��. Now, if both k and k� fall
in the “default” category of Li, then they map to the same value of Li, and thus define the same
conditional probability over Xi. In such a situation, the observation xi does not contribute to the
distinction between k and k�. On the other hand We will say that Xi distinguishes a cluster kj , if
kj � Li indicating a unique conditional distribution for Xi given the cluster kj .

3 Scoring CSI Clustering

We want to learn CSI Clustering from data. By learning, we mean selecting the number of clusters
K , the set of dependent random variables G, the corresponding local structures Li, and in addi-
tion, estimating the parameters of the conditional distributions in the model. We reiterate that CSI
clustering is a special sub-class of Bayesian networks with default tables. Thus, we adopt stan-
dard learning approaches for Bayesian networks (Friedman 1998, Friedman & Goldszmidt 1998,
Heckerman 1998) and specialize them for this class of models. In particular, we use a Bayesian
approach for learning probabilistic models. In this approach learning is posed as an optimization
problem of some scoring function.

In this section we review the scoring functions over different choices of clustering models (in-
cluding both structure and parameters). In the next section, we consider methods for finding the
high-scoring clustering models. That is, we describe computational procedures for searching the
vast space of possible structures efficiently.

3.1 The Bayesian Score

We assume that the set of variables X�� � � � � XN is fixed. We define a CSI Clustering model to
be a tuple M � hK� fLigi, where K specifies the number of values of the latent class and Li
specifies the choice of local structure for Xi. (Recall that Xi does not depend on C if Li � �.) A
model M is parameterized by a vector 	�M of parameters. These include the mixture parameters
	�k � P �C � k�, and the parameters 	�Xijl of P �Xi j Li � l�.

As input for the learning problem, we are given a dataset D that consists of M samples, the m’th
sample specifies a joint assignment x��m�� � � � � xN �m� to X�� � � � � XN . In the Bayesian approach,
we compute the posterior probability of a model, given the particular data set D:

P �M j D� � P �D j M�P �M�

The term P �M� is the prior probability of the model M, and P �D j M� is the marginal likelihood
of the data, given the model M.
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In this paper, we use a fairly simple class of priors over models, in which the model prior
decomposes into several independent components, as suggested by Friedman & Goldszmidt (1998))

P �M� � P �K�P �G�
Y
i

P �Li��

We assume that P �K� � 
K is a geometric distribution with parameter 
 which is fairly close to
�. The prior over G is designed to penalize dependencies. Thus P �G� � �jGj for some parameter
� � �. (Recall that G � fi � Li �� �g.) Finally, the prior distribution over local models is

set to P �Li� � �
K

� K
jLij

	��
� Thus, we set a uniform prior over the number of cases in Li, and

then put a uniform prior over all local structures with this cardinality. We choose these priors for
their mathematical simplicity (which makes some of the computations below easier) and since they
slightly favor simpler models.

We now consider the marginal likelihood term. This term evaluates the probability of generating
the data set D from the model M. This probability requires averaging over all possible parameteri-
zations of M:

P �D j M� �

Z
P �D j M� 	�M�P �	�M j M�d	�M (3)

where P �	�M j M� is the prior density over the parameters 	�M, and P �D j M� 	�M� is the likeli-
hood of the data

P �D j M� 	�M� �
Y
m

X
k

�
P �C � k j M� 	�M�

Y
i

P �xi�m� j li�k��M� 	�M�

�
(4)

where li�k� is the value of Li when C � k.
In this work we follow a standard approach to learning graphical models and use decomposable

priors for a given model parameters 	�M that have the form

P �	�M j M� � P ��C�
Y
i

Y
l�Li

P ��Xijl�

For multinomial Xi and for C , we use a Dirichlet (DeGroot 1970) prior over the parameters, and for
normal Xi, we use a normal-gamma prior (DeGroot 1970). We review the details of both families
of priors in Appendix A.

We stress that the Bayesian method is different from the maximum likelihood method. In the
latter, one evaluates each model by the likelihood it achieves with the best parameters. That can
be misleading since poor models might have specific parameters that give the data high likelihood.
Bayesian approaches avoid such “over-fitting” by averaging over all possible parameterizations.
This averaging regularizes the score. In fact, a general theorem (Schwarz 1978) shows that for large
data sets (i.e., as M 	
)

logP �D j M� � logP �D j M�
�	�M�� �

�
logM dim�M� 	O��� (5)

where �	�M are the maximum aposteriori probability (MAP) parameters that maximize P �D j M�	�M�P �	�M j
M�, and dim�M� is the dimensionality of the model M (the number of degrees of freedom in the
parameterization of M). Thus, in the limit the Bayesian score behaves like a penalized maximum
likelihood score, where the penalty depends on the complexity of the model.1 Note that this ap-
proximation is closely related to the minimum description length (MDL) principle (Rissanen 1978).

1Note that asM �� the maximum likelihood parameters and the MAP parameters converge to the same values.
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3.2 Complete Data

We briefly discuss the evaluation of the marginal likelihood in the case where the data is complete.
This setting is easier than the setting we need to deal with, however, the developments here are
needed for the ones below. In the complete data case we assume that we are learning from a
data set Dc that contains M samples, each of these specifies values x��m�� � � � � xN �m�� c�m� for
X�� � � � �XN and C . (In this case, we also fix in advance the number of values of C�) For such data
sets, the likelihood term P �Dc j M� 	�M� can be decomposed into a product of local terms:

P �Dc j M� 	�M� � Llocal�C�SC � 	�C�
Y
i

Y
l�Li

Llocal�Xi�SXijl�
	�Xijl� (6)

where the Llocal terms denote the likelihood that depends on each conditional probability distribution
and the associated sufficient statistics vectors SC and SXijl. These statistics are cumulative functions
over the training samples. These include counts of the number of times a certain event occurred,
or sum of the values of Xi, or X�

i in the samples where Li � l. The particular detail of these
likelihoods and sufficient statistics are less crucial for the developments below, and so we defer
them to Appendix A.

An important property of the sufficient statistics is that once we compute the statistics for the
case in which jLij � jCj, i.e. we have a separate conditional distribution for each cluster in a node
Xi, we can easily get statistics for other local structures, as a sum over the relevant statistics for
each l � Li :

SXijl �
X
k

P �Li � l j C � k�SXijck

(Note that since Li is a deterministic function of C , P �Li � l j C � c� is either � or �.)
The important consequence of the decomposition of Eq. 6 and the corresponding decomposition

of the prior, is that the marginal likelihood term also decomposes (see (Friedman & Goldszmidt
1998, Heckerman 1998))

P �Dc j M� � Slocal�C�SC�
Y
i

Y
l�Val�Li�

Slocal�Xi�SXijl� (7)

where
Slocal�Xi�SXijl� �

Z
Llocal�Xi�SXijl�

	�Xijl�P �	�Xijl j M�d	�Xijl

The decomposition of marginal likelihood suggests that we can easily find the best model in the
case of complete data. The intuition is that the observation of C decouples the modeling choices
for each Xi from the other variables. Formally, we can easily see that changing Li for Xi changes
only the prior associated with that Li and the marginal likelihood term

Q
l�Val�Li� Slocal�Xi�SXijl�.

Thus, we can optimize the choice of each Li separately of the others.
Note that there are �K possible choices of Li. For each such choice we compute the sufficient

statistics, and evaluate the score of the model. When K is small we can exhaustively evaluate all
these choices. In such a situation we are find the optimal model given the data. In most learning
scenarios, however, K is large enough to make such enumeration unfeasible. Thus, instead, we
construct Li by a greedy procedure (Friedman & Goldszmidt 1998) that at each iteration finds the
best k to separate from the default case, until no improvement is made to the score.

To summarize, when we have complete data the problem of learning a CSI clustering model is
straightforward: We collect the sufficient statistics SXijck for every Xi and k � �� � � � �K , and then
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we can efficiently evaluate every possible model. Moreover, we can choose the one with the highest
posterior without explicitly enumerating all possible models. Instead, we simply decide what is the
best Li for each Xi, independently of the decisions made for the other variables.

3.3 Incomplete Data

We now return to the case of interest to us, where we do not observe the class labels. Such a learning
problem is said to have incomplete data. In this learning scenario, the evaluation of the marginal
likelihood Eq. (3) is problematic as we need to summarize over all completions of the missing data.
We denote the missing part of the data as DH . In our case, this consist of assignment to clusters for
the M samples. Using this notation, we can write Eq. (3) as:

P �D j M� �

Z
�

X
DH

P �D�DH j M� 	�M�P �	�M j M�d	�M

Although P �D�DH j M� 	�M� is a product of local terms, we cannot decompose the marginal
likelihood. Moreover, unlike the complete data term, we cannot learn the structure of P �Xi j C�
independently of learning the structure of other conditional probabilities. Since we do not observe
the values of the cluster variables, these choices interact. As a consequence, we cannot compute the
marginal likelihood in an analytical form. Instead, we need to resort to approximations. We refer
the reader to Chickering & Heckerman (1997) for an overview of methods for approximating the
marginal likelihood.

In this paper we use two such approximations to the logarithm of the marginal likelihood. The
first is the Bayesian Information Criterion (BIC) approximation of Schwarz (1978)(see Eq. (5)).

BIC�M� 	�M� � logP �D j M� 	�M�� �

�
logM dim�M�

To evaluate this score, we perform expected maximization (EM) iterations to find the MAP param-
eters (Lauritzen 1995); see also (Chickering & Heckerman 1997, Heckerman 1998). The benefit of
this score is that once we find the MAP parameters, it is fairly easy to evaluate. Unfortunately, this
score is only asymptotically correct, and can over-penalize models for complexity in practice.

Another possible approximation is the Cheeseman-Stutz (CS) score (Cheeseman & Stutz 1995);
see also (Chickering & Heckerman 1997). This score approximates the marginal likelihood as:

CS�M� 	�M� � logP �D j M� 	�M�� logP �D�
c j M� 	�M� 	 logP �D�

c j M�

where D�
c is a fictitious data set that is represented by a set of sufficient statistics. The computation

of P �D�
c j M�

�	�M� and P �D�
c j M� is then performed as though the data is complete. This simply

amounts to evaluating Eq. (6) and Eq. (7) using the sufficient statistics for D�c .
The choice of D�

c is such that its sufficient statistics will match the expected sufficient statistics
given M and 	�M. These are defined by averaging over all possible completions Dc of the data

E
h
SXijck j M� 	�M

i
�
X
Dc

SDc

Xijck
P �Dc j D�M� 	�M� (8)

where Dc represents a potential completion of the data (i.e., assignment of cluster value to each
example) and SDc

Xijck
is the sufficient statistics for Xi given C � k evaluated on Dc. Using the
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linearity of expectation, this term can be efficiently computed (Chickering & Heckerman 1997,
Friedman 1998). Thus, to compute D�c , we find the MAP parameters 	�M, and then compute the
expected sufficient statistics given M�	�M. We then use these within Eq. (6) and Eq. (7) as the
sufficient statistics of the fictional data set D�c .

4 Learning CSI Clustering

4.1 Structural EM

Once we set our prior probabilities, and decide on the type of approximation we use (either BIC or
CS), we implicitly induce a score over all possible models. Our goal is to identify the model M that
attains the highest score. Unfortunately, for a fixed K , there are O��NK� choices of models with K
clusters and N variables, therefore we cannot exhaustively evaluate the score on all models.

The typical way to handle this difficulty is by resorting to a heuristic search procedure. Local
search procedures traverse the space of models by performing local changes (e.g., changing one of
the Li by adding or removing a case in the default table). The main computational cost of such a
search is evaluating candidate model. Remember that since we have incomplete data, we cannot
directly score a candidate models. Instead, for each candidate model we want to score, we perform
another search in the parameter space (using techniques such as EM) to find the MAP parameters
and then use these parameters for computing the score. Thus, the search procedure spends non-
negligible computation per candidate. This severely limits the set of candidates that it can explore.

To avoid such expensive evaluations of candidates, we use the framework of Bayesian struc-
tural EM (Friedman 1998). In this framework, we use our current candidate to “complete” the
missing values (i.e., cluster assignments). We then perform structure learning as though we have
complete data, searching (efficiently) for a better model. This results in a new “best” model (with
it’s optimized parameters). This new model, forms the basis for the next iteration, and so on. This
procedure has the benefit that structure selection is done in a situation that resembles complete data.
In addition, each iteration can find a model that is quite different from the model at the beginning
of the iteration. In this sense, the local moves of standard search procedure are replaced by global
moves. Finally, the procedure is proven to improve the structure in each iteration.

More specifically, the Structural EM procedure consists of repeated iterations. We initialize
the process with a model M�� 	��. We discuss below the choice of this starting point. Then at the
 	 �’th iteration we start with the pair M�� 	�� of the previous iteration and construct a new pair
M���� 	����. This iteration consists of three steps.

� E-Step: Compute expected sufficient statistics

S�Xijcj
� E

h
SXijck j M�� 	��

i
for each i � �� � � � � N and each k � �� � � � �K using Eq. (8).

� M-Step: Learn a model M��� and parameters 	���� using these expected sufficient statis-
tics, as though they were observed in a complete data set. For each Xi choose the scoring
CSI model Li that maximizes the score with respect to the sufficient statistics. This is done
independently for each of the variables.

� Postprocessing-Step: Maximize the parameters for M��� by running parametric EM. This
optimization is initialized by the MAP parameters given the expected sufficient statistics.
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These iterations are reminiscent of the standard EM algorithm. The main difference is that in
the standard approach the M-Step involves re estimating parameters, while in Structural EM we
also relearn the structure. More precisely, Structural EM enables us to evaluate each possible new
Li based on the sufficient statistics computed with the current Li instead of doing an expensive EM
procedure for each such candidate.

In applying this procedure, we can use different scores in choosing models at the M-Step. This
depends on the approximation we set out to use on the incomplete data. Above we discussed 2
different scores. The first one is the BIC approximation. In this case, we simply evaluate struc-
tures in the M-step using BIC on complete data (the likelihood in this case decomposes, and the
complexity penalty remains the same). The second one is the CS approximation. In this case,

note that CS applied to complete data is simply the Bayesian score (since logP �D j M�
�	�M� and

logP �D�
c j M�

�	�M� cancel out). Thus, in this case we use the exact Bayesian score with respect to
the expected sufficient statistics.

These iterations are guaranteed to improve the score in the following sense. Each iteration finds
a candidate that has better score (with respect to the incomplete training data) than the previous
one. More precisely, if we use the BIC score (with respect to the expected sufficient statistics) in
the M-step, then results of Friedman (1997) show that the BIC score of M���� 	���� is greater than
the BIC score M�� 	��, unless the procedure converged in which case the two scores will be equal.
Thus, each step improves the score we set out to maximize, and at some point the procedure will
reach a (local) maxima.

When we use the CS score, the situation is more complicated. The results of Friedman (1998)
show that each iteration is an approximate version of a procedure that does improve the Bayesian
score on the incomplete data. In practice, most iterations do improve the CS score.

We use two different methods for initializing the structural EM procedure. In the first one, we
start with the full model (where jLij � jCj for every variable Xi node). This model is the most
expressive in the class we consider, and thus allows the starting point to capture any type of “trend”
in the data. The second initialization method, is by using a random model, where G (i.e. the set of
variables dependent on the hidden cluster variable) is chosen at random. In both cases, we apply
aggressive parametric optimization to find the initial parameters. This is done by using 100 random
starting points for parametric EM, and returning the parameter vector that achieves the highest score.

4.2 Escaping Local Maxima

The structural EM procedure, as described above, can get trapped in “local” maxima. That is, it
can reach sub-optimal convergence points. This can be a serious problem, since some of these
convergence points are much worse than the optimal model, and thus lead to a poor clustering.

A naive way to avoid this problem is by multiple restarts. However, when the number of local
maxima is large, such multiple restarts have limited utility. Instead, we want strategies for escap-
ing local maxima that improve on the solution found by earlier iterations. We implemented two
approaches for escaping local maxima.

In the first approach, we apply a directed search once the structural EM procedure converges.
More specifically, assume that M� is the convergence point of structural EM. Starting from this
model, we apply a local search procedure that attempts to add and remove variables to the model.
As explained above, such a procedure is costly since it has to separately evaluate each candidate
it proposes. To avoid evaluating all moves from the current model, we apply randomized moves
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and evaluate each one. Once a candidate with a score higher than that of M� is found, we restart
structural EM from that point. If after a fixed amount of random trials no improvement was found,
the procedure terminates the search and returns the best model found so far.

In the second approach, we use annealing-like procedure to introduce randomness at each step
of the process. This randomness needs to serve two purposes. On the one hand, a certain amount of
randomness will allow the procedure to escape convergence points of structural EM. On the other
hand, we want our steps to exploit the sufficient statistic computed in the E-step to choose models
that build on information learned in previous iterations.

We achieve this goal by using a variant of Structural EM recently suggested by Elidan et al.
(2001) and Friedman et al. (2002). The idea is simple: at each iteration of Structural EM, we
perform a random reweighting of the training samples. More precisely, for each sample m, we
sample a weight w�m from a Gamma distribution with mean 1 and variance ��, where �� is an
additional parameter that controls the “temperature” of the search.

In the modified E-step we compute weighted sufficient statistics

E
h
SXijck j W ��M� 	�M

i
�
X
Dc

w�
mSXijck�Dc

P �Dc j D�M� 	�M�

We then apply the M-Step with respect to these reweighted expected sufficient statistics. Addi-
tionally, we set ���� to be � � �� where � � � is a decay factor. The search is terminated once ��
reaches a certain predetermined threshold. In our experiments, the annealed approach dominated in
performance the approach described above.

5 Evaluation

5.1 Simulation Studies

To evaluate the applicability of our clustering method, we started by performing tests on synthetic
data sets. These data sets were sampled from a known clustering model (which determined the
number of clusters, which variables depend on which cluster value, and the conditional probabili-
ties). Since we know the model that originated the data, we can measure the performance of our
procedure. We examined two aspects. First, how well the procedure recovers the structure of the
real model (number of clusters, false positive and false negative edges in the model). Second, how
well the procedure recovers the original clustering. That is, how well the model classifies a new
sample (gene). The aim of these tests is to understand how the performance of the method depends
on various parameters of the learning problem. We will review our techniques for evaluating the
learning process results and then turn to describe the details of our artificial data set generation,
followed with a summary of the results.

We first address the issue of evaluating the classification success, which can be measured in
many different techniques. We use the following criterion. A clustering model M defines a con-
ditional probability distribution over clusters given a sample. Let Mt denote the true model, and
let Me denote the estimated model. Both define conditional distributions over clusters. We want
to compare these two conditional distributions. We will denote the clusters of the true model as Ct
and the clusters of the estimated model as Ce. Then, we can define a joint distribution over these
two clusterings:

P �Ct� Ce� �
X
x

P �x j Mt�P �Ct j x�Mt�P �Ce j x�Me�
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Table 1: Summary of results on synthetic data. The results summarize performance of the procedure
on data generated from a model with 5 “true” clusters and additional background noise. We report:
the number of clusters learned, logarithm of the likelihood ratio between learned model and “true
model” on training data (with noisy samples) and test data (unseen samples, without noise), the
information the learned clusters contain about the original clusters (see text), the fraction of edges
not recovered (# false negative edges / # edges in the true models), and the fraction of false edges
recovered (# false positive edges / # edges in learned model). For each figure of merit, we report the
mean value and the standard deviation from results from 10 datasets (see text).

Noise Score N Cluster # Likelihood (train) Likelihood (test) I�Ct�Ce�
H�Ct�

�FalseNegatives
�TrueEdges

�FalsePositives
�LearnedEdges

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
10% BIC 200 6.0 0.00 8078 240.8 -3998 183.4 1.00 0.00 0.0187 0.012 0.1389 0.009

500 6.0 0.00 20168 417.9 -1302 362.1 1.00 0.00 0.0063 0.005 0.1587 0.007
800 6.0 0.00 32422 524.0 -673 336.2 1.00 0.00 0.0000 0.000 0.1608 0.006

CS 200 6.4 0.49 08109 231.7 -4074 265.0 1.00 0.00 0.0083 0.008 0.1545 0.008
500 6.6 0.49 20186 415.0 -1356 404.2 1.00 0.00 0.0042 0.005 0.1643 0.005
800 6.6 0.49 32444 520.0 -675 328.8 1.00 0.00 0.0000 0.000 0.1666 0.007

30% BIC 200 5.6 0.49 20255 234.9 -6304 650.7 0.94 0.07 0.0042 0.005 0.1555 0.004
500 5.8 0.40 50738 642.4 -2847 1081.7 0.97 0.06 0.0000 0.000 0.1666 0.005
800 5.8 0.40 81027 1415.7 -2016 1224.7 0.97 0.06 0.0000 0.000 0.1738 0.003

CS 200 6.2 0.75 20349 209.4 -6187 413.2 0.97 0.06 0.0021 0.004 0.1626 0.006
500 6.4 0.49 50988 487.6 -2275 126.0 1.00 0.00 0.0000 0.000 0.1695 0.007
800 6.6 0.49 81397 691.6 -1399 88.9 1.00 0.00 0.0000 0.000 0.1738 0.003
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Figure 2: Graphs comparing the scores for different cluster numbers. The x-axis denotes the number
of clusters, and the y-axis denote the score per sample (logarithm of BIC score divided by number
of samples). (a) Comparison of directed search and weights annealing search on training data with
30% noise and 500 training samples. (b) Comparison of weight annealing search on training data
with 10% noise, with 200, 500, and 800 training samples. Each point is the average of 5 data sets,
and error bars denote one standard deviations.
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where the sum is over all possible joint assignments to X. In practice we cannot sum over all these
joint assignments, and thus we estimate this distribution by sampling from P �X j Mt�. Once we
have the joint distribution we can compute the mutual information,

I�Ct�Ce� �
X
ct�ce

P �ct� ce� log
P �ct� ce�

P �ct�P �ce�

between the two clustering variables (Cover & Thomas 1991). This term denotes the number of
bits one clustering carries about the other. In the table below we report the information ratio
I�Ct� Ce��H�Ct�, which measures how much information Ce provides about Ct relative to the
maximum possible (which is the entropy of Ct as I�Ct� Ct� � H�Ct�).

We now turn to the second issue of evaluating the structure learning. We measure several aspects
of the learned structure. To evaluate the selected number of clusters, we record both the number of
clusters in the model as well as the number of “identified” clusters in the model. These are clusters
for which there is at least one training sample that is assigned to it. For the CSI structure evaluation
we recorded the number of false positive and false negative edges in the implied graph. Recall that
an edge corresponds to an informative attribute in the discussion above.

We generated synthetic data from a model learned from Gasch et al dataset we describe be-
low. This model had 5 clusters, 93 continuous variables, and 25 discrete nodes. As described in
Section 5.2, this model (as most of the ones we learned from real data) had several characteristics.
The continuous attributes were mostly informative (usually about several clusters). On the other
hand, most discrete attributes were uninformative and the remaining ones distinguished mostly one
cluster. From this model, we sampled 5 training sets of sizes 200, 500, and 800 samples (15 training
sets in total), and a test set of 1000 samples.

We expect that biological data sets to contain many samples that do not fit into clusters. Thus,
we want to ensure that our procedure is robust to the presence of such “noise”. To estimate this
robustness, we “injected” additional noise into the training sets. This was done by adding samples,
whose values were sampled uniformly from the range of values each attribute had in the “real”
samples we already had at hand. These obscure the clustering in the original model. We ran our
procedure on the sampled data sets that we obtained by adding 10% or 30% additional “noise”
samples to the original training data.

The procedure was initialized with random starting points, and for each training data we searched
for the best scoring model with the number of clusters in the range K � 
� � � � � �. We then chose
the model with the best score among these. Table 1 summarizes the average performance over the 5
training sets in each parameter setting (200,500, or 800 samples with 10% or 30% “noise”) using the
learning procedure with two scoring methods. We briefly summarize the highlights of the results.

Search procedure: We compared the performance of the two variants of the search procedure.
The directed approach applies structural EM iterations, and attempt to escape from local maxima
by attempting stochastic moves and evaluating each one. The annealed approach applies structural
EM iterations where in each iteration, samples are re weighted. In our experiments, we started the
annealing procedure with initial temperature (variance of gamma distribution) �, and each iteration
cooled the temperature by a factor of 0.9. In particular, in Figure 2(a) we see that the annealed
search procedure clearly outperforms the directed search on a particular setting. This behavior was
consistently observed in all settings, and we do not report it here.

Cluster number: In all runs, models learned with fewer clusters than the original model were
sharply penalized. On the other hand, models learned with additional clusters got scores that were
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close to the score received when learning with 5/6 clusters; see Figure 2(b). Most runs added another
cluster that captured the “noise” samples we added in constructing the training data, and thus, most
of the runs pick 6 or slightly more clusters (see Table 1). In general, runs with the BIC score had
stronger penalty for additional clusters, which resulted in choosing 6 clusters as the best scoring
model more often. Runs with the CS score sometimes added more clusters. Additionally, as one
might expect, the number of chosen clusters tends to grow with strong noise and with larger sample
size.

Likelihood: As expected, training likelihood is higher than that of the true model. This oc-
cur both because the procedure “fits” better the training data, and because of the additional noisy
samples in the training data. On the other hand, the learned models are always worse (as expected)
on the test data. Additionally, the test data likelihood improves with number of training samples
increase, even in noisy data that also has additional noise samples. As expected, models trained
with noisier data are somewhat worse than models learned from cleaner data. As a general trend,
the training data likelihood of models learned with the CS score are as good as or better than models
learned with the BIC scores. This difference is significant mainly in the noisier data sets. The test
set performance of both scores is roughly the same when learning with 10% noise (with BIC slightly
better) and CS is better in 30% noise.

Structure accuracy: We measured the percentage of additional dependencies in the learned
graph G when compared to the true structure (false positives) and missing ones in the learned graph
G (false negatives). In general, the procedure (using both BIC and CS scores) tended to have very
small ratio of false negatives which diminishes as more training samples are available. This shows
the procedure is good on recognizing relevant attributes. On the other hand, the procedure had
nontrivial number of false positives dependencies, about 13% - 17 % depending on the sample
size, the scoring function, and the percentage of noise. In general, when using the CS score, the
procedure has a slightly higher ratio of false positive. Similarly, the presence of higher noise levels,
also increased the number of false positive dependencies.

Mutual Information Ratio: In this category all the runs with 800 training samples achieved the
maximal information gain. Runs with 200 samples achieved information gain of 94% and above.
Runs with 500 samples had various results that depended on the level of noises. For 10% noise we
got maximal information gain, while results in the noisier data set got 97% information gain. As
with the likelihood of the data, the CS score had slightly better results compared to the BIC score.
These results show that the learned clusters were informative about the original clusters.

Clearly, these simulations only explore a small part of the space of possible parameters. How-
ever, they show that on a model that has statistical characteristics similar to real-life datasets, our
procedure can perform in a robust manner and discover clusterings that are close to the original one,
even in the presence of noise.

5.2 Biological Data

We evaluated our procedure on two biological data sets of budding yeast gene expression. The first
data set is from Spellman et al. (1998) who measured expression levels of genes during different
cell-cycle stages. We examined the expression of the � ��� genes that Spellman et al identify as
cell-cycle related in 77 experiments. The second data set is from Gasch et al. (2000) who measured
expression levels of genes in response to different environmental changes. Gasch et al identified
a cluster of genes that have “generic” response to stress conditions. In addition, they identified
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Figure 3: The clustering found for the cell-cycle data of Spellman et al.. Light pixels correspond to
over expressed genes, and dark ones correspond to under-expressed genes. The clusters shown here,
where also characterized by the existence of the following binding sites. Clusters 2 and 5: STUAP
(Aspergillus Stunted protein), Cluster 3: QA1 (DNA-binding protein with repressor and activator
activities, also involved in silencing at telomeres and silent mating type loci), Clusters 4 and 6: HSF
(Heat shock transcription factor).
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Figure 4: Representation of the clustering found in the stress data of Gasch et al. (a) clustering based
on gene expression and TF putative binding sites. (b) clustering based also on phylogenetic profiles.
The top row contains schematic representation of the clustering. The second row contains a “CSI
mask” plot that hides all expression features that were considered uninformative by the model. The
bottom row shows figures of all the genes, sorted by cluster identity. The following clusters were
also characterized by putative binding sites: Cluster 6(a) and 8(b): GCN4 (Transcription factor of
the basic leucine zipper (bZIP) family, regulates general control in response to amino acid or purine
starvation) and CBF1, Cluster 2(a) HAP234, Cluster 7(b) GCN4.
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clusters of genes that responded to particular stress conditions, but not in a generic manner. Our
data set consists of the 950 genes, selected by Segal et al. (2001), that responded to some stress
conditions but are not part of the generic stress response. Both data sets are based on cDNA array
technology, and the expression value of each gene is reported as the logarithm (base 2) of ratio
of expression in the sample compared to the expression of the same gene in a common baseline
(“control sample”).

In addition to the expression levels from these two data sets, we recorded for each gene the num-
ber of putative binding sites in the 1000bp upstream of the ORF. These were generated by using the
“fungi” matrices in the TRANSFAC 5.1 database (Wingender et al. 2000, Wingender et al. 2001).
We used the MAST program (Bailey & Gribskov 1998) to scan the upstream regions. We used these
matches to count the number of putative sites in the 1000bp upstream region. This generated dis-
crete valued random variables (with values �� �� �� � �) that correspond to each putative site (either
a whole promoter region or a sub-region).

We start by describing the parameters used in the algorithm that were reviewed in previous
sections. We applied the annealed search procedure with the following parameters �� � �� � and
� � ���� ����� ���� ����. Best results were obtained with � � ���� ���� with either �� settings.
Other variations, such as the technique for choosing the initial model structure, had no clear cut
domination of one technique over the other.

We now discuss the results, they also appear (with full data file and description of the clusters)
in www.cs.huji.ac.il/compbio/ClusterCSI.

There were several common trends in the results on both expression data sets, when used with
MAST TF binding sites. First, the expression measurements were considered informative by the
clustering. Most of the expression variables had impact on many of the clusters. Second, most
binding site measurements were considered non-informative. The learning procedure decided for
most of these that they have no effect on any of the clusters. Those that were considered relevant,
usually had only 1 or 2 distinct contexts in their local structure. This can be potentially due to the
fact that some of these factors were truly irrelevant, or to a large number of errors made by the
binding site prediction programs that mask the informative signal in these putative sites. In any case
this means these attributes had relatively small influence on the clustering results and only the ones
that seem to be correlated with a clear gene expression profile of one of the clusters were chosen by
the model.

To illustrate the type of clusters we found, we show in Figures 3 and 4(a) two of the clus-
terings we learned. These describe qualitative “cluster profiles” that helps see which experiments
distinguish each cluster, and the general trend of expression at each cluster’s experiments. Note
the schematic illustration of the “masks” that denote the expression attributes that characterize each
cluster. As we can see, these capture, quite well, the experiments in which genes in the cluster
deviate from the average expression.

Another clear observation is that clusters learned from the cell-cycle data all show periodic
behavior. This can be expected since the 800 genes are all correlated with the cell-cycle. However,
the clusters differ in their phase. Such clusters profiles are characteristic of many of the models we
found for the cell-cycle data.

In the Gasch et al data, the best scoring models had twelve clusters. In the model shown in
Figure 4(a), we see two clusters of genes that are under-expressed in stress conditions (Clusters 1,
and 2), seven clusters of genes that are over expressed in these conditions (Clusters 3, 5, 6, 7, 8, 10,
and 12), two cluster of genes that are over expressed in some stress conditions and under-expressed
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in others (Cluster 4 and 9), and two cluster of genes with undetermined response to stress conditions
(Cluster 8, and 11). These later clusters have high variance, while the others have relatively tight
variance in most experiments.

Some of the clusters correspond to clear biological function: For example, Cluster 7 , con-
tains genes that are over-expressed in amino-acid starvation and nitrogen depletion. Examining the
MIPS (Mewes et al. 1999) functional annotation of these genes suggests that many of the genes in-
volved amino-acid biosynthesis and in transport. Another example is Cluster 2 that contains genes
that are under-expressed in late stages of nitrogen depletion, diauxic shift, and under YPD growth
medium. This cluster is associated with frequent occurrences of the HAP234 binding site. This
binding site (of the complex HAP2, HAP-3, and HAP-4) is associated with the control of gene ex-
pression under nonfermentative growth conditions. Many genes in this cluster are associated with
mitochondrial organization and transport, respiration, and ATP transport. The association of the
cluster with the HAP234 binding strengthens the hypothesis that genes with unknown function in
this cluster might be related to these pathways.

We suspect that one of the reasons few clusters are associated with transcription factors binding
site is the noisy prediction of these sites. To evaluate the effect of a more informative sequence
motifs identification in the upstream region, we performed the following experiment. We applied
our algorithm using expression values from the Gasch et al data set. Then, we applied the procedure
of Barash et al (2001) to each of the clusters we identified. This procedure searches for motifs that
discriminatively appear in the upstream region of genes in particular clusters and are uncommon in
other genes in the genome. We then annotated each gene with the set of motifs we found, and used
these annotations as additional input to a new run of our algorithm. Although we applied a fairly
simple unsupervised sequence motif identification algorithm, its impact on the learning algorithm
was clear. Several hundred genes have changed their hard assignment from the initial assignment
made when clustering with only expression data, 26 out of 28 motifs were considered informative
to the final clustering , and 2 motifs became relevant for 2 different clusters. When we ran the new
hard assignments of genes to clusters in the motif finding algorithm we got a general improvement
in motifs identification in clusters.

Next, in order to demonstrate the model’s ability to facilitate relevant biological data from differ-
ent sources, we considered adding additional attributes extracted from the COG database (Tatusov
et al. 2001). This database associates each yeast gene with orthologous genes in 43 other genomes.
Thus, we create for each gene a phylogenetic pattern that denotes whether there is an orthologous
gene in each of the 43 genomes. When we include these additional features, the clusters learned
changes. In general, we note that most of the phylogenetic patterns were considered informative by
the model but still context specific. For example, we see pairs of clusters (e.g., Clusters 5 and 10)
that are similar in terms of expression, yet have distinct phylogenetic profiles. One cluster contains
genes that do not have orthologs, while the other cluster contains genes that have orthologs in many
bacterial genomes.

Phylogentic patterns also allow us to gain additional insight into the functional aspects of the
clusters. For example Cluster 8 contains genes that are highly over-expressed in amino-acid star-
vation and nitrogen depletion. It is characterized by occurrences of the binding sites of GCN4
and CBF1, and genes in it have the “typical” profile with orthologs in C. jejuni, P. mutocide,
Halobacterium sp. NRC-1, P. aeruginosa, M. tuberculosis, A. aeolicus, C. crescentus, H. pylori
J99, M. leprae, D. radiodurans, T. volcanium, and T. acidophilum, and no orthologs in M. geni-
talium, B. burgdorferi, C. pneumoniae, C. trachomatis, S .pyogenes, T. pallidum, R. prowazekii,,
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Figure 5: Clustering of arrays in the stress data set of Gasch et al. The left figure shows the data
rearranged according to the clustering. The right figure shows only the positions that are informative
the learned models (note that cluster 1 is totally masked in this model).

U. urealyticum, and Buchnera sp. APS. This cluster description suggests that this group of genes
have common phylogenetic origins as well as common function and regulation.

As we noted in the introduction, our method can be used for other clustering tasks. As an
example, we clustered the 92 samples in the stress data. In this clustering, we reversed the roles
of conditions and genes. Now we consider each condition as an (independent) sample, and each
gene as a (continuous) attribute of the sample. The result of the clustering are groups of samples,
for each cluster we have the list of informative genes. Not surprisingly, this clustering recovered
quite well the groups of samples with the same treatments. Table 2 shows the composition of each
cluster in a run with 10 clusters in terms of the original treatments. Each of the following treatments
were recovered in a separate cluster: ddt, diamide, YP, and steady state. In addition, the nitrogen
depletion time course was split into two clusters. The earlier samples (30 minutes to 4 hours)
appeared in a cluster with the amino acid starvation samples, while the later samples (8 hours to 5
days) were clustered separately. This is consistent with clusters we learned over genes, that showed
that some genes had distinct behavior in later parts of the nitrogen depletion time course. Similar
phenomena occurs with H2O2 samples. Earlier samples (10 minutes - 50 minutes) are clusters
with Menadion samples. Later H2O2 samples (60 minutes to 80 minutes, and also 40 minutes)
were clustered with sorbitol samples. Finally, both heat shock time courses (fixed temperature, and
variable temperature) were mostly clustered in one cluster, although some of the heat shock samples
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Table 2: Confusion matrix comparing the learned clusters of experiments in the Gasch et al data set
(in a one run of the procedure) to the original division of experiments according to treatment.

Condition Cluster
1 2 3 4 5 6 7 8 9 10

Heatshock 1
Heatshock (variable) 1 1 5
H2O2 4 5
Menadione 9
DDT 4
diamide 8
sorbitol 7
AA starvation 5
Nitrogen starvation 6 4
Diauxic shift 1
YPD 2 8
YP 5
Steady state 6

appear in other clusters.
These results demonstrate that, as can be expected, different treatments have a clear signature at

the mRNA level that can be easily picked by our algorithm. More important, these results demon-
strate another possibly important application of the CSI clustering algorithm. As we cluster here
experiments over gene as attributes this procedure not only cluster similar experiments but also au-
tomatically extracts for each such experiments cluster the genes that are differently expressed in
it.

6 Discussion

In this paper we examined the problem of clustering genes based on a combination of genomic
and genetic data. We present an approach that learns from both gene expression data and putative
binding sites (from various sources). This approach identifies and characterizes clusters of genes.
Our approach is novel in its ability to handle data in which many attributes are irrelevant to the
clustering, and its ability to tailor each cluster to the attributes that it depends on. Due to the
nature of the underlying biological problem, we believe that our approach is more suitable than
standard clustering methods that treat all variables on equal footing. The experimental results on
both synthetic and real data, suggest that this approach is robust to noise and recovers groups of
genes with coherent behavior.

Throughout most of the paper we have focused one a particular application—clustering genes
based on expression levels and transcription factors binding sites. However, it is clear that the
general techniques we develop here are applicable for many other forms of data analysis where one
expect to find many irrelevant and “partially relevant” attributes.

Our approach is similar to that of Holmes and Bruno (2000) in that both approaches use unified
probabilistic models for gene expression and binding sites. However, there are several distinct
differences. Holmes and Bruno focus on the problems of finding new putative sites, as such their
model combines a naive Bayes model over expression attributes and an HMM-like model of DNA
sequences (as in (Huges et al. 2000, Lawrence et al. 1993)). This provides more detailed models
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of binding sites, and can discover novel ones. However, such models assume one binding site per
cluster, and cannot detect multiple regulatory sites, nor detect that some experiments are irrelevant
to the definition of a specific cluster. This difference is reflected in the choice of statistical methods:
Holmes and Bruno’s method searches for maximum likelihood parameters in a fixed parametric
model, while our approach performs Bayesian model selection.

There are several ways of extending our approach. The first one is to extend the models of
binding sites to finer grain models, such as PSSM/HMM like models of binding sites. This in-
volves replacing a random variable by a sub-model that includes additional parameters that need to
be learned. The language of Bayesian networks provides tools for such complex models and the
foundations for learning with them. Yet, there are algorithmic and modeling issues that need to be
addressed. Such a combined approach can amplify our understandings as to the relevance of new
binding site(s) to the clustering of genes.

Another important aspect of our approach is that it provides a comprehensive model of expres-
sion and the binding sites that regulate it. As such, it attempts to deal with all attributes that affect
the gene expression pattern at once, and does not consider each binding site without regard to its
context. A possible extension is to learn direct interactions between attributes (e.g., if binding site
A appears in a certain region, then the probability that it will appear in other regions will decrease).
We can do so by learning a Bayesian network that models these dependencies. An attractive class
of such Bayesian networks are the tree-augmented Naive Bayes models that were introduced in the
context of supervised learning (Friedman et al. 1997).

Finally, the models we learn here generalize over genes. That is, they proposed a uniform model
for genes. In contrast, experiments receive individual treatment. Ideally, we would like to generalize
both over genes and over experiments. This requires a model that describes 2-sided clustering:
clusters of genes, and clusters of experiments. To learn clusterings that also takes into account
genetic information, we need more expressive language. Recently, Segal et al. (2001) develop a
method in this spirit that is based on the language of Probabilistic Relational Models (Friedman
et al. 1999).
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& D. Poole, eds, ‘Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ’94)’,
Morgan Kaufmann, San Francisco, pp. 399–406.

Lauritzen, S. L. (1995), ‘The EM algorithm for graphical association models with missing data’,
Computational Statistics and Data Analysis 19, 191–201.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, R. F. & Wooton, J. C. (1993),
‘Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment’, Science
262, 208–214.

Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S. & Frishman, D. (1999),
‘MIPS: a database for protein sequences and complete genomes.’, Nuc. Acids Res. 27, 44:48.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Francisco,
Calif.

Rissanen, J. (1978), ‘Modeling by shortest data description’, Automatica 14, 465–471.

Roth, F., Hughes, J.D. Estep, P. & Church, G. (1998), ‘Finding DNA regulatory motifs within un-
aligned noncoding sequences clustered by whole-genome mRNA quantitation’, Nat. Biotech-
nol. 16, 939–945.

Schwarz, G. (1978), ‘Estimating the dimension of a model’, Annals of Statistics 6, 461–464.

Segal, E., Taskar, B., Gasch, A., Friedman, N. & Koller, D. (2001), ‘Rich probabilistic models for
gene expression’, Bioinformatics 17(Suppl 1), S243–52.

25



Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Bot-
stein, D. & Futcher, B. (1998), ‘Comprehensive identification of cell cycle-regulated genes of
the yeast saccharomyces cerevisiae by microarray hybridization’, Mol. Biol. Cell 9(12), 3273–
97.

Tatusov, R., Natale, D., Garkavtsev, I., Tatusova, T., Shankavaram, U., Rao, B., Kiryutin, B.,
Galperin, M., Fedorova, N. & Koonin, E. (2001), ‘The COG database: new developments
in phylogenetic classification of proteins from complete genomes’, Nuc. Acids Res. 29, 22–28.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. (1999), ‘Systematic
determination of genetic network architecture’, Nat Genet 22(3), 281–5. Comment in: Nat
Genet 1999 Jul;22(3):213-5.

Vilo, J., Brazma, A., Jonassen, I., Robinson, A. & Ukkonen, E. (2000), Mining for putative regula-
tory elements in the yeast genome using gene expression data, in ‘ISMB’00’.

Wingender, E., Chen, X., E., F., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H.,
Ohnhauser, R., Pruss, M., Schacherer, F., Thiele, S. & Urbach, S. (2001), ‘The TRANSFAC
system on gene expression regulation’, Nuc. Acids Res. 29, 281–283.

Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M.,
Reuter, I. & Schacherer, F. (2000), ‘TRANSFAC: an integrated system for gene expression
regulation’, Nuc. Acids Res. 28, 316–319.

26



A Sufficient Statistics and
Conjugate Priors

In this appendix we review the details of Dirichlet and Normal Gamma priors. This is mostly text
book material and can be found, for example, in (DeGroot 1970).

A.1 Dirichlet Priors

Let X be a random variable that can take K possible values that without loss of generality are
named f�� � � � Kg. A parameterization for X is a vector 	�X � h��� � � � � �Ki such that �i  � andP

i �i � �. Suppose, we are given a training set of M independent draws x���� � � � � x�M � of X from
an unknown multinomial distribution P�. The likelihood of the observations for given parameters
is:

P �x���� � � � � x�M � j 	�X� �
Y
i

�Mi
i

where Mi is the number of occurrences of the symbol i in the sequence x���� � � � � x�M �. The vector
S � hM�� � � � �MKi is the sufficient statistics of the sequence x���� � � � � x�M �. If two sequences are
such that they have the same counts, then their likelihood is the same.

The multinomial estimation problem is to find a good approximation for P�. This problem can
be stated as the problem of predicting the outcome x�M 	 �� given x���� � � � � x�M �. Given a prior
distribution over the possible multinomial distributions, the Bayesian estimate is:

P �x�M 	 �� j x���� � � � � x�M �� �

Z
P �x�M 	 �� j 	��P �	� j x���� � � � � x�M ��d	� (9)

The posterior probability of 	� can be rewritten using Bayes law as:

P �	� j x���� � � � � x�M �� � P �	��
Y
i

�Mi
i (10)

The family of Dirichlet distributions is conjugate to the multinomial distribution. That is, if
the prior distribution is from this family, so is the posterior. A Dirichlet prior for X is specified by
hyperparameters ��� � � � � �K , and has the form:

P �	�� �
��
P

i �i�Q
i ���i�

Y
i

��i��i

for
P

i �i � � and �i  � for all i, where ��x� �
R�
� tx��e�tdt is the gamma function. Given a

Dirichlet prior, the initial prediction for each value of X is P �X� � i� �
R
�iP �	��d	� � �i�

P
j �j .

It is easy to see that, if the prior is a Dirichlet prior with hyperparameters ��� � � � � �K , then the
posterior is a Dirichlet with hyperparameters �� 	 M�� � � � � �K 	 MK . Thus, we get that the
prediction for XM�� is

P �XM�� � i j x���� � � � � x�M �� �
��i 	Mi�P
j��j 	Mj�

We can think of the hyperparameters �i as the number of “imaginary” examples in which we saw
outcome i. Thus, the ratio between hyperparameters corresponds to our initial assessment of the
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relative probability of the corresponding outcomes. The total weight of the hyperparameters repre-
sent our confidence (or entrenchment) in the prior knowledge. As we can see, if this weight is large,
our estimates for the parameters tend to be further off from the empirical frequencies observed in
the training data.

Finally, to score models we also need to compute the marginal probability:

P �x���� � � � � x�M �� �

Z
P �x���� � � � � x�M � j 	��P �	��d	� �

��
P

i �i�

��
P

i �i 	Mi�

Y
i

���i 	Mi�

���i�

A.2 Normal-Gamma Priors

Let X be a continuous variable with a Gaussian distribution. The parameterization of P �X� is
usually specified by the mean � and the variance ��. In our treatment, we will use the precision
� � �

��
instead of the variance. As we shall see it is more natural to use this parameterization in

Bayesian reasoning. The likelihood function in this case is

P �x���� � � � � x�M � j �� �� �
Y
i

r
�

��
exp



��

�
��x�i� � �i�

�
�

It turns out that the sufficient statistics for this likelihood function are M (the number of sam-
ples), T� �

P
i x�i�, and T� �

P
i x�i�

�. Then we can write

P �x���� � � � � x�M � j �� �� � exp



M

�

�
�log � � ���� 	 T�

�

�
��� T�

�

�
� �M

�

�
log����

�

The normal-gamma distribution is a conjugate prior for this likelihood function. This prior over
�� � is defined as

P ��� �� � �
�
� e�

�
�
�������������e	�

where ��, 
, �, and � are the hyper-parameters. This prior has a gamma distribution over � and a
normal distribution for P �� j �� with mean �� and precision 
� .

The posterior distribution, after we have seen x���� � � � � x�M � with sufficient statistics hM�T�� T�i
has hyper-parameters ���� 


�� ��� ��, where ��� � ����MT�
��M , 
� � 
 	 M , �� � � 	 �

�M , and

�� � � 	 �
�M�T� � T �

� � 	
M��T������

����M� . Finally, the marginal likelihood is

P �x���� � � � � x�M �� �

Z
P �x���� � � � � x�M � j 	��P �	��d	� � �����

�
�
M

�




�

 �
� �����

����
�����	

where ��� ��, and 
� are defined as above.
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