

Gibbs Sampling in Factorized Continuous-Time Markov Processes

Tal El-Hay joint work with Nir Friedman and Raz Kupferman

The Hebrew University, Jerusalem

http://www.ntu.edu.sg/home/ygmu/

- Continuous time
- Multi-component


```
http://www.ntu.edu.sg/home/ygmu/
```


- Continuous time
- Multi-component
- Discrete states

http://www.ntu.edu.sg/home/ygmu/

- Continuous time
- Multi-component
- Discrete states
- Stochastic Dynamics

http://www.ntu.edu.sg/home/ygmu/

- Continuous time
- Multi-component
- Discrete states
- Stochastic Dynamics

Some Applications

- Molecular Biology
- Evolution
- Robot monitoring
- Computer networks

Time →

Discretization:

• Too fine - high computational overhead

Discretization:

- Too fine high computational overhead
- Too coarse entanglement

Discretization:

- Too fine high computational overhead
- Too coarse entanglement

Avoid granularity issues → model continuous time

Uncertainty over uncountably many possible trajectories

Uncertainty over uncountably many possible trajectories

Queries:

1. Marginals at given times

Uncertainty over uncountably many possible trajectories

Queries:

- 1. Marginals at given times
- 2. Expectations of statistics e.g. state durations

Challenges

Representation

CTBN (Nodelman et al. 2002) CTMN (El-Hay et al. 2006)

Inference

Expectation propagation (Nodelman et al. 2005; Saria et al. 2007) Sampling/Particle filtering (Ng et al. 2005; Fan and Shelton 2008)

Parameter estimation

(Nodelman et al. 2003, 2005; El-Hay et al. 2006)

Structure learning

(Nodelman et al. 2003)

Challenges

Representation

CTBN (Nodelman et al. 2002)

CTMN (El-Hay et al. 2006)

Inference

Expectation propagation (Nodelman et al. 2005; Saria et al. 2007) Sampling/Particle filtering (Ng et al. 2005; Fan and Shelton 2008)

Parameter estimation

(Nodelman et al. 2003, 2005; El-Hay et al. 2006)

Structure learning

(Nodelman et al. 2003)

Unbiased sampling scheme in continuous time

- Handle all types evidence
- Efficient
- Enrich toolbox of inference algorithms
- Allow evaluation of faster but biased schemes

Continuous Time Markov Processes - Definitions

A collection of discrete random variables $X^{(t)}$ where $t \in [0,\infty)$

Satisfies Markov property $P(X(t_{k+1})|X(t_k), X(t_{k-1}), ..., X(t_0)) = P(X(t_{k+1})|X(t_k))$

Time Homogeneity

Continuous Time Markov Processes - Definitions

A collection of discrete random variables $X^{(t)}$ where $t \in [0,\infty)$

Satisfies Markov property $P(X(t_{k+1})|X(t_k), X(t_{k-1}), ..., X(t_0)) = P(X(t_{k+1})|X(t_k))$

Time Homogeneity

Continuous Time Markov Processes - Definitions

A collection of discrete random variables $X^{(t)}$ where $t \in [0,\infty)$

Satisfies Markov property $P(X(t_{k+1})|X(t_k), X(t_{k-1}), ..., X(t_0)) = P(X(t_{k+1})|X(t_k))$

Time Homogeneity $p_{a,b}(t) = \Pr(X^{(s+t)} = b | X^{(s)} = a)$

Continuous Time Markov Processes -Parameterization

Parameterized by a *rate matrix* Q:

$$p_{a,b}(\Delta t) \approx q_{a,b}\Delta t, \qquad \Delta t \to 0, a \neq b$$

Transition probabilities satisfy

Continuous Time Markov Processes -Parameterization

Parameterized by a *rate matrix* Q:

$$p_{a,b}(\Delta t) \approx q_{a,b} \Delta t,$$

transition rates

$$\Delta t \to 0, a \neq b$$

Transition probabilities satisfy

Continuous Time Markov Processes -Parameterization

Parameterized by a rate matrix \mathbb{Q} :

$$p_{a,b}(\Delta t) \approx q_{a,b} \Delta t,$$

transition rates

Transition probabilities satisfy

$$p_{a,b}(t) = \left[e^{t\mathbb{Q}}\right]_{a,b}$$

 $\Delta t \to 0, a \neq b$

Multi component Markov process $X=(X_1, \ldots, X_N)$

Naive representation -> size of rate matrix is exponential in number of components

Multi component Markov process $X=(X_1, \ldots, X_N)$

Naive representation -> size of rate matrix is exponential in number of components

Compact representation

Multi component Markov process $X=(X_1, \ldots, X_N)$

Naive representation -> size of rate matrix is exponential in number of components

Compact representation

• Only one component changes its state in a single transition

Multi component Markov process $X=(X_1, \ldots, X_N)$

Naive representation -> size of rate matrix is exponential in number of components

Compact representation

- Only one component changes its state in a single transition
- Conditional rate matrices depend on parents $\mathbb{Q}^{i|\operatorname{Par}(i)}$

 $q_{(a_1,a_2,a_3,a_4,a_5)\to(a_1,b_2,a_3,a_4,a_5)} = q_{a_2} \to b_2|(a_1,a_3) \to (a_1,b_2,a_3,a_4,a_5) = q_{a_2} \to b_2|(a_1,a_3) \to b_2|(a_1,a_3) \to (a_1,b_2,a_3,a_4,a_5) = q_{a_2} \to b_2|(a_1,a_3) \to (a_1,b_2,a_3,a_4,a_5) = q_{a_2} \to b_2|(a_1,a_3) \to b_2|(a_1,a_3$

Multi component Markov process $X=(X_1, \ldots, X_N)$

Naive representation -> size of rate matrix is exponential in number of components

Compact representation

- Only one component changes its state in a single transition
- Conditional rate matrices depend on parents $\mathbb{Q}^{i|\operatorname{Par}(i)}$

 $q_{(a_1,a_2,a_3,a_4,a_5)\to(a_1,b_2,a_3,a_4,a_5)} = q_{a_2} \to b_2|(a_1,a_3)$

However, exact inference is still exponential in the number of components

 X_{z}

 X_2

 X_5

How do we sample a single component given the others?

Sampling From a Single Component - Naive Approach

Sampling From a Single Component - Naive Approach

Transition Matrix between two discrete time points:

$$P(X^{i}|X^{i-1}) = \left[e^{\mathbb{Q}\frac{T}{N}}\right]$$

Sampling From a Single Component -Naive Approach

Transition Matrix between $P(X^i|X^{i-1})$ two discrete time points:

$$X^{i}|X^{i-1}) = \left[e^{\mathbb{Q}\frac{T}{N}}\right]$$

Backward propagation - forward sampling

Sampling From a Single Component - Naive Approach

Transition Matrix between two discrete time points:

$$X^{i}|X^{i-1}) = \left[e^{\mathbb{Q}\frac{T}{N}}\right]$$

Backward propagation - forward sampling

P(

1. Assumes a specific time scale

2. Complexity - linear in the number of sampling points
Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T)$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T)$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T) \longrightarrow \begin{array}{l} \text{Probability to stay in } x^0 \\ \text{at least until time t} \end{array}$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T) \longrightarrow \begin{array}{l} \text{Probability to stay in } x^0 \\ \text{at least until time t} \end{array}$$

From *Markov property*:

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T) = \Pr(X^{(0,t]} = x^0 | x^0) \Pr(x^T | X^{(t)} = x^0)$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T) \longrightarrow \begin{array}{l} \text{Probability to stay in } x^0 \\ \text{at least until time t} \end{array}$$

From Markov property:

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T) = \Pr(X^{(0,t]} = x^0 | x^0) \Pr(x^T | X^{(t)} = x^0)$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T) \longrightarrow \begin{array}{l} \text{Probability to stay in } x^0 \\ \text{at least until time t} \end{array}$$

From Markov property:

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T) = \Pr(X^{(0,t]} = x^0 | x^0) \Pr(x^T | X^{(t)} = x^0)$$

Conditional probability to leave initial state before time t

$$F(t) = 1 - \Pr(X^{(0,t]} = x^0 | x^0, x^T) \longrightarrow \begin{array}{l} \text{Probability to stay in } x^0 \\ \text{at least until time t} \end{array}$$

From *Markov property*:

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T) = \Pr(X^{(0,t]} = x^0 | x^0) \Pr(x^T | X^{(t)} = x^0)$$

Exploiting *homogeneity*:

Iterate between sampling transition times and sampling the next state

Iterate between sampling transition times and sampling the next state

Iterate between sampling transition times and sampling the next state

t

Iterate between sampling transition times and sampling the next state

Iterate between sampling transition times and sampling the next state

Linear in the number of transitions in X_i

Conditional Sampling

t

Conditional Sampling

Theorem: *X* satisfies Markov property

Basic procedure remains the same

Conditional Sampling

Theorem: *X* satisfies Markov property

➡ Basic procedure remains the same

However: Posterior is not time-homogeneous

X explains

Y's state

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T, y^{[0,T]}) = \frac{p^{\text{past}}(t) \cdot p_{x^0}^{\text{future}}(t)}{p_{x^0}^{\text{future}}(0)}$$

$$\Pr(X^{(0,t]} = x^{0} | x^{0}, x^{T}, y^{[0,T]}) = p^{\text{past}(t)} \cdot p^{\text{future}(t)}_{x^{0}}$$

$$\Pr(X^{(0,t]} = x^{0}, y^{(0,t]} | x^{0}, y^{0})$$

$$\boxed{\begin{array}{c} Y & b \\ a \\ c \\ X & b \\ a \\ \hline past & future & t \end{array}}$$

$$\Pr(X^{(0,t]} = x^0 | x^0, x^T, y^{[0,T]}) \xrightarrow{p^{\text{past}}(t) p_{x^0}^{\text{future}}(t)} \text{Normalization}$$

$$\Pr(X^{(0,t]} = x^0, y^{(0,t]} | x^0, y^0) \qquad \Pr(x^T, y^{(t,T]} | X^t = x^0, y^t)$$

$$Y \stackrel{c}{\underset{a}{\overset{c}{\longrightarrow}}} \xrightarrow{p_{ast}} \xrightarrow{future} t$$

Given complete trajectories of the Markov blanket of Xi, X_i is independent of all other components [Nodelman et al 2002].

Given complete trajectories of the Markov blanket of Xi, X_i is independent of all other components [Nodelman et al 2002].

Given complete trajectories of the Markov blanket of Xi, X_i is independent of all other components [Nodelman et al 2002].

Given complete trajectories of the Markov blanket of Xi, X_i is independent of all other components [Nodelman et al 2002].

Complexity scales with the rate of X_i and its Markov Blanket

Experimental Setup

Experimental Setup

• X_i tries to follow X_{i-1}

Evidence $X^{(0)} = (a, a, a, a, a, a)$ $X^{(T)} = (a, b, d, a, b)$

Experimental Setup

Evidence
Experimental Setup

Experimental Setup

Experimental Setup

Results

Results

Unbiased samples after 500 burn-in steps

Summary

Continuous Time Gibbs Sampling

- Exact posterior for distinct components
- Asymptotically Unbiased
- Suitable for judging other inference methods
- Adapts to the natural time scale of the sampled process
- Exploits network structure to reduce computational cost

Further directions

- Convergence diagnostics
- Acceleration of convergence

Thank you