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Time

• Continuous time

• Multi-component

• Discrete states

• Stochastic Dynamics

Some Applications

• Molecular Biology

• Evolution

• Robot monitoring

• Computer networks
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Continuous Time versus Discrete Time Modeling

Discretization:

• Too fine - high computational overhead

• Too coarse - entanglement

Avoid granularity issues ➔ model continuous time 
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Time

Inference in Continuous Time Models

Uncertainty over uncountably many possible trajectories

Queries: 

1. Marginals at given times

2. Expectations of statistics - e.g. state durations
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T[Xi=c]Pr(Xit=a)=?

Evidence at t=0 Evidence at TPossible trajectories
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Goal

Unbiased sampling scheme in continuous time

• Handle all types evidence 

• Efficient

•  Enrich toolbox of inference algorithms

•  Allow evaluation of faster but biased schemes
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A collection of discrete random variables X(t) where t∈[0,∞)

Satisfies Markov property

Time Homogeneity

Continuous Time Markov Processes - Definitions
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pb,a(t4 -t3)

P (X(tk+1)|X(tk),X(tk−1), . . . ,X(t0)) = P (X(tk+1)|X(tk))

pa,b(t) = Pr(X(s+t) = b|X(s) = a)
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Compact representation

• Only one component changes its state in a single transition

• Conditional rate matrices - depend on parents

Continuous Time Bayesian Networks
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However, exact inference is still 
exponential in the number of components

[Nodelman et al. 2002] 9

q(a1,a2,a3,a4,a5)→(a1,b2,a3,a4,a5) = qa2→b2|(a1,a3)

Qi|Par(i)
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Gibbs Sampling in Continuous Time

Iterate sampling each trajectory given the others
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How do we sample a single component  given 
the others?
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Sampling From a Single Component - 
Naive Approach
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1. Assumes a specific time scale
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Cumulative Distribution Function of the Next 
Transition time

Conditional probability to leave initial state before time t  
    

From Markov property:

Exploiting homogeneity:

eqx0→x0 t
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Sampling from F(t):
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Sampling From a Single Component - 
Sequential procedure

Iterate between sampling transition times and sampling the 
next state
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➡ Linear in the number of transitions in Xi
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Conditional Sampling

Theorem: X satisfies Markov property

➡ Basic procedure remains the same

However: Posterior is not time-homogeneous 

Y determines
X’s rate matrix

X explains
Y’s state

X

a
b
c

a
b
c

Y
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Locality

Given complete trajectories of the Markov blanket of Xi,
Xi is independent of all other components [Nodelman et al 
2002]. 

➡ Complexity scales with the rate of Xi and its 
Markov  Blanket
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Summary

Continuous Time Gibbs Sampling

• Exact posterior for distinct components

• Asymptotically Unbiased

• Suitable for judging other inference methods

• Adapts to the natural time scale of the sampled process

• Exploits network structure to reduce computational cost

Further directions

• Convergence diagnostics

• Acceleration of convergence
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