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Modeling Dynamic Systems

Continuous time Some Applications
Multi-component Molecular Biology
Discrete states Evolution

Stochastic Dynamics Robot monitoring
Computer networks

state angle




Continuous Time versus Discrete Time Modeling




Continuous Time versus Discrete Time Modeling

Discretization:

e Too fine - high computational overhead




Continuous Time versus Discrete Time Modeling

Discretization:

® Too fine - high computational overhead
® [0O coarse - entanglement




Continuous Time versus Discrete Time Modeling

Discretization:

® Too fine - high computational overhead
® [0O coarse - entanglement

Avoid granularity issues = model continuous time
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Inference in Continuous Time Models

Uncertainty over uncountably many possible trajectories

Evidence at t=0 Possible trajectories Evidence at T

Queries:
1. Marginals at given times
2. Expectations of statistics - e.g. state durations




Challenges

Representation @ @
CTBN (Nodelman et al. 2002)

CTMN (El-Hay et al. 2006) @
Inference

Expectation propagation (Nodelman et al. 2005; Saria et al. 2007)
Sampling/Particle filtering (Ng et al. 2005; Fan and Shelton 2008)

Parameter estimation
(Nodelman et al. 2003, 2005; El-Hay et al. 2006)

Structure learning
(Nodelman et al. 2003)
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Goal

Unbiased sampling scheme in continuous time

e Handle all types evidence
o Efficient

e Enrich toolbox of inference algorithms
e Allow evaluation of faster but biased schemes
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Continuous Time Markov Processes - Definitions

A collection of discrete random variables X where r€[0,c0)

Satisfies Markov property
P(X (k)| X (), X (te-1), ..., X(t0)) = P(X (Lrq1)| X (L1))

Time Homogeneity
Pap(t) = Pr(X0F) = p[ X ) = qa)
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transition rates

Transition probabilities satisfy

Pa,b(t) = [ t@]a,b
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Naive representation =» size of rate matrix is exponential in number of components

Compact representation

e Only one component changes its state in a single transition
e Conditional rate matrices - depend on parents Q¢Far(?)
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Continuous Time Bayesian Networks

Multi component Markov process X=(Xi, ..., XN)

Naive representation =» size of rate matrix is exponential in number of components

Compact representation

e Only one component changes its state in a single transition
e Conditional rate matrices - depend on parents Q¢Far(?)

q(al 7a'27a’37a’4aa'5)_>(a'1 7b27a’37a47a'5) — qa2_>b2 | (CLl ,&3)

However, exact inference is still
exponential in the number of components : @

[Nodelman et al. 2002]
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Gibbs Sampling in Continuous Time
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lterate sampling each trajectory given the others

How do we sample a single component given
the others?
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Sampling From a Single Component -
Naive Approach

X o O

OO @

Discretization

141 . . . T
TPGHS.ITIOH N\a’r.r'lx be.’rween P(Xz ‘Xz—]_) _ [6QW]
two discrete time points:

Backward propagation - forward sampling

1. Assumes a specific time scale
2. Complexity - linear in the number of sampling points
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Cumulative Distribution Function of the Next
Transition time

Conditional probability to leave initial state before time ¢

_ (0¢8] _ 0.0 .T Probability to stay in x°
F(t) =1 Pr(X =7 |z D_) at least until time t
From Markov property:

Pr(X (% = 2012° 27) = Pr(X 4 = 29)2%) Pr(27 | X = %)

Exploiting homogeneity: l l
pdzo—zot [GQ(T—t)

]wt,ZCT
l l
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Sampling From a Single Component -
Sequential procedure

lterate between sampling transition times and sampling the
next state
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Conditional Sampling

Y determines
X's rate matrix
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Theorem: X satisfies Markov property X explains

= Basic procedure remains the same Y's state
However: Posterior is not time-homogeneous
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Distribution of Next Transition

Probability to remain:

Pr(X(O,t] _ $0’$O,$T,y[O’T])

Normalization
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Local unnormalized rate
matrix
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Sample next time
1. Draw 7 from UJ[0,T]

2. Search k such that
- F(t)<7V < F(ti+1)

3. Binary search within
[tk ,ti+1)

Sample next state
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Locality

Given complete trajectories of the Markov blanket of Xi,
X; is independent of all other components [Nodelman et al
2002].

Components dictating
rate of Xz

T~

' t
Components altering belief on X2
@ < through its influence on them

= Complexity scales with the rate of X; and its
Markov Blanket
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Experimental Setup

Model Evidence

e @ @ @ @ X0 = (a, a, a, a, a)

XD =(a, b, d, a, b)
® Fach component with 5 states
® X; tends to cycle in two loops

a—b—c—a and a—d—e—a
® X, tries to follow Xi.

= - Low probability evidence
- Multi modal posterior

Compute
Statistics N[X;:a— b =31

N[Xz:b—>C|X1=€]=.7

Compare
- - 71X = o] X1 = a] = .2 to Exact

T[Xy =bX, =a] = .8
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Summary

Continuous Time Gibbs Sampling

e Exact posterior for distinct components

e Asymptotically Unbiased

e Suitable for judging other inference methods

e Adapts to the natural time scale of the sampled process
e Exploits network structure to reduce computational cost

Further directions
e Convergence diagnostics
e Acceleration of convergence
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