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Abstract

The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial
role in transcriptional regulation, e.g., by altering the accessibility of short
transcriptional regulatory elements. To better understand transcription reg-
ulation, it is therefore important to identify the position of nucleosomes in
5-10bp resolution. Toward this end, several recent works measured nucleo-
somal positions in a high-throughput manner using dense tiling arrays.

Here we present a fully automated algorithm to analyze such data. Using
a probabilistic graphical model, we suggest to improve the resolution of the
nucleosome calls beyond that of the microarray platform used. We show
how such a model can be compiled into a simple HMM, allowing for a fast
inference of the nucleosome positions, without any loss of accuracy.

We applied our model to nucleosomal data from mid-log yeast cells re-
ported by Yuan et al. [2005] , and compared our predictions to those of the
original paper, to a more recent method that uses five times denser tiling
arrays [Lee et al., 2007] , and to a curation of literature-based positions. Our
results suggest that by applying our algorithm to the same data of Yuan et
al., we were able to trace 13% more nucleosomes, and increase the overall
accuracy in about 20%. We believe that such an improvement opens the way
for a better understanding of the regulatory mechanisms controlling gene
expression, and how they are encoded in the DNA.
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Chapter 1

Introduction

The DNA in our cells contains all of our hereditary information, and is liter-
ally the blueprints of our body. According to the Central Dogma of Biology,
DNA is transcribed into the RNA, which is translated in turn to proteins.
These proteins eventually carry inter-cellular signals and perform most tasks
in the cell.

All the cells in an organism share the same DNA, but we can still observe
differences, for example in gene expression, between cells in different tissues
and under different conditions. Each cell controls the transcription of the
genes by applying a complicated regulation plan. Once a gene is transcribed,
additional regulations may occur, and then it will be translated into a pro-
tein. The cell’s transcriptional regulation plan dictates which genes will start
this process, and thus has an important role in determining the cell protein
content and behavior.

The basic structure of a gene, as shown in Figure 1.1, demonstrates the
different functional segments of a gene. In the transcription proccess, the
RNA polymerase binds to the DNA at the promoter, and procceeds along
the gene, while transcribing it. The regulatory segment of the gene is called
promoter, and is usually located upstream to the transcription start site.
Additional proteins called transcription factors, bind to the promoter and
can either facilitate or repress the binding of the polymerase to the promoter.
Transcription factors execute the regulation plan of the cell in both a positive
and a negative manner. Many studies have shown the connection between the
binding of the transcription factor to the activity of the gene (e.g., Latchman
[2005]). Other factors take part in this regulation, like the packing of the
DNA.

In eukaryotic cells the DNA is packed within the nucleus where it is
wrapped around protein complexes called nucleosomes, such that each nu-
cleosome is surrounded by roughly 147 DNA bases [Luger et al., 1997]. This
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Figure 1.1: Illustration of a gene’s spatial structure. On the left is the regu-
latory sequence, called promoter, on the right is the coding region which will
eventually be translated into a protein, and in between is the transcription
start site (TSS), where the RNA polymerase will start transcribing this gene.

packaging facilitates the storage and organization of the long eukaryotic chro-
mosomes. The nucleosome is a protein complex of four types of histones,
which are among the most conserved proteins known today. The DNA is
tightly wrapped around this complex, as shown in Figure 1.2, and this pack-
aging affect the accessibility of the DNA to other factors. The packaging
plays a crucial role in regulation of DNA-related processes by modulating
the accessibility of DNA to regulatory proteins. Specifically, linker DNA re-
gions between nucleosomes are exposed to binding of transcription factors
that can thereby affect the expression of nearby genes [Venter et al., 1994,
Lee et al., 2004]. It has also been reported by Lee et al. [2004], Yuan et al.
[2005] that upstream to the transcription start site there is a region which is
usually unoccupied by a nucleosome. This region might promote the binding
of transcription factors and RNA polymerase and is called Nucleosome Free
Region (NFR). As the regulatory binding sites are typically short (6-20bp),
knowledge on the exact location of nucleosomes along the DNA is crucial for
understanding the transcriptional blueprints embedded in the DNA.

To find nucleosome locations in a small-scale manner, people have used
DNA footprinting to find the location of each nucleosome in their region of
interest [Venter et al., 1994], or Chromatin Immunoprecipitation for a certain
histone modification with selected PCR primers [Reinke et al., 2001]. We are
interested in finding the nucleosome locations in a genome-scale manner, and
for that reason we need to use a more elaborate genomic protocol.

To estimate the exact position of nucleosomes along the DNA in yeast
cells, we analyzed the tiling microarray data of Yuan et al. [2005]. In
this work, MNase assay was used to digest linker DNA regions resulting
in mononucleosomal DNA fragments of length ∼150bp. These fragments
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Figure 1.2: The three dimensional structure of the nucleosome with the DNA
wrapped around it, as reported by Luger et al. [1997]. Shown are views
from above the helix (right), and from the side (left). Also shown are all the
histones in the nucleosome complex: H2A (yellow), H2B (red), H3 (blue) and
H4 (green). The double helix DNA is shown in green and orange, around the
nucleosome.

were then labeled with fluorescent dye and hybridized to microarrays against
a genomic DNA reference, see Figure 1.3 for more details. Yuan et al.’s mi-
croarrays were designed with overlapping 50bp probes tiled every 20bp across
the entire S. cerevisiae chromosome 3 and additional regions of interest, cov-
ering about 4% of the yeast genome [Yuan et al., 2005] .

In this work, we present a fully automated computational method to
identify nucleosome positions based on the raw output of microarray mea-
surements of MNase-based assay (e.g., Yuan et al. [2005]). Our emphasis
is on improving the resolution of these nucleosome calls beyond that of the
microarray platform used. We do so using a probabilistic graphical model
that describes how probe values depend on the exact nucleosome positions.
We applied our model to nucleosomal data from mid-log yeast cells reported
by Yuan et al. [2005], and compared our predictions of nucleosome calls to
the original study, to those of a more recent high-throughput method that
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uses a higher resolution tiling array [Lee et al., 2007], and to a curation of
literature-based positions [Segal et al., 2006]. Our results suggest that by
applying our algorithm to the same data of Yuan et al., we were able to trace
more nucleosomes, and increase their accuracy.
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Figure 1.3: MNase chip protocol, as used by Yuan et al. , taken from Liu
[2006]. (A) MNase is used to cut the linker DNA. In the titration phase
the correct concentration of MNase is found in order to cut each linker seg-
ment. The appropriate concentration will result is a single band in the gel,
corresponding to a single nucleosome. (B) Formaldehyde is used to fixate
all proteins to the DNA, and isolate the DNA with its bound proteins. The
DNA is divided into two fractions, one is sonicated to break the DNA at
random locations, and the other is treated with MNase such that only mono-
nucleosomal DNA wrapped around nucleosomes is left. DNA is then isolated
from both fractions. (C) PCR is used to amplify the DNA from both frac-
tions, while labeling the mononucleosomal fraction with the Cy5 dye, and
the genomic fraction with the Cy3 dye. Both fractions are now mixed, and
hybridized on the array. A red spot means that more mono-nucleosomal
DNA than genomic DNA was hybridized on this spot, and the opposite goes
for a green spot.
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Chapter 2

Models

After performing the MNase chip method, we have genomic data on the
presence of nucleosomes, and now we would like to extract the nucleosome
positions from these data. Here I present a few methods which address this
issue.

To analyze these data, Yuan et al. used a hidden Markov model (HMM),
that labeled each probe as either a nucleosome or a linker, which defines
the emission probability of the hybridization value (shown in Figure 2.1).
To perform exact inference on this model, which is to find the most likely
assignment to all the hidden variables given the probe values, Yuan et al.
[2005] used the Viterbi algorithm [Rabiner and Juang, 1986] and received
the maximum a posteriori (MAP) assignment.

There are a few problems with the suggested model, the first is that some
nucleosomes exhibit a lower hybridization signal than others (probably due to
occupancy differences between cells) and the second is the model resolution.
Since they decide on each probe whether it is inside or outside a nucleo-
some, they have misclassifications on the boundaries of the nucleosomes, as
the hybridization value fits neither the nucleosome nor the linker’s expected
values. The HMM nucleosome calls from the Viterbi algorithm were then
hand-curated to correct for what they perceived to be missing or wrong nu-
cleosome calls. Yuan et al.’s output defines a nucleosome by a set of probes,
and thus has inherent resolution of 20bp.

2.1 Simple HMM

To deal with both issues, we developed a fully automated method to analyze
the exact same data of Yuan et al. with a more detailed model. This allowed
us not only to predict the nucleosome locations in higher resolution, but also
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to automatically predict the occupancy level of each nucleosome.

2.2 Detailed Model

When we consider the form of the original data (shown in Figure 2.2), we
realize that the probes at the boundaries of nucleosomes will have partial
hybridization. Indeed, one can observe that the flanking probe values are
lower than these in the middle of the nucleosome. Another problem in these
data (as in many ChIP arrays) is of trends. Namely, some nucleosomes have
higher enrichment values for all their probes while other have lower ones (e.g.,
the leftmost nucleosome in Figure 2.2 has lower value than the other two nu-
cleosomes). This can be due to differences in nucleosome occupancy, or to
differences in the background distribution [Pokholok et al., 2005]. Yuan et
al. dealt with these “coordinated” changes by re-learning the HMM param-
eters for local sequence windows. Moreover, the results were then corrected
manually.

To address these issues, we define an algorithm which is both fully auto-
matic and has high resolution output (so it can deal better with probes on the
boundaries of nucleosomes differently). To double the resolution (from 20bp
to 10bp), we present the following graphical model (Figure 2.3). Each 10bp of
the genome are represented by a (hidden) variable, indicating whether a nu-
cleosome is present at that locus, and if so, the relative position of the DNA
within this nucleosome (Si variables in Figure 2.3). Specifically, since the
length of a nucleosome is about 147bp, and the resolution of the Si variables
is once every 10bp, the possible assignments of Si are 0 for linker regions, and
1, . . . , 14 for nucleosomal regions. This layer of variables has the structure of
a sparse HMM, according to the state diagram shown in Figure 2.4.

Thus, the only parameter here is θ which governs the expected length
of a linker. To allow for shorter nucleosomes (less than 140bp), as often
appear in the raw data, we added the exceptions allowing transition from
state 7 to states 8, 9 and 10, which add two more parameters to the model (a
and b respectively). These parameters account for observing nucleosomes of
length 140bp, 130bp and 120bp. We learned all these parameters using the
hand-curated nucleosome calls of Yuan et al. [2005], with regards only to the
well-localized nucleosomes (without taking the fuzzy ones into consideration).

To connect this layer to the 50bp probes, we introduce an additional
layer of variables, which calculates for each probe the percentage covered
by a nucleosome (Ci variables, whose possible assignments are 0% coverage,
20%, . . ., 100% coverage). The coverage is a deterministic function of the
corresponding Sj values. The assignment of the Ci variable, which is the
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percentage of this probe covered by a nucleosome, will eventually affect the
expected hybridization value of this probe, as 100% coverage will produce a
higher value than 80% and so on.

To account for nucleosomes in different occupancies and to handle global
trends in the raw data baseline, we included an additional layer of variables
we call the occupancy variables Li, which together with the max-coverage
variables (Ci) determine the likelihood of the measured probe values Pi. We
require that the values of the Li variables remain fixed within nucleosomes.
Thus, these variables create a dependency between the measured values of
probes in the same nucleosome. To capture this intuition, each Li depends
on the previous Li−1 and the state variables in the intermediate region. If
these are within nucleosome, then Li = Li−1, otherwise, Li is chosen from a
prior over occupancy levels.

The emission probability of the model P (Pi | Ci, Li) is of a normal distri-
bution, whose parameters are defined by the the parent variables (Ci and Li).
To learn these parameters, we assigned each of Yuan’s nucleosomes an occu-
pancy level, and then learned both the emission and transition probabilities.
An example of the normal distributions used is shown in Figure 2.5.

2.2.1 Approximate Inference

The model, as presented in Figure 2.3, is densly connected (especially due to
overlapping probes causing loops between the S and the C variables). This
makes straightforward exact inference of the S variables (e.g., using a clique
tree) extremely time consuming. One way of extracting the positions from
this model is to use approximate inference methods.

To obtain an approximated MAP assignment to our variables, we applied
the loopy belief propagation algorithm [Murphy et al., 1999] to our model.
This is an iterative algorithm that passes messages between the cliques in the
model on the potentials of their shared variables, in order to calculate the
marginal probabilities on each variable. If an incoming message has changed
the beliefs of the clique’s variables, then all messages departing from this
clique enter the queue, to be re-calculated in future iterations. The algorithm
converges if the queue is empty, meaning there are no more messages to send.
The loopy belief propagation algorithm is not guaranteed to converge, but
if it succeeded to converge, we find its results to be a good approximation.
Unfortunately, in our case, the algorithm did not not always converge, even
when trying different scheduling methods on the messages in the queue.

The problem was that some genomic locations had a clear signal of nucle-
osomes positions, while others had a more vague signal and we thought this
prevented the converging of the loopy algorithm. When trying to prove this
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theory, we counted the number of messages passed in each genomic location.
This plot is shown together with the raw data in Figure 2.6. We can clearly
see that indeed a certain genomic location at 70,000-71500 does not con-
verge, while all other locations have a very low number of messages, meaning
the algorithm has converged there. This means the algorithm encounters
a problem at this location, and basically cannot decide on the nucleosome
locations. To further validate this, we chose a few messages from this area,
and observed their behavior over time. In Figure 2.7 we show the oscillations
in the messages content passed in this area. In Figure 2.7(a) the message os-
cillates between a nucleosome and a linker in this area, and does not succeed
in deciding either way. These oscillations diffuse through all the levels of the
model, i.e., the message over the coverage variable shown in Figure 2.7(b)
oscillates between 0% and 100% in respect to the previous messages on nu-
cleosomes or linker.

After understanding the convergence problem, we allowed the loopy algo-
rithm to run for a certain amount of time, and then according to the number
of messages still in the queue, decided for each location whether it had con-
verged or not. In this way, we can control the amount of time the algorithm
runs, and then filter the divergent results. Generally, this approach can be
applied to many other convergence problems, as long as divergence in one
area does not affect the convergence of another area. In our model this is
true due to the Markovian property along the axis of the genomic location,
once we know the close by nucleosome positions, we are not affected by the
nucleosomes located further away.

We were still not pleased with our results, because there were some areas
where we could not predict nucleosome locations. Furthermore, in the areas
where we predicted nucleosome location, this was only the approximate MAP
assignment, and not the exact one. There are also other methods which find
the approximated MAP, like Weiss et al. [1999], but we wanted the posterior
as well as the MAP, and we also came up with a much better solution.

2.3 Model Compilation

We noticed that due to the sparsity (and in some cases deterministic nature)
of the conditional probability distributions, we can drastically improve the
performance of exact inference on our model.

We developed an automated algorithm to compile a graphical model such
as the one in Figure 2.3 into a simpler HMM (shown in Figure 2.8(b)). The
algorithm proceeds in several stages. First, we define the sets of variables that
separate previous hidden variables from the observation. Here, this includes
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the Sj variables connected to Ci, and Li connected to the probe Pi, as shown
in blue in Figure 2.8(a). We define a new variable Xi whose state is the cross
product of these variables. In our current model, the value of Xi is in the
space [0− 14]× [0− 14]× [0− 14]× [0− 14]× [0− 14]× [0− 3], representing
five relative positions in nucleosome states, and one level state for the probe.
This state space is enormous (approximately 3 million states), which leaves
us with the same problem as before, since exact inference is extremely time
consuming. However, when looking closely at the model, we can observe that
due to the nature of the detailed model, the number of states can be reduced
drastically.

We start by eliminating states that are impossible due to the conditional
probability of variables agglomerated within Xi. For example, if S10 the
parent of S20 is in X1 (see Figure 2.8(b)), then if P (S20 | S10) = 0, the value
of X1 is unattainable. Since our original HMM over the Sj variables is very
sparse, this results in a massive reduction in the state space of Xi. The
elimination step has tremendously decreased our state space from about 3
million to only 132 states.

Once we have these states, we can define a transition probability between
them. This transition is built by computing the conditional probability in
the original model. In our case,

P (X2 = 〈s6, s7, s8, s9, s10, l2〉 | X1 = 〈s1, s2, s3, s4, s5, l1〉) =

1{〈s3, s4, s5〉 = 〈s6, s7, s8〉} · P (S50 = s9 | S40 = s8) · P (S60 = s10 | S50 = s9)

·P (L2 = l2 | L1 = l1, S30 = s4, S40 = s5)

Since the state Xi contains all the parents of Pi, the emission probability is
exactly as it was in the original model.

In the final step, we perform an additional step of simplifying the model.
We say that two states of Xi are equivalent if they share the same transition
and emission probabilities. Since the transition probability is determined by
the last three variables of the state, all states matching 〈·, ·, s3, s4, s5, li〉 share
the same transition probability. So, any states that obey this rule, and also
share the same emission probability are equivalent (e.g., 〈8, 9, 10, 11, 12, li〉,
〈7, 9, 10, 11, 12, li〉, 〈6, 7, 10, 11, 12, li〉). It is easy to prove that merging two
equivalent states does not change the likelihood of the observations, as this
is an instant of state abstraction [Friedman et al., 2000]. We thus repeatedly
merge equivalent states, updating the transition probability (which can cause
other pairs of states to become equivalent), until all states are non-equivalent
to each other.

After finishing this process for the model of Figure 2.3, we end up with
an HMM of only 100 states. Since we have been able to reduce the state
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space drastically, we can now perform exact inference in a straightforward
manner. We then applied the Viterbi algorithm on this model to obtain
the MAP assignment, and the forward-backward algorithm to obtain the
posterior distributions [Rabiner and Juang, 1986]. Using these results we
can now answer queries about the original variables in the model, and locate
the exact nucleosome positions.
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Figure 2.1: Yuan et al.’s hidden Markov model, taken from [Yuan et al., 2005]
(a) The scheme of the model, where green variables represent probes inside
a nucleosome, and the red variable represents linker DNA. Well positioned
nucleosomes are expected to cover about 6-8 probes (N1-N8) which have a
high hybridization ratio, and delocalized nucleosomes might span over 9 or
more probes (DN1-DN9), where the return arrow on DN9 allows for longer
nucleosomes. In the same manner, the return arrow on the linker variable (L)
allows for variable size linkers. (b) Model parameters. All probes inside a
nucleosome are expected to have higher hybridization ratio, estimated by the
green normal distribution, and the linker probes exhibit a lower hybridization
ratio, estimated by the red normal distribution.
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Figure 2.2: Raw data (blue line) from Yuan et al. shown on 600bp of chr3
(79,000-79,600), mapped onto probe locations. Top: raw log-ratio of nucleo-
some occupied DNA against genomic DNA. Bottom: design of tiling array,
where each rectangle denotes the coverage of a probe and the vertical line
map it to its value. These probe locations were marked with coverage based
on Yuan et al.’s predictions (red rectangles), where each probe is assigned
either to be covered (red) or not (blue). Below, is a representation of our
calls for the same region (green), and the description of partial coverage of
probes by nucleosomes.
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Figure 2.3: Graphical model. The Si variables report the position of a ge-
nomic locus with regard to overlapping nucleosome (in a 10bp resolution),
or 0 in case of a linker DNA region. The Ci variables hold the the maxi-
mal coverage of a probe by a nucleosome, as reported by the relevant Sj’s.
Li’s are the inferred occupancy levels for any probe, and Pi’s are the probes’
measured values.
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Figure 2.4: The states diagram of the Si variables. Each node represents a
possible assignment, and the edges represent the possible transitions. The
label of each edge is the probability of this transition (1 if missing)
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Figure 2.5: Some examples of the normal distribution density functions for
P (Pi dimCi, Li). In red shown distributions for 100% coverages, in green for
60% and in blue for 0%. The highest occupancy level shown in a solid line,
medium level in a dashed line, and the normal distribution used by Yuan
et al. [2005] shown in a dotted line. When looking at the same level in our
model, it is clear that the red gaussian is always to the right of the green one,
which is to the right of the blue one. Moreover, we can see that our medium
level is a bit higher than the single level used by Yuan et al. [2005].
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Figure 2.6: Number of messages passed in each genomic location. Probe
values shown in blue, and number of messages in red. We see that in loca-
tion 70,000-71,500 the loopy algorithm has a problem in converging, and the
number of messages is rising
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Figure 2.7: Messages content over time. (a) A message over a single Si

variable, stating whether there is a nucleosome in these 10 bp (green) or not
(red). (b) A message over a single Cj variable stating what is the coverage
of this probe (0% - red, 20% - green, 40% - blue, 60% - pink, 80% - cyan
and 100% - brown). Both messages oscillate in a coordinated manner, such
that when there is a nucleosome in (a), there are higher probabilities of high
coverage in (b). (c) A converging message is shown here, just as a reference.
We see the oscillation at the beginning, but as time advances it is converging
to its final value.
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Figure 2.8: (a) graphical model as in Figure 2.3. All variables affecting
the value of Pi are surrounded in blue. (b) Compilation of the model into
an HMM: the states of Xi’s denote the combination of Sj, Ci, Li variables
connected to the ith probe. Pi are as in (a). The corresponding variable to
the blue group in (a) is shown here in blue as well.
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Chapter 3

Results

3.1 Small Scale Examples

We applied our model to genomic data of mid-log nucleosome positions in
yeast from Yuan et al. [2005]. As described above, we used their nucleosome
calls to train parameters for the model. In addition, we iteratively optimized
the parameters of the model using standard EM algorithm, although this did
not change the predictions significantly (data not shown).

By using the Viterbi algorithm, we find the MAP nucleosome organi-
zation given the probe measurements and use it to call nucleosomes. To
validate the accuracy of our predictions we compared our nucleosome calls
to the original calls by Yuan et al., to a more recent set of predictions using
higher-density arrays [Lee et al., 2007] (also during mid-log growth), and to
a compiled set of experimentally verified nucleosome positions [Segal et al.,
2006]. Figures 3.1, 3.2, 3.3 demonstrate the model predictions on several
selected genomic regions. In addition to the most likely arrangement found
by the Viterbi algorithm, we also plot the posterior probability of each loca-
tion to be occupied by a nucleosome (calculated using the Forward-Backward
algorithm). In Figure 3.1 we show the genomic region surrounding the pro-
moter of the gene CHA1. We see different behaviors on both sides of the pro-
moter: along the coding region of the upstream gene VAC17, our nucleosome
calls match very nicely all tracks shown (literature, and other high-throuput
methods). In contrast, downstream to the promoter our predictions are in-
consistent with the positions reported in the literature. A closer look reveals
that neither Yuan et al. nor Lee et al. calls succeed in predicting the liter-
ature calls on this area, which might suggest that the literature data is not
accurate, or was tested under different conditions. In Figure 3.2 we show a
genomic loci where Yuan et al. predicted “fuzzy” nucleosome locations. Al-
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Figure 3.1: Example of our nucleosome calls compared to previous works dis-
played using the UCSC genome browser [Kent et al., 2002]. (i) Literature-
based nucleosomes as curated by Segal et al. [2006]; (ii) Nucleosome calls
from Lee et al. [2007]; (iii) Nucleosome calls from Yuan et al. [2005], where lo-
calized nucleosomes are dark brown, and fuzzy ones are light brown; (iv) Our
nucleosome calls using MAP nucleosome positions; (v) The posterior prob-
ability of occupancy by a nucleosome according to our model. The CHA1
promoter (chromosome 3). In this region our calls match Yuan et al. and
Lee et al., and sometimes disagree with the literature locations.

though we use the same data, one can see how our algorithm has overcome
this problem, and that our calls match very nicely those of the literature and
of Lee et al. As these examples show, our method achieved high accuracy in
calling nucleosome positions with regard to previous works, including both
high- and low-throughput assays.

3.2 Genome Scale Validations

To further validate our results, we compared the different methods on a ge-
nomic scale. To calculate the agreement of two calling methods, we computed
the match (sensitivity and specificity) of the calls. This was done in an un-
biased way, by considering the limited genomic regions that were scanned
by the two compared methods, and calculating the distances between center
positions of predicted nucleosomes. If the centers of two nucleosomes were k
bp or less apart, we say these nucleosomes match (see Figure 3.4 for details).

By changing the distance threshold that defines a match, we can explore
different levels of accuracy. We used the calls of Lee et al. as a reference
set to compare to the predictions by Yuan et al.’s and to our method. We
divided the scanned genomic regions into two sets, those where Yuan et al.
found localized nucleosomes, and those where they could only find fuzzy
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Figure 3.2: The HMLα1 gene (chromosome 3). (i)-(v) as in Figure 3.1. This
region demonstrates the improvement over Yuan et al.’s calls, as we better
explain the areas they have described as fuzzy nucleosomes. Moreover, our
explanation of such fuzzy areas, matches that of Lee et al. and the literature
positions.

nucleosomes, which means the data were not as conclusive. Figure 3.5 show
the sensitivity and specificity in the regions where Yuan et al. had conclusive
calls. We can see that in these regions our fully automated calls are as
accurate as the hand curated nucleosome calls of Yuan et al. Once we look
at the less conclusive data, where Yuan et al. found only fuzzy nucleosomes,
our advantage is very clear (Figure 3.6). In these regions we succeed to
predict many more of Lee et al.’s nucleosomes, while keeping our specificity
very high (almost as high as in the localized genomic loci). In Figure 3.7
we compared all three nucleosome calls sets to the literature-based ones. In
order to do so in the most unbiased way, we looked only at genomic loci
scanned by all three methods. We then narrowed the literature-based set to
these genomic locations (48 nucleosomes out of the 100 in the curated set),
and compared our calls. As Figure 3.7 shows, our algorithm has somewhat
better performance, even though Lee et al. used a higher resolution array.

To conclude, our results clearly show that our algorithm succeeded in
exploiting the most out of the array. Not only we do better than Yuan et al.
(which used the same data), but also when comparing to the literature-based
set, our performance is comparable to that of Lee et al. who used a five-fold
denser array.

3.3 Cell Cycle Results

After validating our results to the data used by Yuan et al. [2005], we want to
apply our method on new data, and to learn about the nucleosome dynamics.
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Figure 3.3: The AGP1 promoter (chromosome 3). (ii),(iii),(iv) as in Fig-
ure 3.1. To emphasize the significance of our higher-resolution calls, we add
another track showing transcription factor binding sites, as reported by Har-
bison et al. [2004]. As we see, three binding sites of the transcription factor
UME6 were found around position 78600. These sites match the known
recognition sequence of UME6, and are also supported by a significant ChIP
call (p < 0.001) [Harbison et al., 2004]. A closer look reveals that according
to the calls of Yuan et al., only one of these three binding sites is accessible
(not covered by a nucleosome), but according to our calls all three binding
sites are on linker DNA, hence available to the factor UME6.

We applied our algorithm to a set of time-series experiments (i.e., nucleo-
some positions in cells advancing synchronously through the cell cycle), to
explore the dynamic aspects of nucleosome positions. In collaboration with
Oliver Rando’s lab, we received the same type of data as before, only from
synchronized cells, taken every 10 minutes.

At first, it seems like the data from different time points are very similar,
as shown in Figure 3.8. In some locations it appears as if there is no change
in nucleosome positions over time, and in other we expect to see a slight
change in a few nucleosomes, especially in the regulatory elements.

Further examination of the cell cycle data reveals that generally, nucleo-
some locations do not tend to change significantly, and the dynamics seems
to come from the nucleosome occupancy changes. I’m currently working on
new data to validate this assumption, and from a first look it seems true.
I can see a gradient in the nucleosome occupancy, decreasing in promoters
toward expression of this gene, and increasing afterwards. Once again, this
are very preliminary results, and I will continue this work in my PhD.
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Figure 3.4: A measure to find matching nucleosomes. As in Figure 3.1,
the blocks represent nucleosomes found by different methods. We calculate
the center of each nucleosomes (shown in green), and if the centers of two
nucleosomes differ by at most k bp, we conclude these nucleosomes match
for this k.

(a) Sensitivity of localized nucs (b) Specificity of localized nucs

Figure 3.5: Comparison of our calls to other high-throughput calls. The
sensitivity (TP/(TP + FN)) and specificity (TP/(FP + TP )), respectively,
achieved for each distance threshold k, when comparing Yuan’s and our calls
to those of Lee et al. when examining regions where Yuan et al. found to be
well localized. Our method shown in blue, and Yuan et al.’s shown in red.
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(a) Sensitivity of fuzzy nucs (b) Specificity of fuzzy nucs

Figure 3.6: Comparison of our calls to other high-throughput calls. The
sensitivity (TP/(TP + FN)) and specificity (TP/(FP + TP )), respectively,
achieved for each distance threshold k, when comparing Yuan’s and our calls
to those of Lee et al. when examining regions where Yuan et al. predicted
fuzzy nucleosome positions. Our method shown in blue, and Yuan et al.’s
shown in red.

Figure 3.7: Comparison of all three high-throughput methods to a dataset
of published nucleosomes [Segal et al., 2006].
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Figure 3.8: Raw data from synchronized cells, taken every 10 minutes. Shown
are only 0-70 minutes due to space limitations. We can observe a high consen-
sus linker and nucleosome at location 78550-78700. Another well positioned
nucleosome can be found at location 79200-79400. On the other hand, at
location 78700-78900 we do not see a distinct trend along the time points,
and we can’t make out the exact location of the nucleosomes.
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Chapter 4

Discussion

In this work, we presented a fully automated computational method to an-
alyze high-resolution microarrays measurements of nucleosomal occupancy
along the genome. As opposed to previous methods, we showed how to ex-
tend the nucleosome calls’ resolution beyond that of the measurements. This
was done by designing a probabilistic graphical model which introduced a
new dense layer of variables, and taking into account the predicted intensity
of the signal in probes that are at the end of nucleosomes. We then showed
how such a model can be compiled into a simple HMM, which enables a
fast inference without any loss of accuracy. We applied this model to the
genomic scale nucleosomal measurements of Yuan et al., and predicted the
nucleosome positions of thousands of nucleosomes.

As we showed, our method leads to better predictions from the same data,
yielding 13% more nucleosomes than Yuan et al. (2660 compared to 2348).
Furthermore, our calls were found to be about 20% more accurate, with
regard to higher resolution microarrays (Lee et al. [2007]), and to published
positions of nucleosomes. As shown in Figures 3.5, 3.6, these improvements
were mainly obtained in problematic regions for Yuan et al.’s algorithm,
where they could not specify the exact position of nucleosomes, and defined
them as fuzzy. Moreover, this improvement was done in a fully automated
manner, as opposed to the manual curation done by Yuan et al.

Although better calls can be obtained by the five fold denser arrays of Lee
et al. or by new sequencing methods [Albert et al., 2007], we believe that our
algorithm will be useful by making the most of the available measurements
using the printed arrays of Yuan et al., or similar ones [Liu, 2006]. The cost
of such arrays is much lower than the alternative ones, and as we showed
here their resolution is not dramatically different.

This higher accuracy achieved by our algorithm opens the way for a bet-
ter understanding of the role nucleosomes play in transcriptional regulation.
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When it comes to the position of nucleosomes in regulatory regions, every
base pair counts. This is due to the typically short length of regulatory bind-
ing sites, and the tremendous role they play in transcriptional regulation. In
this setting, a higher resolution of nucleosome calls will allow to separate the
accessible sites from the unapproachable ones.

4.1 Future Work

In this work I focused on developing a fast, high-resolution method for lo-
cating nucleosomes along the genome. In my PhD work, I plan to apply this
method to answer more elaborated questions to better understand the nucle-
osome positions pattern and dynamics. For example, I’m currently applying
my algorithm to a set of time-series experiments (i.e., nucleosome positions
in cells advancing synchronously through the cell cycle, or cells responding to
external stimuli), and explore the dynamic aspects of nucleosome positions.
The method described here facilitates automatic and accurate nucleosome
positioning from this wealth of data. Another interesting question can be
asked on NFR-like elements. As we explained before the nucleosome free
region is an area upstream to the transcription start site, which is usually
unoccupied by nucleosomes. Currently, there is not much knowledge on such
elements in higher organisms, but once data from these organisms will be
available, I can apply our algorithm to it and answer this question.

On the computational aspect of this work, the compilation of the graphi-
cal model can be extended to more general models, and tested under different
conditions.

Finally, I would also like to extend this model to handle the new ChIP-seq
data, which I think will dominate this field soon.
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