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Abstract

Methods for learning Bayesian networks can discover
dependency structure between observed variables. Al-
though these methods are useful in many applications,
they run into computational and statistical problems
in domains that involve a large number of variables.
In this paper, we consider a solution that is applicable
when many variables have similar behavior. We intro-
duce a new class of models, module networks, that ex-
plicitly partition the variables into modules that share
the same parents in the network and the same condi-
tional probability distribution. We define the seman-
tics of module networks, and describe an algorithm
that learns the modules’ composition and their depen-
dency structure from data. Evaluation on real data in
the domains of gene expression and the stock mar-
ket shows that module networks generalize better than
Bayesian networks, and that the learned module net-
work structure reveals regularities that are obscured in
learned Bayesian networks.

1 Introduction

Over the last decade, there has been much research on the
problem of learning Bayesian networks from data [13], and
successfully applying it both to density estimation, and to
discovering dependency structures among variables. Many
real-world domains, however, are very complex, involving
thousands of relevant variables. Examples include model-
ing the dependencies among expression levels (≈ activity)
of all the genes in a cell [10, 17] or among changes in stock
prices. Unfortunately, in complex domains, the amount of
data is rarely enough to robustly learn a model of the under-
lying distribution. In the gene expression domain, a typical
data set includes thousands of variables, but at most a few
hundred instances. In such situations, statistical noise is
likely to lead to spurious dependencies, resulting in models
that significantly overfit the data.

In this paper, we propose an approach to address this is-
sue. We start by observing that, in many large domains,
the variables can be partitioned into sets so that, to a first
approximation, the variables within each set have a similar
set of dependencies and therefore exhibit a similar behav-
ior. For example, many genes in a cell are organized into

modules, in which sets of genes required for the same bi-
ological function or response are co-regulated by the same
inputs in order to coordinate their joint activity. As an-
other example, when reasoning about thousands of NAS-
DAQ stocks, entire sectors of stocks often respond together
to sector-influencing factors (e.g., oil stocks tend to respond
similarly to a war in Iraq).

We define a new representation called a module network,
which explicitly partitions the variables into modules. Each
module represents a set of variables that have the same sta-
tistical behavior, i.e., they share the same set of parents and
local probabilistic model. By enforcing this constraint on
the learned network, we significantly reduce the complex-
ity of our model space as well as the number of parameters.
These reductions lead to to more robust estimation and bet-
ter generalization on unseen data.

A module network can be viewed simply as a Bayesian
network in which variables in the same module share par-
ents and parameters. Indeed, probabilistic models with
shared parameters are common in a variety of applications,
and are also used in other general representation languages,
such as dynamic Bayesian networks [6], object-oriented
Bayesian Networks [15], and probabilistic relational mod-
els [16, 8]. (See Section 7 for further discussion of the rela-
tionship between module networks and these formalisms.)
In most cases, the shared structure is imposed by the de-
signer of the model, using prior knowledge about the do-
main. A key contribution of this paper is the design of a
learning algorithm that directly searches for and finds sets
of variables with similar behavior, which are then defined
to be a module. Noise in the data makes it extremely un-
likely that such a modular structure would arise naturally
from a Bayesian network learning algorithm, even if it ex-
ists in the domain. Moreover, by making the modular struc-
ture explicit, the module network representation provides
insight about the domain that are often be obscured by the
intricate details of a large Bayesian network structure.

We describe the basic semantics of the module network
framework, present a Bayesian scoring function for mod-
ule networks, and provide an algorithm that learns both
the assignment of variables to modules and the probabilis-
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Figure 1: (a) A simple Bayesian network over stock price vari-
ables; the stock price of Intel (INTL) is annotated with a visualiza-
tion of its CPD, described as a different multinomial distribution
for each value of its influencing stock price Microsoft (MSFT).
(b) A simple module network; the boxes illustrate modules, where
stock price variables share CPDs and parameters.

tic model for each module. We evaluate the performance
of our algorithm on two real datasets, in the domains of
gene expression and the stock market. Our results show
that our learned module network generalizes to unseen test
data much better than a Bayesian network. They also il-
lustrate the ability of the learned module network to reveal
high-level structure that provides important insights.

2 The Module Network Framework

We start with an example that introduces the main idea of
module networks and then provide a formal definition. For
concreteness, consider a simple toy example of modeling
changes in stock prices. The Bayesian network of Fig-
ure 1(a) describes dependencies between different stocks.
In this network each random variable corresponds to the
change in price of a single stock. For simplicity these ran-
dom variables take one of three values: ‘down’, ‘same’ or
‘up’, denoting the change during a particular trading day.
In our example, the stock price of Intel (INTL) depends
on that of Microsoft (MSFT). The CPD shown in the fig-
ure indicates that the behavior of Intel’s stock is similar to
that of Microsoft. That is, if Microsoft’s stock goes up,
there is a high probability that Intel’s stock will also go up
and vice versa. Similarly, the Bayesian network specifies a
CPD for each stock price as a stochastic function of its par-
ents. Thus, in our example, the network specifies a separate
behavior for each stock.

The stock domain, however, has higher order structural
features that are not explicitly modeled by the Bayesian
network. For instance, we can see that the stock price
of Microsoft (MSFT) influences the stock price of all of
the major chip makers — Intel (INTL), Applied Materials
(AMAT), and Motorola (MOT). In turn, the stock price
of computer makers Dell (DELL) and Hewlett Packard
(HPQ), are influenced by the stock prices of their chip sup-
pliers — Intel and Applied Materials. To a first approxi-
mation, we can say that the stock price of all chip making
companies depends on that of Microsoft and in much the

same way. Similarly, the stock price of computer makers
that buy their chips from Intel and Applied Materials de-
pends on these chip makers’ stock and in much the same
way.

To model this type of situation, we might divide stock
price variables into groups, which we call modules, and re-
quire that variables in the same module have the same prob-
abilistic model; that is, all variables in the module have the
same set of parents and the same CPD. Our example con-
tains three modules: one containing only Microsoft, a sec-
ond containing chip makers Intel, Applied Materials, and
Motorola, and a third containing computer makers Dell and
HP (see Figure 1(b)). In this model, we need only specify
three CPDs, one for each module, since all the variables in
each module share the same CPD. By comparison, six dif-
ferent CPDs are required for a Bayesian network represen-
tation. This notion of a module is the key idea underlying
the module network formalism.

We now provide a formal definition a module network.
Throughout this paper, we assume that we are given a do-
main of random variables X = {X1, . . . , Xn}. We use
Val(Xi) to denote the domain of values of the variable Xi.

As described above, a module represents a set of vari-
ables that share the same set of parents and the same CPD.
As a notation, we represent each module by a formal vari-
able that we use as a placeholder for the variables in the
module. A module set C is a set of such formal variables
M1, . . . ,MK . As all the variables in a module share the
same CPD, they must have the same domain of values. We
represent by Val(()Mj) the set of possible values of the
formal variable of the j’th module.

A module network relative to C consists of two compo-
nents. The first defines a template probabilistic model for
each module in C; all of the variables assigned to the mod-
ule will share this probabilistic model.

Definition 2.1: A module network template T = (S, θ) for
C defines, for each module Mj ∈ C:

• a set of parents PaMj
⊂ X ;

• a conditional probability template (CPT) P (Mj |
PaMj

) which specifies a distribution over Val(Mj)
for each assignment in Val(PaMj

).

We use S to denote the dependency structure encoded by
{PaMj

: Mj ∈ C} and θ to denote the parameters re-
quired for the CPTs {P (Mj | PaMj

) : Mj ∈ C}.

In our example, we have three modules M1, M2, and
M3, with PaM1

= ∅, PaM2
= {MSFT}, and PaM3

=
{AMAT, INTL}.

The second component is a module assignment function,
that assigns each variable Xi ∈ X to one of the K modules,
M1, . . . ,MK . Clearly, we can only assign a variable to a
module that has the same domain.

Definition 2.2: A module assignment function for C is a



function A : X → {1, . . . , K} such that A(Xi) = j only
if Val(Xi) = Val(Mj).

In our example, we have that A(MSFT) = 1, A(MOT) =
2, A(INTL) = 2, and so on.

A module network is defined by both the module network
template and the assignment function.

Definition 2.3: Let M be a triple (C, T ,A), where C is a
module set, T is a module network template for C, and A is
a module assignment function for C. M defines a directed
module graph GM as follows:

• the nodes in GM correspond to the modules in C;
• GM contains an edge Mj → Mk if and only if there is

a variable X ∈ X so that A(X) = j and X ∈ PaMk
.

We say that M is a a module network if the module graph
GM is acyclic.

For example, for the module network of Figure 1(b), the
module graph has the structure M1 → M2 → M3.

A module network defines a probabilistic model by using
the formal random variables Mj and their associated CPTs
as templates that encode the behavior of all of the variables
assigned to that module. Specifically, we define the seman-
tics of a module network by “unrolling” a Bayesian net-
work where all of the variables assigned to module Mj

share the parents and conditional probability template as-
signed to Mj in T .

Definition 2.4: A module network M = (C, T ,A) defines
a ground Bayesian network BM over X as follows: For
each variable Xi ∈ X , where A(Xi) = j, we define the
parents of Xi in BM to be PaMj

, and its conditional prob-
ability distribution to be P (Mj | PaMj

), as specified in T .
The distribution associated with M is the one represented
by the Bayesian network BM.

Returning to our example, the Bayesian network of Fig-
ure 1(a) is the ground Bayesian network of the module net-
work of Figure 1(b).

To show that the semantics for a module network is well-
defined, we need to prove that the ground Bayesian network
defines a coherent probabilistic model. We need only show
the following result:

Proposition 2.5: If GM is a directed acyclic graph, then
the dependency graph of BM is acyclic.

Corollary 2.6: For any module network M, BM defines a
coherent probability distribution over X .

As we can see, a module network provide a succinct rep-
resentation of the ground Bayesian network. In a realistic
version of our stock example, we might have several thou-
sands of stocks. A Bayesian network in this domain needs
to represent thousands of CPDs. On the other hand, a mod-
ule network can represent a good approximation of the do-
main using a model that uses only few dozen CPDs.

3 Bayesian Scoring

We now turn to the task of learning module networks from
data. We are given a training set D = {x[1], . . . ,x[M ]},
consisting of M instances drawn independently from an
unknown distribution P (X ). We assume that the set of
modules C is given, and we wish to estimate this dis-
tribution using a module network over C. To provide a
complete description of a module network as in Defini-
tion 2.3, we need to learn the assignment function A of
nodes to modules, the parent structure S specified in T ,
and the parameters θ for the local probability distributions
P (Mj | PaMj

). For the remainder of this discussion, we
omit references to C, taking it as given.

We take a score-based approach to learning module net-
works. In this section, we define a scoring function that
measures how well each candidate model fits the observed
data. We adopt the Bayesian philosophy and derive a
Bayesian scoring function similar to the Bayesian score for
Bayesian networks [5, 14]. In the next section, we consider
how to find a high scoring model.

3.1 Likelihood Function

We start by examining the data likelihood function

L(M : D) = P (D | M) =

M
∏

m=1

P (x[m] | T ,A).

This function plays a key role both in the parameter esti-
mation task and in the definition of the structure score.

As the semantics of a module network is defined via the
ground Bayesian network, we have that, in the case of com-
plete data, the likelihood decomposes into a product of lo-
cal likelihood functions, one for each variable. In our set-
ting, however, we have the additional property that the vari-
ables in a module share the same local probabilistic model.
Hence, we can aggregate these local likelihoods, obtaining
a decomposition according to modules.

More precisely, let Xj = {X ∈ X | A(X) = j}, and
let θMj |PaMj

be the parameters associated with the CPT
P (Mj | PaMj

). We can decompose the likelihood func-
tion as a product of module likelihoods, each of which can
be calculated independently and depends only on the values
of Xj and PaMj

, and on the parameters θMj |PaMj
:

L(M : D)

=

K
∏

j=1





M
∏

m=1

∏

Xi∈Xj

P (xi[m] | paMj
[m], θMjPaMj

)





=

K
∏

j=1

Lj(PaMj
,Xj , θMj |PaMj

: D) (1)

If we are learning conditional probability distributions
from the exponential family (e.g., discrete distribution,



Gaussian distributions, and many others), then the local
likelihood functions can be reformulated in terms of suffi-
cient statistics of the data. The sufficient statistics summa-
rize the relevant aspects of the data. Their use here is sim-
ilar to that in Bayesian networks [13], with one key differ-
ence. In a module network, all of the variables in the same
module share the same parameters. Thus, we pool all of the
data from the variables in Xj , and calculate our statistics
based on this pooled data. More precisely, let Sj(Mj ,U)
be a sufficient statistic function for the CPT P (Mj | U).
Then the value of the statistic on the data set D is

Ŝj =

M
∑

m=1

∑

Xi∈Xj

Sj(xi[m],paMj
[m]). (2)

For example, in the case of multinomial table CPTs,
we have one sufficient statistic function for each joint
assignment x ∈ Val(Mj),u ∈ Val(PaMj

), which is
η{Xi[m] = x,pa

Mj
[m] = u} — the indicator function

that takes the value 1 if the event (Xi[m] = x,PaMj
[m] =

u) holds, and 0 otherwise. The statistic on the data is

Ŝj [x,u] =

M
∑

m=1

∑

Xi∈Xj

η{Xi[m] = x,PaMj
[m] = u}

Given these sufficient statistics, the formula for the module
likelihood function is:

Lj(PaMj
,Xj , θMj |PaMj

: D) =
∏

x,u∈Val(Mj ,PaMj
)

θ
Ŝj [x,u]

x|u .

This term is precisely the one we would use in the like-
lihood of Bayesian networks. The only difference is that
the vector of sufficient statistics for a local likelihood term
is pooled over all the variables in the corresponding mod-
ule. For example, consider the likelihood function for
the module network of Figure 1(b). In this network we
have three modules. The first consists of a single vari-
able and has no parent, and so the vector of statistics
Ŝ[M1] is the same as the statistics of the same variable
Ŝ[MSFT]. The second module contains three variables,
and we have that the sufficient statistics for the module
CPT is the sum of the statistics we would collect in the
ground Bayesian network of Figure 1(a): Ŝ[M2, MSFT] =

Ŝ[AMAT, MSFT] + Ŝ[MOT, MSFT] + Ŝ[INTL, MSFT]. Fi-
nally, Ŝ[M3, AMAT, INTL] = Ŝ[DELL, AMAT, INTL] +

Ŝ[HPQ, AMAT, INTL].
As usual, the decomposition of the likelihood function al-

lows us to perform maximum likelihood or MAP parameter
estimation efficiently, optimizing the parameters for each
module separately. The details are standard, and omitted
for lack of space.

3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module net-
works is based on the use of a Bayesian score. Specif-
ically, we define a model score for a pair (S,A) as the

posterior probability of the pair, integrating out the possi-
ble choices for the parameters θ. We define an assignment
prior P (A), a structure prior P (S | A) and a parameter
prior P (θ | S,A). These describe our preferences over dif-
ferent networks before seeing the data. By Bayes’ rule, we
then have

P (S,A | D) ∝ P (A)P (S | A)P (D | S,A)

where the last term is the marginal likelihood

P (D | S,A) =

∫

P (D | S,A, θ)P (θ | S)dθ.

We define the Bayesian score as the log of P (S,A | D),
ignoring the normalization constant

score(S,A : D) = (3)

log P (A) + log P (S | A) + log P (D | S,A)

The main question is how to evaluate the score for differ-
ent choices of A and S. As we are going to examine a large
number of alternatives, we need to be able to do this effi-
ciently. In the case of Bayesian network learning, we can
perform this task efficiently when the priors satisfy certain
conditions. The same general ideas carry over to module
networks, and so we review them briefly.

Definition 3.1: Let P (A), P (S | A), P (θ | S,A) be as-
signment, structure, and parameter priors.

• P (θ | S,A) satisfies parameter independence if

P (θ | S,A) =

K
∏

j=1

P (θMj |PaMj
| S,A).

• P (θ | S,A) satisfies parameter modularity if
P (θMj |PaMj

| S1,A) = P (θMj |PaMj
| S2,A) for

all structures S1 and S2 such that Pa
S1

Mj
= Pa

S2

Mj
.

• P (θ,S | A) satisfies assignment independence if
P (θ | S,A) = P (θ | S) and P (S | A) = P (S).

• P (S) satisfies structure modularity if P (S) ∝
∏

j ρj(Sj) where Sj denotes the choice of parents for
module Mj , and ρj is a distribution over the possible
parent sets for module Mj .

• P (A) satisfies assignment modularity if P (A) ∝
∏

j αj(Aj), where Aj is the choice of variables as-
signed to module Mj , and {αj : j = 1, . . . , K} is a
family of functions from 2X to the positive reals.

Parameter independence, parameter modularity, and
structure modularity are the natural analogues of standard
assumptions in Bayesian network learning [14]. Parame-
ter independence implies that P (θ | S,A) is a product of
terms that parallels the decomposition of the likelihood in
Eq. (1), with one prior term per local likelihood term Lj .



Parameter modularity states that the prior for the parame-
ters of a module Mj depends only on the choice of parents
for Mj and not on other aspects of the structure. Structure
modularity implies that the prior over the structure S is a
product of terms, one per each module.

Two assumptions are new to module networks. Assign-
ment independence makes the priors on the parents and pa-
rameters of a module independent of the exact set of vari-
ables assigned to the module. Assignment modularity im-
plies that the prior on A is proportional to a product of local
terms, one corresponding to each module. Thus, the reas-
signment of one variable from one module Mi to another
Mj does not change our preferences on the assignment of
variables in modules other than i, j.

As for the standard conditions on Bayesian network pri-
ors, the conditions we define are not universally justified,
and one can easily construct examples where we would
want to relax them. However, they simplify many of the
computations significantly, and are therefore very useful
even if they are only a rough approximation. Moreover,
the assumptions, although restrictive, still allow broad flex-
ibility in our choice of priors. For example, we can encode
preference (or restrictions) on the assignments of particu-
lar variables to specific modules. In addition, we can also
encode preference for particular module sizes.

When the priors satisfy the assumptions of Definition 3.1,
the Bayesian score decomposes into local module scores:

score(S,A : D) =

K
∑

j=1

scoreMj
(PaMj

,A(Xj) : D)

scoreMj
(U,X : D) =

log

∫

Lj(U,X, θMj |U : D)P (θMj
| Sj = U)

+ log P (Sj = U) + log P (Aj = X) (4)

where Sj = U denotes that we chose a structure where
U are the parents of module Mj , and Aj = X denotes
that A is such that Xj = X. As we shall see below, this
decomposition plays a crucial rule in our ability to devise
an efficient learning algorithm that searches the space of
module networks for one with high score.

The only question is how to evaluate the integral over θMj

in scoreMj
(U,X : D). This depends on the parametric

forms of the CPT and the form of the prior P (θMj
| S).

Usually, we choose priors that are conjugate to the param-
eter distributions. Such a choice often leads to closed form
analytic formula of the value of the integral as a function of
the sufficient statistics of Lj(PaMj

,Xj , θMj |PaMj
: D).

The details are standard [13] and omitted for lack of space.

4 Learning Algorithm

Given a scoring function over networks, we now consider
how to find a high scoring module network. This problem
is a challenging one, as it involves searching over two com-

binatorial spaces simultaneously — the space of structures
and the space of module assignments. We therefore sim-
plify our task by using an iterative approach that repeats
two steps: In one step, we optimize a dependency structure
relative to our current assignment function, and in the other,
we optimize an assignment function relative to our current
dependency structure.

Structure Search Step. The first type of step in our it-
erative algorithm learns the structure S, assuming that A is
fixed. This step involves a search over the space of depen-
dency structures, attempting to maximize the score defined
in Eq. (3). This problem is analogous to the problem of
structure learning in Bayesian networks. We use a stan-
dard heuristic search over the combinatorial space of de-
pendency structures. We define a search space, where each
state in the space is a legal parent structure, and a set of op-
erators that take us from one state to another. We traverse
this space looking for high scoring structures using a search
algorithm such as greedy hill climbing.

In many cases, an obvious choice of local search oper-
ators involves steps of adding or removing a variable Xi

from a parent set PaMj
. (Note that edge reversal is not

a well-defined operator for module networks, as an edge
from a variable to a module represents a one-to-many re-
lation between the variable and all of the variables in the
module.) When an operator causes a parent Xi to be
added to a module Mj , we need to verify that the re-
sulting module graph remains acyclic, relative to the cur-
rent assignment A. Note that this step is quite efficient,
as cyclicity is tested on the module graph, which contains
only K nodes, rather than on the dependency graph of the
ground Bayesian network, which contains n nodes (usually
n � K).

Also note that, as in Bayesian networks, the decomposi-
tion of the score provides considerable computational sav-
ings. When updating the dependency structure for a mod-
ule Mj , the module score for another module Mk does not
change, nor do the changes in score induced by various op-
erators applied to the dependency structure of Mk. Hence,
after applying an operator to PaMj

, we need only update
the delta score for those operators that involve Mj .

Module Assignment Search Step. The second type of
step in our iteration learns a new assignment function A
from data, assuming that the module network structure S
is given. Specifically, given a fixed structure S we want to
find A = argmaxA′scoreM(S,A′ : D).

Naively, we might think that we can further decompose
the score across variables, allowing us to determine inde-
pendently the optimal assignment A(Xi) for each variable
Xi. Unfortunately, this is not the case. Most obviously,
the assignments to different variables must be constrained
so that the module graph remains acyclic. For example,
if X1 ∈ PaMi

and X2 ∈ PaMj
, we cannot simultane-

ously assign A(X1) = j and A(X2) = i. More subtly,
the Bayesian score for each module depends non-additively



on the sufficient statistics of all the variables assigned to
the module. (The log-likelihood function is additive in the
sufficient statistics of the different variables, but the log
marginal likelihood is not.) Thus, we can only compute
the delta score for moving a variable from one module to
another given a fixed assignment of the other variables to
these two modules.

We therefore use a sequential update algorithm that reas-
signs the variables to modules one by one. The idea is sim-
ple. We start with an initial assignment function A0, and
in a “round-robin” fashion iterate over all of the variables
one at a time, and consider changing their module assign-
ment. When considering a reassignment for a variable Xi,
we keep the assignments of all other variables fixed and
find the optimal legal (acyclic) assignment for Xi relative
to the fixed assignment. We continue reassigning variables
until no single reassignment can improve the score.

The key to the correctness of this algorithm is its se-
quential nature: Each time a variable assignment changes,
the assignment function as well as the associated sufficient
statistics are updated before evaluating another variable.
Thus, each change made to the assignment function leads
to a legal assignment which improves the score. Our algo-
rithm terminates when it can no longer improve the score.
Hence, it converges to a local maximum, in the sense that
no single assignment change can improve the score.

The computation of the score is the most expensive step
in the sequential algorithm. Once again, the decomposition
of the score plays a key role in reducing the complexity
of this computation: When reassigning a variable Xi from
one module Mj to another Mk, only the local score of
these modules changes.

Convergence. Our algorithm starts with an initial guess of
assignment (see below), and then applies the two steps de-
scribed above iteratively until convergence. We have con-
structed our iterative algorithm so that each of the two steps
— structure update and assignment update — is guaranteed
to either improve the score or leave it unchanged.

Theorem 4.1: The iterative module network learning algo-
rithm converges to a local maximum of score(S,A : D).

Initialization. The only remaining question is how to
choose the initial module assignment to begin the iterative
algorithm. Recall that we need to find a way to group vari-
ables into initial modules. Ideally, this initialization would
put together variables that behaved similarly in the different
instances. This problem can be thought of as a clustering
problem, where the objects to be clustered are the variables
in the module network and their features are their behavior
in the different instances in the original data set. For exam-
ple, in our stock market example, we would cluster stocks
based on the similarity of their behavior over different trad-
ing days. (Note that, when viewing the data from the per-
spective of learning a Bayesian network or a module net-
work, the “instances” are trading days and their attributes

are stocks.) We can use any standard clustering procedure
(e.g., [2]) to come up with this initial clustering.

We choose to use a procedure that is suitable to our prob-
lem, in that it evaluates a partition of variables into mod-
ules by measuring the extent to which the module model
is a good fit to the data of the variables in the module.
This algorithm can be best thought of as performing model
merging (as in [7]), in a module network with a specific
structure. However, instead of merging values of random
variables, we merge modules. We start by building a mod-
ule network as follows. We introduce a dummy variable
U that encodes training instance identity — u[m] = m for
all m. We then create n modules, with A(Xi) = i, and
PaMi

= U . Note that, in this network, each instance and
each variable has its own local probabilistic model.

Next, we consider all possible legal module mergers
(those corresponding to modules with the same domain),
where we change the assignment function to replace two
modules j1 and j2 by a new module j1,2. Note that, fol-
lowing the merger, each instance still has a different proba-
bilistic model, but the two variables Xj1 and Xj2 now must
share parameters. We evaluate each such merger by com-
puting the score of the resulting module network. We then
greedily choose the merger that leads to the best scoring
network. Thus, the procedure will merge two modules that
are similar to each other across the different instances. We
continue to do these mergers until we reach a module net-
work with the desired number of modules, as specified in
the original choice of C.

5 Learning with Regression Trees

We now briefly review the conditional distribution we use
in the experiments below. Many of the domains suited for
module network models contain continuous valued vari-
ables, such as gene expression or price changes in the stock
market. For these domains, we often use a conditional
probability model represented as a regression tree [1]. For
our purposes, a regression tree T for P (X | U) is defined
via a rooted binary tree, where each node in the tree is ei-
ther a leaf or an interior node. Each interior node is la-
beled with a test U < u on some variable U ∈ U and
u ∈ IR. Such an interior node has two outgoing arcs to its
children, corresponding to the outcomes of the test (true or
false). The tree structure T captures the local dependency
structure of the conditional distribution. The parameters of
T are the distributions associated with each leaf. In our
implementation, each leaf ` is associated with a univariate
Gaussian distribution over values of X , parameterized by a
mean µ` and variance σ2

` .
To learn module networks with regression-tree CPTs, we

must extend our previous discussion by adding another
component to S that represents the trees T1, . . . , TK as-
sociated with the different modules. Once we specify
these components, the above discussion applies with sev-
eral small differences. These issues are similar to those



encountered when introducing decision trees to Bayesian
networks [4, 9], and so we only briefly touch on them.

Given a regression tree Tj for P (Mj | PaMj
), the corre-

sponding sufficient statistics are the statistics of the distri-
butions at the leaves of the tree. For each leaf ` in the tree,
and for each data instance x[m], we let `j [m] denote the
leaf reached in the tree given the assignment to PaMj

in
x[m]. The module likelihood decomposes as a product of
terms, one for each leaf `. Each term is the likelihood for
the Gaussian distribution N

(

µ`; σ
2
`

)

, with the usual suffi-
cient statistics for a Gaussian distribution.

When performing structure search for module networks
with regression-tree CPTs, in addition to choosing the par-
ents of each module, we must also choose the associated
tree structure. We use the search strategy proposed in [4],
where the search operators are leaf splits. Such a split op-
erator replaces a leaf in a tree Tj with an internal node with
some test on a variable U . The two branches below the
newly created internal node point to two new leaves, each
with its associated Gaussian. This operator must check for
acyclicity, as it implicitly adds U as a parent of Mj . When
performing the search, we consider splitting each possible
leaf on each possible parent U and each value u. As always
in regression-tree learning, we do not have to consider all
real values u as possible split points; it suffices to consider
values that arise in the data set.

6 Experimental Results

We evaluated our module network learning procedure on
synthetic data and on two real data sets — gene expression
data, and stock market data. In all cases, our data consisted
solely of continuous values. As all of the variables have the
same domain, the definition of the module set reduces sim-
ply to a specification of the total number of modules. We
used regression trees as the local probability model for all
modules. As our search algorithm, we used beam search,
using a lookahead of three splits to evaluate each opera-
tor. When learning Bayesian networks, as a comparison,
we used precisely the same structure learning algorithm,
simply treating each variable as its own module.

Synthetic data. As a basic test of our procedure in a
controlled setting, we used synthetic data generated by a
known module network. This gives a known ground truth
to which we can compare the learned models. To make
the data realistic, we generated synthetic data from a model
that was learned from the gene expression dataset described
below. The generating model had 10 modules and a total
of 35 variables that were a parent of some module. From
the learned module network, we selected 500 variables, in-
cluding the 35 parents. We tested our algorithm’s ability to
reconstruct the network using different numbers of mod-
ules; this procedure was run for training sets of various
sizes ranging from 25 instances to 500 instances, each re-
peated 10 times for different training sets.

We first evaluated the generalization to unseen test data,
measuring the likelihood ascribed by the learned model to
4500 unseen instances. The results, summarized in Fig-
ure 2(a), show that, for all training set sizes, except the
smallest one with 25 instances, the model with 10 mod-
ules performs the best. As expected, models learned with
larger training sets do better; but, when run using the cor-
rect number of 10 modules, the gain of increasing the num-
ber of data instances beyond 100 samples is small.

A closer examination of the learned models reveals that,
in many cases, they are almost a 10-module network. As
shown in Figure 2(b), models learned using 100, 200, or
500 instances and up to 50 modules assigned ≥ 80% of the
variables to 10 modules. Indeed, these models achieved
high performance in Figure 2(a). However, models learned
with a larger number of modules had a wider spread for
the assignments of variables to modules and consequently
achieved poor performance.

Finally, we evaluated the model’s ability to recover the
correct dependencies. The total number of parent-child re-
lationships in the generating model was 2250. For each
model learned, we report the fraction of correct parent-
child relationships it contains. As shown in Figure 2(c),
our procedure recovers 74% of the true relationships when
learning from a dataset of size 500 instances. Once again,
we see that, as the variables begin fragmenting over a large
number of modules, the learned structure contains many
spurious relationships. Thus, our results suggest that, in
domains with a modular structure, statistical noise is likely
to prevent overly detailed learned models such as Bayesian
networks from extracting the commonality between differ-
ent variables with a shared behavior.

Gene Expression Data. We next evaluated the perfor-
mance of our method on a real world data set of gene ex-
pression measurements. A microarray measures the activ-
ity level (mRNA expression level) of thousands of genes in
the cell in a particular condition. We view each experiment
as an instance, and the expression level of each measured
gene as a variable [10]. In many cases, the coordinated ac-
tivity of a group of genes is controlled by a small set of
regulators, that are themselves encoded by genes. Thus,
the activity level of a regulator gene can often predict the
activity of the genes in the group. Our goal is to discover
these modules of co-regulated genes, and their regulators.

We used the expression data of [11], which measured the
response of yeast to different stress conditions. The data
consists of 6157 genes and 173 experiments. In this do-
main, we have prior knowledge of which genes are likely
to play a regulatory role. Subsequently, we restricted the
possible parents to 466 yeast genes that may play such a
role. We then selected 2355 genes that varied significantly
in the data and learned a module network over these genes.
We also learned a Bayesian network over this data set.

We evaluated the generalization ability of different mod-
els, in terms of log-likelihood of test data, using 10-fold
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Figure 2: Performance of learning from synthetic data as a function of the number of modules and training set size. In all cases, the
x-axis corresponds to the number of modules, each curve corresponds to a different number of training instances, and each point shows
the mean and standard deviations from the 10 sampled data sets. (a) Log-likelihood per instance assigned to held-out data. (b) Fraction
of variables assigned to the largest 10 modules. (c) Average percentage of correct parent-child relationships recovered.

cross validation. In Figure 3(a), we show the difference be-
tween module networks of different size and the baseline
Bayesian network, demonstrating that module networks
generalize much better to unseen data for almost all choices
of number of modules.

We next tested the biological validity of the learned mod-
ule network with 50 modules. (We selected 50 modules due
to the biological plausibility of having, on average, 40–50
genes per module.) First, we examined whether genes in
the same module have shared functional characteristics. To
this end, we used annotations of the genes’ biological func-
tions from the Saccharomyces Genome Database [3]. We
systematically evaluated each module’s gene set by test-
ing for significantly enriched annotations. Suppose we find
l genes with a certain annoation in a module of size N .
To check for enrichment, we calculate the p-value of these
numbers — the probability of finding that many genes of
that annotation in a random subset of N genes. For exam-
ple, the “protein folding” module contains 10 genes, 7 of
which are annotated as protein folding genes. In the whole
data set, there are only 26 genes with this annotation. Thus,
the p-value of this annotation, that is, the probability of
choosing 7 or more genes in this category by choosing 10
random genes, is less than 10−12. Our evaluation showed
that 42 (resp. 20) modules, out of 50, had at least one signif-
icantly enriched annotation with a p-value less than 0.005
(resp. less than 10−6). Furthermore, the enriched annota-
tions reflect the key biological processes expected in our
dataset. We used these annotations to label the modules
with meaningful biological names.

We can use these annotations to reason about the depen-
dencies between different biological processes at the mod-
ule level. For example, we find that the cell cycle module,
regulates the histone module. The cell cycle is the process
in which the cell replicates its DNA and divides, and it is
indeed known to regulate histones — key proteins in charge
of maintaining and controlling the DNA structure. Another
module regulated by the cell cycle module is the nitrogen
catabolite repression (NCR) module, a cellular response

activated when nitrogen sources are scarce. We find that the
NCR module regulates the amino acid metabolism, purine
metabolism and protein synthesis modules, all representing
nitrogen-requiring processes, and hence likely to be regu-
lated by the NCR module. These examples demonstrate the
insights that can be gleaned from a higher order model, and
which would have been obscured in the unrolled Bayesian
network over 2355 genes.

Stock Market Data. In a very different application, we
examined a data set of NASDAQ stock prices. We collected
stock prices for 2143 companies, in the period 1/1/2002–
2/3/2003, covering 273 trading days. We took each stock
to be a variable, and each instance to correspond to a trad-
ing day, where the value of the variable is the log of the ra-
tio between that day’s and the previous day’s closing stock
price. This choice of data representation focuses on the
relative changes to the stock price, and eliminates the mag-
nitude of the price itself (which depends on such irrelevant
factors as the number of outstanding shares). As potential
controllers, we selected 250 of the 2143 stocks, whose av-
erage trading volume was the largest across the dataset.

As with gene expression data, we used cross validation to
evalute the generalization ability of different models. As
we can see in Figure 3(b), module networks perform sig-
nificantly better than Bayesian networks in this domain.

To test the quality of our modules, we measured the en-
richment of the modules in the network with 50 modules
for annotations representing various sectors to which each
stock belongs. We found significant enrichment for 21 such
annotations, covering a wide variety of sectors. We also
compared these results to the clusters of stocks obtained
from applying Autoclass [2] to the data. Here, as we de-
scribed above, each instance corresponds to a stock and
is described by 273 random variables, each representing a
trading day. In 20 of the 21 cases, the enrichment was far
more significant in the modules learned using module net-
works compared to the one learned by AutoClass, as can be
seen in Figure 3(c).

Finally, we also looked at the structure of the module
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network, and found several cases where the structure fit
our understanding of the stock domain. Several modules
corresponded primarily to high tech stocks. One of these,
consisting mostly of software, semi-conductor, communi-
cation, and broadcasting services, had as its two main pre-
dictors Molex, a large manufacturer of electronic, electrical
and fiber optic interconnection products and systems, and
Atmel, specializing in design, manufacturing and market-
ing of advanced semiconductors. Molex was also the parent
for another module, consisting primarily of software, semi-
conductor, and medical equipment companies; this module
had as additional parents Maxim, which develop integrated
circuits, and Affymetrix, which designs and develops gene
microarray chips. In this, as in many other cases, the par-
ents of a module are from similar sectors as the stocks in
the module.

7 Discussion and Conclusions

We have introduced the framework of module networks, an
extension of Bayesian networks that includes an explicit
representation of modules — subsets of variables that share
a statistical model. We have presented a Bayesian learn-
ing framework for module networks, that learns both the
partitioning of variables into modules and the dependency
structure of each module. We showed experimental re-
sults on two complex real-world data sets, each including
measurements of thousands of variables, in the domains of
gene expression and stock market. Our results show that
our learned module networks have much higher general-
ization performance than a Bayesian network learned from
the same data.

There are several reasons why a learned module network
is a better model than a learned Bayesian network. Most
obviously, parameter sharing between variables in the same
module allows each parameter to be estimated based on a

much larger sample. Moreover, this allows us to learn de-
pendencies that are considered too weak based on statis-
tics of single variables. These are well-known advantages
of parameter sharing; the interesting aspect of our method
is that we determine automatically which variables have
shared parameters.

More interestingly, the assumption of shared structure
significantly restricts the space of possible dependency
structures, allowing us to learn more robust models than
those learned in a classical Bayesian network setting.
While the variables in the same module might behave ac-
cording to the same model in underlying distribution, this
will often not be the case in the empirical distribution based
on a finite number of samples. A Bayesian network learn-
ing algorithm will treat each variable separately, optimizing
the parent set and CPD for each variable in an independent
manner. In the very high-dimensional domains in which we
are interested, there are bound to be spurious correlations
that arise from sampling noise, inducing the algorithm to
choose parent sets that do not reflect real dependencies, and
will not generalize to unseen data. Conversely, in a mod-
ule network setting, a spurious correlation would have to
arise between a possible parent and a large number of other
variables before the algorithm would find it worthwhile to
introduce the dependency.

Module networks are related both to the framework of
object-oriented Bayesian networks (OOBNs) [15] and to
the framework of probabilitic relational models (PRMs)
[16, 8]. These frameworks extend Bayesian Networks to
a setting involving multiple related objects, and allow ran-
dom variables of the same class to share parameters and
dependency structure. In the module network framework,
we can view each variable as an object and each module as
a class, so that the variables in a single module share the
same probabilistic model. As the module assignments are



not known in advance, module networks correspond most
closely to the variant of these frameworks where there is
type uncertainty — uncertainty about the class assignment
of objects. However, despite this high-level similarity, the
module network framework differs in certain key points
from both OOBNs and PRMs, with significant impact on
the learning task.

In OOBNs, objects in the same class must have the same
internal structure and parameterization, but can depend on
different sets of variables (as specified in the mapping of
variables in an object’s interface to its actual inputs). By
contrast, in a module network, all of the variables in a
module (class) must have the same specific parents. This
assumption greatly reduces the size and complexity of the
hypothesis space, leading to a more robust learning algo-
rithm. On the other hand, this assumption requires that we
be careful in making certain steps in the structure search,
as they have more global effects than on just one or two
variables. Due to these differences, we cannot simply ap-
ply an OOBN structure-learning algorithm, such as the one
proposed by Langseth and Nielsen [18], to such complex,
high-dimensional domains.

In PRMs, the probabilistic dependency structure of the
objects in a class is determined by the relational structure of
the domain (e.g., the Cost attribute of a particular car object
might depend on the Income attribute of the object repre-
senting this particular car’s owner). In the case of module
networks, there is no known relational structure to which
probabilistic dependencies can be attached. Without such
a relational structure, PRMs only allow dependency mod-
els specified at the class level. Thus, we can assert that the
objects in one class depend on some aggregate quantity of
the objects in another. We cannot, however, state a depen-
dence on a particular object in the other class (without some
relationship specified in the model). Getoor et al. [12]) at-
tempt to address this issue using a class hierarchy . Their
approach is very different from ours, requiring some fairly
complex search steps, and is not easily applied to the types
of domains considered in this paper. Overall, module net-
works do not apply as broadly as PRMs, but allow much
more flexible parameter sharing and dependency structures
in domains where they apply.

There are several important extensions to the work we
presented here. Most obviously, we have not addressed the
issue of selecting the number of modules. We can adapt
Bayesian scoring criteria used to evaluate standard cluster-
ing methods [2, 7] for the problem of evaluating different
choices for the number of modules. However, much re-
mains to be done on the problem of proposing new modules
and initializing them.

In this paper, we focused on the statistical properties of
our method. In a companion biological paper [19], we
use the module network learned from the gene expression
data described above to predict gene regulation relation-
ships. There, we performed a comprehensive evaluation

of the validity of the biological structures reconstructed by
our method. By analyzing biological databases and pre-
vious experimental results in the literature, we confirmed
that many of the regulatory relations that our method au-
tomatically inferred are indeed correct. Furthermore, our
model provided focused predictions for genes of previously
uncharacterized function. We performed wet lab biologi-
cal experiments that confirmed the 3 novel predictions we
tested. Thus, we have demonstrated that the module net-
work model is robust enough to learn a good approxima-
tion of the dependency structure between 2355 genes using
only 173 samples. These results show that, by learning a
structured probabilistic representation, we identify regula-
tion networks from gene expression data and successfully
address one of the centeral problems in analysis of gene
expression data.

Acknowledgements. We thank the anonymous reviewers for
useful comments on a previous version of this paper. E. Segal,
D. Koller, and N. Friedman were supported in part by NSF grant
ACI-0082554 under the ITR Program. E. Segal was also sup-
ported by a Stanford Graduate Fellowship (SGF). A. Regev was
supported by the Colton Foundation. D. Pe’er was supported by
an Eshkol Fellowship. N. Friedman was also supported by an
Alon Fellowship, by the Harry & Abe Sherman Senior Lecture-
ship in Computer Science, and by the Israeli Ministry of Science.

References
[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regres-

sion Trees. Wadsworth & Brooks, Monterey,CA, 1984.
[2] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Auto-

class: a Bayesian classification system. In ML ’88. 1988.
[3] J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese, G. Sher-

lock, G. Binkley, H. Jin, S. Weng, and D. Botstein. Saccharomyces genome
database. http://genome-www.stanford.edu/Saccharomyces/, 2001.

[4] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to
learning Bayesian networks with local structure. In UAI ’97). 1997.

[5] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of prob-
abilistic networks from data. Mach. Learn., 9:309–347, 1992.

[6] T. Dean and K. Kanazawa. A model for reasoning about persistence and cau-
sation. Comp. Intel. 5:142–150, 1989.

[7] G. Elidan and N. Friedman. Learning the dimensionality of hidden variables.
In UAI ’01. 2001.

[8] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic rela-
tional models. In IJCAI ’99. 1999.

[9] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local
structure. In M. I. Jordan, editor, Learning in Graphical Models, pages 421–
460. Kluwer, Dordrecht, Netherlands, 1998.

[10] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks
to analyze expression data. J. Comp. Bio., 7:601–620, 2000.

[11] A. P. Gasch et al. Genomic expression program in the response of yeast cells
to environmental changes. Mol. Bio. Cell, 11:4241–4257, 2000.

[12] L. Getoor, D. Koller, and N. Friedman. From instances to classes in proba-
bilistic relational models. In Proc. ICML-2000 Workshop on Attribute-Value
and Relational Learning. 2000.

[13] D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan,
ed., Learning in Graphical Models. 1998.

[14] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Mach. Learn., 20:197–243,
1995.

[15] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In UAI ’97,
1997.

[16] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In AAAI ’98,
1998.

[17] E. Lander. Array of hope. Nature Genetics, 21:3–4, 1999.
[18] H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for

structural learning in object oriented domains. J. Mach. Learn. Res., 2003. to
appear.

[19] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Fried-
man. Module networks: identifying regulatory modules and their condition
specific regulators from gene expression data. Nature Genetics, 34(2):166-76,
2003.


