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Abstract

A central task in the study of molecular evolution is the reconstruction of a phylogenetic tree from
sequences of current-day taxa. The most established approach to tree reconstruction is maximum
likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood phylogenetic tree
is computationally prohibitive for large data sets. In this dissertation, we describe a new algorithm
that usesStructural EM for learning maximum likelihood phylogenetic trees. This algorithm is
similar to the standard EM method for edge-length estimation, except that during iterations of the
Structural EM algorithm the topology is improved as well as the edge length. Our algorithm per-
forms iterations of two steps. In theE-Step, we use the current tree topology and edge lengths to
compute expected sufficient statistics, which summarize the data. In theM-Step, we search for a
topology that maximizes the likelihood with respect to these expected sufficient statistics. We show
that searching for better topologies inside the M-step can be done efficiently, as opposed to standard
methods for topology search. We prove that each iteration of this procedure increases the likelihood
of the topology, and thus the procedure must converge. This convergence point, however, can be a
sub-optimal one. To escape from such “local optima”, we further enhance our basic EM procedure
by incorporating moves in the flavor of simulated annealing. We evaluate these new algorithms on
both synthetic and real sequence data, and show that for protein sequences even our basic algorithm
finds more plausible trees than existing methods for searching maximum likelihood phylogenies.
Furthermore, our algorithms are dramatically faster than such methods, enabling, for the first time,
phylogenetic analysis of large protein data sets in the maximum likelihood framework.

Thesis Supervisor: Dr. Nir Friedman
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Chapter 1

Introduction

What are the closest land dwelling relatives of the whales? Are guinea-pigs rodents or not? Are the
fruit eating bats closely related to the rest of the bats, or have they developed their wings indepen-
dently? In order to answer all those questions, we need some way to reconstruct the history of the
species we see on earth today. In his revolutionary work, “The origin of species” (Darwin 1859),
Charles Darwin introduced the concept that any group of living creatures are the descendants of one
common ancestor. According to his theory, species graduallyevolve, splitting with time into two
different species. This concept of species evolving and splitting had let to the concept of “The Tree
Of Life”, or phylogeny, which represents the historical relations of species. As Darwin wrote in
“The origin of species”:

“The affinities of all the beings of the same class have sometimes been represented by
a great tree. [...] The green and budding twigs may represent existing species; and
those produced during each former year may represent the long succession of extinct
species. [...] for life. The limbs divided into great branches, and these into lesser
and lesser branches, were themselves once, when the tree was small, budding twigs;
and this connexion of the former and present buds by ramifying branches may well
represent the classification of all extinct and living species in groups subordinate to
groups. Of the many twigs which flourished when the tree was a mere bush, only two
or three, now grown into great branches, yet survive and bear all the other branches; so
with the species which lived during long-past geological periods, very few now have
living and modified descendants. [...] As buds give rise by growth to fresh buds, and
these, if vigorous, branch out and overtop on all sides many a feebler branch, so by
generation I believe it has been with the great Tree of Life, which fills with its dead and
broken branches the crust of the earth, and covers the surface with its ever branching
and beautiful ramifications.” (Chapter 4, ”Natural Selection”)

The Tree of Life is a representation of the historical relationship between the species. According to
Darwin’s model, evolution proceeds by species splitting into two distinct species. Each leaf repre-
sents ataxa (species). The internal nodes represent the ancestral species that were in existence at
the time of the split. The connecting edges represent the relationship of descendence, which include
other evolutionary events not represented as splits. The history of a taxa is represented by the path
from the root of the tree, representing the common ancestor of all the taxa in the tree, to a leaf of the
tree, representing the relevant taxa. Each node along the way represents the last common ancestor
of all the nodes below it.
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Figure 1-1: The Phylogony of Some Primates

For example, the tree in Figure 1-1 represents what is believed to be the phylogeny of some of
the primates. As one can see from this figure, the common ancestor of humans and chimpanzees
has split off from the ancestors of the gorilla prior to the split of the humans and chimpanzees
themselves. This example rises a question which dates back to Darwin himself (Darwin 1871):
What is the true structure of this tree? In this example, is it true that the chimps are closer to the
humans than to the gorillas, or is it the other way around?

To address this question in a solvable way, one must rephrase the question formally; namely,
in the form of a mathematical model. Formally, the biological question we are addressing here is
as follows: Given a set of taxa, construct the historical relationships between the taxa, in a form of
a binary tree. In such a tree, each taxa is represented by a leaf of the tree, and each internal node
represents the last common ancestor of all its children. Each construction attempts to capture the
historical chain of split events that led to the set of species as it can be seen today.

As we are interested in an historical process, we need some way to look into the past. Ideally
we would have wanted a time machine (Wells 1895) we could ride back in time, to observe the
development of the species. As we cannot use this option, scientists have been using fossil evidence
to look back in time. Although much has been learned from fossils, this type of evidence tends to
include long, undocumented periods. Even periods for which fossil deposits have been found tend
to include a small percent of the species. This problem is especially acute when dealing with taxa
that lack hard tissue. In addition, fossils tend to be very fragmented, and nearly always only present
the bare bones of the story.

Many of the important features of living things, including for example their biochemistry, tend
to get lost along the way.

The alternative to looking back in time is to look at the present state of things, but with an
adequate tool. As evolution is a slow process, one can expect two taxa that have split up only
recently to have much in common, while taxa that split off theater away in time will show this by
being more dissimilar. A good measure of the present similarities and differences is therefore a
potentially powerful tool for mapping their evolutionary histories.
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Interrelations among more than two taxa can be utilized for this task as well. For example, if
you have a pair of a related taxa, and a more distant third taxa, it is possible to find features that
evolved after the first split, but prior to the second split. In such cases, you expect to find the new
features either in both of the closer pair, or only in the third species.

The first trees were constructed according to the Linnaean classification system. This taxonom-
ical system attempts to group different taxa according to common features such as lactation, and as
such it is naturally related to phylogenetics. This approach is highly problematic due to the fact that
the classification criteria are arbitrary, and as such don’t always represent a biological truth. Until
the 1960es, phylogenetic reconstruction was mainly based on similar methods, based on larger sets
of morphological features (such as having warm blood, having feathers, shape of dorsal fin, number
of toes in hoof and so on). A more recent approach started with the discovery of the structure of
DNA (Watson & Crick 1953), followed by the rapid accumulation of DNA sequence information
and the understanding of mutations on the sequence level. With the help of these advances in molec-
ular genetics, it became possible to use the sequence of the DNA as the basis of tree reconstruction.
In 1962, Zuckekandel & Pauling’s pioneering paper (Zuckerkandl & Pauling 1962) showed that the
molecular sequences hold a large amount of phylogenetic information. As sequences are discrete,
easily determined and plentiful, most of the work in phylogeny is done on molecular sequences.

In a sequence based paradigm, aphylogenetic tree reconstruction methodis a function that maps
a collection of gap-less aligned sequences to a phylogenetic tree so that each of the leafs is associated
with one of the sequences. The sequences come from current day taxa, and are assumed to have
diverged from the same original sequence. Each position of the aligned sequences (character) is
considered to be a separate and independent feature. This is a first order approximation of the actual
biological process, as it is clear that positions are not completely independent, and that gaps hold
biological significance as well. Nevertheless, as the length of the sequences grows, these assumption
seem to be quite accurate on average.

Inferring a phylogenetic tree has been a major research problem since the dawn of computational
molecular biology, more than 30 years ago (Camin & Sokal 1965, Sokal & Sneath 1963). Many
attempts have been made to formalize the criteria for choosing the true tree into a mathematically
tractable problem, giving rise to a variety of reconstruction algorithms. We mention a few of these.
See (Felsenstein 2001) for more details.

One such criterion considers distances between each pair of sequences, and supports the tree
that best fits these observed distances. The prominent method which uses this criterion isNeighbor-
Joining (NJ) (Saitou & Nei 1987), in which partial trees are iteratively combined to form a larger
tree, in a bottom-up manner. A second important criterion isMaximum Parsimony. It states that
substitutions are rare, and thus calls for finding the tree topology which implies as few substitutions
as possible. Although it is NP-hard to find the most parsimonious tree (Day 1983, Graham &
Foulds 1982), several effective heuristics exhibit reasonable performance in affordable time (Hendy
& Penny 1982, Huson, Nettles & Warnow 1999a, Huson, Vawter & Warnow 1999b, Swofford
1998, Nixon 1999).

In this work we study a probabilistic criterion that builds on the view of evolution as a stochastic
process. According to this criterion, characters change over time according to some probabilities.
Along each tree edge, such probabilities depend on the duration of the period that this edge repre-
sents, i.e., the edgelength. These probabilities were estimated in many studies (Adachi 1995, Day-
hoff 1978, Jones, Taylor & Thornton 1992, Jukes & Cantor 1969, Kimura 1980, Yang 1994). This
description of evolution in stochastic terms allows computing the likelihood of a specific phylogeny,
and gives rise to Maximum Likelihood (ML) methods (Felsenstein 1981). Indeed, finding the ML
phylogenetic tree proves superior to other methods in terms of accuracy (Felsenstein 1988). How-
ever, speed is the major obstacle, as we now explain.
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ML reconstruction consists of two tasks. The first task involves edge length estimation: Given
the structure (topology) of a tree, find edge lengths to maximize the likelihood. This task is accom-
plished by iterative methods such asExpectation Maximization(EM) (Dempster, Laird & Rubin
1977, Felsenstein 1981), or using Newton-Raphson optimization (Olsen, Matsuda, Hagstrom &
Overbeek 1994). Each iteration of these methods requires computations that take on the order of the
number of taxa times the number of sequence positions. While these methods are only guaranteed
to find local maxima, in practice they often recover the global maximum (Rogers & Swofford 1999).

The second, more challenging, ML reconstruction task is to find a tree topology that maximizes
the likelihood. Naive, exhaustive search of the tree space is infeasible, and also the effectiveness of
exploring this space by heuristic paradigms, like simulated annealing (Dress & Kruger 1987), ge-
netic algorithms (Lewis 1998), or other local search methods (Swofford 1998), is hampered by the
costly procedure of re-estimating edge lengths afresh for different trees. Currently, this task is usu-
ally tackled by iterative procedures that greedily construct the desired tree. For protein sequences,
the leading ML application is the MOLPHY software package (Adachi & Hasegawa 1996). One of
its versions has been incorporated into the PHYLIP library as the ProtML application. MOLPHY
uses theStar Decompositiontop-down heuristic, in which an initial, star-like tree with a single in-
ternal node is iteratively refined (Adachi & Hasegawa 1996). In this method, the scoring of each
intermediate topology considered requires finding its best edge lengths. The main cost of the al-
gorithm is due to these repeated invocations of edge length optimization. For DNA sequences, we
compared performance against a leading application that is included in the PHYLIP package is
FastDNAML (Olsen et al. 1994). This program iteratively adds sequences to the tree, while locally
rearranging it at each addition step.

Our approach builds on Structural EM, the extension of the EM algorithm for learning com-
binatorial constructs (Friedman 1997). As all EM-type algorithms, we use an expected value of
the likelihood, computed using sufficient statistics, which are collected from the data. The basic
EM-theorem states that improving this expected log likelihood implies an increase in the likelihood
itself (Dempster et al. 1977). In contrast to standard EM or Structural EM algorithms, we do not
just iterate this improvement procedure over and over. After each iteration, which improves the
expected log likelihood, we employ a modification step. This novel step, which is necessary due to
the nature of our problem, is guaranteed not to change the likelihood.

The dissertation is organized as follows: In Chapter 2 we review the framework of maximum
likelihood phylogenetic reconstruction. In Chapter 3 we present theoretic basis to our algorithm,
which we present in Chapter 4. In Chapter 5 we enhance our algorithm to avoid local optima.
Chapter 6 reports application to simulated and real data. We conclude, in Chapter 7, with a discus-
sion of related and future work.
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Chapter 2

Background: Maximum Likelihood
Phylogenetic Inference

We are concerned with evolution of biological sequences. Formally, our problem is probabilistic
in nature, that is, we assume these sequences are the result of some stochastic process, which we
explain in this chapter. We first describe the evolution of a single character along a single evolution-
ary lineage. We then introduce the multi-lineage process and its formulae, eventually presenting the
problem of multi-character sequence evolution.

2.1 Evolution of a Single Character

We view evolution as a process involving the change (substitution) of character from one state into
another. These character states are assumed to be elements of a fixed, finite, alphabetΣ, which is
usually the set of 4 DNA nucleotides, 20 amino-acids, or 64 codon triplets.

A model of evolutionis the distribution of substitutions along time. Such a model defines the
probabilitypa→b(t) of a character to transform from statea into the stateb in the durationt. Such
models have been devised, for instance, by (Jukes & Cantor 1969, Kimura 1980, Yang 1994) for
nucleotides, (Adachi 1995, Dayhoff 1978, Jones et al. 1992) for amino acids, and (Goldman &
Yang 1994) for codons. Different models imply different biological assumptions. However, there
are some properties shared by all standard models (Dayhoff 1978):

1. Lack of Memory -
pa→b(t+ t′) =

∑
c∈Σ

pa→c(t)pc→b(t′) (2.1)

This assumption implies that the model can be fully described by a single,|Σ| × |Σ| matrix.
The(a, b) entry in this matrix ispa→b(1). To obtainpa→b(t) for t 6= 1, this matrix is raised
to the power oft, taking the(a, b) entry of the resulting matrix

2. Reversibility - we assume that there is aprior distribution over character states,{pa} such
that

papa→b(t) = pbpb→a(t) (2.2)

for all a, b ∈ Σ andt ≥ 0. This assumption essentially states that the events “a evolved intob”
and “b evolved intoa” are equiprobable. Note, however, that the transition matrix entries are
conditional probabilities, hence, this matrix needs not be symmetric.

Example 2.1.1 In the following sections, we will be using this set of sequences as a toy example:
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Figure 2-1: The large (a) and small (b) example trees

Id Taxa Sequance
1 Aardvark CTCGGAT
2 Dog GTCACAT
3 Seal GTGACAT
4 Gorilla ATCCCAG
5 Chimp ATGCCAC
6 Human ATGGCAC

In the more computational intensive cases we may use only the set1, 2, 3, 4 A pair of corre-
sponding trees for the two examples can be found in Figure 2-1

2.2 Phylogenetic Trees

So far, we have described the evolution of a single character along a single lineage. However,
phylogeny deals with a plurality of species. Consider a set ofN current day species (six, in our
example). They are assumed to be the descendants of a single ancestral species, their lineages having
diverged during history. The pattern, ortopologyof this divergence process is usually unknown, and
its inference is the main goal of this study. A hypothetical topology is represented by an undirected
treeT with N leaves, corresponding to the contemporary species. Internal nodes correspond to
events of divergence.Branchesrepresent periods in the history of some past-time species between
those divergence events. in our example, one such tree may be found in Figure 2-1(a).

We label leaves by the indices1, . . . , N , and internal nodes byN + 1, . . . , NT . Formally, the
topologyT is described by the set of its edges. We use the notation(i, j) ∈ T to indicateT having
a edge between nodesi andj. We reserve the termedgefor pairs of nodes inT , while using the
term link for arbitrary pairs of nodes, not necessarily inT . In our example, the topologyT can be
described byT = {(8, 1), (8, 9), (9, 2), (9, 3), (8, 10), (10, 4), (10, 7), (7, 5), (7, 6)}.

In this dissertation, we pay special attention tobifurcating topologies, in which each internal
node is adjacent to exactly three other nodes. These are the undirected analogues of binary trees.
Thus, in a bifurcating topology there areN − 2 internal nodes, indexedN + 1, . . . , 2N − 2.

We would like to introduce the model of evolution to our phylogenetic hypothesis,T . To this
end, we also consider the duration of time that separates adjacent nodes. Aparameterizationof a
topologyT is a vectort, comprising of a non-negative duration oredge lengthti,j for each edge
(i, j) ∈ T . The pair(T, t) constitutes aphylogenetic tree.
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2.3 Joint and Marginal Probabilities

Based on the model of evolution, we can assign probabilistic semantics to the phylogenetic tree.
Formally, we associate with each nodei in T a random variableXi that describes the character state
at this node. The distribution of such a variableXi, i.e., the set{P (Xi = a)}a∈Σ of probabilities, is
denoted byP (Xi), for short. We now describe how the evolutionary process assigns random values
to all theXi-s, thus defining thejoint distributionP (X[1...NT ]):1

• Some noder is picked as a root.

• Xr is assigned a random valuexr, according to the prior distribution:P (Xr = a) = pa.

• For each nodei 6= r define itsparent, π(i) to bei’s neighbor which is closest to the root.
(SinceT is a tree, this neighbor is uniquely defined.)

• The nodes ofT are visited in a preorder traversal. Upon visiting a nodej 6= r, a random
valuexj is assigned toXj . This value depends solely upon the value assigned toXπ(j):
P (Xj = b | Xπ(j) = a, tj,π(j)) = pa→b(tj,π(j)).

By applying the chain rule, the joint distributionP (X[1...NT ]) is:

P (X[1...NT ] | T, t) = P (Xr)
∏
j 6=r

P (Xj | Xπ(j), tj,π(j)) (2.3)

Recall, that by Eq. 2.2,P (Xi|Xj ,ti,j)
P (Xi)

= P (Xj |Xi,ti,j)
P (Xj)

. Therefore, manipulating Eq. 2.3 shows that the

joint distributionP (X[1...NT ]) is invariant to the choice ofr:

P (X[1...NT ] | T, t) =

(∏
i

P (Xi)

) ∏
(i,j)∈T

P (Xi | Xj , ti,j)
P (Xi)

 (2.4)

Usually, we observe only the character states in the leaf nodes1, . . . , N . The likelihood of a single
observationx[1...N ], given the phylogenetic hypothesis, is therefore themarginaldistribution over
these variables:

P (x[1...N ] | T, t) =
∑
xN+1

. . .
∑
xNT

P (x[1...NT ] | T, t). (2.5)

The naive approach to computing the marginal probability would require summing over the
|Σ|NT−N possible assignments toX[N+1...NT ]. For example, assuming the topology corresponds
Figure 2-1(b),

this sum can be written as

P (x[1...4] | T, t) =
∑
x5

∑
x6

P (x[1...4] | T, t)

=
∑
x5

∑
x6

[P (x1|x5, t(1,5)) + P (x6|x5, t(6,5)) +

P (x2|x6, t(2,6)) + P (x3|x6, t(3,6)) + P (x4|x5, t(4,5))]

1We use the notationX[1...k] as a shorthand forX1, . . . , Xk.
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Instead, we can exploit the structure of the distribution, as specified by Eq. 2.3, for efficient
computation. This is done by dynamic programming over the set of nodes (Felsenstein 1981). We
now review this procedure, as we use it in our developments.

Consider a single observed assignment{X1 = x1, . . . , XN = xN}, to the leaves of a bifurcat-
ing tree(T, t). Each edgee = (i, j) ∈ T , partitions the tree into two subtrees. Define the setS(i, j)
to include the leaves of the subtree which includesi. In the example above,S(9, 8) = 2, 3 and
S(9, 8) = 1, 4, 5, 6. We seek to compute the probability of the observed character states inS(i, j)
conditioned on possible assignments toXi or Xj . More formally, for each character statea ∈ Σ,
we defineupward-messagesas follows:

Ui→j(a) ≡ P ({Xk = xk}k∈S(i,j) | Xi = a, T, t)
ui→j(a) ≡ P ({Xk = xk}k∈S(i,j) | Xj = a, T, t)

In the above example, we will have five pairs of such upward-messages, including, for example

U2→6(a) ≡ P ({X2 = x2} | X2 = a, T, t)
u2→6(a) ≡ P ({X2 = x2} | X6 = a, T, t)

and

U6→5(a) ≡ P ({X1 = x1, X2 = x2} | X6 = a, T, t) (2.6)

u6→5(a) ≡ P ({X1 = x1, X2 = x2} | X5 = a, T, t) (2.7)

We can recursively compute upward-messages, according to the following formulae:

Ui→j(a) =

{
1{xi = a} i is a leaf∏
k 6=j:(k,i)∈T uk→i(a) i is an internal node

ui→j(a) =
∑
b

pa→b(ti,j)Ui→j(b)

for example, we can compute Eq. 2.6 this way:

U2→6(a) =

{
1 a = x2

0 a 6= x2

and
u2→6(a) =

∑
b

pa→b(t2,6)U2→6(b) = pa→x2(t2,6) (2.8)

The computation of these messages across the whole tree can be completed inO (|Σ|N) time
for a single observed assignment toX1, . . . , XN .

The upward messages allow us to compute the marginal probability from the messages that
reached an arbitrary edge(i, j):

P (x[1...N ] | T, t) =
∑
a

paUi→j(a)uj→i(a).

Another task of interest is computing conditional probabilities of the formP (Xi | x[1...N ], T, t)
andP (Xi, Xj | x[1...N ], T, t), for a edge(i, j) ∈ T . Fortunately, the upward messages allow
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computing these as well:

P (Xi = a | x[1...N ], T, t) =
P (a)Ui→j(a)uj→i(a)
P (x[1...N ] | T, t)

(2.9)

and

P (Xi = a,Xj = b | x1, . . . , xN , T, t) =
P (a)Ui→j(a)pa→b(ti,j)Uj→i(b)

P (x[1...N ] | T, t)
(2.10)

2.4 Recovering the Maximum Likelihood Phylogeny

Our main task is recovering the phylogeny from observed data. As discussed above, there are many
approaches for addressing this problem. We now describe the simplest variant of theMaximum
Likelihoodmethod, and the assumptions that justify it.

The input for the process is aninput data setD that consists ofM observations. These are
assumed to be drawn from the (unknown) marginal distribution. That is, we have a sequence
xi[1], . . . , xi[M ] of character states for each leafXi, and these sequences are assumed to bealigned
in the following sense: For eachm, the character states in them-th position across all species
evolved from a single ancestral character, and thus comprise a single observation drawn from the
marginal distribution. We further assume the model of evolution (i.e.,pa andpa→b(·)) to be known.

We assume that different positions are identically distributed and evolve independently. This
allows computing the likelihood of the whole data setD given the phylogeny(T, t), as follows:

L(T, t) = P (D | T, t) =
M∏
m=1

P (x[1...N ][m] | T, t) (2.11)

The maximum likelihoodreconstruction task is to find a topologyT and associated parameterst
that maximize this likelihood. The phylogenetic tree(T, t) is, in some sense, the most plausible
candidate to having generated the data.

Even for simple models of evolution (Parsimony), and for a binary alphabet, the problem has
been shown to be NP-hard (Day, Johnson & Sanko 1986, Foulds & Graham 1982). For general
stochastic models no polynomial granted optimization algorithm is known even for a fix topol-
ogy (Rice & Warnow 1997). Even heuristics are often too computationally intensive for all but
small data sets. All this has led to the situation that, although it has been shown that Maximum
Likelihood produces more accurate results (Felsenstein 1988), researchers are forced to use some
other optimization criterion instead of ML for real life applications, even in DNA. The situation
tends to be much worse with the much larger alphabet of amino-acids, as most algorithms are
quadratic in the alphabet size.

2.5 Overview of Our Approach

In the following sections we develop the components needed for the Structural EM procedure. We
start, however, with a high-level overview of the procedure and how the following developments fit.

As explained above, the general problem in maximum likelihood reconstruction are the prop-
erties of the likelihood function. This function is complex and unwieldy for optimization. For
example, a local changes in the topology of the tree can have impact on edge lengths throughout the
tree. Thus, the standard approaches for maximum likelihood reconstruction require branch-length
optimization after each attempt to modify the tree.

12



The strategy of Structural EM is to avoid some of these problems by using an alternative scoring
function. For efficiency, we want this scoring function to bedecomposable— the score of a tree
is the sum of independent scores for edges of the tree. Optimization of such a scoring function
is a combinatorial optimization problem that can be addressed by optimization of each edge sep-
arately, and then combining appropriate edges by simple algorithms (such as maximum spanning
tree). The main difficulty is how to find such an alternative scoring function, and to understand the
relation between maxima of this alternative scoring function and our actual objective, the likelihood
function.

In Section 3.1 we develop the foundation for theexpected log likelihoodscore and how to
evaluate it. We start by noting that had we observed not only the leaves, but also the ancestral
sequences, the likelihood computations would have been much simpler. In fact, it would have been
conveniently presented in terms of certain frequency counts, that summarize the input data. In
such a case, the likelihood would have been decomposable, and hence, easily optimized. However,
ancestral sequences are unobserved. Fortunately enough, assuming a given guess of the tree, we are
able to induce probabilities on these sequences and obtain information on their expected content.
We can use this information to evaluate the expected log likelihood of other trees.

Thus by using expected log likelihood score, we can make use of the current guess of the tree
topology in order to efficiently evaluate other trees. In Section 4, we show how we use this score
to iteratively progress in our search for the maximum likelihood tree. In each iteration we use the
tree found by the previous one to define the expected log likelihood score. We then find the tree that
optimizes this score. As we show, each iteration finds a tree with higher likelihood, until the process
converges.

13



Chapter 3

Structural EM

3.1 Expected Log Likelihood and Counts

3.2 Complete Data

We first deal with a somewhat unreasonable situation, where we get to observe the ancestral se-
quences. The study of this case constitutes the basis of later analysis.

In this complete-data scenario, our input is not only the setD = {xi[m] : 1 ≤ i ≤ N, 1 ≤ m ≤
M} of contemporary sequences, but also the setH = {xi[m] : N+1 ≤ i ≤ 2N−2, 1 ≤ m ≤M}
of ancestral sequences. When we observe the values of all2N − 2 nodes ofT for each position, the
likelihood function is:

Lcomplete(T, t) = P (D,H | T, t) =
∏
m

P (x[1...2N−2][m] | T, t) (3.1)

Note that since in this case we do not marginalize over unobserved nodes, each one of theP (x[1...2N−2][m] |
T, t) terms is a product of conditional probabilities. We rearrange the order of multiplications
in Eq. 2.4 into a more manageable form, as follows:

logLcomplete(T, t) =
M∑
m=1

logP (x[1...2N−2][m] | T 0, t0) (3.2)

=
M∑
m=1

(2N−2∑
i=1

logP (xi[m])

)
+

 ∑
(i,j)∈T

log
P (xi[m] | xj [m], ti,j)

P (xi[m])


=

2N−2∑
i=1

∑
m|xi[m]=a

log pa

+

 ∑
(i,j)∈T

∑
(a,b)∈Σ2

∑
m|(xi[m],xj [m])=(a,b)

log
pa→b(t)
pb


We therefore need to count how many times each conditional probabilitypa→b(t)

pb
appears in this ex-

pression. Afrequency countof an event is the number of times it was observed. In this dissertation,
we focus on frequency counts, which register occurrences and co-occurrences of letters, and are col-
lected from the complete dataD,H. Formally, for an eventY , denote by1{Y } its corresponding in-
dicator variable. LetSi,j(a, b) =

∑
m 1{Xi[m] = a,Xj [m] = b}, andSi(a) =

∑
m 1{Xi[m] = a}.
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Figure 3-1: Average Log likelihood per symbol as function of % state change, for the edge from
Human to Chimp with all the mitochondrian proteins (a total of 125 changed AA and 3074 identical
AA). The optimal branchelngth and it’s likelihood are marked on the graph.

In example 2.1.1, we get

S1,2 =

A C G T

A 1 0 0 0
C 0 1 1 0
G 1 1 0 0
T 0 0 0 2

S1 =

CharacterState Count

A 1
C 2
G 2
T 2

(3.3)

Proposition 3.2.1 The likelihood can be rewritten as:

logLcomplete(T, t) =
∑

(i,j)∈T
Llocal(Si,j , ti,j) +

∑
i

∑
a

Si(a) log pa (3.4)

where
Llocal(Si,j , t) =

∑
a,b

Si,j(a, b) [log pa→b(t)− log pb]

To help understand the above equation, one can consider the following example: If we assume
that the probability for any character to move to any other character is 5% for the branch length
from 1 to 2 in the above example, we get that the probability of this pair islogprob1,2 = log(0.85)∗
(number of times a char stayed the same) + log(0.05) ∗ (number of times that a char changed) =
log(0.85)∗4+log(0.05)∗3 = −9.6373 so the total probability of this is about6.5e−05. while for
branch length where there is only a 55% chance of staying, we getlog(0.55) ∗ 4 + log(0.15) ∗ 3 =
−8.0827 and the total probability is about3e − 4, which is nearly 5 times more probably. In
Figure 3-1 you can see the likelihood as function of branch distance in a real-life example, in this
case the Human-Chimp distance:

The formulation above is motivated by the approach of (Chow & Liu 1968) for learning tree
models. It is important for several reasons. First, only the term which involves the weight function
Llocal depends on the topology and edge lengths. Thus, when maximizing the likelihood we can
ignore the righthand term of Eq. 3.4. Second, the log-likelihood is alinear function of the counts.
Finally, the termLlocal(Si,j , ti,j) can be optimized independently of other such terms. We define
a matrixW , with entrieswi,j = maxt Llocal(Si,j , t). Then the (log-likelihood) score of a tree is
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simply
max

t
logLcomplete(T, t) = W (T ) + constant (3.5)

where
W (T ) ≡

∑
(i,j)∈T

wi,j

and the constant depends neither on the topology, nor on the edge lengths. This reduces the problem
of finding the highest scoring tree, in the case of complete data, to a combinatorial optimization
problem in terms of the link weights. This problem is addressed in Section 4.

3.3 Expected Log Likelihood

We now return to the case where we only observe the values of theN leaves. In this case our
objective function is the likelihood according to Eq. 2.11. We use the notion of complete data
to help us devise an alternative likelihood function that will guide us in finding high likelihood
trees. Improvement of this alternative function guarantees stepping uphill with respect to the true
likelihood.

Assume that we are given a data setD = {xi[m] : 1 ≤ i ≤ N, 1 ≤ m ≤ M}. Suppose we
have some candidate phylogeny(T 0, t0). We aim at computing a function on arbitrary trees(T, t),
which is the expected value of the log-probability of the complete data. We can use expected counts
based on(T 0, t0) to compute this expected log-likelihood of(T, t):

Q(T, t : T 0, t0) ≡ E[logLcomplete(T, t) | D,T 0, t0]

=
∑
m

∑
x[N+1...2N−2][m]

P (x[N+1...2N−2] | x[1...N ], T
0, t0) logP (x[1...2N−2] | T, t)

This term is a sum over an exponential number of assignments of values to the ancestors in each
position. Before we analyzeQ(T, t : T 0, t0) further, we examine its theoretical properties.

Theorem 3.3.1 (based on (Friedman 1997)) For anyT, t

Q(T, t : T 0, t0)−Q(T 0, t0 : T 0, t0) ≤ logL(T, t)− logL(T 0, t0)

Proof: By definition:

Q(T, t : T 0, t0) =
∑
H

P (H | D,T 0, t0) logP (H,D | T, t)

Therefore:

Q(T, t : T 0, t0)−Q(T 0, t0 : T 0, t0) =
∑
H

P (H | D,T 0, t0) log
P (H,D | T, t)
P (H,D | T 0, t0)

≤ log
∑
H

P (H | D,T 0, t0)
P (H,D | T, t)
P (H,D | T 0, t0)

= log
∑
H P (H,D | T, t)
P (D | T 0, t0)

= logL(T, t)− logL(T 0, t0)

where we apply Jensen’s inequality in the second step.
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Theorem 3.3.1 implies that improving theQ score forces an improvement of the objective like-
lihood. Fortunately, maximizingQ(T, t : T 0, t0) is feasible. Recall thatLlocal is a linear function
of the countsSi,j . Thus, by linearity of expectation, we have that

Q(T, t : T 0, t0) =
∑
(i,j)

Llocal(E[Si,j | D,T 0, t0], ti,j) + constant

Thus, once we compute the expected countsE[Si,j | D,T 0, t0], we can optimize eachLlocal(E[Si,j |
D,T 0, t0], ti,j) term separately, by choosing an appropriateti,j . As in Section 3.3, we can define
the link weightswi,j to be these optimized local terms, thus allowing efficient evaluation of the ex-
pected score for different topologies. These weights define a combinatorial optimization problem,
equivalent to finding the tree with highest (expected log-likelihood) score. In Section 4 we solve
this problem, by finding a maximum spanning tree according to these weights.

3.4 Computing Expected Counts

Before we consider how to use the expected score in our algorithm, we address the issue of com-
puting expected counts. At each iteration we compute these counts for all links, not just for edges
of the current topologyT 0. Recall that

E[Si,j(a, b) | D,T 0, t0] = E

[∑
m

1{Xi[m] = a,Xj [m] = b} | D,T 0, t0

]
(3.6)

=
∑
m

P (Xi[m] = a,Xj [m] = b | x[1...N ][m], T 0, t0) (3.7)

Thus, the problem of computing expected counts reduces to the problem of computing condi-
tional probabilities over links. We solve that using the following observation.

Proposition 3.4.1 Let (T 0, t0) be a phylogenetic tree. Assume that internal nodesi, j andk are
such thatj is on the path fromi to k in T 0. Then

P (xi, xk | x[1...N ], T
0, t0) =

∑
xj

P (xi, xj | x[1...N ], T
0, t0)P (xj , xk | x[1...N ], T

0, t0)
P (xj | x[1...N ], T 0, t0)

(3.8)

Proof:

P (xi, xk | x[1...N ], T
0, t0) =

=
∑
xj

P (xi, xk, xj | x[1...N ], T
0, t0)

=
∑
xj

P (xi | xk, xj , x[1...N ], T
0, t0) ∗ P (xk, xj | x[1...N ], T

0, t0)

=
∑
xj

P (xi | xj , x[1...N ], T
0, t0) ∗ P (xk, xj | x[1...N ], T

0, t0) (3.9)

=
∑
xj

P (xi, xj | x[1...N ], T
0, t0)/P (xj | x[1...N ], T

0, t0) ∗ P (xk, xj | x[1...N ], T
0, t0)

=
∑
xj

P (xi, xj | x[1...N ], T
0, t0)P (xj , xk | x[1...N ], T

0, t0)
P (xj | x[1...N ], T 0, t0)

(3.10)
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Where Equation 3.9 comes directly from the assumption that the evolutionary process can be mod-
eled as a tree.

Based on this corollary we design a simple procedure of dynamic programming. We perform a
depth first search, starting from the root. At the first time we visit nodei, we computeP (xi, π(i) |
x[1...N ], T

0, t0) using the upward-message method described in Section 2.3. And then, for each
previously visited nodej, we computeP (xi, xj | x[1...N ], T

0, t0) usingP (xi, π(i) | x[1...N ], T
0, t0)

andP (π(i), xj | x[1...N ], T
0, t0), by applying Eq. 3.8. As this procedure insures that at the end of

each step all the edges connecting visited nodes are computed, the second term above is always
computed prior to the first time is it needed. We proceed in this manner, and compute all the
conditional probabilities of interest in a quadratic number of steps.

3.5 Approximated Expected Counts

Computation of these expected counts takesO
(
M ·N2|Σ|3

)
time, which constitutes a major bottle-

neck in running time. Furthermore, storing these counts requiresO
(
|Σ|2N2

)
space, while storing

the upward messages require onlyO (|Σ|MN) space. For practical problem size, e.g. a single pro-
tein of length 100-300 amino-acids over 50-100 taxa, the first term is the limiting factor. We now
detail a method to avoid these complexity problems.

The main idea is to use approximate counts instead of exact ones. We suggest to approximate
the countsE[Si,j(a, b)] =

∑
m Pr(Xi[m] = a,Xj [m] = b|X1...N [m]), by

S̃i,j(a, b) =
∑
m

P (Xi = a | X[1...N ][m])P (Xj = b | X[1...N ][m]) (3.11)

The reader is referred to (Boyen, Friedman & Koller 1999) for justification and further details of
this approximation. This latter computation is faster byO (|Σ|) since we do not have to perform the
|Σ| summation operations of Eq. 3.8. Note that although this approximation treatsXi andXj as
independent at each position, the overall estimate of the count can capture dependencies between the
two positions, because of the summation over positions. We note, that for actual tree edges(i, j) ∈
T , the exact expected count is already known, by Eq. 2.10, and therefore we do not approximate
counts for these edges.

Observe, that the sole purpose of the expected frequency counts is the computation of link
weights. Furthermore, the count̃Si,j(·, ·) is required only for computing a single weight:wij .
Hence, we can compute these weights one by one, each time constructing only a single count,
reusing space. The space complexity is thusO

(
|Σ|2N

)
.
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Chapter 4

Structural EM Based Phylogenetic
Inference

We now have all the components to describe the main steps of the Structural EM algorithm for
phylogenetic inference. It is based on the development of theStructural EMmethod in learning
Bayesian networks (Friedman 1997). The general outline is similar to the standard EM proce-
dure (Felsenstein 1981), with the important exception that we optimize not only edge lengths, but
also the topology during each EM iteration.

Our algorithm proceeds in iterations. We start by choosing a tree(T 0, t0) using, say, Neighbor-
Joining. Then we improve the tree in successive iterations. In thel-th iteration, we start with the
bifurcating tree(T l−1, tl−1) and construct a new bifurcating tree(T l, tl). The high level idea is to
use(T l, tl) to define the measureQ(T, t : T l, tl) of expected log likelihood of trees, and then to
find a bifurcating tree that maximizes this expected log likelihood.

4.1 Structural EM iterations

A Structural EM iteration consists of two steps, the E-step and the M-step. We now describe these
in detail.

To define the expected log likelihood we need to compute expected counts:

E-Step: ComputeE[Si,j(a, b) | D,T l, tl] for all links (i, j), and for all character states
a, b ∈ Σ, as discussed in Section 3.4.

We then maximize the expected log likelihood in two phases as follows:

M-Step I: Optimize link lengths by computing, for each link(i, j) its best lengthtl+1
i,j =

arg maxt Llocal(E[Si,j(a, b) | D,T l, tl], t), as discussed in Sections 3.2 and 3.3.

Now we have the link lengths that maximize the expected log likelihood for each tree. This is
similar to standard EM for computing edge lengths, except that we compute link lengths also for
pairs(i, j) that are not adjacent inT l.

Once we havetl+1, we can defineW l+1 to be the2N − 2 by 2N − 2 matrix {wl+1
i,j }, where

wl+1
i,j = Llocal(E[Si,j(a, b) | D,T l, tl], tl+1

i,j ). At this stage, by Theorem 3.3.1 we have that for any
treeT

if W l+1(T ) ≥W l+1(T l) thenL(T, tl+1) ≥ L(T l, tl) (4.1)
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Since we are learningbifurcating topologies, the appropriate maximization step is to construct
a bifurcating topologyT l+1 with leaves1, . . . , N such thatW l+1(T l+1) is maximized. Unfortu-
nately, finding such a topology is an intractable problem.

Theorem 4.1.1 LetW = (wi,j) be a2N−2 by2N−2 matrix of link weights. Finding a bifurcating
topologyT , such thatW (T ) is maximized is an NP-hard problem.

Proof:
by reduction from s-t-Hamiltonian path. See Appendix A

Fortunately, we can bypass this problem. Instead of finding the maximum weight bifurcating
topology, we can efficiently find the maximum weighted topology employing maximum spanning
tree algorithms. This topology is not necessarily bifurcating, however (4.1) still applies to it and,
thus, it improves the likelihood. In fact, this topology provides the best lower bound on the im-
provement in the likelihood, according to (4.1). Once we have such a topology we can transform it
into a bifurcating topologyT l+1 without changing the likelihood of the tree.

Proposition 4.1.2 Let (T, t) be a phylogenetic tree. Then there is a tree(T ′, t′) such thatT is a
bifurcation with nodes1, . . . , N as leaves, andL(T, t) = L(T ′, t′).

We prove this proposition in Section 4.1.1.
Using this result we can use the following maximization step.

M-Step II:

(a) Construct a topologyT l+1
∗ that maximizesW l+1(T ), by finding a maximum

spanning tree.

(b) Construct a bifurcating topologyT l+1 such thatL(T l+1
∗ , tl+1) = L(T l+1, tl+1).

Note that we do not restrict the topologyT l+1
∗ we construct in step (a). The nodes in1, . . . , N

may be of degree greater than1 and nodes inN + 1, . . . , 2N − 2 may be of degree different than3.
Thus, we are searching for a maximum spanning tree, and we accomplish this stage using a standard
algorithm, e.g., (Kruskal 1956). Step (b) is less trivial, and we discuss it in the next section.

To summarize, we describe one Structural EM iteration. We started with a tree(T l, tl) and
constructed a tree(T l+1, tl+1) such thatL(T l+1, tl+1) ≥ L(T l, tl). We repeat such iterations until
convergence to a local maximum.

4.1.1 Transforming a Tree to an Equivalent Bifurcating Tree

We now prove Proposition 4.1.2 by describing a procedure that takes an arbitrary tree and returns
an equivalently scoring bifurcation.

Suppose we have a phylogenetic tree(T, t) with 2N − 2 nodes, in which every nodei has
degreed(i). Our goal is to construct a bifurcating tree(T ′, t′) that has the same likelihood. In such
a tree, every nodei would have degreeD(i) where:

D(i) =

{
1 1 ≤ i ≤ N
3 N + 1 ≤ i ≤ 2N − 2

We apply a series of modifications to the maximum spanning tree. We take advantage of the lack of
memory in our model of evolution to show that these modifications preserve the likelihood of the
tree. We introduce these transformations in the following propositions.
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Figure 4-1: An illustration of the tree modification steps defined in Propositions 4.1.3 and 4.1.4.
Observed taxa are numbered1 to 6, and internal nodes are numbered7 to 10. The transformation
from (a) to (b) involves removing two nodes: 9 according to the first case in Proposition 4.1.3, and
10 according to the second case. The transformation from (b) to (c) involves reinserting these nodes
according to Proposition 4.1.4. Node 9 is inserted sinceD(2) = 1 andd(2) = 2, and node 10 is
inserted sinceD(7) = 3 andd(7) = 4.

Proposition 4.1.3 Let (T, t) be a phylogeny, and letN < j ≤ 2N − 2. Consider two cases:

• If d(j) = 1, i.e. j is a leaf, then let(T ′, t′) be equal to(T, t), except thatj is removed.

• If d(j) = 2, and(i, j), (j, k) ∈ T , then let(T ′, t′) be equal to(T, t), where(i, k) replaces
(i, j), (j, k), t′i,k = ti,j + ti,k, andj is removed.

In either case,L(T, t) = L(T ′, t′).

Proof: For the first case, leti be the only neighbor ofj. Consider the marginal distribution as a sum
of products, as in Eq. 2.5. Re-order the summation indices in that equation so thatxj is innermost.
By Eq. 2.3, each product in this sum has only one termpa→b(ti,j) involving xj . Then:

P (x[1...N ] | T, t) =
∑

{xk|k 6=j,N<k≤2N−2}
P ({xk|k 6= j}|T ′, t′)

∑
xj=b

pa→b(ti,j)

But
∑
xj=b pa→b(ti,j) = 1, and the result follows.

The second case follows from Eq. 2.1. using similar arguments.

WheneverT is not a bifurcating tree, we can use Proposition 4.1.3 to simplifyT by removing
a single node. LetT ′ be the resulting topology. It follows that there must be a nodei > N of T ′

whose degree is larger than3, or a nodei ≤ N which is not a leaf. This exactly means that there
existsi such thatd(i) > D(i).

Proposition 4.1.4 Let (T, t) be a phylogenetic tree, leti be a node withd(i) > D(i), and let
i1, . . . , id(i) bei’s neighbors inT . Let(T ′, t′) be a tree with a new nodei′ such that(T ′, t′) is equal
to (T, t) except that:

• The edges(i, iD(i)), . . . , (i, id(i)) are replaced by the edges(i′, iD(i)), . . . , (i′, id(i)), whose
lengths are set ast′i′,j = ti,j for j = iD(i), . . . , id(i).

• The edge(i, i′) is added and its length is fixed to bet′i,i′ = 0.

ThenL(T, t) = L(T ′, t′).
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Proof: For a 6= b, pa→b(ti,i′) = 0, andpa→a(ti,i′) = 1. All remaining terms in Eq. 2.3 remain
unchanged when switching from(T, t) to (T ′, t′). Hence,L(T, t) = L(T ′, t′).

We note that in practice we slightly modify the insertion procedure in two respects. First, we
use a small positive duration instead of a zero edge length. This allows later rounds to differentiate
the two nodesi, i′. Second, whenD(i) = 3, we choose the neighborsi1, i2 carefully, rather than
arbitrarily. For example, in the spirit of the Neighbor-Joining heuristic, we choose, among the
neighbors ofi, to group the nodesi1, i2 which are closest to each other.

As long as our tree is not bifurcating, we can apply the deletion step (Proposition 4.1.3) and
the insertion step (Proposition 4.1.4), reusing the indices of the deleted nodes for re-insertion. Note
that the order of deletion/insertion steps may be arbitrary, thus we can perform all deletions, and
then all insertions, or interleave them. Each such operation increases the fraction of nodes inT for
whichD(i) = d(i), and thus we eventually end up with a bifurcating tree. Figure 4-1 illustrates the
modifications steps of Propositions 4.1.3 and 4.1.4. It is worth noting that if the deletions are done
by performing a depth first search on the tree and deleting the excess nodes upon “completion” of
the nodes, the deletion can be done with a single pass on the tree, and so in linear time.
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Chapter 5

Avoiding Local Optima

EM is a greedy method. Indeed, the theory presented thus far can only guarantee that the algorithm
described above would find a local maximum, rather than a global one. Unfortunately, local optima
are a practical difficulty. Even when initiating Structural EM iterations from random points in our
search space, the chances of convergence to the global optimum are very small, for practical problem
size.

We propose two strategies to overcome this handicap. The first strategy is to use an educated
initialization of the search procedure. Instead of starting the first Structural EM iteration from a
random phylogenetic tree, we employ a fast heuristic to find some phylogeny that makes sense,
and use that as the initial(T 0, t0). In our implementation, we use the Neighbor-Joining heuristic,
a renowned standard (Saitou & Nei 1987). This strategy combines both the speed of Neighbor-
Joining, and the refined analysis capability of Structural EM. As we show in section 6, it produces
impressive results.

A second, more systematic strategy to avoid local maxima incorporates randomness into the EM
greedy search. This may enable detection of a global optimum even if they are not in the basin of
attraction of the heuristic initial guess. We devote the remainder of this section to the development
of a specific, novel method for random search of optimal phylogenies, based on synthesis between
Structural EM andSimulated Annealing.

Simulated annealing (Kirkpatrick, Gelatt. & Vecchi 1983) is an established paradigm for intro-
ducing randomness into greedy optimization procedures, by performing a random tour of the search
space. Simulated Annealing has been previously applied to phylogenetic analysis (Barker 1997),
even in the maximum-likelihood framework (Dress & Kruger 1987). Topologies are usually con-
sidered neighbors if their edge sets differ by exactly one edge, i.e., they can be obtained from one
another by a step ofSubtree Pruning and Regrafting. Another commonly used, narrower definition
for neighbors isNearest Neighbor Interchange, that considers swapping of node pairs in internal
quartets of the topology.

Such applications of Simulated Annealing tour the likelihood landscape in search for the global
maximum. In contrast, we wish to maintain the Structural EM framework, and utilize the convenient
function of expected log likelihood. Instead of a random tour that variates the tree topology itself,
we perturb the input to the steps that compute the topology. We do rely on Simulated Annealing
theory and intuition for incorporating randomness. Each of the next couple of sections presents a
specific implementation of this paradigm ofAnnealed Structural EM.
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5.1 Annealed Structural EM by Perturbed Edge Weights

Recall that our Structural EM algorithm iteratively computes a(2N − 2) × (2N − 2) weight ma-
trix W = [wi,j ] wherewi,j is the contribution of substitutions along a putative edge(i, j) to the
expected log-likelihood of the tree. We next construct a spanning treeT whose total weightW [T ]
is maximum. This is the optimal construction, with respect to the expected score. Indeed, this score
points to a useful “direction” for improvement. However, it is biased by the tree using which we
computed the expected sufficient statistics. Thus, at later iterations of the procedure, the trees that
maximizes this score will tend to be similar to the tree found in the previous iteration. Furthermore,
this self-bias gives rise to stationary points of Structural EM iterations.

A possible solution to these difficulties is to choose trees randomly, in a manner that is guided
by the expected score, but not necessarily choose the highest-scoring tree. This will use the ex-
pected sufficient statistics to point towards improvements, but can escape local maxima. A simple
and well understood method for such weighted randomization is to sample a treeT according to
the Metropolis distribution, i.e., with probability proportional toeW [T ]/σ, whereσ is anannealing
temperatureparameter. Thus, ifσ is small, we choose the maximum spanning tree with high prob-
ability. Whenσ is large, we select trees uniformly. The interesting behavior occurs in intermediate
ranges ofσ, where we select among the many spanning tree topologies whose (expected log-) like-
lihoods are reasonably close to the maximum. (Note that these topologies are not guaranteed to
actually resemble the maximum spanning tree.) Unfortunately, sampling spanning trees from this
exponential distribution is a complex task (Propp & Wilson 1998). Instead, we devise an efficient
sampling procedure that generates a distribution of spanning trees with similar properties.

We now modify Structural EM by introduction of random noise to the set that constructs the
maximum spanning tree. Given the weight matrixW , we construct a new matrix̃W with perturbed
weights, by adding Gaussian noise to the matrix. Letw̃i,j = wi,j + εi,j , whereεi,j are random
variables, each normally distributed around zero with varianceσ2. To preserve symmetry, we fix
εj,i = εi,j for all i, j. Apart from this symmetry constraint,{εi,j} are independent. Instead of com-
puting the maximum spanning tree according to the actual weight matrixW , we use its perturbed
versionW̃ .

We interleave this sampling procedure with Structural EM iterations. The standard deviation of
the white noise assumes the role of the annealing temperature. As in standard annealing, we start
with an initial temperatureσ = σ0, and gradually reduce it, e.g. by successive multiplications of
the current temperature by a cooling factorρ. We start with an arbitrary tree(T 0, t0), and set the
iteration counterl to zero. We then iterate as follows:

E-Step: Compute expected counts for all links(i, j). Same as in Section 4.1.

textbfM-Step I: Optimize link lengths, and compute the weight matrixW l+1, same as
in Section 4.1.

textbfModified M-Step II:

• PerturbW l+1 by adding Gaussian noise with varianceσ2
l to each matrix element.

Denote the resulting matrix bỹW l+1.

• Construct a topologyT l+1
∗ that maximizesW̃ l+1(T ), by finding a maximum

spanning tree.

• Construct a bifurcating topologyT l+1 such thatL(T l+1
∗ , tl+1) = L(T l+1, tl+1),

same as in Section 4.1.
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• Setσl+1 ← ρ · σl.

As demonstrated in Section 6, this combination of randomness and Structural EM is very effec-
tive. It detects trees which are more likely than those constructed by other methods, and it is capable
of escaping local optima.

Intuitively, the perturbation ofW has an effect similar to the Metropolis distribution—the prob-
ability thatT is the maximum spanning tree of̃W depends onW [T ] and the annealing parameter.
The larger the annealing parameter, this distribution becomes more diffused.

To demonstrate this, consider pruning and regrafting of a single subtree of the topologyT ∗

which is the maximum spanning tree with respect to the unperturbedW . Let e∗ = (i∗, j∗) be a
edge ofT ∗, and lete+ = (i+, j+) be a candidate edge such thatT+ = T ∗ ∪ {e+} \ {e∗} is another
spanning tree. The difference between the perturbed weights of these trees is:

W̃ [T+]− W̃ [T ∗] = W [T+]−W [T ∗] + εi+,j+ − εi∗,j∗

This quantity is normally distributed with a negative meanW [T+] −W [T ∗] and variance2σ2. It
follows that the non-greedy move fromT ∗ to T+ is facilitated with probability

Pr(W̃ [T+] > W̃ [T ∗]) = Φ

(
W [T+]−W [T ∗]√

2σ

)

whereΦ (x) =
∫ x
−∞

1√
2π
exp

(
−t2

2

)
dt is the Gaussian cumulative error function. The decay of this

probability is bounded by an exponent inW [T+]−W [T ∗]:

Lemma 5.1.1 (Variation of (Chernoff 1952)) Φ (x) < exp (x)

Hence, the probability that our perturbed Structural EM iteration would preferT+ to T ∗ is smaller

thanexp
(
W [T+]−W [T ∗]√

2σ

)
. This bound on the probability of choosing a worse tree, elucidates two

properties reminiscent of the Metropolis distribution:

• Decay which is exponential in the score difference,W [T+]−W [T ∗].

• The role ofσ as the annealing parameter, that determines the scale in which score differences
affect that probability.

5.2 Annealed Structural EM by Perturbed Position Weights

In this section we describe another method to randomize local searches. This method is more gen-
eral, and can actually be adapted to any optimization of a score which is a sum of independent
contributions. In fact, it has already been suggested as a promising heuristic for maximum parsi-
mony phylogenetic reconstruction (Nixon 1999), a non-probabilistic approach. More recently, this
paradigm has been demonstrated to perform well on a general setting in computational learning (El-
idan, Ninio, Lotner & Friedman 2001).

Instead of randomizing edge weights, we now randomize the summary of the input data. More
specifically, we randomlyreweighteach of the positions in the training sequences. This perturbs
our expected sufficient statistics, and thereby also leads to perturbed edge weights.

Formally, we replace Eq. 3.6 by the following:

weighted-EΩ[Si,j(a, b) | D,T, t] =
∑
m

ωmP (Xi[m] = a,Xj [m] = b | x[1...N ], T
0, t0) (5.1)
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whereΩ = {ωm} is the set of random independent positional weights. Below, we discuss the choice
of random distributions for generatingωm. However, we note that as in Section 5.1, a parameter
σ, related to the randomization procedure, assumes the role of the temperature in the Metropolis
process.

We initially fix the temperatureσ0 and tree(T 0, t0), and set the iteration counterl to 0. We then
iterate as follows:

Modified E-Step:

• Randomly choose weightsω1, . . . , ωM , according to the distribution dictated byσl.

• Compute weighted-EΩ[Si,j(a, b) | D,T l, tl] for all links (i, j), according to Eq. 5.1.

• Setσl+1 ← ρ · σl.

M-Step I:

• Optimize edge lengths, as in Section 4.1, only using weighted-EΩ[·] instead of
E[·].

M-Step II:

• Construct a bifurcating topologyT l+1 same as in Section 4.1.

We now explain the justification for the above procedure. We focus on a single E-Step, and dis-
cuss a problem more general than ours: We consider the abstract task of characterizing a probability
distribution based on a data set ofM observed samples. The standard approach is to summarize the
data by frequency counts. The rationale is that counts reflect our best guess of the true probabilities
for each possible sample. This guess, however, is an obvious overfit. It is predisposed towards
the samples that were observed, which may not fairly represent the distribution from which they
were drawn. We would like to randomly sample the space of possible such distributions, rather than
deterministically choose the most likely one.

An intuitive way to achieve that is to resample, with replacement, observations from the input
set. This resampling of the input is the principle guiding the bootstrap method, a standard procedure
for evaluation of solution significance (Efron 1979). This resampling procedure is used here instead
to improve the search for the optimal solution.

A naive resampling policy would repeatedly choose a random observation out of the input set.
This is mimicked by initializing zero weightsω1, . . . , ωM corresponding to the input observations,
and repeatedly incrementing a random member ofΩ = {ωm}. In this spirit, we do assign random
weights to positions along our sequence data. However, to avoid discrete weights, we prefer to
repeatedly increase each weightωm by a random number, rather than by a single unit. These
random numbers are chosen according to the Gamma distribution with shape parameterK and
scale parameterb:

GammaK,b(x) =
xK−1exp

(−x
b

)
bKΓ(K)

This distribution is particularly appropriate:

• The Gamma distribution is continuous.

• The sum ofl independent,Gammak,b-distributed variables isGammalk,b-distributed. Thus
we do not need to repeatedly increase the weights. Instead, we generate eachωm once, using
the Gamma distribution with its shape parameterK set to lk. In order to normalize the
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expected weight to 1, we set the scale parameterb to 1
K . The variance therefore equals the

inverse of shape parameter:σ2 = 1
K .

• We can emulate a non-integer number of resampling iterations.

• This process is consistent, i.e., when the input is resampled a number of times that approaches
infinity, the Gamma distribution behaves like the Normal distribution. Thus, the composition
of the resampled input approaches the composition of the actual input.

A more formal justification to this choice of the Gamma function is as follows. Our input con-
sists ofM observations. The most likely distribution having generated them is the uniform one,
i.e., every input observation is produced with probability1

M . However, for each choice of posi-
tional weights, we can consider the distribution that produces them-th observation with probability
ωm∑
m
ωm

. The likelihood of such a set of weights is therefore Dirichlet-distributed, withM equal

parameters. The most convenient, and standard way to sample from this distribution is by generat-
ing M independent Gamma-distributed random values. The precision of the Dirichlet distribution
is indeed the Gamma shape parameter.

This theory suggests using resampled, or perturbed weights as a randomization mechanism for
Structural EM, together integrating into a Simulated Annealing-type algorithm. As in Section 5.1,
we follow the guidelines of Simulated Annealing. Again, the standard deviationσ assumes the role
of the annealing temperature, and the probability of a weight being∆ away from its mean value
decays exponentially with∆σ .
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Chapter 6

Empirical Evaluation

We have implemented our algorithms in a program called SEMPHY. The program is written in C++,
and runs on several Unix platforms, as well as Microsoft Windows. For details regarding availability
of SEMPHY, seehttp://learning.cs.huji.ac.il/SEMPHY/ . We investigate the per-
formance of our algorithms on both amino-acid and DNA data sets, for both real and simulated
data. We first describe the results on the amino-acid sequences whose large alphabet necessitates a
complex methodology for phylogenetic analysis.

6.0.1 Protein Sequences

In these tests we used MOLPHY (Adachi & Hasegawa 1996) as the main reference point against
which we compared SEMPHY. (Other applications, like PAUP or FastDNAML, offer maximum-
likelihood solutions only for DNA data, rather than protein sequences.)

We first consider the basic Structural EM algorithm, using the Neighbor-Joining tree as a starting
point, and apply it to simulated data. We then perform additional simulation studies, to evaluate
enhancements to the basic paradigm. Eventually, we apply our methods to real biological data sets.

We first evaluated the performance of the basic Structural EM algorithm. Our evaluation was
performed on a comprehensive evaluation of synthetic data sets. These data sets were generated
by constructing anoriginal phylogeny, and then sampling from its marginal distribution. Each
synthetic data set comprised of two sets of sequences: atraining set and atestset. Both sets were
simulated assuming the same phylogeny. That is, both consisted of observations drawn from the
same marginal distribution, which we wish to characterize. Only the training set has been used for
inferring a phylogeny.

We graded the inferred phylogenetic tree by two figures of merit, which are the log-likelihood
values of each such set (training/test). While the likelihood of the training set is exactly the target
of ML optimization, the second figure of merit aims at detecting undesired effects of overfitting the
inferred phylogeny to the data. Log-likelihoods were normalized as follows: A baseline, which is
the log-likelihood of the original phylogeny, was subtracted from the log-likelihood of the inferred
tree. The result was divided by the number of positions.

In these tests, we examined the effect of the number of training positions and the number of taxa
on the quality of the learned phylogenies. For this purpose we examined two sets of phylogenies:

• The first consisted of 48 taxa, and different lengths of the training sequence (from 25 to 1000
positions).

• The second consisted of different numbers of taxa (12–96), with training sequences of length
100 positions.
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The size of the test-set was 1000 positions for all benchmarks. To assess the reproduceability of our
results, we repeated these experiments 10 times. That is, we generated 10 “original” trees and from
each we sampled training and test data. These phylogenies had uniform topology (whose directed
analogue is a fully binary tree), and edge lengths that are sampled from the Gamma distribution to
simulate a mix of short and potentially very long edges. The distribution parameters were chosen
to fit the data of (Pupko 2000). Sequences for these trees were simulated using the JTT amino-acid
replacement model of (Jones et al. 1992).

This gives us a sense about the amount of information that the training data contains about
the original model. Since the training data is not perfect, we expect that edge length optimization
with the original topology will learn parameters that are somewhat different than these original
parameters. By definition, these learned parameters perform better on the training data (since we
optimize the training data likelihood). However, they usually perform worse on the test data. (In
fact, for a sufficiently large test data, no model can perform better than the original model.) This
phenomenon is often referred to asover-fitting. The performance of the original tree with parameters
estimated from the training data is an upper bound on the performance we can expect from any
training method on the particular training data. This performance is therefore a milestone for errors
of different methods.

Figure 6-1 summarizes the results for these tests. These results show several trends.
First, as one can expect, the quality of the learned methods deteriorates when the number of

taxa increases and when the number of training positions decreases. In these situations all methods
performed worse on the test data. This deterioration includes the original topology with re-estimated
edge lengths, which indicates that in some sense in these situations we have less information in the
training sequences.

Second, we see that in terms of training data likelihood, the performance of SEMPHY closely
tracks the performance of the original topology with re-estimated edge lengths. This indicates that
SEMPHY finds topologies that, based on the training data, are almost as good as the original ones.
(In some situations, they score better than the original topology.) The difference between perfor-
mances of SEMPHY and the original topology on the test data indicates that the additional knowl-
edge of the original topology helps in finding better approximations of the true phylogeny, which
should be expected. As we see, however, for large number of training positions, this difference
vanishes.

Finally, we see that SEMPHY clearly outperforms MOLPHY in terms of quality of solutions
(on both the training set and test set likelihoods). While SEMPHY is close to the performance of
the original topology on the training set, we see that MOLPHY is worse, even when the number
of training positions grow. We also see that for large number of taxa, MOLPHY performance
deteriorates, even according to the training set likelihood. In addition, Figure 6-2 shows the running
time as a function of the number of taxa. We see that MOLPHY’s running time grows much faster
than SEMPHY’s running time, which is only quadratic in the number of taxa. (Note that the running
time of both programs grows roughly linearly in the number of training positions.) These results
show that SEMPHY’s speed allows, for the first time, ML phylogenetic inference on a large scale.

Next, we turned to evaluate enhancements and modifications to the basic approach. Figure 6-
3 demonstrates the validity of approximate counts, discussed in 3.5. Observe, that performance
is not noticeably degraded by the use of this approximation. Recall, that for protein sequences,
approximate counts are 20-times faster than exact ones. Therefore, counts are no longer the limiting
factor in iteration running time, which shows a close to 5-fold improvement. This efficiency makes it
possible to perform significantly more Structural EM iterations, and thus enables the enhancements
discussed in Section 5.

We now analyze the performance of Annealed Structural EM algorithms. Since these are ran-
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domized algorithms, we investigate this performance by their repeated applications. We characterize
the distribution of both test and train scores of trees that these algorithms find. Figure 6-4 presents
this cumulative distribution for Annealed Structural EM by perturbed weights, and by positional
weights.

The most obvious conclusion from Figure 6-4 is the ability of Annealed Structural EM to find
remarkably hi-scoring trees.

On both train and test data, MOLPHY and basic Structural EM are no match for the annealed
algorithms. On the train data, more than50% of the runs find trees that more likely than the original
tree. This means that by taking the best solution out of few independent runs, will learn such a
high-scoring tree with very high probability. On the test data, our score approaches that of the edge-
length-optimized original tree. Lastly, there is no clear winner between the two variants considered.
This promotes the claim that randomization helps Structural EM more than the method by which it
is incorporated into the Structural EM iterations.

While the basic Structural EM algorithm usually converges in few iterations (often as few as 3),
its annealed versions perform around 60 iterations. Still, the complexity is only quadratic. Annealed
Structural EM thus enjoys reasonable running times even for large data sets. For example, analysis
of 60 protein sequences of length 100 would take an hour, 3-fold faster than MOLPHY.

We also applied both SEMPHY and MOLPHY to real data sets, one of nuclear lysozyme
proteins (Pupko 2000), and another of concatenated mitochondrial proteins (Reyes, Gissi, Pesole,
Catzeflis & Saccone 2000). Both data sets focused on mammalian genes, with the exception of sev-
eral outgroup species. The proteins in each data set were aligned using CLUSTALW (Thompson,
Higgins & Gibson 1994), and columns with deleted amino-acids were excluded from the analysis.
Naturally, we did not have any test set in these cases.

The lysozyme data set consists of 43 protein sequences, of length 122. SEMPHY has found a
tree for this data set, whose overall likelihood is -2892.11. Compared to the tree found by MOLPHY
with likelihood is -2916.67, we get an improvement of 0.57 per position on average.

The mitochondrial data set consists of 34 sequences, each being a concatenation of the 13 pro-
teins coded by mammalian mitochondria. The total length of each sequence is 3578. The log-
likelihood of the tree we obtain using SEMPHY is -70533.5,

which corresponds to the best result in the biological literature (Reyes et al. 2000). Compared
to the tree likelihood of -74227.9 attained by MOLPHY, the improvement is of 1.03 on average, per
position.

6.0.2 DNA Sequences

We also evaluated the performance of our method on DNA data. Here the performance was com-
pared to the FastDNAML program (Olsen et al. 1994). We followed the experimental design
of (Ranwez & Gascuel 2001). We thus modeled evolution by Kimura’s two parameter model (Kimura
1980), with a ratio of two between transitions and transversions. Six model trees, each of 12 se-
quences were evaluated. For each tree, 4 combinations of branch length were used, as in (Ranwez
& Gascuel 2001). Two sequence lengths (300bp and 600bp) were examined, with 1000 such data
sets simulated for each. SEMPHY was run once for each such dataset. FastDNAML was run for
comparison.

The results are summarized in Table 6.1. For evaluation of success, this table uses the criterion
of (Ranwez & Gascuel 2001): identical reconstruction of the topology of the original model tree.
This criterion has a serious flaw, since often the program finds topologies which are more likely
than the original tree. We thus further consider the likelihood of the reconstructed tree, compared to
the original tree likelihood. Results are summarized in Table 6.2.
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Number Max Model Tree
of Pairwise

Positions Distance A B AB C D CD
300 0.1 19 (23) 18 (20) 21 (21) 19 (16) 19 (18) 19 (18)
300 0.3 40 (58) 36 (53) 45 (54) 65 (70) 64 (68) 69 (69)
300 1 14 (44) 11 (36) 13 (37) 57 (82) 56 (83) 69 (81)
300 2 0.2 (8) 0.4 (4) 0.6 (5) 20 (59) 21 (62) 18 (59)
600 0.1 69 (69) 55 (63) 58 (65) 66 (66) 60 (61) 61 (62)
600 0.3 80 (93) 74 (87) 76 (91) 95 (94) 93 (97) 91 (96)
600 1 47 (85) 47 (77) 49 (82) 86 (99) 85 (99) 83 (98)
600 2 6 (35) 3 (26) 4 (28) 38 (93) 44 (91) 43 (94)

Table 6.1: Comparison of SEMPHY and FastDNAML on simulated DNA data. Each table column
corresponds a model tree topology, used to simulate the sequences. Each row corresponds to a
simulation setup, i.e., the number of positions and combination of branch lengths. Each entry is the
percent chance, measured across 1000 simulated data sets, that the original model topology would
be identically reconstructed by SEMPHY (FastDNAML).

Number Max Model Tree
of Pairwise

Positions Distance A B AB C D CD
300 0.1 93 89 91 99 99 99
300 0.3 68 69 65 93 92 91
300 1 45 46 47 70 68 69
300 2 44 47 48 44 39 39
600 0.1 87 86 86 97 98 97
600 0.3 80 82 81 93 96 94
600 1 58 64 63 84 86 85
600 2 38 37 39 42 49 47

Table 6.2: Performance of SEMPHY on simulated DNA data. Table rows and columns are as
in Table 6.1. Each entry is the percent chance, measured across 1000 simulated data sets, that
the likelihood of the SEMPHY reconstructed tree is higher, or equivalent to the likelihood of the
original model topology.
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Number of Sequences 100bp 300bp 1000bp 2000bp
10 -0.0028 0.0008 0.0000 -0.0000
15 0.0014 0.0000 0.0000 -0.0000
20 -0.0065 0.0018 -0.0000 -0.0000
30 0.0125 0.0041 0.0010 0.0000
40 0.0136 0.0047 0.0000 -0.0000
80 0.0693 0.0101 0.0033 0.0020
100 0.1255 0.0223 0.0014 0.0004

Table 6.3: Comparison of SEMPHY and FastDNAML on DNA data synthesized using natural trees.
Each table entry registers the difference per position between the log-likelihood of the tree found
by FastDNAML and the one found by SEMPHY. These figures are averaged over 10 subsets of the
available data.

We also compared the performance of both programs on trees which are not artificial. To con-
struct such trees we used a cytochrome-b DNA dataset. This dataset was constructed as follows:
One cytochrome-b sequence was chosen for each rodent genus available in GenBank. The aligned
dataset contained 133 sequences, and 1138 nucleotide positions. Trees were constructed (by SEM-
PHY) for subsets of these sequences. For each such tree, and for each prescribed number of posi-
tions, we simulated a series of 10 random datasets. We compared average performance of SEMPHY
vs. FastDNAML on each such series, by considering the difference in the log-likelihood of the trees
these applications reconstruct. This difference is normalized per sequence position.

Results are summarized in Table 6.3. It appears that the taxa in this dataset are rather close
together, and from our evaluation FastDNAML performed very well on this task, often exceeding
the performance of SEMPHY. We note, that FastDNAML employs a very different, incremental
approach for searching the ML tree, locally rearranging the tree upon addition of sequences (Olsen
et al. 1994). In principle, it is possible to replace the local rearrangement stet by a Structural EM
step. We believe that such a combination of ideas from both FastDNAML and SEMPHY may be
superior to both applications.
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Figure 6-1: Summary of results from synthetic data. Top row shows the likelihood of reconstructed
tree as a function of training sequence length. Bottom row shows the likelihood of reconstructed
tree as a function of number of taxa. The left column shows likelihood of trees on the sequences
from which they were learned (training data), and the right column shows likelihood on independent
sequences sampled from the original tree. Each graph presents three curves: a solid curve for SEM-
PHY, a dotted curve for MOLPHY, and a dashed curve for the likelihood obtained by optimizing
edge lengths for the original topology, according to the training data. They-axis unit is average
log-likelihood per position. They-axis baseline is the score of the original tree from which the data
was sampled. The curves represent 10 independent runs from different trees. The graphs plot the
average performance of each method, and the vertical error-bars represent the interval containing
60% of the runs.
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Figure 6-2: Average running times (on a 600 MHZ Pentium machine) for SEMPHY runs in the
bottom chart of Figure 6-1.
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Figure 6-3: Results of basic Structural EM using approximated counts vs. exact counts. The data
sets used were simulated as in the bottom chart of Figure 6-1. Thex-axis represents the number
of taxa. They-axis represents the likelihood of the output tree, measured in units of average log-
likelihood per position. They-axis baseline is the score of the original tree with optimized edge
lengths.
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Figure 6-4: Performance of Annealed Structural EM on train data (top) and test data (bottom). Two
data sets (train+test) each of 24 sequences of length 400 were simulated. Each of our two variants
of Annealed Structural EM was rerun 80 times against the train data set plotting the cumulative
curves of the obtained solution score for each data set. The x-axis denotes the log likelihood per
sequence position. The y-axis denotes the fraction of algorithm reruns that produced solutions of
this likelihood or better. Several vertical baselines were drawn for comparison to other methods
(basic Structural EM
and
MOLPHY) and to the original tree. Annealing initial temperature was set toσ0 = 0.1, with the
cooling factorρ = 0.95. The stopping criterion is the final temperatureσl = 0.005, requiring 60
iterations of the algorithm.
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Chapter 7

Conclusion

This dissertation presents a new approach for maximum likelihood phylogenetic reconstruction.
On the theoretic aspect, we build on existing theory of learning and inference, to further develop
such ideas in phylogenetic context. On the applicative aspect we show good results, both on real
and synthetic data. For amino-acid sequences, we find significantly better trees then possible so
far. Moreover, our algorithm is computationally efficient. We therefore enable, for the first time,
maximum likelihood phylogenetic inference on a large scale. On DNA data-sets SEMPHY’s per-
formance is almost as good as FastDNAML. Further improvements to the algorithm presented here,
such as incorporating step-wise addition of sequences when building the tree, flanked by SEMPHY
rearrangements, might prove to be even more effective.

Being a first attempt at applying a completely new strategy for phylogenetic reconstruction, our
success to compare with state-of-the-art standard applications, and to systematically outperform
them in many cases, proves the potential of our approach, and encourages further study.

This work raises many research questions, both theoretic and practical. Our algorithm assumes
a uniform rate of evolution. It was shown that the assumption of rate heterogeneity across sites is
statistically superior to the constant-rate assumption (Yang 1993). An important extension to this
work would be to incorporate this model of variable rates into our development. This can be posed
as a missing data problem where the rate of each position is an additional unobserved variable. Our
decomposition of expected log likelihood extends in a natural manner to this case, and thus the
general procedure we described can be applied to the more expressive model.

This dissertation still does not explore the power of our method in depth. More thorough exam-
ination of its performance, and comparison to several existing methods, are in place.

Validating Structural EM for more models for DNA evolution (e.g., codon models) is an obvious
such examination. One other obvious extension would be to try replacing the local optimization
step in FastDNAML with a Structural EM step. Furthermore, inferring phylogeny for dozens of
species should not be the final goal. Rather, the challenge of analyzing hundreds of sequences, in a
maximum likelihood framework, seems almost practical.

Finally, it still remains to exploit the new method for extensive biological research. Recent data
sets in molecular evolution are becoming bigger and bigger, holding the promise to resolve classical
questions about the divergence of life. Although these sets contain lots of potential information,
the lack of a fast and accurate inference tool stands in the way of their utilization. We hope our
maximum-likelihood based solution will support this analytic endeavor, and promote new insights.
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Appendix A

Proof: the Minimum Bifurcating
Spanning Tree problem is NP-hard

The Minimum Bifurcating Spanning Tree (MBST) problem is defines as follows:

Input:

D = (di,j) a distance matrix of sizeN byN , where the〈m,n〉-th entry represents the
distance from nodem to noden.

Output:

A bifurcating tree spanning the nodes1 · · ·N such that the sum of edge weights (dis-
tances) in the tree is minimal with respect to all such trees.
A bifurcating tree is a rootless undirected tree where each node has either 3 neighbors
(and is an internal node) or only one neighbor (and is therefore a leaf).

Proof: proof by reduction from s-t-Hamiltonian path:

Thes-t-Hamiltonian Path Problem(ST-HPP) is a variant of theTSPproblem, with one edge fixed.
formally, it’s the following problem:
Input :

L = (li,j), anN by N matrix of edge-lengths, with two designated nodess, t so that
s, t ∈ 1 . . . N, s 6= t

Output :

The path that starts ats, ends att, goes through every point exactly once and has the
shortest total length.

Some definitions:

• acaterpillar like tree: as in Figure A a., a bifurcating tree with all its internal nodes connected
in a singule chain.

• (see gray nodes in Figure A a.) The chain of internal nodes is called the tree’sbackbone.

38



t"i

i’

j

j’

s" t

t’

s

s’

i

i’

a. Caterpillar Like Tree b. A Single Link
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• Each pair of nodes connected modes as in Figure A b., i.e. one internal and one leaf, is called
a link.

• When one end of the chain is markeds and the other is markedt the tree will be called a
s-t-caterpillar like tree

Intuition :
The first observation worth mentioning is that the ST-HPP problem above can be viewed as a mini-
mal spanning tree problem, for trees where each node has either one or two neighbors (unifurcating
trees, as they may be called). With this in mind, the main idea of the proof is to construct, from
the original s-t-Hamiltonian input, a new MBST problem in a way that “uses up” one of the neigh-
bors of each node, so that effectively, each node will only have two neighbors. This will, therefore,
transform the bifurcating problem into a unifurcating problem. Luckily, this can be done easily by
adding some new nodes and expanding the distance matrixD into a larger matrixL in a trivial way.
The idea is to add, for each existing node, a new node placed at a distance of0, and set all the
other distances from that node to∞. This insures that each new node connects only to it’s matching
original node. With respect to the original node, this effectively reduces the number of neighbors to
two, as required.
construction:
W.L.G. I will assume thats = 1 andt = 2. For each0 < i ≤ N , we will definei′ = N + i Given
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the input matrixD (of sizeN byN ), create a matrix̃D ( of size2N + 2 by 2N + 2) by doing the
following;

• for 0 < i, j ≤ N let d̃i,j = di,j

• for 0 < i ≤ N let d̃i+N,i = d̃i,i+N = 0
and in addition,fori ∈ 1, 2, d̃2N+i,i = d̃i,2N+i = 0

• for 0 < i ≤ N ,N < j ≤ 2N + 2, andi 6= j(modN) let d̃i,j = d̃j,i =∞

• for N < i, j ≤ 2N + 1 let d̃i,j = d̃j,i =∞

In other words,N + 2 new nodes are added, and the original matrix is expanded, as in Figure A, so
that:

• the original distances are not changed

• each node is duplicated and the “twins” are accessible only throw the original nodes.

• s andt are triplicated rather then just duplicated, and the two new nodes are accessible only
through the original one

Let usS be the minimal bifurcating spanning tree overD̃, andN > i′ ≤ 2N be one of the new
nodes. AsS is a spanning tree, the nodei′ must appear in it. Ifi′ is connected to any node other then
i = i′ −N then the spanning tree’s weight is∞. As demonstrated below, there are trees with finite
weight, so such an edge can not appear in the minimal tree. From this it is clear thatS includes all
the pairs(i, i′) for all i ≤ N . In addition, it is clear that all thei′ have no other neighbors, so they
must be leafs. We can now consider each pair(i, i′) as one unit. As mentioned above, this pair will
be referenced to as the linki. As the distance betweeni andi−N is zero, the edge within the link
dose not effect the total weight of the tree.
The case ofs (andt) is special, as it has two additional nodes (s′ ands”) that must be connected to
it. As so, it can only connect to one other node. Such a complex must be an end link. Any spanning
tree where every new node is connected only to its respective original node will be called correct

¯
.

Lemma A.0.1 The minimal spanning tree over̃D is a Caterpillar-like tree

Proof: By contradiction, assuming thatS is not a Caterpillar-like. This meens that at least one inter-
nal node, sayi, is connected to more then two other internal nodes, but then it can not be connected
to it’s twin, i′. AsS is a spanning tree, it must includei′, and if this node is not connected toi, it is
already known thatS must have infinite weight, and can not the minimal spanning tree.

Lemma A.0.2 The minimal spanning tree over̃D is an s-t-Caterpillar-like tree

Proof: Along the same lines as Lemma A.0.1, but boths andt have two added nodes, and therefore
can only have one other neighbor. therefore, they must reside in the ends of the chain.
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let V = [v0 = s, v1, · · · , vN , VN+1 = t] be some s-t-hamiltonian path inD. Let S be the correct
s-t-Caterpillar like tree over̃D who’s back bone isV. The weight of this tree is

Weight[S] =∑
ξ,η∈S

d̃i,j

=
N∑
i=0

d̃vi,vi+1 +
N∑
i=1

d̃vi,v′i + d̃s,s” + d̃t,t”

=
N∑
i=0

d̃vi,vi+1 +
N∑
i=1

0 + 0 + 0

=
N∑
i=0

dvi,vi+1 = Length[V ]

and this is exactly sum of edge lengths on the original path.
This argument will work the other way around as well: for any correct s-t-caterpillar like span-

ning tree, the backbone is an s-t-Hamiltonian path in the original problem, and the length of this
path will be equal to the weight of the tree.

This gives us a one-to-one mapping from the set of all s-t-paths in the original problem to set of
trees that contains the optimal tree in the constructed problem, which preserves the score. Therefore,
if we could know the minimal bifurcating spanning tree, we count deduct the shortest path in the
s-t-Hamiltonian path problem in polynomial time.
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