
Vol. 00 no. 00 2006, pages 1–6

doi:10.1093/bioinformatics/btl304BIOINFORMATICS

Articles

Phylogeny reconstruction: increasing the accuracy of

pairwise distance estimation using Bayesian inference of

evolutionary rates
Matan Ninio1,†, Eyal Privman2,†, Tal Pupko2,� and Nir Friedman2

1The Selim and Rachel Benin School of Computer Science and Engineering, Hebrew University,
Jerusalem 91904, Israel and 2Department of Cell Research and Immunology, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

ABSTRACT

Distance-based methods for phylogeny reconstruction are the fastest

andeasiest touse,and theirpopularity isaccordinglyhigh.Theyarealso

the only known methods that can cope with huge datasets of thousands

of sequences. These methods rely on evolutionary distance estimation

and are sensitive to errors in such estimations. In this study, a novel

Bayesian method for estimation of evolutionary distances is developed.

The proposed method enables the use of a sophisticated evolutionary

model that better accounts for among-site rate variation, thereby

improving the accuracy of distance estimation. Rate variations are

estimated within a Bayesian framework by extracting information

from the entire dataset of sequences, unlike standard methods that

can only use one pair of sequences at a time. We compare the accuracy

of a cascade of distance estimation methods, starting from commonly

used methods and moving towards the more sophisticated novel

method. Simulation studies show significant improvements in the accu-

racy of distance estimation by the novel method over the commonly

used ones. We demonstrate the effect of the improved accuracy on

tree reconstruction using both real and simulated protein sequence

alignments. An implementation of this method is available as part of

the SEMPHY package.

Contact: talp@tau.ac.il

1 INTRODUCTION

The problem of phylogeny reconstruction is at the heart of evolu-

tionary studies. Accurate knowledge of phylogenies is also instru-

mental in many tasks of protein sequence analysis, such as remote

homology search (Altschul et al., 1997) and prediction of functional

determinants in protein sequences (Nielsen, 1997; Pupko et al.,
2002).

Several different approaches to phylogeny reconstruction have

been developed over the past five decades, each with its own

strengths and weaknesses. Maximum likelihood (ML) is a well-

established methodology in phylogeny reconstruction. ML methods

use a stochastic model of sequence evolution that describes the

probabilities of substitutions. The ML estimate (MLE) for the phy-

logeny is the tree that maximizes the conditional probability of the

sequence data, given this tree and the model. This probability is

called the likelihood of the data. ML methods have been argued to

be superior in terms of accuracy and statistical justification

(Fukami-Kobayashi and Tateno, 1991; Hasegawa, 1993; Kuhner

and Felsenstein, 1994; Tateno et al., 1994; Huelsenbeck, 1995).

However, ML methods become computationally infeasible

when dealing with large datasets because the tree search space,

i.e. the number of possible trees, grows exponentially with the

number of sequences (Felsenstein, 2004). The currently available

applications of ML methods to phylogeny cannot effectively

cope with more than a few hundreds of sequences. This problem

becomes increasingly aggravating with the rapid accumulation of

molecular sequence data. In many molecular studies it is now pos-

sible to compile a dataset of hundreds and even thousands of

homologous sequences. Concomitantly, the field of molecular evo-

lution has produced increasingly sophisticated methods for phylo-

genetic analysis, which are more computationally intensive. These

combined advances challenge contemporary studies of molecular

evolution.

Contrary to ML methods, the efficiency of distance-based

methods, which are discussed in this article, is polynomial in

terms of the number of sequences. This advantage in computation

time makes them essential for dealing with large datasets. The

importance of distance methods is not only as a faster, less accurate

alternative to ML methods, but also in providing a good starting

point of a heuristic search for the ML tree. (Friedman et al., 2002;

Guindon and Gascuel, 2003). Clearly, if the distance method could

be improved then the ML search could be faster, and give more

accurate results.

Distance-based methods are made up of two steps:

(1) Pairwise distance estimation between all possible pairs of

sequences in the dataset.

(2) Tree reconstruction based on the distances only. This stage

does not use the original sequences.

These are the two modular stages—any method for distance

estimation can be used with any distance-based method for tree

reconstruction. While several distance-based tree reconstruction

methods have been developed, the initial step of distance estimation

received scant attention. Indeed, the simplistic Jukes–Cantor (JC)

method (Jukes and Cantor, 1969) is still a common practice for

distance estimation, in spite of its oversimplifying assumption that

all types of substitutions have equal probabilities. Great efforts have

been invested in improved modeling of sequence evolution for use

with ML methods. These improvements should also be applied to

distance estimation. However, as this work will demonstrate, all the
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previously published distance methods are still inadequate in terms

of both error and bias.

We present a novel approach to distance estimation with

increased accuracy, thereby improving phylogeny reconstruction.

Our method is an adaptation of advanced ML models to a distance-

based approach, making them computationally feasible for many

thousands of sequences. Thus, the analysis of large datasets may

now benefit from the improved accuracy of these fine-tuned models.

The key idea underlying our novel methodology is to extract infor-

mation from the entire dataset, and to use it in each pairwise dis-

tance estimation. We show that the novel method significantly

improves the accuracy of phylogenetic tree reconstruction. This

method was implemented as part of the Semphy package (Friedman

et al., 2002). Source code and executable are available for download

at http://compbio.cs.huji.ac.il/semphy/

2 METHODS FOR ML DISTANCE ESTIMATION

The evolutionary distance, d, between a pair of sequences is defined as the

average number of substitutions per sequence site. This measure is related to

the time that passed and the rate of substitutions. ML methodology may be

used for distance estimation in a similar fashion to finding the ML tree: The

MLE for the distance between two sequences is the distance that maximizes

the likelihood of the observed sequences (Zharkikh, 1994). ML methods use

continuous time Markovian models (Karlin and Taylor, 1975) that define for

any pair of aligned characters a and b the probability pa!bðdÞ of the sub-

stitution from a to b in an evolutionary distance d. In addition, they define the

initial character probabilities p(a). These models range from the oversim-

plified JC model (Jukes and Cantor, 1969) to complex models that strive to

capture the nature of evolution of protein-coding genes as accurately as

possible. This section describes the cascade of ML methods of increasing

complexity, culminating in the novel methods we propose.

2.1 Assuming homogeneous substitution rates

All distance estimation methods that are in wide-spread use for distance-

based tree reconstruction assume no variation of the substitution rates

between different sites. The basic JC distance method assumes uniform

frequencies of all characters and equal probabilities for all substitutions.

These unrealistic assumptions can be avoided by employing various substi-

tution matrices, which are used to calculate the pa!bðdÞ probabilities. Such

matrices have been initially designed for nucleotides sequences (Kimura,

1980). For amino acids, the larger alphabet size (20 instead of 4) requires a

significantly larger number of parameters in the model. Therefore, empirical

replacement matrices were calculated using large protein datasets. In this

work we concentrate on amino acid sequences, for which the computational

challenge is greater, although our novel methods can be equally applied to

DNA sequences. Specifically, we use the JTT matrix (Jones et al., 1992).

Contrary to the JC distance method, there is no closed formula for the ML

distance when using these matrices. Therefore, the likelihood of the data is

maximized using numerical methods. Under the simplifying assumption that

sites evolve independently and for models that satisfy reversibility

½pðaÞpa!bðdÞ ¼ pðbÞpb!aðdÞ� (Felsenstein, 1931), the likelihood of a pair

of sequences can be written as

LðdÞ ¼ PðA‚B j dÞ ¼
YS
i¼1

pðaiÞPai!bi
ðdÞ ð1Þ

where ai and bi are the characters in the i-th positions in sequences A and B

respectively, out of a total of S positions in the sequence alignment. The most

significant oversight of this model is the assumption of equal replacement

rates at all amino acid sites. In this article, we shall refer to the method that

uses this model as the homogeneous rates method. However, evolutionary

rates vary considerably between different amino acid sites, owing to non-

uniform selection forces (Yang, 1996).

2.2 Among site rate variation

Models that explicitly take into account among-site rate variation (ASRV)

were shown to be statistically superior to the homogeneous models (Yang,

1994). ASRV is modeled by assuming that each site i in the sequence has a

different rate, ri, relative to the average rate over all sites. Thus, a site of rate

2 evolves twice as fast as the average. This is equivalent to multiplying the

distance by the rate in the likelihood calculation for each site:

LðdÞ ¼ PðA‚B j r‚dÞ ¼
YS
i¼1

pðaiÞPai!bi ðd · riÞ ð2Þ

This equation assumes that rates are known. Since this is not the case, a

prior distribution of rates R(r) is assumed. The likelihood is then computed

by averaging over all possible rates:

LðdÞ ¼ PðA‚B jR‚dÞ

¼
YS
i¼1

Z 1

r¼0

RðrÞpðaiÞPai!bi
ðd · rÞdr:

ð3Þ

The most common choice for R(r) is the gamma distribution with the

mean set to 1 (Yang, 1996). The gamma density function has one free

parameter, a, that allows for different distribution shapes. The distance

and the a parameter can be estimated simultaneously for each pair of

sequences using ML. We shall refer to this method as the pairwise a method.

In most practical situations a discrete approximation of the gamma distri-

bution is used. Here we use 32 discrete bins.

2.3 Iterative inference of model parameters

The pairwise a method estimates the a parameter for each pair of sequences

independently. However, the variability of rates in a protein is generally

common to all sequences across a given multiple sequence alignment

(MSA). Thus, there is no reason to estimate the rate parameters for each

pair of sequences. Moreover, such estimation of many parameters from scant

data is likely to result in high errors (Fig. 1a). It would be preferable to use all

sequences in order to estimate the rate parameters globally. However, such

estimation requires knowledge of the phylogenetic tree, which we have not

yet reconstructed. This kind of circular situation calls for an iterative process

of optimization. Sullivan et al. (2005) studied iterative parameter optimiza-

tion in the context of ML tree search. Here we suggest a similar approach for

distance-based tree reconstruction. Global ASRV information is extracted

from the entire MSA, using the tree reconstructed in the previous iteration.

This ‘global information’ is then used to re-estimate the pairwise distances

more accurately (Fig. 1b).

There are various alternatives in the estimation of ASRV parameters:

Iterative a: Initial pairwise distances are estimated using the homoge-

neous rates method, and a tree is reconstructed. This tree is used to infer a,

and a is then used to improve the estimation of the pairwise distances. These

iterations are repeated until the likelihood converges.

Iterative rates: This method uses the evolutionary rate at each position as

the ‘global information’. The MLEs of these rates are iteratively estimated,

and then used to recalculate the distances by maximizing Equation (2). This

method captures more information about the ASRV than the iterative a

method.

Iterative posterior: Here we propose a third alternative that calls for

inferring a (posterior) rates distribution for each site rather than relying

on a single estimate of the ML rate. This distribution is then used in Equation

(3) instead of the prior distribution R(r). In the discrete approximation that is

used here, the posterior probability of each rate category is calculated for

each site, in each iteration, as described in Equation (2) in Mayrose et al.

(2004). We show that this novel approach outperforms all other methods.

M.Ninio et al.
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3 EVALUATION OF THE DISTANCE
ESTIMATION METHODS

The performance of the different methods was evaluated in three compara-

tive studies. The results presented here are for the five methods summarized

in Table 1. In addition, all studies included the JC distance method. How-

ever, these results are not shown because of its poor performance compared

with all other methods. Its error and bias patterns follow those of the homo-

geneous rates method.

3.1 Reconstructing trees from protein sequence

alignments

The ultimate goal of improving distance estimation is to increase the accu-

racy of the reconstructed tree topology. Therefore, the accuracy of recon-

struction using the novel methods was evaluated both for real and simulated

protein sequences. We used the neighbor joining (NJ) method for tree recon-

struction (Saitou and Nei, 1987), which is the most popular distance-based

method. Nevertheless, our novel distance estimation methods can be equally

used with other distance-based methods, which have been shown to be

superior to NJ in certain aspects (Huson et al., 1999).

We used a dataset of 84 protein MSAs that was composed by Aloy et al.

(2001). For each MSA, NJ trees were reconstructed using the five different

distance methods, and compared in terms of their log-likelihood scores. In

order to produce comparable scores, all likelihoods were computed using the

gamma ASRV model. In addition, such comparison might be affected by

biases in branch length estimation under the different models. Therefore,

branch lengths and a optimization were performed on the fixed tree topolo-

gies that were constructed by NJ. Each log-likelihood score was divided by

the length of the MSA to produce the average log-likelihood score per

position. Table 2 lists the differences between the score of each method

and the score of the homogeneous rates method, which is used as a reference.

The second line indicates the number of MSAs for which there was

a difference in the tree topology that resulted in improved likelihood,

compared with the homogeneous rates method.

Compared with this reference, the pairwise a method produces trees of

lower likelihood for most cases. On the other hand, all three iterative meth-

ods improve the likelihood scores on average. The iterative posterior method

achieved the best results, with an average improvement of 0.0177 log-

likelihood points per position and an improved topology for 44% of the

MSAs. We used simulation studies to further investigate this pattern.

3.2 Reconstructing trees from simulated multiple

sequence alignments

Accuracy of tree reconstruction from real protein sequences can only be

compared in terms of the likelihood of the trees, since the true phylogeny is

not known. For this reason we applied the different methods to protein MSAs

that were simulated according to a known tree, and we evaluated their

accuracy by comparing the reconstructed tree with the original tree. We

used 10 trees that were reconstructed by the homogeneous rates method in

the previous section as the basis for the simulated MSAs. Thus these simu-

lations represent several tree topologies of real protein phylogenies. We

chose MSAs with a number of sequences around 50.

The gamma-ASRV model was used to simulate sequence evolution

according to those tree topologies. The simulations were repeated for ten

values of a: 0.1 (highly variable rates), 0.2, 0.5, 0.7, 1.0, 1.3, 1.6, 2.0, 2.5

(relatively homogeneous rates). For each a, a vector of 1000 rates was

sampled from the gamma distribution. Each of the ten trees was used

with each of the ten rate vectors to simulate an MSA of 1000 columns.

This procedure was repeated ten times, resulting in ten MSAs for each tree

Fig. 1. Utilizing the entire MSA to estimate the variation of rates between

sites. (a) When looking only at the first two sequences of this simple example,

both sites of the alignment are identical and there is no reason to think that they

evolve with different rates. However, when all five sequences are used, we can

deduce that the rate of the first site is larger than that of the second one.

(b) The proposed iterative approach that utilizes ASRV information from all

sequences to improve distance estimation.

Table 1. The distance estimation methods used in all comparative Studies

Name Evolutionary model

homogeneous rates No ASRV

Pairwise a Independent estimation of a for each sequence pair

Iterative a Global estimation of a

Iterative rates Global estimation of the ML rate at each site

iterative posterior Global estimation of the posterior distribution of

the rate at each site

Table 2. Tree reconstruction by different methods

Average DLL Pairwise a It. rates It. a It. posterior

per position† 	0.0655 +0.0151 +0.0077 +0.0177

Improved topology‡ 7% 31% 32% 44%

†The average difference in the log-likelihood per position scores compared to the

homogeneous rates method.
‡The proportion of trees for which there was a difference in the topology and an improved

likelihood compared to homogeneous rates.

Phylogeny reconstruction
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and for each a value, a total of 1000 simulated MSAs. Each method was used

to reconstruct a tree from each MSA and the resulting trees were compared to

the original tree that was used to simulate this MSA.

The performance of the five methods was evaluated in terms of log-

likelihood scores (as above) and in terms of the topological distance between

the inferred and the original tree, namely the percent of splits that both trees

agree on. Figures 2a and 2b plot these two accuracy measures as a function of

a (presented in log-scale). Both measures agreed on the ranking of the five

methods: iterative posterior > iterative rates > iterative a > homogeneous

rates > pairwise a. Paired t-test comparisons indicate these differences are

highly significant (p-values lower than 10	5).

The results for the simulated MSAs agree with the pattern that was

observed for the real protein sequences. The differences in the log-likelihood

per position are also comparable. Therefore, we conclude that the above

procedure successfully reproduce the general pattern of sequence evolution.

An interesting observation is that pairwise a preforms especially bad for

simulations with extreme values of a, and is therefore worse than homoge-

neous rates. This is the result of large errors in the a estimates, which are

based on two sequences only (data not shown).

Compared to the commonly used homogeneous rates method, the iterative

posterior method improves the log-likelihood score by 0.01-0.03 points per

position, depending on a. In terms of the topological accuracy of the tree, the

percentage of correctly reconstructed splits is improved by 2%–9%, depend-

ing on a. A larger improvement is evident for a values less than 1. Therefore,

this novel method will be especially significant for proteins with large rate

heterogeneity. The improvement in correct split reconstruction is usually

very valuable, as we observed that many of the longer branches are easily

reconstructed with any distance estimation method, and a relatively small

number of short branches is commonly the more challenging part of the

phylogeny. This pattern is plotted in Figure 2c. The largest impact is on

branch lengths around 0.01, where the proportion of correctly reconstructed

splits is improved by 20%.

3.3 Evaluation of the accuracy of distance estimation

on pairs of simulated sequences

The evaluation of tree reconstruction above clearly shows the superiority of

the iterative methods. However, it is interesting to understand how the

improvements in the accuracy depend on different factors, such as the

pairwise distances and the a parameter. For example, improvements in

the accuracy for relatively distant pairs of sequences might be more signifi-

cant than for close pairs. In addition, the different methods may vary in the

extent of their bias in distance estimation. Therefore, we used simulations of

pairs of sequences to study the effects of these factors. We investigated the

error and the bias by comparing the estimated distance with the original

distance that was used in the simulation.

The same protocol that was used to simulate MSAs was adapted to

simulate pairs of sequences 1000 amino acids long. 1000 pairs were simu-

lated for each combination of the 10 different a values and 10 different

evolutionary distances between 0.01 and 1.5. In total, 100,000 pairs of

sequences were simulated. For the iterative methods we used the previously

simulated MSAs in order to estimate the required ‘‘global information’’, i.e.,

the global a parameter, and for each site—the ML rate and the posterior

distribution of the rate. For each pair we used an MSA that was simulated

with the same rate vectors, so that the new sequence pair can be treated as

though it belongs to the same dataset.

The accuracy of the five distance methods was evaluated on these simu-

lations. In addition, a sixth method (labeled true rates) was added as a frame

of reference. This method is similar to the iterative rates method, however it

was given the true rates that were used to simulate the sequences instead of

the MLEs of the rates. This information is obviously not available for real

proteins. It is used here in order to demonstrate the limit of the accuracy of

this class of ML methods, when given the most accurate ‘‘global informa-

tion’’ about the rates.

Fig. 2. Accuracy of tree reconstruction using the different distance estimation

methods, plotted vs. the a value that was used in the simulations. (a) The

difference in the log-likelihood per position of the reconstructed tree,

compared to the true tree. (b) The percentage of split agreement with the

true tree. (c) Percent of correctly reconstructed splits vs. the corresponding

branch length. The curves were created using the LOWESS function (locally

weighted scatter plot smooth)
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The results were analyzed in terms of the error and the bias in distance

estimation. The relative mean square error (RMSE) and the relative mean

error (RME) were used to measure the error and the bias respectively:

Avg
d̂d	dtrue

dtrue

 !2
0
@

1
A Avg

d̂d 	 dtrue

dtrue

 !
ð4Þ

3.3.1 Accuracy as a function of the evolutionary distance In

Figure 3 the RMSE and RME of each method are plotted as a function

of the true distance by which the sequence pairs were simulated. The results

are shown for simulations with an a value of 0.7.

The improved accuracy of the novel iterative methods is evident from

Figure 3a, especially for large distances. It seems that only at large distances,

where many sites undergo multiple replacements, there is a significant

advantage to the more refined models. For small distances most methods

produce very similar errors. For distances larger than 0.2 all the ASRV

methods are significantly more accurate than the homogeneous rates method.

The major contributing factor to the inaccuracy of homogeneous rates is

probably its considerable bias for underestimation (Figure 3b), which

increases dramatically with the distance.

Among the ASRV methods, the iterative methods that use ‘‘global infor-

mation’’ are significantly more accurate than the pairwise gamma method

that do not. We attribute this result to the insufficiency of the information in

two sequences for accurate estimation of ASRV parameters. Interestingly,

there is a noticeable bias for overestimation (over 10 percent) in the pairwise

gamma method, for both small and very large distances. The iterative

methods, on the other hand, do not display a significant bias. The iterative

posterior method seems to be especially unbiased.

As expected, the accuracy of all the methods never exceeds that of the

true rates method, as the true rates are the ultimate ‘‘global information’’.

Surprisingly, even for very large distances, the three iterative methods pro-

duce RMSE values that are no more than 1.5 times larger than the those of

the true rates reference. In general, the iterative posterior method is more

accurate than the other two methods. Its advantage is especially noticeable

for large distances, where its errors are almost equal to the gold standard set

by true rates.

It is worthwhile to note the effect of the improved accuracy of pairwise

distances on the successful reconstruction of tree topology. The most sig-

nificant improvement in the pairwise accuracy was for distant pairs (dis-

tances larger than 0.2), while the improved reconstruction was mainly in the

shortest branches of the trees (of length around 0.01, as shown in Figure 2c).

Evidently, the accurate estimation of large pairwise distances is essential for

resolving difficult splits that correspond to short branches. This effect is

reasonable, because distant pairs of sequences are often connected by a path

in the tree that includes very short branches. Therefore, the large pairwise

distances are used by NJ to resolve those internal branches.

3.3.2 Accuracy as a function of a When ASRV models are applied

to protein sequences the estimated a values typically range between 0.5 and

3.0. In order to test the effect of the degree of rate variation on the accuracy

of the distance estimation methods we plotted the error and the bias against

a. Figure 4 presents the results for a distance of 1.0, which is a large but not

uncommon distance. At most of the biologically relevant a values the three

iterative methods are clearly more accurate than the simpler methods. How-

ever, at a values of 0.5 and smaller the iterative posterior and the iterative

rates methods become less accurate, while the iterative a method remains

nearly as accurate as the true rates reference.

This increased error is correlated with a bias for underestimation

(Figure 4b). We investigated the cause of this bias, finding that it was

preceded by underestimation in the branch lengths of the trees that were

reconstructed from the simulated MSAs. The bias of the ML estimation of

the branch lengths at small a values was never reported before. This is an

interesting and important result in itself, which merits further investigation,

as it surely affects any other evolutionary analysis that make use of the

branch lengths of trees. In our analysis, the shortening of the branch lengths

resulted in overestimation of the rate at each site, which caused underesti-

mation of distances by iterative rates and iterative posterior. Nevertheless,

the novel methods we present here produce high accuracy at all situations

except for the very extreme end of the rate variability in real biological

protein sequences.

4 SUMMARY

The JC distance method is still in wide-spread use in distance-based

phylogeny reconstruction. Even the more advanced methods that

use amino-acid replacement matrices neglect to take ASRV into

consideration. Thus, such methods suffer from high errors and bias,

as we show in our simulation studies (sections 3.2 and 3.3) These

simulations also show that an attempt to estimate ASRV parameters

for each pair of sequences independently will inevitably suffer from

large errors. Therefore, we use iterative tree reconstruction to

extract more refined ‘‘global ASRV information’’ from the entire

dataset, using the tree that was estimated in the previous iteration.

Fig. 3. Error and bias of the different distance estimation methods as a

function of the true distance. Sequences were simulated with a ¼ 0.7. Each

data point is an average based on 1000 independent sequence pairs. (a) RMSE

as a measure of the error. (b) RME as a measure of the bias.

Phylogeny reconstruction
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This ‘‘global information’’ is utilized by a novel Bayesian distance

estimation method that integrates the posterior distribution of

the rate at each site into the estimation of the distance.

We demonstrate the improved accuracy of our novel method

through a comparative study of distance estimation methods and

their use in NJ. The novel iterative method produces trees of sig-

nificantly improved likelihood for both real and simulated protein

MSAs. The simulations also show that the novel method correctly

reconstructs a larger percentage of the branches of the true tree,

therefore, giving a better estimate of the tree topology. Using simu-

lations of sequence pairs we show that the ‘‘global information’’

that is available to the iterative method reduces errors and bias

in distance estimation. While all previously suggested distance-

based methods consider each pair of sequences separately, the

iterative method makes use of all available sequences, allowing

a more accurate estimation of the parameters of the gamma-

ASRV model. Our simulations demonstrate that these advantages

are considerable in almost all cases, and are increasingly significant

for large evolutionary distances and for proteins of high rate

variability.
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