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Abstract
Relational Markov Random Fields(rMRF’s) are a general and flexible framework for rea-
soning about the joint distribution over attributes of a large number of interacting entities,
such as graphs, social networks or gene networks. When modeling such a network using
an rMRF one of the major problems is choosing the set of features to include inthe model
and setting their weights. The main computational difficulty in learning such modelsfrom
evidence is that the estimation of each set of features requires the use of aparameter es-
timation procedure. Even when dealing with complete data, where one can summarize a
large domain by sufficient statistics, parameter estimation requires one to compute the ex-
pectation of the sufficient statistics given different parameter choices. This means that we
run inference in the network for each step in the iterative algorithm used for parameter es-
timation. Since exact inference is usually intractable, the typical solution to this problem is
to resort to approximate inference procedures, such asloopy belief propagation. Although
these procedures are quite efficient, they still require computation that is onthe order of the
number of interactions (or features) in the model. When learning a large relational model
over a complex domain even such approximations require unrealistic runningtime.

In this work we show that for a particular class of rMRFs, which have inherent symme-
try, we can perform the inference needed for learning procedures using a liftedtemplate-
level belief propagation. This procedure’s running time is proportional to the size of the
relational model rather than the size of the domain. Moreover, we show thatthis com-
putational procedure is equivalent to synchronous loopy belief propagation. This yields a
dramatic speedup in inference time. We use this speedup to learn such symmetricrMRF’s
from evidence in an efficient way. This enables us to explore problem domains which were
impossible to handle with existing methods.
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Chapter 1

Introduction

1. Motivation

Complex networks are ubiquitous in many fields of science. Deciphering the network of
interactions underlying the functionality of systems as a whole is a great challenge. If we
succeed in doing so, then we might gain new insights to the behavior of such complex sys-
tems and better understand how individual nodes interact toperform complex tasks. This
challenge is common to a plethora of domains including protein interaction networks (Fig-
ure 1.1), the Web, social networks, gene networks, power grids, information processing
networks, and many more. One approach in this field attempts to find local rules of inter-
actions between relatively small units that govern the global structure of the network. One
of the main problems in handling such networks is their usually huge size. For example,
in theProtein-Protein interactionnetwork of budding yeast there are∼ 6000 proteins with
∼ 18, 000, 000 possible interactions.

A notable work that tries to meet this challenge isNetwork Motifsby Milo et al.
[Milo et al. 2002]. They search the network for basic units called motifs, which are over-
represented subgraphs. To determine which subgraphs are over-represented the abundance
of each subgraph in the real network is compared to its abundance in a random ensemble of
networks. Other approaches to this problem emphasize the importance of measurable quan-
tities of the network, such as the degrees of individual nodes [Barabasi and Albert 1999],
shortest paths between nodes, and others. Each of these methods has its shortcomings (we
give some more details in Chapter 7).

We take a different approach that uses aProbabilistic Graphical Modelin order to
model the complex network of interactions (see also [Jaimovich et al. 2006]). This is a
generativeapproach in which we learn a model that describes the complexnetwork at
hand. We believe this approach is more elegant and overcomessome of the limitations
of existing methods. More specifically, we use a sub-class ofgraphical models calledre-
lational Markov Random Fields(rMRFs) which are suitable for reasoning about complex
networks of interactions. This framework is natural for describing complex relations be-
tween entities, in which the same local rules repeat throughout the model. In practice,
such probabilistic models give a compact representation ofthe joint distribution of random
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Figure 1.1: Example for an protein interaction network. Adopted from H Jeong et.al. Nature 411,41
2001

variables that describe properties of entities and the interactions between them. This repre-
sentation assumes that the overall joint distribution can be described in terms of local, small
joint distributions over groups of random variables in the model. Hence it is natural to use
rMRFs in order to look for local rules governing the global properties of the network.

In the remaining of this chapter we explain about Markov Random Fields and rMRFs,
then we show why running probabilistic inference on such models is both essential for our
goal and difficult, and finally we talk about our contributionand related work.

2. Markov Random Fields

Markov Random Fields(MRFs), also known asMarkov Networks, are a general way to
model the joint probability of a group of random variablesX = {X1, ..., Xn}. Such mod-
els were first introduced in the field of statistical mechanics to model certain physical phe-
nomena and today they are used in a wide range of applicationsincluding computer vision,
natural language, computational biology and digital communications. MRFs provide a
compact representation of the distribution in terms of local potentialsor factorswhich are
defined over subsets of variables. These potential functions are defined asπc : xc → IR

and can be viewed as representing preferences over local configurations (not to be confused
with marginal probabilities). Such compact representation is achieved byfactorizing the
joint distribution into a product of the local factors. Of course, not every distribution can
be factorized this way, but this family is still very expressive. An MRF is strongly related
to an undirected graphG = (V,E) where each vertexv ∈ V is associated with a random
variableXi ∈ X and each factorπ is associated with a maximal cliquec in G.
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Formally, the joint distribution represented by an MRF is given by:

P (X = x) =
1

Z

∏

c

πc(xc) (1.1)

whereZ is a normalization constant known as thePartition Functionand defined by:

Z =
∑

x∈Ω

∏

c

πc(xc)

whereΩ is the set of all legal assignments toX . This constant ensures that the model
describes a legal probability distribution - all entries sum to1.

A distribution of this form is called aGibbs distribution.
It is often more convenient to specify potentials slightly differently and use the repre-

sentation of a log-linear model:

P (X = x) =
1

Z
exp

{

∑

i

θifi(x)

}

(1.2)

and:

Z =
∑

x∈Ω

exp

{

∑

i

θifi(x)

}

(1.3)

The log-linear model has a set of local feature functionsf : Ω → IR for each clique, and
the parameters of the log-linear model are weightsθ such that eachθi ∈ IR corresponds to
a featurefi. If, for example, the potentials are represented as tabularCPDs, then each entry
in the table is associated with one featurefj and its value is exactlyθj.

There exists an important connection between the structureof the undirected graphG
and conditional independence in the probability distribution defined by the random field.
Specifically, each group of variablesX ⊆ X is independent of all other variables{Xi ∈
X \ X} given their neighbors in the graph - also called theirMarkov blanket. Formally:
(X ⊥ X \ X|NX), and we say thatX is locally Markovwith respect toG. The Hammersley-
Clifford theorem [Hammersley and Clifford 1971] states that if ∀Xi p(Xi = xi) > 0 and
X is locally Markov with respect toG, thenp(X ) factorizes with respect toG (Eq. (1.1)).
And the other direction is also true.

In this work we focus on MRFs for structured domains, that are naturally represented
under the Entity-Relation paradigm [Getoor et al. 2001; Friedman et al. 1999]. These
Probabilistic Relational Models(PRMs), also calledTemplate Models, specify a recipe
with which a concrete MRF can be constructed for a specific set of entities. Such relational
MRFs (rMRFs) may reuse the same potential function for many factors in the instantiated
model. This means that the model usesshared parametersthat allow reasoning about a
set of variables as a group. rMRFs are used to model many types of domains like the web
[Taskar et al. 2004], gene expression measurements [Segal et al. 2003] and protein-protein
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interaction networks [Jaimovich et al. 2006]. In these domains, they can be used for diverse
tasks, such as prediction of missing values given some observations [Jaimovich et al. 2006],
classification [Taskar et al. 2004], and model selection [Segal et al. 2003]. All of these tasks
require the ability to perform inference in these models. Inthis work we build on the fact
that such models contain many repetitions of the same local structure in the instantiated
level. We use it to devise an extremely efficient approximateinference algorithm that takes
advantage of this symmetry. Furthermore, we use the same property to perform model
selection tasks much more efficiently.

3. Model Selection

In the task of learning an MRF from empirical evidence we are given a set of training
samplesD = {x[1], ..., x[M ]}, each is an assignment to the variablesX (In this work
we focus on the case of fully observed data, which means that in each sample values are
assigned to all the variables inX ). Our goal is to learn an appropriate set of features
F = {f1, ..., fk} (Feature Selection) and their corresponding parametersθ = {θ1, ..., θk}
(Parameter Estimation). In other words, we want to construct the best generative model
for the given evidence. This task turns out to be very difficult as the number of the feature
sets we have to consider is usually prohibitively large, andeven if we have the correct set
of features finding values for their parameters cannot be done effectively in general [Parise
and Welling 2005]. Instead, we normally have to resort to iterative methods for optimizing
over parameter space. Unfortunately, every step in the iterative algorithm requires that we
run inference on the model. So, inference turns out to be the main computational bottleneck
in the learning procedure.

4. Inference in MRFs

Inference in MRFs is the computation needed to answer probabilistic queries about the joint
distribution defined by the model. Notable queries include finding the marginal probability
or the most probable assignment of a subset of the variables (possibly given the values
of other variables). A naive solution to such queries is achieved by summing over some
(or all) of the possible assignments, which generally requires computational time that is
exponential in the number of variables. This makes exact inference infeasible in most
interesting cases. In fact, the problem of inference in suchprobabilistic models is#P −
complete. Instead, a common practice is to trade-off accuracy for feasibility and resort to
approximate inference methods.

One approach to the design of approximate inference uses instantiations to all or some
of the variables. This approach involves a stochastic process, such asMarkov Chain Monte
Carlo (MCMC) [Geman and Geman 1984], to produce the instantiations,from which the
joint distribution can be approximated. In another approach to approximate inference,
termedVariational Methods[Jordan et al. 1998], we attempt to approximate the target
distributionP by a simpler distributionQ. In practice we define a family of simpler distri-

6



butionsQ and look for a particular instanceQ ∈ Q that best approximatesP . This simpli-
fication is achieved by expanding the problem to include additional parameters, known as
variational parameters. Generally speaking, the algorithms in this class can be viewed as
optimizing a target function that measures the quality of the approximation. In this work
we focus on one variational method calledBelief Propagation.

5. Our Contribution

In this work we show how to perform model selection in a special type of rMRFs that have
inherent symmetry properties. In such tasks we have to run inference for many different
models. Our basic observation is that when the model has suchsymmetry properties it is
possible to run approximate inference very efficiently. In particular, we show that many of
the intermediate results of approximate inference procedures, such as loopy belief propa-
gation, are identical. Thus, instead of recalculating the same terms over and over, we can
perform inference at the template level. We define formally alarge class of relational mod-
els that have these symmetry properties, show how we can use them to perform efficient
approximate inference and compare our results with other methods. This is, to the best of
our knowledge, the firstlifted approximate inference algorithm that works on the template
level of the model. Using the efficient inference algorithm we perform model selection for
both synthetic and real-life problems. The efficient learning procedure allows us to explore
domains that were intractable using previous methods.

6. Related Work

Other works attempted to exploit relational structure for more efficient inference. For ex-
ample, Pfefferet al. [Pfeffer et al. 1999] used the relational structure to cacherepeated
computations of intermediate terms that are identical in different instances of the same
template. Several recent works derive rules as to when variable elimination can be per-
formed at the template level rather than the instance level,which saves duplicate compu-
tations [Poole 2003; de Salvo Braz et al. 2005]. These methodsfocus on speeding exact
inference, and are relevant in models where the intermediate calculations of exact inference
have tractable representations. These approaches cannot be applied to models, such as the
ones we consider, where intermediate results of variable elimination are exponential. In
contrast, our method focuses on template level inference for lifted approximate inference
in such intractable models.
This document is organized as follows: in Chapter 2 we define a class of rMRFs and the
way to construct them. In Chapter 3 we show how symmetry properties of such models
can be used for efficient inference. In the following chapters we study model selection
for these kind of models, including parameter estimation (Chapter 4) and feature selection
(Chapter 5). Then in Chapter 6 we use our efficient algorithm to learn a generative model
for a large scale real-life problem from the Protein-Protein-Interaction domain. Finally, we
conclude with a discussion.
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Chapter 2

Symmetric relational models

In this chapter we define a class of rMRFs. We will later show howto exploit symmetry
properties of models in this class in order to run extremely efficient approximate inference
algorithm.

As mentioned in Chapter 1,Probabilistic Relational Models(PRMs) provide a lan-
guage for defining how to construct models from reoccurring sub-components [Friedman
et al. 1999; Getoor et al. 2001; Taskar et al. 2002; Poole 2003]. Depending on the specific
instantiation, these sub-components are duplicated to create the actual probabilistic model.
We are interested in models that can be applied for reasoningabout the relations between
entities. Our motivating example will be reasoning about the structure of interaction net-
works. We now define a class of relational models that will be convenient for reasoning
about these domains. We use a language that is similar to onespreviously defined [Richard-
son and Domingos 2006], but also somewhat different, in order to make our claims in the
following chapter more simple and clear.

As with most relational models in the literature we distinguish thetemplate-levelmodel
that describes the types of objects and components of the model and how they can be ap-
plied, from theinstantiation-levelthat describes a particular model which is an instantiation
of the template to a specific set of entities.

To define a template-level model we first set up the different types of entities we reason
about in the model. We distinguishbasic entity typesthat describe atomic entities from
complex typesthat describe composite entities.

Definition 1 Given a setTbasic = (T1, . . . , Tn) of basic entity typeswe define two kinds of
complex types:

• If T1, . . . , Tk are basic types, thenT1 × · · ·×Tk denotes the type ofordered tuplesof
entities of these types. Ife1, . . . , ek are entities of typesT1, . . . , Tk, respectively, then
〈e1, . . . , ek〉 is of typeT1 × · · · × Tk.

• If T is a basic type, thenT k denotes the type ofunordered tuplesof entities of typeT .
If e1, . . . , ek are entities of typeT , then[e1, . . . , ek] is of typeT k. When considering
unordered tuples, permutations of the basic elements stillrefer to the same complex
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entity. Thus, ife1, e2 are of typeT , then both[e1, e2] and [e2, e1] refer to the same
complex entity of typeT 2.

For example, suppose we want to reason about undirected graphs. If we define a typeTv

for vertices then an undirected edge is of typeTe ≡ T 2
v since an edge is a composite object

that consists of two vertices. Note that we use unordered tuples since the edge does not
have a direction. That is, both[v1, v2] and [v2, v1] refer to the same relationship between
the two vertices. If we want to model directed edges, we need to reason about ordered
tuplesTe ≡ Tv × Tv. Now 〈v1, v2〉 and〈v2, v1〉 refer to two distinct edges. This forms
a rich language which enables the representation of complexdomains. For example, We
can consider social networks, where vertices correspond topeople. Now we might also
add a typeTl of physical locations. In order to reason about relationships between vertices
(people) and locations we need to define pairs of typeTp ≡ Tv × Tl. Note that tuples that
relate between different types are by definition ordered.

Once we define the template-level set of typesT over some set of basic typesTbasic, we
can consider particular instantiations in terms of entities.

Definition 2 An entity instantiation I for (Tbasic, T ) consists of a set ofbasic entitiesE
and a mappingσ : E 7→ Tbasic that assigns a basic type to each basic entity.

Based on an instantiation, we create all possible instantiations of each type inT :

• if T ∈ Tbasic thenI(T ) = {e ∈ E : σ(e) = T}
• If T = T1 × · · · × Tk thenI(T ) = I(T1) × · · · × I(Tk).

• If T = T k
1 thenI(T ) = {[e1, . . . , ek] : e1, . . . ek ∈ I(T1), e1 ≤ · · · ≤ ek} where≤ is

some (arbitrary) order overI(T ) 1.

Once we define a set of basic entities, we assume that all possible complex entities of the
given type are defined (see Figure 2.1 for an instantiation ofthe undirected graph example).

The basic and complex entities define the structure of our domain of interest. Our goal,
however, is to reason about the properties of these entities. We refer to these properties as
attributes. Again, we start by the definition at the template level, and proceed to examine
their application to a specific instantiation:

Definition 3 A template attribute A(T ) defines a property of entities of typeT . The set of
values the attribute can take is denoted Val(A(T )).

1. For example, considering undirected edges again, we think of [v1, v2] and[v2, v1] as two different names
of the same entity. Our definition ensures that only one of these two objects is in the set of entities and
we view the other as an alternative reference to the same entity.
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V 2 V 3V 1 [ V 1 , V 3 ]1 2 [ V 2 , V 3 ]
Figure 2.1: An instantiation of an undirected graph scheme over a domain of three vertices.

A template attribute denotes a specific property we expect each object of the given type
to have. In general, we can consider attributes of basic objects or attributes of complex
objects. In our example, we can reason about the color of a vertex, by having an attribute
Color(Tv). We can also create an attributeExist(Te) that denotes whether the edge between
two vertices exists. We can consider other attributes such as the weight of an edge and so
on. All these template attributes are defined at the level of the scheme and we will denote
byA the set of template attributes in our model.

Given a concrete entity instanceI we consider all the attributes of each instantiated
type. We view the attributes of objects as random variables.Thus, each template attribute
in A defines a set of random variables:

XI(A(T )) = {XA(e) : e ∈ I(T )}

We defineXI = ∪A(T )∈AXI(A(T )) to be the set of all random variables that are defined
over the instantiationI. For example, if we consider the attributesColor over vertices and
Exist over unordered pairs of vertices, and suppose thatE = {v1, v2, v3} are all of type
Tv, then we have three random variables inX (Color(Tv)) which areXColor(v1), XColor(v2),
XColor(v3), and three random variables inX (Exist(Te)) which areXExist([v1, v2]), XExist([v1, v3])
andXExist([v2, v3]).

Given a set of types, their attributes and an instantiation,we defined a universe of dis-
course, which is the setXI of random variables. Anattribute instantiationω (or just instan-
tiation) is an assignment of values to all random variables in XI . We use bothω(XA(e))
andxA(e) to refer to the assigned value to the attributeA of the entitye.

We now turn to the final component of our relational model. To define a log-linear
model over the random variablesXI , we need to introducefeaturesthat capture preferences
for specific configurations of values to small groups of related random variables. In our
graph example, we can introduce a univariate feature for edges that describes the potential
for the existence of an edge in the graph. A more complex feature can describe preferences
over triplets of interactions (e.g., prefer triangles over open chains).

We start by defining template level features as a recipe that will be assigned to a large
number of specific sets of random variables in the instantiated model. Intuitively, a template
feature defines a function that can be applied to a set of attributes of related entities. To
do so, we need to provide a mechanism to capture sets of entityattributes with particular
relationships. For example, to put a feature over a triangleof edges, we want a feature over
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Arguments Formal Attr. Function
entities

Fe 〈ξ1, ξ2〉 [ξ1, ξ2] Exist fδ(z) = 11{z = 1}
〈Tv, Tv〉 Te

Ft 〈ξ1, ξ2, ξ3〉 [ξ1, ξ2] Exist f3(z1, z2, z3) =
[ξ1, ξ3] Exist 11{(z1 = 1) ∧
[ξ2, ξ3] Exist (z2 = 1) ∧

〈Tv, Tv, Tv〉 Te, Te, Te (z3 = 1) }

Table 2.1: Example of two template-level features for a graph model. The first is a feature over
single edges, and the second is one over triplets of coincident edges (triangles).

the variablesXExist([v1, v2]), XExist([v1, v3]), andXExist([v2, v3]) for every choice of three
verticesv1, v2, andv3. The actual definition, thus involves entities that we quantify over
(e.g.,v1, v2, andv3), the complex entities over these arguments we examine (e.g., [v1, v2],
[v1, v3], and[v2, v3]), the attributes of these entities, and the actual feature.

Definition 4 A Template FeatureF is defined by four components:

• A tuple ofarguments〈ξ1, . . . , ξk〉with a corresponding list oftype signature〈T q
1 , . . . , T

q
k 〉,

such thatξi denotes an entity of basic typeT q
i .

• A list of formal entitiesε1, . . . , εj, with corresponding typesT f
1 , . . . , T

f
j such that

each formal entityε is either one of the arguments, or a complex entity constructed
from the arguments. (For technical reasons, we require that formal entities refer to
each argument at most once.)

• A list of attributesA1(T
f
1 ), . . . ,Aj(T

f
j ).

• A functionf : Val(A1(T
f
1 )) × · · · × Val(Aj(T

f
j )) 7→ IR.

For example, Table 2.1 shows such a formalization for a graphmodel with two such
template level features.

We view a template-level feature as a recipe for generating multiple instance-level fea-
tures by applying differentbindingsof objects to the arguments. For example, in our three
vertices instantiation, we could create instances of the featureFe such asfδ(XExist([v1, v2]))
andfδ(XExist([v1, v3])). We now formally define this process.

Definition 5 LetF be a template feature with components as in Definition 4, and let I be
an entity instantiation. Abinding of F is an ordered tuple ofk entitiesβ = 〈e1, . . . , ek〉
such thatei ∈ I(T q

i ). A binding islegal if each entity in the binding is unique. We define

Bindings(F) = {β ∈ I(T q
1 ) × · · · × I(T q

k ) : β is legal for F}
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Given a bindingβ = 〈e1, . . . , ek〉 ∈ Bindings(F), we define the entityεi|β to be the entity
corresponding toεi when we assignei to the argumentξi. Finally, we define theground
featureF|β to be the function overω:

F|β(ω) = f
(

ω(XA1
(ε1|β)), . . . , ω(XAj

(εj|β)
)

For example, consider the binding〈v1, v2, v3〉 for Ft of Table 2.1. This binding is legal
since all three entities are of the proper type and are different from each other. This binding
defines the ground feature

Ft|〈v1,v2,v3〉(ω) = f3(xExist([v1, v2]), xExist([v1, v3]), xExist([v2, v3]))

That is,Ft|〈v1,v2,v3〉(ω) = 1 iff there is a triangle of edges between the verticesv1, v2 and
v3. Note that each binding defines a ground feature. However, depending on the choice of
feature function, some of these ground features might be equivalent. In our last example,
the binding〈v1, v3, v2〉 creates the same feature. While this creates a redundancy, itdoes
not impact the usefulness of the language. We now have all thecomponents in place.

Definition 6 A Relational MRF schemeS is defined by a set of typesT , their attributes
A and a set of template featuresFF = {F1, . . . ,Fk}. A modelis a scheme combined with
a vector ofparametersθ = 〈θi, . . . , θk〉 ∈ IRk. Given an entity instantiationI a scheme
uniquely defines the universe of discourseXI . Using a log-linear representation we can
define the joint distribution of a full assignmentω as:

P (ω : S, I, θ) =
1

Z(θ, I)
exp

k
∑

i=1

θiFi(ω) (2.1)

where (with slight abuse of notation)

Fi(ω) =
∑

β∈Bindings(Fi)

Fi|β(ω)

is the total weight of all groundings of the featureFi, andZ is the normalizing constant,
also called thepartition function.

This definition of a joint distribution is similar to standard log-linear models, except that
all groundings of a template feature share the same parameter [Della Pietra et al. 1997]. No-
tice that this means features are not necessarily binary which will influence the complexity
of the learning task (more details will follow in Chapter 4).

Now that we have defined the class of models of interest, we areready to address the
problem of inference in such models.
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Chapter 3

Compact Approximate Inference

As mentioned earlier, variational methods are a broad classof approximate inference al-
gorithms. Here we show the application of our idea toloopy belief propagation[Murphy
et al. 1999; Yedidia et al. 2002], which is one of the most common approaches in this field.
At the end of this chapter We make a note on applying the same idea to a broader class of
variational methods calledGeneralized Belief Propagation[Yedidia et al. 2002].

1. Belief Propagation

In the Belief Propagation algorithm we introduce (variational) variables which can natu-
rally be understood asmessagesbetween nodes in the graph about the state they should
be in [Pearl 1988]. It is sometimes convenient to view this process as operating on a data
structure calledFactor Graph[Kschischang et al. 2001] (more details will follow bellow).
The belief of a group of nodes is obtained by the product of its local potential and all
messages coming into it (Eq. (3.5)). The algorithm uses a recursive message update rule
defined bellow in Eq. (3.3) and Eq. (3.4).

The belief propagation algorithm updates messages of this kind until they converge to
some value. If the graph is a tree, this recursive algorithm is guaranteed to converge to
the correct marginal probabilities (in a single iteration if the order is chosen right). Sur-
prisingly, the same algorithm turns out to work well in many problems in which the graph
structure contains loops [Murphy et al. 1999]. To understand this success we turn to the
concept ofEnergy Functions[Yedidia et al. 2002].

1.1 Free Energies

As mentioned in Chapter 1, we are looking for a distributionQ that is both simple (so we
could run inference efficiently) and close to our target distribution P . A natural measure
of distance between distributions is the Kullback-Leiblerdivergence (KL), also known as
therelative entropy, defined by:D (Q||P ) =

∑

x q(x) ln q(x)
p(x)

. So we have an optimization
problem where we are looking forargminQD (Q||P ).
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If we assume thatP factorizes as in Eq. (1.1) then:

D (Q||P ) =
∑

x

q(x) ln
q(x)

p(x)

=
∑

x

q(x) ln q(x) −
∑

x

q(x) ln

(

1

Z

∏

c

πc(xc)

)

=
∑

x

q(x) ln q(x) −
∑

x

q(x)
∑

c

ln πc(xc) + ln Z

= −H (q(x)) − U (q(x))) + ln Z

= ln Z − F [P,Q] (3.1)

Where we denote the entropy ofQ byH (q(x)), U (q(x))) is called theaverage energy, and
F [P,Q] = U (q(x))) +H (q(x)) is theenergy functionalwhich is related to concepts from
statistical mechanics.

This result has important ramifications. First, sinceln Z does not depend onQ, min-
imizing D (Q||P ) is equivalent to maximizingF [P,Q]. Second, sinceD (Q||P ) ≥ 0 for
any two distributions we have thatln Z ≥ F [P,Q], which means that the energy functional
gives a lower bound on the logarithm of the partition function.

By the properties of KL divergence we know that there exists a unique optimal solution
to this optimization problem in which:Q = P , D (Q||P ) = 0 andF [P,Q] = ln Z. How-
ever, optimizingF [P,Q] directly is computationally expensive, as expected. Instead, we
can try to find the optimum of an approximation toF [P,Q]. Surprisingly, It has been shown
[Yedidia et al. 2002] that the BP algorithm can be viewed as optimizing an approximation
to the energy functional called theBethe approximation[Bethe 1935].

This approximation is defined as:

FBethe[P,Q] =
∑

c

∑

xc

b(xc) ln(πc(xc)) +
∑

c

Hπc
(c) −

∑

i

(di − 1)Hπi
(Xi) (3.2)

whereb(xc) are our approximations toq(x) marginal probabilities, anddi = |{c : Xi ∈
scope(c)}| is the number of cliques containing the variableXi in their scope. Note that
in this approximation we sum over variable and cluster potentials soQ is a rather simple
distribution to handle.

We can now formulate the revised optimization problem as:

Find Q = {πi : Ci ∈ κ} ∪ {µi,j : Ci − Cj ∈ κ}
That maximizes FBethe[P,Q]
Subject to µi,j[si,j] =

∑

Ci−Si,j
πi[ci] ∀(Ci − Cj) ∈ κ,∀si,j ∈ V al(Si,j)

∑

Ci
πi[ci] = 1 ∀Ci ∈ κ

whereC are cliques in the graph (denoted asκ), andµi,j can be viewed as messages
between cliques. The constraints are introduced to ensure that marginal probabilities over
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cliques are calibrated through messages, and that the localbeliefs are legal distributions
(they should sum to 1).

Using Lagrange multipliers we can characterize the fixed point of the optimum of this
constrained optimization problem by a set of equations. These equations can be reformu-
lated, in turn, to yield an iterative approach for optimizing the parameters ofQ (b(xc)).
This iterative procedure can be viewed as message passing inthe graph associated with the
model, exactly as done in belief propagation.

2. Factor Graphs

To describe loopy belief propagation we consider the data structure of a Factor Graph
[Kschischang et al. 2001]. A factor graph is a bi-partite graph that consists of two layers.
In the first layer, we have for each random variable in the domain a variable nodeX. In
the second layer we havefactor nodes(see Figure 3.1(a)). Each factor nodeψ is associated
with a setCψ of random variables and a featureπψ. If X ∈ Cψ, then we connect the
variable nodeX to the factor nodeψ.

A factor graph isfaithful to a log-linear model if each feature is assigned to a node
whose scope contains the scope of the feature. Combining all these features multiplied by
their parameters defines for each factor nodeψ a potential functionπψ[cψ] that assigns a
real value for each value ofCψ. For example, if the potential has the form of a tabular
CPD, then each entry in the table is a multiplication of all features that are consistent with
the assignment of that entry and their parameters (the feature may not include all variable
in the potential’s scope). There is usually a lot of flexibility in defining the set of factor
nodes. For simplicity, we focus now on factor graphs where wehave a factor node for each
ground feature.

For example, let us consider a model over an undirected graphwhere we also depict the
colors of the vertices. We create for each vertexvi a variable nodeXColor(vi) and for each
pair of vertices[vi, vj] a variable nodeXExist([vi, vj]). We consider two template features -
the triangle feature we described earlier, and a co-colorization feature that describes a pref-
erence of two vertices that are connected by an edge to have the same color. To instantiate
the triangle feature, we consider all undirected tuples of three verticesβ = [vi, vj, vk] ∈
Bindings(Ft) and defineψβ with scopeCβ = {XExist([vi, vj]), XExist([vi, vk]), XExist([vj, vk])}.
To instantiate the co-colorization feature, we consider all tuples of two verticesβ = [vi, vj] ∈
Bindings(Fe) and defineψβ with scopeCβ = {XExist([vi, vj]), XColor(vi), XColor(vj)}. See
Figure 3.1(a) for such a factor graph instantiated over4 vertices. This factor graph is faith-
ful since each ground feature is assigned to a dedicated feature node.

Loopy belief propagation over a factor graph is defined as repeatedly updating messages
of the following form:

mX→ψ(x) ←
∏

ψ′:X∈Cψ′ ,ψ′ 6=ψ

mψ′→X(x) (3.3)
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mψ→X(x) ←
∑

cψ〈X〉=x



πψ[cψ]
∏

X 6=X′∈Cψ

mX′→ψ(x′)



 (3.4)

wherecψ〈X〉 is the value ofX in the assignment of valuescψ toCψ. When these messages
converge, we can define beliefs about nodes in the factor graph as:

bψ(cψ) ∝ πψ[x]
∏

X′∈C

mX→ψ(cψ〈X ′〉) (3.5)

where the beliefs overCψ are normalized to sum to1. These beliefs are the approximation
of the marginal probability over the variables inCψ [Yedidia et al. 2002].

Trying to reason about a network over1000 vertices with features over univariate (Fe)
and triangle (Ft) that we described earlier, will produce

(

1000
2

)

variable nodes (one for each
edge), and

(

1000
3

)

triplet feature. Unfortunately, building the factor graphfor this problem
and performing loopy belief propagation with it is extremely time consuming. However,
our main insight is that we can exploit some special properties of this model for much
efficient representation and inference. The basic observation is that the factor graphs for
the class of models we defined satisfy basic symmetry properties.

Specifically, consider the structure of the factor graph we just described. An instantia-
tion of graph vertices defines both the list of random variables and of features that will be
created. Each feature node represents a ground feature thatoriginates from a legal bind-
ing to a template feature. Each grounding of an edge variableor an edge feature (Fe|β)
spans two vertices, while the groundings of the triplet feature (Ft|β) cover three vertices.
Since we are considering all legal bindings (i.e., all 2-mers and 3-mers of vertices) while
spanning the factor graph, each edge variable node will be included in the scope of1 edge
feature node and(n − 2) triplet feature nodes. More importantly, since all the edgevari-
ables have the samelocal neighborhood, they will also compute the same messages during
belief propagation over and over again.

3. Compact Belief Propagation

We now formalize this idea and show we can use it to enable efficient representation and
inference.

Definition 7 We say that two nodes in the factor graph have the sametype if they were
instantiated from the same template attribute or template feature. We say that a factor
graph has thelocal neighborhoodproperty if every two nodes in the factor graph having
the same type are connected to the same number of nodes of eachtype.

In the example above, each variable node of type edge has(n − 2) neighbors of type
triplet and each factor node of type triplet has3 neighbors of type edge.

Given this definition, we can present our main claim formally:
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Theorem 3.1: If a factor graph has the local neighborhood property then atevery stage
t of synchronousbelief propagation that is initiated with uniform messages, if vi, vk are
a two factor graph nodes from the same type and alsovj, vl are from the same type then
mt

vi→vj
(x) = mt

vk→vl
(x).

Proof: The proof is by induction over the stage of the belief propagation algorithm. Fort =
0 the equality holds since all messages are uniform. Now let usassume thatmt−1

vi→vj
(x) =

mt−1
vk→vl

(x). We consider two cases: eithervi, vk are variable nodes andvj, vl are factor
nodes, or vice versa. In the first case, we use the inductive assumption and the local neigh-
borhood property to get:

mt
vi→vj

(x) =
∏

ψ′:vi∈Cψ′ ,ψ′ 6=vj

mt−1
ψ′→vi

(x)

=
∏

ψ′:vk∈Cψ′ ,ψ′ 6=vl

mt−1
ψ′→vk

(x)

= mt
vk→vl

(x)

And similarly for the second case:

mt
vi→vj

(x) =
∑

cvi
〈vj〉=x



πvi
[cvi

]
∏

vj 6=X′∈Cvi

mt−1
X′→vi

(x′)





=
∑

cvk
〈vl〉=x



πvk
[cvk

]
∏

vl 6=X′∈Cvk

mt−1
X′→vk

(x′)





= mt
vk→vl

(x)

And this concludes the inductive step.

The requirement that a factor graph has the local neighborhood property might seem
too restrictive. However, it turns out that many interesting problems obey this requirement.
Specifically, we can show that if we build a model according toDefinition 6 over all legal
bindings, then the resulting factor graph has the desired property. In this work we focus
on such models, but other interesting problems, such as the wrapped-around-grid, also fall
into this category.

We now prove the first claim:

Lemma 8 In a model created according to Definition 6 over all legal bindings, if two nodes
in the factor graph have the same type, then they have the samelocal neighborhood. That
is, they have the same number of neighbors of each type.

Proof: If vi andvj are factor nodes, then since they are of the same type, they are instan-
tiations of the same template feature. From Definition 4 and Definition 5 we can see that
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this means that they are defined over variables from the same type. Since each feature is
connected only to the variables in its scope, this proves ourclaim. However, ifvi andvj

are variable nodes, it suffices to show that they take part in the same types of features, and
in the same number of features of each such type. For simplicity, we will assume thatvi is
instantiated from the attribute of some basic typeT (the proof in case it is a complex type
is similar). We need to compute how many ground features contain vi in their scope, and
do not containvj. From Definition 5 we can see that all the legal bindings that includevi

and do not includevj are legal also if we replacevi with vj.

After showing that many calculations are done over and over again, we now show how
we can use a more efficient representation to enable much faster inference.

Definition 9 A template factor graph over a template log-linear model is a bi-partite
graph, with one level corresponding to attributes and the other corresponding to template
features.

• Each template attributeT that corresponds to a formal entity in some template fea-
tureF is mapped to atemplate attribute node on one side of the graph. And each
template feature is mapped to atemplate feature nodeon the other side of the graph.
Each template attribute node is connected with an edge to all the template feature
nodes that contain this attribute in their scope.

• A feature node needs to distinguish between its neighbors, since each message carries
information about a different variable. Hence, in the template factor graph we term
an association to a variable inside a template feature node as port . If a factor
contains more than one variable of the same type, the corresponding edge splits to
the corresponding ports when arriving to the factor node.

• In addition, each ground variable node takes part in many features that were instan-
tiated by the same template feature with different bindings.Hence, each edge from
a template feature node to a template attribute node in the template factor graph is
assigned with acardinality indicating the number of repetitions it has in the full
factor graph.

Figure 3.1(b) shows such a template factor graph for the Triangle-Colorization example.
Running loopy belief propagation on this template factor graph is straightforward.

The algorithm is similar to the standard belief propagationonly that when an edge in the
template-graph represents many edges in the instance-level factor graph, we interpret this
by raising the message to the appropriate power. The number of edges in the instance-
level factor graph (cardinality) is obtained by a simple combinatorical computation. Since
Theorem 3.1 shows that at all stages in the standard synchronous belief propagation the
messages between nodes of the same type are similar, runningbelief propagation on the
template factor graph is equivalent to running synchronousbelief propagation on the full
factor graph. However, we reduced the cost of representation and inference from being
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| V | ! 1| V | ! 2
E i , jC i C iC jE i , jE i , jE j , kE i , k

(a) Full factor graph (b) Compact factor graph

Figure 3.1: Shown are the full (a) and template (b) factor graphs modeling acolored graph. We
have basic types for colors and vertices, and a complex type for edges.We consider two template
features - the triangle feature and a co-colorization feature. For clarity,XExist([vi, vj ]) is shown as
Ei,j andXColor(vi) is shown asCi. Orange edges show the edges connected to edge variables and
green edges are connected to color variables.|V | stands for the number of vertices in the graph.

proportional to the size of the instantiated model, to be proportional to the size of the
template-level scheme. Specifically, this representationdoes not depend on the size of the
instantiations and can deal with a huge number of variables.

4. Experimental Results

To evaluate our method in inference tasks we built a template-level model which includes
univariate (Fe) and closed-triangle (Ft) features (as described in the previous section), and
then perform inference with various combinations of parameter values. We compare results
of other inference methods such as exact inference, MCMC [Geman and Geman 1984],
and standard asynchronous belief propagation [Pearl 1988], to those of our compact belief
propagation (CBP). First we consider small models where exactinference is feasible, and
then we move to larger domains were we can only compare MCMC andCBP. We compare
inference results in two different ways. In the first we compare marginal beliefs over some
region, and in the second we compare estimates of the partition function.

Figure 3.2 shows a comparison of the marginal distributionsover edge variables for
different parameter settings and different inference methods. We observe that in small
graphs the marginal beliefs are very similar for all inference methods. To quantify the
similarity we calculate the relative deviation from the true marginals. We find that on
average MCMC deviates by0.0118 from the true marginal (stdev:0.0159), while both
belief propagation methods deviate on average by0.0143 (stdev:0.0817) and are virtually
indistinguishable. However, in the graph over 7 vertices wenotice that the two loopy belief
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Figure 3.2: Comparison of inference methods via marginal beliefs. Each panel visualizes the the
probability of an interaction when we vary two parameters:θe - the univariate potential for interac-
tion (y-axis) and the potentialθt - over closed triplet (x-axis). The color indicates probability where
blue means probability closer to0 and red means probability closer to1. The first row of panels
shows exact computation, the second MCMC, the third standard asynchronous belief propagation,
and at the bottom row is our compact belief propagation.

propagation methods (BP and CBP) are slightly different from the rest in the case where
the univariate parameter is small and the triplet parameteris large (lower right corner).

An alternative measurement of inference quality is the estimate of the partition function.
This is especially important for learning applications, asthis quantity serves to compute
the likelihood function. When performing loopy belief propagation we can approximate
the log-partition function using the Bethe approximation (Eq. (3.2)). As seen in Figure 3.3,
the estimate of the log partition function by belief propagation closely tracks the exact
solution. Moreover, as in the marginal belief test, the fulland compact variants are almost
indistinguishable.

It is important to note that running times are substantiallydifferent between the meth-
ods. For example, using exact inference with the 7 vertices graph (i.e., one pixel in the
matrices shown in Figure 3.2) takes80 seconds on a 2.4 GHz Dual Core AMD based ma-
chine. Approximating the marginal probability using MCMC takes0.3 seconds, standard
BP takes12 seconds, and compact BP takes0.07 seconds.
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Figure 3.3: Comparison of inference methods for computing the log-partition function. Each panel
visualizes the log-partition function (or its approximation) for different parameter settings (as in
Figure 3.2). In the belief propagation methods, the log-partition function is approximated using
the Bethe free energy approximation. On the first row is the exact computation, the second row
shows standard asynchronous belief propagation, and the bottom row shows our compact belief
propagation.

On larger models, where exact inference and standard beliefpropagation are infeasible,
we compare only compact belief propagation and MCMC (see Figure 3.4). While there are
some differences in marginal beliefs, we see again that in general there is good agreement
between the two inference procedures. As the graph becomes larger the gain in run-time
increases. Since the mixing time of MCMC should depend on the size of the model (if
accuracy is to be conserved), running MCMC inference on a 100-node graph was set to
5 minutes. Note that in the region of low parameter values MCMC gives high estimates
of the marginal probability. This indicates that we should have actually run the procedure
for a longer time to get better marginals. As expected, compact BP still runs for only
0.07 seconds as it depends on the size of the scheme which remains the same. For protein-
protein interaction networks over hundreds of vertices (see Chapter 6) all inference methods
become infeasible except for compact belief propagation.

5. A Note on Generalized Belief Propagation

A broader class of variational algorithms, of which BP is a special case, is calledGeneral-
ized Belief Propagation(GBP) [Yedidia et al. 2002]. In these methods a slightly different
approximation to the energy functional is used, which is called Kikuchi approximation
[Kikuchi 1951]. The Bethe approximation is a special case of the Kikuchi approxima-
tion. A similar derivation, which characterizes the fixed point of the approximate energy
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Figure 3.4: Comparison of approximate inference methods on larger graphinstances. As before,
we show the probability of an interaction as a function of parameter settings. On the first row is
MCMC and the second row shows our compact belief propagation.

functional under the constraints, shows that this approximation can be achieved by passing
messages on a graph structure. In the case of GBP such graphs are calledRegion Graphs.

In many cases GBP has considerably outperformed BP [Yedidia etal. 2002], and there-
fore it would be natural to try to apply our main idea to GBP as well. Recall that we view
BP as an algorithm operating on a factor graph. In a similar way, GBP can be viewed as
operating on a region graph. In a factor graph each factor node corresponds to a potential
in the model. A region graph is more flexible, allowing to define regions over arbitrary
subsets of nodes, as long as each potential is contained in the scope of at least one region.
Unlike the factor graph, the region graph is not necessarilya bipartite graph so messages
between regions do not have to pass through single variable nodes and can therefore be
more informative about the joint distributions of their variables. Thecounting numberCR

of each regionR is set in a way that ensures that we count every variable and potential
exactly once. See Figure 3.5(a) for an example.

The approximate free energy in this case, termedKikuchi Free Energyhas the form:

FKikuchi[P,Q] =
∑

R∈Top

∑

xR

b(xR) ln(π0
R(xR)) +

∑

R

CRHπR
(XR) (3.6)

whereTop is the set of largest regions (which are not contained in others),π0
R is the product

of all factors contained in regionR, andCR are the counting numbers. Notice that this def-
inition differs from Eq. (3.2) in the Entropy term, which is identical when the region graph
is actually a factor graph. The Entropy term will play an important role in the following
analysis.

We can show that the main idea we presented above applies alsofor GBP. In other
words, we can build aTemplate Region Graph(for an example see Figure 3.5(b)) and run
compact message passing on it in a similar way we did for template factor graphs.

However, when trying to run GBP in our template-level settingand comparing approx-
imate marginal probabilities and likelihood results to exact computation (not shown), we
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(a) Full region graph (b) Template region graph

Figure 3.5: Shown are the full (a) and template (b) region graphs modeling an undirected graph.
This region graph has 3 types of regions: regions over variables for undirected edges (Ei,j), regions
over triplets of edges defined by triplets of vertices in the graph, and regions over6-mers of edges
defined by quadruples of graph vertices. Note that potentials might be defined for univariate edges
and triplets but not for quadruples. The ports and edge cardinality are similar to those defined for a
template factor graph.

get that for some parameter values the approximation is goodwhile for other parameter
combinations it is rather poor (much worse than the BP approximation). It turns out that
the accuracy of GBP is highly dependent on the way the set of regions is chosen [Welling
2004]. Specifically, we noted before that the entropy term plays a central role in the ap-
proximation of the free energy functional. An approximation is calledmaxent-normalif the
region-based entropyHR(bR) achieves its maximum when all beliefsbR(xR) are uniform.
Unfortunately, as we now show, when we build a simple and intuitive template region graph
for our domain, the resulting region-based approximation is not maxent-normal and we end
up with a poor approximation.

To see this we follow a similar argument from Yedidiaet al. [Yedidia et al. 2004] and
use thecluster variation methodto define a region graph. In this approach we begin with a
set of large regions and repeatedly intersect regions to form layers of smaller regions until
we reach single variables. If we take our previous example ofan undirected graph overN
vertices and define regions over4 vertices we get regions over6 edges (the full graph over
4 nodes), regions over3 vertices - each comes from the intersection of two larger regions,
and finally regions over pairs of vertices (edges in the undirected graph). Figure 3.5(b)
depicts such region graph. The maximum entropy in this case can be calculated for the
uniform distribution over

(

N

2

)

binary variables (one for each edge), so we get:

Hmax =

(

N

2

)

ln2

We now compare this to the entropy induced by the region graphwe defined. There are
(

N

4

)

“quadruple” regions with counting numberCR4
= 1. There are

(

N

3

)

“triplet” regions
each having counting numberCR3

= 1− (N − 3) = 4−N (since each triplet is contained
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Figure 3.6: Comparison of the region-based entropy for a bimodal distribution and maximum en-
tropy for increasing graph sizes. Regions are defined over quadruples, triplets and pairs of graph
vertices using the cluster variation method. We see that when the graph contains more than 6 nodes
it is no longer maxent-normal and therefore unlikely to give a good approximation.

in N − 3 quadruples). Finally, there are
(

N

2

)

edge regions with counting number ofCR1
=

1 − (N − 2)CR3
−

(

N−2
2

)

CR4
.

Next we examine the bimodal beliefs which allow either the full graph or the empty
one with equal probability (=1

2
). For these marginal beliefs the entropy of each region is

exactlyln2 so the overall entropy is the sum of counting numbers:

Hregion = ln2(

(

N

4

)

CR4
+

(

N

3

)

CR3
+

(

N

2

)

CR1
)

Finally, we get thatHregion > Hmax for everyN ≥ 6 and our approximation is not maxent-
normal (see Figure 3.6). Therefore, we conclude that constructing intuitive template region
graphs for symmetric domains in an automated manner could not be expected to work well
in general.
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Chapter 4

Parameter Estimation

We now address the task of learning the parametersθ = 〈θ1 . . . θk〉 assuming that the set of
template featuresFF = {F1, . . . ,Fk} is known.

1. Maximum Likelihood Estimator

To learn such parameters from evidence we can use theMaximum Likelihood Estimator
(MLE) [Della Pietra et al. 1997]. In this method we look for the parameters that best
explain the data in the sense that they find:

θMLE = argmaxθ∈ΘP (D|θ)

Since there is no closed form for finding the MLE parameters ofa log-linear model,
various optimization techniques can be employed to find an approximate solution. Before
we delve into this optimization problem we stop to make a remark about its relation to
another prominent concept, that ofMaximum Entropy.

In many works the problem of model selection by empirical evidence is viewed from
another intuitive direction [Della Pietra et al. 1997; Dudik et al. 2007]. Instead of looking
for θMLE one might want to find a distribution that satisfies the constraints imposed by the
training data but has no additional information. Since entropy can be viewed as the inverse
of information we should search for the distribution with highest entropy. This, in turn, is
equivalent to finding a distribution that minimizes the Kullback-Leibler (KL) divergence
with respect to the empirical distribution of the training data. Surprisingly, it turns out that
the Gibbs distribution defined by a log-linear model with parametersθMLE is exactly the
distribution of maximum entropy (or minimum KL). In fact, the two problems are convex
duals of each other.

We now return to the optimization problem involved in findingθMLE. Instead of work-
ing with the likelihood function, it is more convenient to work with the log-likelihood:

ℓ(D) = ln P (D|θ) =
∑

m

(

∑

i

(Fi(x[m])θi) − ln Z

)

(4.1)
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whereD = x[1], ..., x[M ] is the set of training samples andZ is the partition function.
To calculate log-likelihood,

∑

i (Fi(x[m])θi) is easily obtained when learning from fully
observed evidence, and the partition functionZ can be approximated efficiently using our
inference algorithm by the Bethe approximation. To see this recall from Eq. (3.1) that:
ln Z = F [P,Q] + D (Q||P ), so if we assume the approximation is good, then we can
ignoreD (Q||P ) and approximate the log-partition function byln Z ≈ FBethe[P,Q] (using
Eq. (3.2)).

The log-likelihood is a concave function of the parameters,and since there is no closed
form for θMLE we resort to a greedy search. Unfortunately, since we only have an approx-
imation to the log-likelihood, we cannot assume concavity,and our greedy search is not
guaranteed to converge to the global optimum. Instead, it finds a local maximum of the
log-likelihood function. In such greedy approach an efficient calculation of the gradient is
often needed.

The partial derivative of the log-likelihoodℓ(D) with respect to a parameterθj that
corresponds to a template featureFj can be described as:

∂ℓ(D)

∂θj

= ÊD [Fj] − MEθ [Fj] (4.2)

WhereÊD [Fj] is the number of instances of the template featureFj in D, andEθ [Fj]
is the number of times we expect to see groundings of the template featureFj according
to θ [Della Pietra et al. 1997]. This expression has an intuitiveinterpretation: the gradient
attempts to make the expected counts of a feature relative tothe model equal to the counts
of that feature in the empirical data. Again, the first term isrelatively easy to compute in
case we learn from fully observed instances, since it is simply the count of each feature in
D, and the second term can be approximated efficiently by our inference algorithm.

We tried several optimization techniques to find parametersthat achieve high likelihood
values. Some of them use only log-likelihood estimates, some use only gradient estimates,
and some use both function and derivative information for parameter search (more details
bellow).

2. Regularization

Unfortunately, maximum likelihood estimation is prone to overfitting to the training data.
One way to overcome this is by introducing a prior distribution over the model parameters
[Williams 1995; Chen and Rosenfeld 2000; Lee et al. 2007]. Two commonly used priors
are the Gaussian prior and the Laplacian prior.
The Gaussian prior takes the form:

PGaussian (θ|σ) =
∏

i

1√
2π

exp

{

− θ2
i

2σ2

}
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Figure 4.1: Approximate log-likelihood (a), gradient (b) and normalized gradient (c) landscape for
a model of 7-node graph with features over univariate (Fe) and closed-triangles (Ft). In all panels
values ofθt andθe are shown on thex andy axes respectively. The bright asterisk shows the original
parameter values that were used to generate the evidence. The middle panel shows the direction of
the derivative as well as its size while the right panel shows only the derivative direction as it is
normalized.

and the Laplacian prior has the form:

PLaplacian (θ|β) =
1

2β
exp

{

−|θ|
β

}

Combining the prior with the log-likelihood function gives rise to a penalty term. In the
Gaussian case this term has the form:− 1

2σ2

∑

i θ
2
i , whereas in the Laplacian case we

get: − 1
2β

∑

i |θi|. The first is calledL2-regularization term and the second is calledL1-
regularization term. Applying the regularization terms tolog-likelihood derivative, we get
− θj

σ2 in the Gaussian case and− 1
2β

sign(θj) in the Laplacian case. In bothL1 andL2 we
penalize the magnitude of the parameters. This penalty provides a continued incentive for
parameters to shrink and therefore the learned models tend to be sparser, especially with
L1 (since theL2 penalty diminishes as the parameters get close to 0) [Tibshirani 1996]. We
will use this consequence for feature selection in Chapter 5.Importantly, bothL1 andL2

regularization terms are concave so the penalized log-likelihood is also concave and we can
therefore use the same optimization techniques as in the unpenalized case.

3. Experimental Results

Using our efficient inference approximation we can reevaluate the log-likelihood and its
derivative for many parameter values and thereby gain an unprecedented view of the likeli-
hood landscape of the model. We continue with our toy model with features over univariate
(Fe) and closed-triangles (Ft) and show in Figure 4.1 the log-likelihood and gradients cal-
culated for a grid of parameter values. For this we start the model with some parameter
values (θe = 0.5, θt = −0.5) and use a Gibbs sampler to produce evidence (10K samples).
We then run CBP which uses the Bethe approximation of the partition function to calculate
log-likelihood for multiple combinations of parameter values.
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4. Optimization Problem

As mentioned, since there is no closed form solution for finding θMLE, we use greedy
search methods. In order to find the MLE parameters we now study several optimization
techniques. These techniques rely on likelihood function estimations, gradient estimation,
or combine information of both in order to find regions in parameter space with high like-
lihood values.

Figure 4.2 shows learning traces of the various optimization techniques that we survey
bellow.

Conjugate Gradient One widely used optimization technique isConjugate Gradient
(CG). In this method the function is evaluated along the direction of the gradient and the
point of maximal value is chosen as the starting point for thenext iteration. The next
line search is performed in the direction of the conjugate direction to that of the previous
step (CG methods differ in the way they define the conjugate direction). The step size
is increased or decreased according to whether the last stepwas successful in improving
function value. This strategy has been shown to converge faster than a simple steepest
ascent algorithm [Fletcher 1987]. We tested two CG variants including: Fletcher-Reeves
algorithm (CG-FR) and Polak-Ribiere algorithm (CG-PR) (for moredetails see [Fletcher
1987]).

Quasi-Newton We also tried a Quasi-Newton algorithm of Broyden-Fletcher-Goldfarb-
Shanno (BFGS) which attempts to estimate the second derivative using first derivative es-
timates in multiple locations [Fletcher 1987].

Both CG and BFGS prove effective in finding the MLE, however the problem of using
them is their assumption that the function is concave along the search line. In some sce-
narios sensitivity to small fluctuations in function estimates causes the search to terminate
prematurely. We tried to alleviate this problem by replacing the function and gradient eval-
uations in the current point of the search with an average of these quantities for several
points in the close vicinity of the current point. This action has the effect of smoothing the
likelihood landscape and thus we hoped to overcome the sensitivity to small fluctuations.
Although this solution did help us get better results from CG,it did not solve the prob-
lem entirely. Moreover, it is not scalable since the number of neighboring points should
grow exponentially in the number of parameters if we want to maintain the quality of the
smoothing.

Clustering Another optimization technique we explored uses only log-likelihood estima-
tions for multiple points in parameter space. This technique starts from covering a large
region and gradually narrows the search to regions of high likelihood (for more background
see [Torn and Zilinskas 1989]). In our case we define a starting point and an initial region
size and approximate the log-likelihood for a grid of parameter values around the starting
point. We then filter the points leaving only a fraction (e.g., 0.1) of the samples that have
the highest function values. In the next iteration we look attheclusterof selected samples,
set the new center to the center of mass of this cluster, and the region of interest is narrowed
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Figure 4.2: Learning trace for various optimization techniques. In each panel we show 10 paths of
the steps taken by the parameter estimation algorithm corresponding to 10 random starting points.
The bright squares point to the final parameters returned by each iteration of the procedure.

(e.g., 0.85 of its previous size). When the region becomes small enough we terminate the
search and return the last center of mass. Of course, the mainlimitation of this technique is
its lack of scalability since the number of sampled points around the center grows exponen-
tially in the number of parameters involved in the search. Toalleviate this we can decide
to sample a fixed number of points around the center but then the quality of our coverage
would deteriorate as the number of parameters grows.

Gradient Size Another approach for this optimization problem has been taken by Sharon
and Segal [Sharon and Segal 2007]. They use solely gradient estimations to find optimal
parameters. The idea is to proceed in the direction of the gradient and find parameter
values for which the norm of the gradient is minimal. We find that this approach suffers
from problems of premature stopping of the search resultingin sub-optimal parameters.

Steepest Ascent Finally, we use a simple steepest-ascent algorithm that evaluates the
gradient in each point and takes a step in that direction. Steps that result in better function
estimates cause the step size to grow, while bad steps reset the step size to some small
initial quantity. Function values are recorded along the path and the best value seen is
returned at the end. This procedure applies a TABU-like strategy and terminates when the
best function value could not be improved for a predefined number of steps. This simple
approach overcomes problems of previous methods as it is both scalable and less sensitive
to deviations in function and gradient estimates.

To choose the best optimization technique for our problem weused the same toy model
as before and conducted a series of experiments in which we start each technique from
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Figure 4.3: Log-likelihood landscape with different regularization terms. Panels visualize the log-
likelihood minus regularization term when we vary two parameters:θe (y-axis) andθt (x-axis).

many (500) random points in parameter space and let it converge. We compare the num-
ber of times the global optimum was found, the variance in final parameter values, and
running times of the various algorithms (results not shown). These experiments show that
the clustering technique (based solely on likelihood evaluations) and the simple steepest
ascent algorithm return the optimal parameters most often and have smaller variance than
the other methods. The Conjugate Gradient and Quasi-Newton methods run much faster
than the other methods, but as mentioned they suffer from premature termination. To con-
clude, since the clustering approach is not scalable we decided to use the steepest ascent
method for the model selection experiments presented bellow. Although this method is less
efficient than the CG methods, we chose it because it achieves much better results and is
scalable.

As mentioned earlier, MLE can lead to overfitting and regularization is one attempt
to alleviate this problem. We now explore the effects ofL1- and L2-regularization on
the likelihood function. We use the same model as before and calculate log-likelihood
with CBP using the Bethe approximation. Figure 4.3 shows log-likelihood landscapes for
different regularization constants. We can see that as the regularization constant becomes
smaller, the penalty term becomes dominant in the regularized log-likelihood and its peak
moves closer to~0.

To evaluate the performance of our parameter estimation procedure we need a way to
compare the final parameters returned by the learning algorithm to the original parameters
used to generate the evidence. We can of course simply compare the parameter values
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Figure 4.4: Learning curves for parameter estimation. The left plot showsKL-divergence of
marginal probabilities as a function of the training sample size, and the right plot shows the same
for difference in log-likelihood of a test set averaged over the number of test samples. The mean
and standard deviation (shown in error bars) are obtained over 20 parameter estimation trials. KL
was measured between estimates of marginal probabilities of the full factors over univariate, triplets
and quadruplets of variables. We see nicely how as the number of samples grows we learn a model
that is closer to the original model.

to each other, however often different parameters induce similar probability distributions.
Therefore, what we are really interested in is comparing thedistributions that the param-
eters induce. Two ways of doing so are comparing marginal probabilities and comparing
likelihood estimates for a test set. To compare marginal probabilities we have to measure
the distance between two estimates of the joint probabilityof some subsets of variables.
This is naturally done using the Kullback-Leibler divergence (KL), where good parameters
should return small KL distance. Here we look at the marginalprobabilities defined for:
(1) all assignments for6 variables over4 graph nodes; (2) all assignments for3 variables
over 3 graph nodes; and (3) the belief over univariate edge. To compare log-likelihood
estimates we use a Gibbs sampler to generate evidence for a test set in addition to the train-
ing set. We then calculate approximate log-likelihood for the test evidence using both the
original parameters and the learned ones, and examine the difference. Here we expect good
parameters to have likelihood almost as high as that calculated for the original parameters.
Figure 4.4 shows the learning curves for both measurements.
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Chapter 5

Feature Selection

In the previous section we assumed that the set of template features is given and focused
on parameter estimation. We now drop this assumption and turn to the problem of finding
a set of features for a template model given evidence.

1. The Optimization Problem

We view the task of feature selection as an optimization problem. This means that we
take a score-based approach in which we define an objective function for different models
and then search for a high-scoring model. This approach has been used extensively before
[Della Pietra et al. 1997], and here we make the necessary adjustments to make it suitable
for symmetric relational MRFs. To formalize this we defineS, the universe of all possible
relational MRF schemesSi. Given a set of typesT and their attributesA, Si is defined by
a set of template featuresFF = {F1, . . . ,Fk} over these types and attributes. Our goal,
given an objective functionU is to find:

S∗ = max
Si∈S

U(Si)

The straightforward objective function is the likelihood of the training data. Unfor-
tunately, a pure likelihood score is not appropriate here since more complex models will
always have higher likelihood. In particular, ifFFSi

⊆ FFSj
thenUlike(Si) ≤ Ulike(Sj)

[Della Pietra et al. 1997]. Therefore, if we want to use the likelihood function we would
have to add further restrictions. There are several ways to choose an appropriate objective
functionU and here we focus on three options:

• Ulike(Si) = maxθ (ℓ(D : Si, θ))

• UBIC(Si) = maxθ

(

ℓ(D : Si, θ) − log(M)
2

Dim[Si]
)

• UL1
(Si) = maxθ

(

ℓ(D : Si, θ) − 1
2β

∑

i |θi|
)

whereDim[Si] is the degree of freedom defined by the number of features. We account
for redundancy as sometimes adding a feature does not changethe degree of freedom. For
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example, in case we have features for all assignments to a group of variables we know
the same distribution can be described by excluding any one of the features. In such case
we reduceDim[Si] by 1. Of course, there might be more complex dependencies between
features, but we do not handle such cases here.

All scores rely on the log-likelihood function possibly adding a penalty term. The BIC
score (UBIC(Si)) penalizes each degree of freedom by a fixed amount thereby drives the
search towards schemes having fewer features [Schwarz 1978]. This score is an approxi-
mation to the Bayesian score for model schemes defined as:

∫

P (D|M, θ) P (θ|M) dθ (5.1)

in which we account for our uncertainty about parameters by using a Bayesian prior. Notice
that the BIC penalty grows only logarithmically in the numberof samples whereas the log-
likelihood term grows linearly in that number. This means ithas the desired property of
inflicting a relatively small penalty when we learn from manysamples, reflecting the fact
that we trust the value of the likelihood term in that case.

As discussed in Chapter 4, theL1 objective function (UL1
(Si)) has the effect of nullify-

ing parameter values which in turn drives the search towardssparser models. In addition, as
we mentioned in Chapter 4, this objective function has a unique global optimum as it adds
a linear term to the concave log-likelihood function. Therefore, we can, in theory, entirely
avoid the combinatorial problem of feature selection by simply introducing all possible
features into the scheme and optimize the parameters relative to theL1 objective function.
The sparsifying effect ofL1 will drive parameters of “weaker” features to 0, practically
excluding them from the scheme. Unfortunately this is generally not a good idea for two
reasons. First, it might not be feasible in practice since inference on the model constructed
over all features might be intractable, and second, even if the set of all features is not too
large (in template models this is more likely to happen), it is known that the quality of ap-
proximation drops as the number of features increases [Lee et al. 2007]. However, theL1

objective function has several benefits including: the deletion of previously added features,
reduced sensitivity to the order of introduction of features, and a natural stopping criterion
(see bellow).
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Algorithm 1 : findLocalMaximum(S0,D,U)
Data: Initial scheme (S0), datasetD, score functionU
Result: Si = local − maximum(U(Si|D))
Si = S0 ;
improved = true ;
while improveddo

improved=false ;
S = getNeighbors(Si) ;
forall Sj ∈ S do

if compareScores(Si,Sj) then
Si = Sj ;
improved = true ;
break;

end
end

end
return Si ;

One issue to consider when usingUL1
(Si) is how to set the meta parameterβ. This

meta parameter should reflect our preference for sparse models over dense ones. It is
obvious that if we takeβ to bee too small then the penalty term becomes dominant and
we end up learning the empty scheme. On the other hand, if we take β to bee too large
then the penalty term becomes negligible so we actually calculateUlike(Si), which leads
to the inclusion of all features in the scheme. Values ofβ in between these two extremes
are interesting. We follow the approach of Leeet al. [Lee et al. 2007] and utilize an
annealing schedule forβ. This means that we startβ from a very small value, leading to
sparse schemes, and gradually increase it to allow “weaker”features into the scheme. We
use cross-validation in order to determine when to stop cooling β - we stop when the test
likelihood ceases to improve. Of course, this approach is inappropriate when we want to
learn from just a few samples. Unfortunately, this is the case for many interesting real-
life problems (see Chapter 6), so in such cases we would have touse eitherUlike(Si) or
UBIC(Si), or find another way to set a value forβ.

Having selected an objective function for our model scheme it remains to address the
optimization problem. Since the universe of all possibleSi’s is exponentially large in the
number of features we are willing to consider, we need to devise some efficient way to
explore it. A common solution is to use some greedy hill-climbing search in the universe
of schemes. We can describe a search in the space of all possible schemes by starting
from an initial stateS0 defined by an initial set of template featuresFF0. Now we consider
transitions to other schemes by various changes to the set offeatures, and this procedure is
repeated until some termination condition is met (see Algorithm 1).
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No. Nodes No. Variables Features

1 0 ∅

2 1

3 2

3

Figure 5.1: The set of featuresFF used in feature selection experiments. The rows contain features
with increasing levels of complexity. A broken edge has assignment0 (not exists) while a full edge
as assignment1 (exists).

2. Incremental Feature Introduction

As mentioned, the size of the search space we are consideringis normally prohibitively
large so we must apply some heuristic in order to explore it. The simplest approach is to
include a feature introduction component which gradually introduces new features to the
model. In this approach we maintain two groups of features - an active set and an idle
set. At every iteration all features from the idle set are considered for introduction and we
move the one which yields the largest gain in score to the active set. Once we decide to
add a feature it will never be excluded from the active set. This approach has been used
successfully before [Della Pietra et al. 1997].

An alternative approach follows from the fact that each template feature is defined over
a set of entities and a list of attributes associated with them (see Definition 4). Thus, we can
allow transition between schemes by moving from schemes over small features to schemes
over more complex features. This can be done by adding one step of complexity to the
template feature, either by enlarging the list of attributes over the same set of entities, or
by increasing the number of entities. Practically, in this approach we start from an empty
scheme and try to add candidate template features with increasing complexity (in terms of
their entities and attributes). Every row in Figure 5.1 contains features from another level
of complexity.
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3. Stopping Conditions

Both UBIC(Si) andUL1
(Si) give us a convenient stopping criterion for our search algo-

rithm - we can simply stop the search when no feature introduction move is beneficial. In
the case ofUL1

(Si) taking this approach guarantees convergence to the global optimum
as this is a convex optimization problem. As we mentioned before, Ulike(Si) can only
increase when we introduce new features, so we cannot apply such criterion. A common
approach in this case is simply to halt the search when the improvement in score does not
exceed a certain threshold. Here we take a slightly different approach to this problem and
use a statistical test to decide when to terminate the search. To be more specific, we utilize a
statistical test calledLikelihood-Ratio Testto determine if the improvement in likelihood is
statistically significant. To understand this we notice that at the end of every feature intro-
duction step we need to compare the likelihoods of the previous and current schemes. If the
two schemes are defined byFFSi

andFFSj
such thatFFSi

⊂ FFSj
then the likelihood-ratio

test is based on the differenceΛ = Ulike(Si) − Ulike(Sj) (notice that for exact calculation
Λ ≤ 0). As the number of samples approaches∞ the test statistic−2Λ will be asymptot-
ically χ2 distributed with degree of freedom equal to the difference in dimension between
Si andSj (|FFSj

| − |FFSi
|). For finite sample size the distribution is only approximately

χ2, but we can still use this approximation to set a stopping criterion based on the P-value
of the likelihood-ratio statistic. The null hypothesis in this test is thatFFSi

is a better model
for the given evidence thanFFSj

, meaning that it would be a mistake to move fromSi to
Sj. In other words, the Likelihood-Ratio statistic indicates whether the improvement in
likelihood is caused by noise in the data or really significant.

4. Parameter Estimation for Feature Selection

Recall that each feature selection step involves parameter estimation. Several strategies can
be employed to handle this and we now consider some of them.

• AtOnceZero: A simple parameter estimation scheme is to findθMLE starting from
θ = ~0 using one of the optimization algorithms described in Chapter 4. In this case
all parameters are allowed to move freely until convergence. In other words, for
each candidate feature we start a new search in parameter space that does not use
information from previous iterations.

• AddPrev: An alternative approach is to start parameters from their previously learned
values and start only the parameter associated with the newly introduced candidate
feature from0. This approach assumes that parameters learned for simplermod-
els can serve as a good starting point when learning parameters for more complex
models.

• AddFix/Free: In a variant of this approach we fix previously learned parameters to
their learned values and allow only the newθF to converge freely. We can either
terminate here (AddFix ) or use the recent parameter values as a starting point for a
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Figure 5.2: Learning curves for parameter estimation when the correct set of features is known
vs. complete model learning which includes both feature selection and parameter estimation. As
before, The left plot shows KL-divergence of marginal probabilities as a function of the training
sample size, and the right plot shows the same for difference in log-likelihood of a test set averaged
over the number of test samples.

new search where all parameters are free to converge (AddFree) [Della Pietra et al.
1997].

5. Experimental Results

To evaluate our feature selection approach we use a synthetic setup similar to the one we
used for parameter estimation in Chapter 4. We take our simpletoy model with features
over univariate (Fe) and closed-triangles (Ft), and set its parameters to some arbitrary val-
ues (θe = 0.5, θt = −0.5). We use a Gibbs sampler to produce train and test evidence and
use the train evidence to learn a template model (features and parameters). Here we define
FF to consist of all template features over up to3 graph vertices (Figure 5.1). Finally, we
compare the learned model to the original one using KL of somemarginal probabilities and
test-set likelihood as we discussed above. We stress again that such large-scale experiments
require hundreds of thousands of inference steps and are therefore only possible when the
inference calculation is extremely efficient, as in our algorithm.

We begin the evaluation by comparing the learning curve of parameter estimation alone
(assuming we have the correct set of features) and complete model learning. Figure 5.2
shows the two learning curves for KL divergence over marginal probabilities and difference
in log-likelihood on a test set. Encouragingly, the result shows that we can learn the feature
set from evidence in a satisfying way as the learning curve offeature selection is not worse
than that of parameter estimation alone.

Recall that we use two measures to evaluate the learned model:KL divergence of
some marginals and difference in log-likelihood of test evidence. Unfortunately, the second
measure we described, namely the difference in log-likelihood, is solely dependent on the
approximation of the partition function (in case we learn from fully observed data). It
is common knowledge in the field that the approximation of thepartition function is less

37



0

0.2

0.4

0.6

0.8

1

10
   

50
   
10

0  
50

0  

10
00

 

50
00

 

10
00

0

20
00

0

Number of samples

K
L 

di
ve

rg
en

ce
 

 

Log−likelihood
BIC
L

1

Figure 5.3: Comparison of the three objective functions used for featureselection: Ulike(Si),
UBIC(Si) andUL1

(Si).

reliable than the approximation of the marginals. Specifically, in Figure 5.2 it can be seen
that the approximate log-likelihood calculated for the original model (which was used to
generate the train and test data) is lower than the approximate likelihood of the model
that we learned. Calculating the exact log-likelihood for this case verified that the log-
likelihood approximation for the learned model was in fact inaccurate. This inaccuracy
was also present for standard asynchronous BP so it was not an artifact of our algorithm
but rather a shortcoming of the Bethe approximation. Therefore from here on we show only
learning curves based on KL divergence between marginals and make a note to address this
issue in future work (see Chapter 7).

In Figure 5.3 we show a comparison of the three objective functions. One can see that
for a small sample sizeUL1

(Si) using an annealing schedule for the meta parameterβ

gives the best results. The other objective functions,Ulike(Si) andUBIC(Si), have very
close learning curves. Since the likelihood term in all scores grows linearly in the number
of samples, for large samples this term becomes dominant andwe effectively compute
Ulike(Si) for all scores. This is evident in the plot as we get similar score for all3 methods.

Figure 5.4 shows a comparison between the two approaches we discussed for incremen-
tal feature introduction. As expected, the flat search, where we consider all idle features at
every step, performs better. This is not surprising since itcontains the search by levels as
a special case. Of course, the running time of the flat search is much longer than the levels
variant, so there is a trade-off here between computation time and quality of solution.

Figure 5.5 shows the performance of the various parameter estimation schemes. We see
that for large sample size all methods perform equally well,while for small sample size it
seems better to start parameter estimation from~0 without using information from previous
steps. Fixing values of learned features without setting them free later seems as the worse
choice.
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Figure 5.4: Comparison of learning curves for the two variants of the feature introduction compo-
nent. The “Flat” curve shows the result when we consider all idle features for addition at every step,
while “By levels” shows results when we only consider introduction of features of a certain level of
complexity.
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Figure 5.5: Comparison of the various ways to initialize parameter values at thebeginning of a
feature selection step. “AtOnceZero” means we initialize all parameters from0, in “AddPrev” we
use the recent learned values as starting point for the new search, “AAddFree” we initially freeze
values of learned parameters letting only the new parameter converge and the free all to converge
from that point. Lastly, in “AddFix” we do not allow the second step of “AddFree”.

From these results we conclude that the best performance forthe synthetic example we
have chosen is achieved with the likelihood-gain method (Ulike) searching in the flat set of
idle features and starting the parameters from~0 at every iteration. We now conduct further
experiments to better understand the learning process.

It is interesting to see in which order features are added to the scheme and how close
the final model is to the original one. We use the sameFF as before and then follow the
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Figure 5.6: Figure (a) shows the change in log-likelihood (averaged over the number of samples)
when gradually introducing more features into the scheme. Figure (b) shows the change in BIC
score as a function of the number of added features.

Original Learned
Model Model

Fe with θe = 0.3 Fe with θe = 0.18
Ft with θt = −0.6 Ft with θt = −0.195

Fstar2 with θstar2 = −0.116

Table 5.1: Original vs. learned model in synthetic experiment.

feature selection procedure to see which feature is added atevery step and how it effects the
objective function and the likelihood of the test evidence.We use a training set consisting of
10 samples and a test set consisting of5K samples. Figure 5.6 (a) shows that as the gain in
likelihood reduces, the Likelihood-Ratio statistic is no longer significant (> 0.05). We can
also see in Figure 5.6 (b) how the BIC score reduces when we include more features in the
scheme. This does not happen in the test score since the test set contains5K samples so the
penalty term inflicted by BIC becomes small relative to the log-likelihood term. We note
that the feature introduction scheme we use, in which all features are eventually included
in the learned model, is guaranteed to lead to over-parametrization, which means that some
features can be excluded as they can be described by a combination of other features. Since
this is done for a didactic purpose we ignore this issue here.

We note that we expected the average log-likelihood of the test set to drop when too
many features are added to the model, reflecting overfitting to the training data. Surpris-
ingly we see that the likelihood of the test set remains at thesame level even though the
model becomes more and more complex. One possible explanation for this might be that it
is another reflection of the problem in the approximation of the likelihood.
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From this experiment we see that although we used only2 features in the original model
(Fe andFt with θe = 0.3 andθt = −0.6), we actually end up learning a model consisting of
3 features. If we look at the order of feature addition we find thatFe is the first feature to be
admitted to the scheme since its improvement over the empty model is the largest. Second,
we addFt, and finally we add the “star2” feature which is composed of two edges having
a mutual vertex in the undirected graph (rightmost feature in second row of Figure 5.1).
So we have that the first two features we include in the model are the ones we used in the
original model. Table 5.1 compares the original and learnedmodels.
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Chapter 6

Learning with Real-life Evidence

To demonstrate the power of our method We now proceed to learning a model over a
real-life domain of interactions between proteins (PPI). We build on a simplified version
of the model described in Jaimovichet al. [Jaimovich et al. 2006] for protein-protein
interactions. This model is analogous to our running example, where the vertices of the
graph are proteins and the edges are interactions. We define the basic typeTp for proteins
and the complex typeTi = [Tp, Tp] for interactions between proteins. As with edges,
we consider the template attributeXe(Ti) that equals one if the two proteins interact and
zero otherwise. We reason about an instantiation for a set of813 proteins related to DNA
transcription and repair [Collins et al. 2007b]. We collected statistics over interactions
between these proteins from various experiments [Mewes et al. 1998; Gavin et al. 2006;
Krogan et al. 2006; Collins et al. 2007a].

Using the methods described above we learn a generative rMRF for this PPI network.
The set of features we consider here consists of all featuresdefined over upto4 proteins
which are connected and have “all-1” assignment. Figure 6.1shows all9 features. Our
objective function for feature selection isUlike, and we use the Likelihood-Ratio test as
a stopping criterion. We use the “Flat” variant of feature introduction, meaning that at
every step we consider all idle feature for introduction andchoose the one with highest
likelihood gain. Finally, we start every parameter estimation run fromθ = ~0 and let all
parameter move freely until convergence.

Table 6.1 shows the learned model at the end of every feature introduction step. We see
that the first feature to be admitted to the model is the single-interaction feature (“Pair”),
which is added with a large negative parameter since the network of interactions is rather
sparse (1672 interactions). The second feature to join the model is the ring of size4
(“Ring4”), which is added with a small negative parameter, while θPair becomes positive.
According to the Likelihood-Ratio test we should have stopped the search then. Instead,
we let it run some more and check what are the next models produced by the search. We
see that the next feature to be included is “Triangle”, but aswe said the improvement in
likelihood is no longer significant (P-value> 0.05). It seems as the parameterθRing4 re-
mains unchanged whileθPair is split in two and shared with the newly added feature. At
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Pair Star2 Triangle Star3 Chain3 Leash Ring4 Pent Full4

1672 19256 1669 168316 199421 69042 10116 13971 1479

Figure 6.1: The set of featuresFF used in feature selection for the PPI network. We show the name
we assign to the feature, its graphical representation, and the number of occurrences it has in the
PPI evidence.

Feature Added Parameter Likelihood- Log-
selection feature values Ratio Likelihood

step statistic

1 θPair = −5.28 0 -10504.8

2 θPair = 0.414 0 -1.04421
θRing4 = −0.009

3 θPair = 0.209 0.16 -0.0606451
θRing4 = −0.009
θTriangle = 0.207

4 θPair = 0.306 1 -0.592723
θRing4 = −0.00137
θTriangle = 0.269
θFull4 = −0.029

...

Table 6.1: First4 steps of model selection for the PPI problem.

the next step the “Full4” feature is added, but here the approximate likelihood no longer
improves (due to the approximation it is actually lower), sothe remaining of the search is
less interesting to follow.

We defer the interpretation of these results for future workand proceed to discuss sev-
eral points that arise from this work.
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Chapter 7

Discussion

1. Contribution

We have presented a powerful method for learning probabilistic models for structured re-
lational domains. This method relies on a lifted inference algorithm that operates in the
template-level of the relational model. Specifically, we have shown how we exploit sym-
metry in relational MRFs to perform lifted approximate inference at the template-level
model. This results in an extremely efficient approximate inference procedure. We have
shown that this procedure is equivalent to synchronous belief propagation in the ground
model. We have also empirically shown that on small graphs our inference algorithm
approximates the true marginal probability very well. Furthermore, other approximation
methods, such as MCMC yield inference results that are similar to ours on larger graphs.
Note that other works show that synchronous and asynchronous belief propagation are not
always equivalent [Elidan et al. 06]. The key limitation of our procedure is that it relies
on the lack of evidence. Once we introduce evidence the symmetry is disrupted and our
method does not apply. While this seems to be a serious limitation, we notice that infer-
ence without evidence is the main computational step in learning such models from fully
observed data. We showed how this procedure enables us to deal with learning problems
in large relational models that were otherwise infeasible.

We mentioned that previous works on lifted inference focused on exact inference via
variable elimination or caching intermediate calculations for ground entities to be used by
other entities originating from the same template-level entity [Poole 2003; de Salvo Braz
et al. 2005; Pfeffer et al. 1999]. In many practical cases, when the tree-width is large,
exact inference is infeasible even in the template level. Our method is the first to provide
template-level approximate inference with run-time that is independent on the size of the
instantiated model.

Using the efficiency of our method we are able to repeat the learning procedure many
times. We use this advantage to conduct a survey of differenttechniques for the various
stages involved in model selection. Specifically, we compared several optimization algo-
rithms for parameter estimation, we compared two strategies for feature introduction, we
compared different ways to initialize parameters in feature selection, and we compared sev-
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eral model scoring functions to be optimized in the search. The main insight we gain from
this survey is that commonly used optimization techniques that play an important role in
the search forθMLE, such as Conjugate Gradient and BFGS, encounter difficulties when
tackling the log-likelihood landscape. In particular, since this landscape tends to have long
and narrow ridges many of the common techniques halt the search prematurely with sub-
optimal parameters. We find that utilizing a TABU-like steepest ascent algorithm achieves
much better results as it is able to cross such ridges in many cases.

For the first time in this context, we employ a statistical test to be used as a stopping
condition for the likelihood based score for model selection. Specifically, we show in
synthetic experiments that using the Likelihood-Ratio testis useful for stopping the search
after the important features have been included in the modeland before the model overfits
the training data.

2. Limitations

Some of our empirical experiments indicate that our approximation of the log-likelihood
function might be inaccurate. Specifically, we get that the test-set likelihood using the
learned model is higher than that of the original model that was used to produce the data.
Comparing to exact likelihood calculation on a small graph weverify that, indeed, the log-
likelihood calculated for the learned model is very different from the exact log-likelihood
of this model. Moreover, we made sure that this inaccuracy was not introduced by our
algorithm, but rather was a limitation of the standard BP approximation. We note that our
method for model selection relies heavily on the likelihoodfunction and that we should
address this issue in future work. An alternative objectivefunction that might be suitable
in this case is pseudo-likelihood [Besag 1975].

Trying to apply our compact approximate inference to Generalized Belief Propagation
yields poor results. A short investigation revealed that the template region graph we have
built was not maxent-normal, meaning that it assigned higher entropy to non-uniform as-
signments than to the uniform one. Such graphs have been shown previously to give poor
approximations [Yedidia et al. 2004]. Therefore, we decided to focus on standard Belief
Propagation in this work. Alternatively, we can try to thinkof a way to build template
region graphs that are maxent-normal and therefore more likely to perform well.

As mentioned earlier, our method is not applicable when evidence is provided. Rea-
soning with partial evidence is an important inference taskand it would be very useful to
handle it in a lifted inference framework. Unfortunately, we have yet to advance in this
direction.

3. Other Issues

The Hessian matrix is the matrix of second derivatives. In the context of MRFs this matrix
plays a role in several aspects of the learning problem. First, it can be used for parameter
estimation with Newton’s method instead of the first derivative. Second, it is used in the
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penalty term of the Laplace score for model selection. The Laplace score is another way to
approximate the Bayesian score (Eq. (5.1)).

It can be easily shown that the second derivative of the log-likelihood function is given
by the Covariance matrix:

∂ℓ(D)

∂θi∂θj

= −MCovθ[Fi;Fj]

= −M (Eθ [FiFj] − Eθ [Fi] Eθ [Fj])

By the way, this proves the concavity of the likelihood function since the Covariance matrix
is positive semi definite.

To compute the Hessian we must calculate the joint expectation of all pairs of features.
In general this is a very expensive task and often intractable, however, in symmetric rMRFs
such as the ones we study it can be much cheaper as we can do it inthe template level -
considering pairs of template features (and their number isoften not too large). We have
yet to address this issue, but it seems an interesting direction since we might find a better
parameter estimation method or a better objective functionfor model selection.

In this work we applied our approach to BP and GBP. It might be possible to apply the
same idea to other approximate inference methods. We have not thought about this thor-
oughly yet, but the variational methods ofMean Field[Jordan et al. 1998] andExpectation
Propagation[Minka 2001] seem like good candidates for starting this expansion.

4. Applications

To conclude this section we now discuss possible applications of our new method. The im-
mediate application we intend to try is learning generativemodels for a variety of networks
from different domains. In this work we have shown its use fora protein interaction net-
work, and the same methodology can be applied to other undirected networks. In addition,
we plan to handle in a similar manner several directed networks. The models we learn can
shed new light on the characteristics of these networks, revealing local rules that govern
their global structure.

As mentioned in Chapter 1, one of the prominent works in this field is Network Motifs
that looks for overly abundant subgraphs [Milo et al. 2002].Recall that such subgraphs are
found to be over-represented with respect to a random ensemble of networks that preserves
some of the properties of the original network. However, this approach has been criticized
since over-representation turns out to be highly dependenton the qualities that are chosen
to be preserved in the random ensemble [Artzy-Randrup et al. 2004]. We believe that our
approach is more elegant as we assume less about the structure of the underlying network.
Furthermore, since rMRFs are very expressive we can learn richer models. Such models
can incorporate additional information about nodes and edges, and we can even use Chain
Networks models that combine undirected and directed potentials instead of MRFs, as
suggested in Jaimovichet al. [Jaimovich et al. 2006]. This way we could go beyond bare
networks and find more complex rules that apply in large domains.
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Finally, since our approach is applicable whenever the factor graph has the local neigh-
borhood property we can use it in other domains that obey thisconstraint. Specifically, we
already mentioned that the square-wrapped-around-lattice has this property, and the same
is true for infinite MRFs that are defined by repeated local features [Singla and Domingos
07]. In such infinite models our method is a natural choice as it is independent on the size
of the ground model, but only on the template-level scheme.

All of these applications could bring us one step closer towards successful modeling of
complex networks using relational probabilistic models.
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