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ABSTRACT
Motivation: Variation of substitution rates across nucleotide and
amino acid sites has long been recognized as a characteristic of
molecular sequence evolution. Evolutionary models that account for
this rate heterogeneity usually use a gamma density function to model
the rate distribution across sites. This density function, however, may
not fit real datasets, especially when there is a multimodal distribu-
tion of rates. Here, we present a novel evolutionary model based on a
mixture of gamma density functions. This model better describes the
among-site rate variation characteristic of molecular sequence evol-
ution. The use of this model may improve the accuracy of various
phylogenetic methods, such as reconstructing phylogenetic trees, dat-
ing divergence events, inferring ancestral sequences and detecting
conserved sites in proteins.
Results: Using diverse sets of protein sequences we show that the
gamma mixture model better describes the stochastic process under-
lying protein evolution. We show that the proposed gamma mixture
model fits protein datasets significantly better than the single-gamma
model in 9 out of 10 datasets tested. We further show that using
the gamma mixture model improves the accuracy of model-based
prediction of conserved residues in proteins.
Availability: C++ source codes are available from the authors upon
request.
Contact: talp@post.tau.ac.il

1 INTRODUCTION
Probabilistic models of evolution are considered to be the-state-of-
art methods for phylogeny inference. Likelihood methods calculate
the probability of observing the data conditioned on the hypothesis,
as specified by the phylogenetic tree and the probabilistic evol-
utionary model. The maximum-likelihood (ML) principle is then
invoked to choose the hypothesis that yields the highest likelihood
of the observed sequences. This paradigm allows for statistically
robust parameter estimation and vigorous testing of evolutionary
hypotheses (Whelan et al., 2001).

A basic dilemma when using probabilistic models within the ML
paradigm is controlling the expressiveness of the model. Models
with too many parameters might overfit the observations. However,
models with too few parameters may be unrealistic, resulting in
erroneous conclusions. A classical example of oversimplification is
the assumption of equal evolutionary rates at all sites of a protein
(Felsenstein, 2001). Nevertheless, in proteins the rates of evolution
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vary due to different selective constraints that are acting on different
sites. Indeed, a vital advance in the reconstruction of evolutionary
trees has been the consideration of heterogeneity of evolutionary
rates among sequence sites (reviewed in Swofford et al., 1996; Yang,
1996). Accordingly, the rate at each site is modeled as a random
variable drawn from a specified prior distribution. By far, the most
commonly chosen distribution for modeling rate variation across
sites is the gamma distribution.

Assuming a gamma prior over the rate distribution is mathem-
atically convenient and requires the fitting of a single additional
parameter. However, as noted by Felsenstein (2001), there is no
reason to believe that the rate across sites is gamma distributed. Biolo-
gical insight suggests that rate distributions are not always unimodal.
For example, a protein may be composed of several domains,
each having its own rate distribution. As shown in Figure 1A
and B, the unimodal gamma distribution poorly fits the observed
rate distribution of the adenylate kinase protein family.

In a step toward a more realistic evolutionary model we propose
a gamma mixture model, which generalizes the traditional single-
gamma distribution model. This model assumes the existence of K

gamma distributions (components), each characterized by its own set
of parameters. The model further defines the a priori probability for
each gamma component. The adjustable parameters of the model are
optimized using an expectation–maximization (EM) algorithm. The
resulting model can accommodate a multimodal rate distribution,
where the number of modes depends on the number of gamma com-
ponents and how different each component is from another (Fig. 1C).

The outline of the paper is as follows. Section 2 presents and
formulates the gamma mixture model of among-site rate variation.
In Section 3 we develop an efficient EM algorithm for estimating
the model parameters. In Section 4 we apply the gamma mixture
model to a wide range of datasets. We show that the mixture model
significantly outperforms the traditional single-gamma model. In
Section 5 we study the relationship between the data size and the
number of gamma components that the data support. In Section 6 we
demonstrate that by using the gamma mixture model more accurate
predictions of the conserved residues within a protein are obtained.
We conclude with a discussion (Section 7).

2 THEORY

2.1 Among-site rate variation
A phylogenetic tree T = (τ , t), is defined by its tree topology τ and
associated branch lengths t . The branch lengths of the phylogenetic
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Fig. 1. An example of the rate distribution inferred for the adenylate kinase
protein family (first row in Table 1). (A) The rate distribution as inferred
using ML with the Rate4Site program (Pupko et al., 2002). (B) The fitted rate
distribution inferred using a model that assumes one-gamma component is
unimodal. (C) The fitted rate distribution inferred using a model that assumes
three gamma components is bimodal. The individual gamma components are
shown by dashed lines. The method used for estimating the model parameters
is described in Section 3.

tree represent the average evolutionary rate across all sites. The sub-
stitution model describes how characters (amino acids, nucleotides
or codons) evolve on the tree. A phylogenetic tree and a substitu-
tion model induce probabilities over assignments of characters to the
leaves of the tree (see Felsenstein, 2004 for a detailed description).
Let D denote a dataset that consists of aligned sequences of current
day taxa corresponding to the leaves of the tree. In the standard ML
models, we view each column of the alignment as evolving independ-
ently. Thus, if we denote by Di the data at site i, then P(Di |T ) is the
probability of the i-th column of the alignment given the tree. Com-
puting this probability requires summing over all possible character
assignments to internal nodes of the tree (ancestral states). This com-
putation can be done efficiently using Felsenstein’s (1981) post-order
tree traversal algorithm.

The standard ML model assumes that each site evolves at the same
rate. However, biology suggests that some sites are more conserved
and undergo fewer substitutions, whereas other sites are less con-
served and undergo more substitutions. Since longer branches imply
more substitutions, we can model such differences by shrinking or
expanding the branch lengths. The site-specific rate, ri , indicates how
fast site i evolves compared with the average rate across all sites. For
example, a rate of 2 indicates a site that evolves twice as fast as the
average. Thus, site-specific rates are not absolute evolutionary rates
that require knowledge of divergence times, but instead represent a

comparative quantity. We define T ×r to be the tree T with all branch
lengths multiplied by rate r .

Since we do not know the actual value of ri , we need to consider
all possible values when computing the probability of Di . Thus, the
likelihood of site i is defined as

L(i) =
∫ ∞

0
P(Di |T × ri)g(ri : θ)dri , (1)

and the likelihood of the complete alignment is the product

L =
∏

i

L(i), (2)

where g(r : θ) is a prior density function over the rates which is
governed by parameters θ . Choosing θ determines how rate variation
is modeled. Here we focus on the key question of how to choose the
prior g(r : θ) and its effect.

2.2 The gamma distribution
The most commonly used prior distribution over evolutionary rates
is the gamma distribution (Swofford et al., 1996; Yang, 1996). This
distribution has two parameters; a shape parameter, α, and a scale
parameter, β. A variable R is gamma distributed, denoted R ∼
�(α, β), if its density function is

g(r · α, β) = βα

�(α)
e−βr rα−1. (3)

The mean of the gamma distribution is α/β. Standard applications
of the gamma distribution prior require that the mean of the prior
is 1 (otherwise, we can rescale the original tree). This implies
that β = α, leaving one free parameter. The shape of the gamma
distribution is determined by the α parameter, which is indicat-
ive of rate variation. When α > 1 the distribution is bell-shaped,
suggesting little rate heterogeneity. In the case of α < 1, the dis-
tribution is highly skewed and is L-shaped, which indicates high
levels of rate variation. This flexibility makes the distribution suit-
able for accommodating different levels of rate variation in different
datasets.

2.3 A mixture of gamma
We suggest modeling the prior density over evolutionary rates by a
mixture of gamma distributions. This assumes that the rates are pulled
from a few possible gamma components, each with its own α and β

parameters. Let K be the number of such gamma components, with
αk and βk being the parameters of the k-th component. We denote
by γk the prior probability that a specific rate was drawn from the
k-th distribution. We now have θ = {〈αk , βk , γk〉 : k = 1, . . . , K},
with

∑K
k=1 γk = 1. A variable R is distributed with a mixture of

gamma if

gm(r : θ) =
K∑

k=1

γkg(r : αk , βk), (4)

where g(r : αk , βk) is the gamma distribution of the k-th component.
Such a mixture provides additional flexibility in specifying the prior
distribution. Moreover, by choosingK we can consider a range of dis-
tributions with growing expressiveness with corresponding increase
in the number of parameters. Since we restrict the expectation of the
mixture to equal 1, the number of free parameters for K components
is 3K − 2.
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2.4 Likelihood computation
An important technical issue is how to compute the likelihood L(i)

with its integration. The standard solution is to approximate the
integral by a weighted sum over a set of discrete rates. Thus, we
approximate the integral in Equation (1) by a sum

L(i) ∼=
S∑

j=1

P(Di |T × r̃j )w(r̃j ), (5)

where (r̃1, . . . , r̃S) are representative rates and (w(r̃1), . . . , w(r̃S))

are the corresponding weights.
For the case of a single gamma prior a common choice is based

on Yang’s (1994) quantile approximation, where the weights of
representative rates are identical. Here, we apply a more accurate
approximation based on the generalized Laguerre quadrature method
as suggested by Felsenstein (2001). A detailed description of the
Laguerre quadrature method is given in the Appendix.

We can also use Laguerre quadrature for approximating L(i) with a
mixture of gamma distribution by finding the representative weights
of each component, and then use the approximation

L(i) ∼=
K∑

k=1

γk

S∑
j=1

P(Di |T × r̃ k
j )w(r̃k

j ), (6)

where r̃ k
j is the rate of the j -th discrete rate category in the k-th

component. Since now each gamma component is approximated by
S discrete categories the total number of categories is K × S.

3 AN EM ALGORITHM FOR OPTIMIZING THE
GAMMA MIXTURE PARAMETERS

When the parameters of the mixture model are known, computing the
likelihood is simple. However, the parameters of the model are usu-
ally unknown and have to be estimated for each dataset. In this section
we address this multidimensional maximization problem. We adopt
an ML approach and aim to maximize P(D|T , θ). Our approach
for maximizing the likelihood is to use an EM procedure (Dempster
et al., 1977) that is described below. For succinctness, we assume
throughout this discussion that the phylogenetic tree T is fixed, and
we do not explicitly refer to it in the equations.

To develop the EM procedure, it is useful to introduce a random
variable Hi , which explicitly denotes the mixture component at site
i. Our model can thus be cast as a graphical probabilistic model
(Buntine, 1994) as shown in Figure 2. We want to estimate the vector
parameters α, β and γ . We start by reviewing how to estimate these
parameters from complete data where we observe Hi and Ri for each
site, and then consider the more challenging case where we do not
observe them.

Consider the complete data case where M is the sequence length.
The distribution P(Hi : γ ) is a multinomial distribution. The
sufficient statistics for this distribution are

Mk =
M∑
i=1

1{Hi = k}, (7)

where 1{ } is the indicator function. Given the vector {Mk : k =
1, . . . , K}, the ML estimate for γ is simply Mk/M .

i

Hi

Ri

Di

T

  Hi

Ri

Di

T

�

�

�

Fig. 2. A graphical plate model representation of the mixture of gamma
distribution model. Site-specific variables are shown within the plate. The
variables outside the plate are parameters shared among all positions. The
variable Hi denotes the mixture component, Ri the rate and Di the observed
characters for the i-th site.

The distribution P(Ri |Hi = k : αk , βk) is a gamma distribution.
The sufficient statistics for this distribution are the sum of R and the
sum of ln R in those sites where Hi = k. Thus,

Ak =
M∑
i=1

1{Hi = k}Ri , (8)

Bk =
M∑
i=1

1{Hi = k} ln Ri . (9)

Finding the ML estimates of αk and βk requires solving a pair of
equations

Bk = Mk

Ak

αk (10)

and

0 = ln Mk + ln αk − ln Ak + Bk

Mk

− φ(αk) (11)

where φ(α) = �′(α)/�(α) is the digamma function that can be
approximated by a series expansion (Abramowitz and Stegun, 1972).
The second equation cannot be solved analytically, but can be solved
numerically by a line search.

To conclude, given complete data, we can accumulate the sufficient
statistics {Mk , Ak , and Bk , k = 1, . . . , K} and then find the ML
estimates of α, β, and γ .

Unfortunately, we do not observe the variables Hi and Ri for dif-
ferent sites. Thus, we need to learn from incomplete data. The EM
algorithm for learning with incomplete data uses the ‘plug in’ estim-
ators of the complete data case as a sub-procedure. The algorithm
starts with an initial estimate of the unknown parameters and iter-
atively improves them. Let θ t denote the parameters after the t-th
iteration. Starting with a guess, θ0, the EM algorithm iterates between
the following two steps:

E-step. Compute the expected sufficient statistics given the data
and the parameters θ t . This requires computing E[Mk|D, θ t ],
E[Ak|D, θ t ] and E[Bk|D, θ t ] for each k (see Equations (15–18)
below).
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M-step. Given these expected sufficient statistics, set θ t+1 to
be the ML estimate as though these statistics were obtained from
complete data. In our case, this implies solving

0 = ln E[Mk|D, θ t ] + ln αt+1
k − ln E[Ak|D, θ t ]

+ E[Bk|D, θ t ]
E[Mk|D, θ t ] − φ(αt+1

k ); (12)

βt+1
k = E[Mk|D, θ t ]

E[Ak|D, θ t ] αt+1
k ; (13)

γ t+1
k = E[Mk|D, θ t ]

M
. (14)

Each EM iteration is monotonically non-decreasing in terms of
the data likelihood (Dempster et al., 1977). The algorithm converges
(i.e. the likelihood does not increase) only at stationary points of the
likelihood function. Thus, EM will converge to local maxima of the
likelihood surface. The quality of the convergence point depends on
the starting guess and the properties of the specific problem.

The key computational step in performing EM is computing the
expected sufficient statistics given the parameters θ t . Using linearity
of expectations, we can rewrite these as

E[Mk|D, θ t ] =
M∑
i=1

P(Hi = k|Di , θ
t )

E[Ak|D, θ t ] =
M∑
i=1

P(Hi = k|Di , θ
t )E[Ri |Hi = k, Di , θ

t ] (15)

E[Bk|D, θ t ] =
M∑
i=1

P(Hi = k|Di , θ
t )E[ln Ri |Hi = k, Di , θ

t ].

These computations require the following terms:

P(Hi = k|Di , θ
t ) = P(Hi = k, Di |θ t )

P (Di |θ t )
; (16)

P(Hi = k, Di |θ t ) =
∫ ∞

0
P(ri , Hi = k, Di |θ t )dri

= γ t
k

∫ ∞

0
P(Di |ri)g(ri : αt

k , βt
k)dri ; (17)

E[R|Hi = k, Di , θ
t ] =

∫ ∞

0
riP (ri |Hi = k, Di , θ

t )dri

=
∫ ∞

0 riP (Di |ri)g(ri : αt
k , βt

k)dri

P (Di |Hi = k, θ t )
. (18)

E[ln Ri |Hi = k, Di , θ t ] can be similarly obtained. These terms
require integration of terms of the form f (ri)g(ri : αk , βk).
Again, we use Laguerre quadrature to approximate these integrals
(Appendix).

4 ANALYSIS OF EXAMPLED DATASETS

4.1 Datasets
To test the utility of the proposed model we selected 10 datasets
from the HSSP database (Sander and Schneider, 1993). We refer to
each dataset by its protein data bank (PDB; Sussman et al., 1998)
identifier. These datasets encompass a broad range of organisms

(from bacteria to mammals) and biological processes, such as cell
growth (3adk), metabolism (3pgk, 1rhd, 1ppl, 1rnd, 4mt2 and 3dfr),
apoptosis (1bxl), ion transport (1bl8) and signal transduction (1a6q).
Sequences with many gapped positions were manually removed.
To avoid prohibitive computation time, we limited the number of
sequences such that the 50 most divergent sequences in each dataset
were selected. Gapped positions were treated as missing characters.

For each dataset the tree topology was constructed according to
the neighbor-joining (NJ) algorithm (Saitou and Nei, 1987) with
pairwise distances estimated by ML with a homogenous rate model.
Branch lengths in the resulting tree and the gamma mixture para-
meters were then optimized iteratively until convergence of the
likelihood function. The choice of the number of discrete rate cat-
egories can slightly influence the resulting likelihood score. In order
to equally compare results of models with different number of com-
ponents, we chose the total number of categories in each model to
be 36. For example, a model with 2 components had 18 discrete cat-
egories in each component. We note that our results were essentially
the same when the number of categories per component was identical
for all models, although this second discretization scheme slightly
favored models with more components (data not shown).

4.2 The evolutionary model
All analyses conducted in this study used the JTT model of amino
acid replacements (Jones et al., 1992). However, incorporating the
gamma mixture model into any desired nucleotide or amino acid
substitution model is an easy extension.

4.3 Model comparisons
In this study we considered models with 1, 2 and 3 components,
denoted by M1, M2 and M3, respectively. We used the likelihood
ratio test (LRT) to test whether models with larger number of com-
ponents fit a particular dataset significantly better than a model with
fewer components. Table 1 contains maximum log-likelihood estim-
ates obtained when analyzing each of the 10 datasets with models
M1, M2 and M3. Adding one-gamma component requires three more
free parameters (α and β, the distribution parameters and γ , the com-
ponent probability) and is statistically justified if the log-likelihood
improvement is >3.95 (P < 0.05; χ2 with 3 degrees of freedom). In
9 of 10 datasets examined (Table 1) M2 gives a significantly better
fit to the data than the commonly used M1 model. The only excep-
tion is the 4mt2 dataset. One explanation to this exception is that the
sequence length of the proteins in this dataset is only 62 amino acids
long (see Section 5). In contrast to the significant difference between
M1 and M2, the addition of a third gamma component (M3) is statist-
ically unjustified in all but the 3pgk dataset, i.e. the dataset with the
longest sequence length. We note that although the models are nested,
the use of the LRT may not be justified because of boundary problems
(Anisimova et al., 2001). In addition, the LRT does not account for
the size of the data. We thus also used a second order Akaike Inform-
ation Criterion (AICc) (Burnham and Anderson, 2002), defined as
AICc = −2LL+2pM/(M −p−1), where LL is the log-likelihood,
p the number of free parameters and M is sequence length. In all
datasets examined significant LRT results were also supported by bet-
ter AICc scores. The exact distribution of the LRT statistics can be
approximated using parametric bootstrapping (Susko et al., 2003).
However, this approach is computationally intensive and was not
applied here.
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Table 1. Maximum log-likelihood (LL) estimates for the analysis of 10 datasets under the M1, M2, M3 and G + I models

Dataset NSa SLb M1 M2c M3c G + I

3adk 50 194 −16429.3 −16406.5 −16406.1 −16423.1
3pgk 50 415 −31380 −31364.3 −31359.7 −31376
1rhd 50 293 −17583.3 −17572.5 −17571.3 −17579
1ppl 50 323 −26402 −26389.7 −26387 −26397
1rnd 50 124 −8388.9 −8378.5 −8377.5 −8382.5
4mt2 50 61 −1000.4 −997.8 −997.6 −1000.3
3dfr 50 163 −12831.9 −12820.3 −12818.5 −12829.4
1bxl 36 181 −3155.2 −3141.3 −3140.5 −3155.2
1bl8 50 97 −8352.6 −8343.7 −8340.2 −8347.7
1a6q 50 363 −27470.7 −27461.2 −27459.1 −27468.1

aNumber of sequences.
bSequence length.
cObserved LL values are shown in bold type if the LRT between M2 (M3) and M1 (M2) is significant (P < 0.05).

We have also compared the gamma mixture model to the Gamma+
Invariant (G + I) site model (Gu et al., 1995). This model may rep-
resent a variant of M2 in which the second gamma component is
constrained to invariable rates only. As expected, the G + I model
gave intermediate log-likelihoods between M1 and M2 (Table 1).
Nevertheless, for all datasets examined, the AICc scores of M2 were
better than that of G+ I. For some datasets (3adk, 3pgk and 1bxl) the
AICc difference was >20, whereas in the 4mt2 dataset the superi-
ority of M2 was only marginal. For the datasets tested, it seems
that M2 superiority over G + I was most pronounced in those cases
where the expectation of the component with the lower average rate
(the ‘slower’ gamma component) highly deviated from zero. For
example, in all cases where the AICc difference was >20 the expect-
ation of the ‘slower’ gamma component was >0.4, resulting in a
relatively large log-likelihood difference between M2 and G + I.

5 THE INFLUENCE OF DATA SIZE
We tested the hypothesis that adding more components to the model
will become more justified as the sequence length increases. Two
datasets were analyzed (3adk and 3pgk). In each dataset we ran-
domly selected l sites to produce a new alignment that is a subset of
the original multiple sequence alignment (MSA). We then optimized
the gamma mixture parameters and branch lengths (only two rounds
of optimization iterations were performed since each such iteration
is computationally intensive). For each sequence length, 10 inde-
pendent runs were conducted. As shown in Figure 3A (for the 3adk
dataset) the average difference between models M2 and M1 increases
as the sequence length increases. The same trend, though to a lesser
extent, is also apparent when comparing M3 and M2. Similar results
were obtained for the 3pgk dataset (data not shown).

We further analyzed whether the inclusion of more sequences in
the MSA contributes to the fit of more complex models. We analyzed
this hypothesis with the 3adk and 3pgk datasets. s random sequences
were sampled from each dataset to produce a new MSA. For each
value of s (ranged from 10 to 80), 10 independent runs were con-
ducted. Our results indicate that the average difference between M2
and M1 increases as the number of sequences increases (Fig. 3B).
Again, this is also true for the M3 versus M2 comparison to a lesser
extent. Similar results were obtained for the 3pgk dataset (data not

Fig. 3. Log-likelihood (LL) difference obtained for the 3adk dataset as a
function of (A) sequence length and (B) number of sequences. The LL differ-
ence is the average score obtained over 10 independent runs. The differences
between models M2 and M1, and between M3 and M2 are shown in black
and grey lines, respectively.

shown). To conclude, when more information is available (number of
sequences and sequence length) models that account for a complex
distribution of rates better explain the data.

6 BAYESIAN ESTIMATION OF SITE-SPECIFIC
EVOLUTIONARY RATES USING THE
GAMMA MIXTURE MODEL

Our results above indicated that the mixture model can statistically
explain sequence variability better than the traditional single-gamma
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model. We now investigate whether the use of our suggested model
can also improve methods that aim to estimate the rate at which a
site evolves as a means for inferring conserved and variable sites of
a protein.

Within the Bayesian framework, the posterior probability of any
given rate, r , is obtained from the likelihood function and the prior
distribution. Given an estimated phylogeny and a discrete gamma
mixture prior distribution (for which w(r̃k

j ) is the probability of rate
category j in component k), this probability is then

P(Ri = r̃ k
j |Di , T , θ) ∼= P(Di |r̃ k

j , T )γkw(r̃k
j )∑K

k=1

∑S
j=1 P(Di |r̃ k

j , T )γkw(r̃k
j )

. (19)

Our site-specific rate estimate is defined as the expectation of r over
its posterior rate distribution

E(Ri |Di , T , θ) ∼=
K∑

k=1

S∑
j=1

P(Ri = r̃ k
j |Di , T , θ)r̃k

j . (20)

6.1 Simulations setup
We have previously shown that an empirical Bayesian site-specific
rate inference method is superior to an ML-based approach (Mayrose
et al., 2004). Here, simulations were used in order to test whether a
prior that assumes a mixture of gamma components (models M2 and
M3) can improve the accuracy of site-specific rate estimates over a
model with a single component (M1). We simulate a given site with
a specific ‘true’ rate. An MSA is thus generated based on a vector
of true rates. Subsequently, a rate for each column is inferred using
either the M1, M2 or M3 model. The closer the inferred rates to
the true rates are, the better the inference is. For the simulations,
one must determine the true rate in each site. In order to obtain true
rates that are biologically relevant, characteristic rates were com-
puted based on two empirical datasets: 3adk with 172 sequences
and 194 sites, and 3pgk with 150 sequences and 415 sites. For each
dataset, ML was used to estimate the site specific rates. Thus, no
prior was assumed when constructing the empirical rate distribution.
(Inferring the rates using a gamma mixture with a specified number
of components would bias the results toward this specific distribu-
tion.) True rates were scaled such that the average was set to 1. For
estimating the ML rates, the 3adk and 3pgk phylogenetic trees were
reconstructed using NJ (Saitou and Nei, 1987).

For each dataset and for each number of sequences tested, a total of
20 identical and independent simulation runs were conducted. The
accuracy of inference was analyzed by the mean relative absolute
deviations (MRAD) distance between the simulated and estimated
rates:

MRAD = 1

M

M∑
i=1

|estimated ri − true ri |
true ri

, (21)

where M is the sequence length. The division of each absolute devi-
ation by the true rate compensates for the larger variance in large
rates and the smaller variance in low rates.

A two-sided Wilcoxon non-parametric test between two depend-
ent samples (Sokal and Rohlf, 1981) was then performed in order to
determine whether the difference in accuracy obtained from models
with a different number of gamma components is statistically signi-
ficant. A non-parametric test was used to eliminate the assumption

Table 2. Simulation results: accuracy of site-specific rate inference based on
models with a different number of gamma components

Dataset NSa Mean MRAD
M1 M2b M3c

3adk 10 0.891 0.790 (P < 0.0005) 0.770 (P = 0.093)
20 0.570 0.490 (P < 0.0001) 0.475 (P < 0.005)
30 0.429 0.365 (P < 0.0001) 0.356 (P < 0.01)
40 0.374 0.316 (P < 0.0001) 0.311 (P = 0.19)
50 0.351 0.305 (P < 0.0001) 0.304 (P = 0.25)

3pgk 10 0.775 0.740 (P < 0.0001) 0.728 (P < 0.01)
20 0.534 0.502 (P < 0.0001) 0.493 (P < 0.0005)

30 0.422 0.395 (P < 0.0001) 0.388 (P < 0.0001)

40 0.382 0.359 (P < 0.0001) 0.352 (P < 0.0005)

50 0.349 0.330 (P < 0.0001) 0.324 (P < 0.0005)

aNumber of sequences.
bP -value between M2 and M1.
cP -value between M3 and M2.
Values are shown in boldtype if the difference between M2(M3) and M1(M2) is
significant (P < 0.05).

that the MRAD measures are normally distributed, although similar
results were obtained with a parametric t-test (data not shown). For
each empirical dataset, the influence of the number of sequences
on the inference accuracy was tested. For this purpose model trees
with 10, 20, 30, 40 and 50 taxa were constructed using NJ. In order
to construct a model tree with N sequences, the N most divergent
sequences were selected.

6.2 Simulation results
A comparison between the accuracy of site-specific rate inference as
a function of the number of sequences under the M1, M2 and M3
models is shown in Table 2. For a given model, our simulations show
that the accuracy increases as the number of sequences increases.
This finding is expected since more data are available at each site for
rate inference.

It is not clear that more complex models will result in better rate
inference. When comparing the effect of the number of components
on the accuracy of rate estimates, two contradicting factors may
operate. When the amount of data is large, rate inference is accurate
for all models, and using a rich model may not be justified. However,
when the number of sequences increases, the use of models with
additional free parameters is more justified (Fig. 3).

Comparing M2 and M1, the first was always significantly more
accurate than the latter (for the two datasets, regardless of the data-
set size). M3 was significantly better than M2 for the 3pgk dataset
regardless of dataset size. The difference between M3 and M2 for
the 3adk dataset is more complex. Although M3 is more accurate
than M2 with every number of sequences tested, the differences
between the models is significant only for the intermediate-sized
data (20 and 30 sequences). With 40 and 50 sequences, the differ-
ence between M3 and M2 is not significant, probably because of
the substantial data size that renders inference with the M2 model
sufficiently accurate. An additional increase in data size is expec-
ted to reduce the difference between the two models even further.
In the case of 10 sequences, there are probably not enough data
to accurately estimate the parameters of the M3 model, which can
explain why the rates estimated by M3 were not significantly more
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accurate than those of M2. Indeed, the log-likelihood difference
between M3 and M2 for the case of 10 sequences was not stat-
istically significant (LRT test) in all 20 simulation runs (data not
shown).

7 DISCUSSION
Evolutionary models may provide misleading results if their underly-
ing assumptions are violated (Whelan et al., 2001). With the dramatic
increase in sequence-data availability, we are now in a position to
suggest models that better mimic known biological processes and
patterns. By using realistic models, we may be able to remove pos-
sible sources of error caused by oversimplified assumptions. In this
study we explored a model that better describes the among-site rate
variation characteristic of molecular sequence evolution. We showed
that by using a mixture of a few gamma distributions the model fit
the data significantly better than the commonly used single-gamma
model.

The G + I model can be regarded as the first, albeit restricted,
gamma mixture approach. Although the G + I model is intuitively
very appealing, the estimates of the model parameters are highly
sensitive to taxon sampling (Yang, 1996; Sullivan et al., 1999). In
addition, the high correlation between the proportion of the invariable
sites and the gamma shape parameter indicates model inadequacy
(Sullivan et al., 1999). Our results here indicated that, in term of
AICc scores, none of the datasets examined could be best explained
by the G + I model, whereas the M1, M2 and M3 models best fitted
1, 7 and 2 datasets, respectively.

Recently, a few studies have suggested alternatives to the single-
gamma model. Yang et al. (2000) have studied codon substitutions
models with a range of different distributions for modeling the
non-synonymous/synonymous rate ratio among sites, including a
two-gamma distribution (model M6). Kosakovsky Pond and Frost
(2005) have suggested a hierarchical model, in which the baseline
gamma distribution is discretized into several categories using a
beta distribution. Using AIC scores it was shown that this model
better fits several nucleotide coding datasets. Susko et al. (2003)
investigated a non-parametric model that does not involve a prior
on the rate distribution. Instead, the rate distribution is estim-
ated using a large number of free parameters. Although these two
models may capture deviations from the gamma distribution, the
mixture model approach suggested in our study adds an additional
flexibility since the exact number of components needed to cap-
ture the complexity of the rate distribution is adjustable and can
be statistically inferred. As an alternative to using a mixture of
gammas, a mixture of other positive distributions, such as the log-
normal, can be applied using a similar mechanism described in
this study. Clearly, more analyses are needed in order to study
the merits of these different models under a range of evolutionary
scenarios.

Phylogenetic reconstructions based on large datasets are becoming
increasingly popular. For example, Murphy et al. (2001) investigated
placental phylogeny using 16.4 kb molecular data for 44 taxa. Reyes
et al. (2004) used the complete mitochondrial genomes of 77 species
to reconstruct a mammalian phylogeny. Large molecular datasets
have the potential to resolve longstanding controversies in system-
atics. In such analyses, the data may support accurate parameter
estimates of complex models. Using a mixture of gamma approach
is a natural extension of the single-gamma model, allowing a better

fit to the distribution of evolutionary rates yet without introducing
too many free parameters. Our results showed that the M2 model was
superior to M1 for all data analyzed (Table 1). We also showed that
the better fit of M2 increases as larger datasets are analyzed (Fig. 3).
This suggests that the gamma mixture model will be particularly
valuable for such large datasets analyses.

The EM algorithm used in the optimization process only guaran-
tees to find a local maximum, rather than a global one. Unfortunately,
local optima are a practical difficulty, especially when the number of
parameters increases. Initiating the EM algorithm from several ran-
dom points of the parameter space is needed to avoid local optima.
Our practical experience suggests that with M1, the EM algorithm
constantly reaches the global maxima (as a few dispersed starting
points reach indistinguishable results). However, as the number of
components increases, the EM algorithm often terminates at local
optima. This implies that the observed superiority of models with
more gamma components is underestimated.

Discretization of the continuous gamma distribution can be
better achieved using the Laguerre quadrature method compared
with Yang’s (1994) quantile approximation (Felsenstein, 2001;
Kosakovsky Pond and Frost, 2005). The Laguerre quadrature method
was used here not only to compute the likelihood of a tree, but also for
the various numerical integrations that are a part of the EM algorithm.
Using the Laguerre quadrature we obtained faster and more consist-
ent results than the more commonly used quantile approach (data not
shown).

Knowledge of relative evolutionary rates is crucial not only to
define more appropriate evolutionary models, but also because it
serves as a means to evaluate the importance of a site in maintaining
the structure or function of a protein. Furthermore, covarion models
can be used to detect sites that exhibit different evolutionary rates
in different branches of the phylogenetic tree. Such rate shifts may
indicate change in the selection intensity at specific sites during evol-
ution (Knudsen and Miyamoto, 2001; Gaucher et al., 2002; Pupko
and Galtier, 2002; Susko et al., 2002). We have recently shown that an
empirical Bayesian method produces significantly more accurate rate
estimations than an ML method, indicating that the gamma prior that
is integrated into the Bayesian computation significantly improves
performance (Mayrose et al., 2004). Here we further showed that
the incorporation of a gamma mixture prior leads to even better rate
inferences.
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APPENDIX: A LAGUERRE QUADRATURE
METHOD FOR APPROXIMATING THE
GAMMA DISTRIBUTION
Felsenstein (2001) suggested that the Laguerre quadrature method
for the discretization of the gamma distribution can better approxim-
ate the continuous distribution compared with Yang’s (1994) quantile
approximation. We used the Laguerre method not only to compute
the likelihood of a tree, but also for the various numerical integrations
that are a part of the EM algorithm. For the EM we approximate a
gamma distribution with both α and β parameters. We, thus, give a
detailed explanation of this approximation.

When approximating a continuous distribution by a discrete one
[Equation (5)], discrete values (rates) r̃i and probabilities w(r̃i) must
be chosen so as to approximate the integral most accurately. The idea
of Gaussian quadrature is to give ourselves the freedom to choose
not only the location of the abscissas at which the function is to
be evaluated, as in Yang’s (1994) discrete approximation, but also
the weighting coefficients. Specifically, we want to approximate the
integral

∫ b

a
W(x)f (x)dx, where W(x) is called the weighting func-

tion. Given an integer N we can find weights wj and abscissas xj

such that the approximation

∫ b

a

W(x)f (x)dx ∼=
N∑

j=1

wif (xi) (A1)

is exact, if f (x) is a polynomial of degree 2N − 1 or less. The xj

are the roots of a set of orthogonal polynomials that depend on the
weighting function W(x). Once the abscissas are determined, the
weights wj can be found (wj are constructed such that their sum
equals 1). The problem is usually how to construct the associated set
of orthogonal polynomials. Different numerical quadrature methods
depend on which weighting function is used.

Fortunately, the gamma density function can be converted into a
classical weighting function W(m) = e−mmα . The abscissas and
weights of this weighting function can be easily calculated using the
generalized Laguerre quadrature method (Press et al., 2002). In what
follows we detail how to convert between these two functions.

We want to approximate the integrals, such as those presented in
Equations (1), (17) and (18)

∫ ∞

0
g(r : α, β)f (r)dr = βα

�(α)

∫ ∞

0
e−βr rα−1f (r)dr . (A2)

By setting m = βr we get

1

�(α)

∫ ∞

0
e−mmα−1f

(
m

β

)
dm. (A3)

By setting α′ = α − 1, we obtain the desired weighting function.
To conclude, given N , the approximation is

∫ ∞

0
g(r : α, β)f (r)dr ∼=

N∑
j=1

f (r̃j )w(r̃j ), (A4)

where w(r̃j ) = wj

�(α)
, r̃j = mj

β
. The terms mj and wj are the roots and

weights of the Gauss–Laguerre quadrature formula with α′ = α −1.
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