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Abstract

All living organisms consist of living cells and share basic cellular mechanisms.
Amazingly, all those cells, whether from a bacterium or a human being, although
different in their structure and complexity, comprise the same building blocks of
macro molecules: DNA, RNA, and proteins. Proteins play major roles in all cellu-
lar processes: they create signaling cascades, regulate almost every process in the
cell, act as selective porters on the cell membrane, accelerate chemical reactions,
and many more. In most of these tasks, proteins work in concert, by creating com-
plexes of varying sizes, modifying one another and transporting other proteins.
These interactions vary in many aspects: they might take place under specific
conditions, have different biophysical properties, different functional roles, etc.
Identifying and characterizing the full repertoire of interacting protein pairs are
of crucial importance for understanding the functionality of a living cell. In the
last decade, development of new technologies allowed large-scale measurements
of interaction networks. In turn, many studies used the results of such assays to
gain functional insights into specific proteins and specific pathways as well as
learn about the more global characteristics of the interaction network. Unfortu-
nately, the experimental noise in the large-scale assays makes such analyses hard,
challenging the development of advanced computational approaches towards this
goal.

In the first part of my PhD work I used the language of relational graphi-
cal models to suggest a novel statistical framework for representing interaction
networks. This framework enables taking into account uncertainty about the
observed large-scale measurements, while investigating the interaction network
properties. Specifically, it allows simultaneous prediction of all interactions given
the results of large-scale experimental assays. I applied this model to noisy ob-
servations of protein-protein interactions and showed how such simultaneous pre-
dictions enable intricate information flow between the interactions, allowing for
better prediction of missing information. However, application of this model to the
entire interaction network would require creation of a huge model over millions
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of interactions. Thus, I turned to develop tools that will allow realistic representa-
tion of such models over very large interaction networks and also enable efficient
computation of approximate answers to probabilistic queries. Such tools facilitate
learning the properties of these models from experimental data, while taking into
account the uncertainty arising from experimental noise. Importantly, I created a
code framework to allow efficient implementation of these (and other) algorithms,
and devoted a special effort to provide an implementation of such ideas to general
models. To date this library has been used in a wide variety of applications, such
as protein design algorithms and object localization in cluttered images. The last
part of my PhD research addressed genetic interaction networks. In this work, to-
gether with Ruty Rinott, we showed how analysis of the network properties leads
to novel biological insights. We devised an algorithm that used data from genetic
interactions to create an automatic organization of the genes into functionally co-
herent modules. Next, we showed how using additional information on genetic
screens performed under a range of chemical perturbations sheds light on the cel-
lular function of specific modules. As large-scale screens of genetic interactions
are becoming a widely used tool, our method should be a valuable tool for extract-
ing insights from these results.
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1 Introduction

In the last couple of decades, large-scale data have accumulated for many types
of interactions, varying from social interactions through links between pages of
the world wide web and to various types of biological relations between proteins.
Visualization of such data as networks and analysis of the properties of these net-
works has proven useful to explore these complex systems (Alon, 2003; Yamada
and Bork, 2009; Boone et al., 2007; Handcock and Gile, 2010). In this thesis I
will concentrate on analysis of protein-protein interaction networks, introducing
novel methods that should be valuable also for the analysis of different kinds of
networks.

1.1 Protein-protein interactions

All living organisms consist of living cells and share basic cellular mechanisms.
Amazingly, all those cells, whether from a bacterium or a human being, although
different in their structure and complexity, comprise the same building blocks of
macromolecules: DNA, RNA, and proteins.

Protein sequences are encoded in DNA and synthesized by a well known path-
way that is often referred to as the central dogma of molecular biology (Figure 1).
It states that the blueprint of each cell is encoded in its DNA sequence. The DNA
is replicated (and so the blueprint is passed on to the cell’s offsprings), and part
of it is transcribed to messenger RNA (mRNA) which is, in turn, translated into
proteins. After translation of a mRNA to a protein there are still many processes
the protein has to undergo before it is functional. First it has to fold into the cor-
rect three dimensional structure, then it has to be transported to a specific cellular
localization, and often it has to undergoes specific modifications. There are many
types of proteins in a cell (e.g., 6000 proteins types in the budding yeast Saccha-
romyces cerevisiae) and each of them can be expressed in one copy or in thou-
sands of copies (Ghaemmaghami et al., 2003). The expression levels are tightly
regulated, and thus similar cells can have drastically different sets of expressed
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Figure 1: The Central Dogma of Biology The DNA sequence (left) holds the
blueprint of all cells. Part of it is transcribed to messenger RNA (mRNA; middle)
which is translated to proteins (right)

proteins under different conditions.
Proteins play major roles in all cellular processes: they create signaling cas-

cades, regulate almost every process in the cell, act as selective transporters on the
cell membrane, accelerate chemical reactions, and many more. In most of these
tasks, proteins work in concert, by creating complexes of varying sizes, modify-
ing one another, and transporting other proteins. These complexes act as small
machineries that perform a variety of tasks in the cell. They take part in cell
metabolism, signal transduction, DNA transcription and duplication, DNA dam-
age repair, and many more. Identifying and characterizing the full repertoire of
these cellular machineries and the interplay between them are of crucial impor-
tance for understanding the functionality of a living cell.

1.1.1 Large-scale identification of protein-protein interactions

Literature curated datasets, gathering information from many small-scale assays
were the first to offer a proteome-scale coverage of protein-protein interactions
(Mewes et al., 1998; Xenarios et al., 2000). These datasets have also served as a
valuable resource for computational methods that used them to train models that
can predict protein-protein interactions from genomic and evolutionary informa-
tion sources (Marcotte et al., 1999a; Pellegrini et al., 1999).

The first method to directly query protein-protein interactions in a systematic
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Figure 2: Identifying protein-protein interactions using the yeast two-hybrid
method: (A) A Transcription factor has a binding domain and an activation do-
main. (B) The bait protein is fused to the DNA binding domain and the prey
protein is fused to the transcription activation domain (C) If the proteins interact,
RNA polymerase is recruited to the promoter and the reporter gene is transcribed
(D) If there is no physical interaction, the reporter gene is not transcribed.

manner was a high throughput adaptation of the yeast two-hybrid method (Uetz
et al., 2000; Ito et al., 2001). In this method a DNA binding domain is fused
to a ’bait’ protein and a matching transcription activation domain is fused to a
library of ’prey’ proteins (Figure 2). Each time one pair of specific bait and prey
proteins are introduced into a yeast cell using standard yeast genetics techniques.
In turn, if the bait and prey proteins physically interact, they enable transcription
of a reporter gene. By using a selection marker as a reporter gene, this method
can be used to easily identify interacting proteins by searching for combinations
of bait and prey proteins whose introduction to a yeast strain results in a viable
yeast colony.
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Figure 3: Identifying protein-protein interactions using affinity purification:
(A) A bait protein (grey rectangle) is attached to a tag (grey triangle) and intro-
duced into a yeast cell. (B) The tag is used to capture the protein. (C) Mass
spectrometry is used to identify the proteins that were captured with the bait pro-
teins (orange and red elipses).

Although small scale applications of this method yielded functional insights
into specific biological mechanisms (Rodal et al., 1999; Jensen et al., 2000), the
small overlap between the results of the first large-scale screens that used this ap-
proach raised questions regarding the accuracy and sensitivity of this method (von
Mering et al., 2002; Sprinzak et al., 2003). However, more recent works claim
that the small overlap in the results is due to the low sensitivity of the method, and
that comparable results can be obtained when each bait protein is tested a number
of times against the prey library (Yu et al., 2008).

Another type of large-scale assay measuring protein-protein interactions uses
an affinity purification approach. In this method each prey protein is fused to a
Tandem Affinity Purification (TAP) tag and introduced to the yeast cell. In turn,
the tag is used to purify the protein with all its interaction partners. Finally, mass
spectrometry is used to identify the interaction partners that were captured with
the bait protein (Figure 3 ; Rigaut et al. (1999)). In contrast to the yeast two-
hybrid method, which measures binary interactions that do not necessarily create
stable complexes, this method is aimed towards measurement of stable protein
complexes. This approach was carried out initially on a relatively small set of
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tagged proteins (Gavin et al., 2002; Ho et al., 2002) and later on a much broader set
covering almost the entire yeast proteome (Gavin et al., 2006; Krogan et al., 2006).
Again, small overlap between the results of such screens raised concerns regarding
the reliability of their experimental results. However, later studies showed that
improved analysis can reduce some of this noise and integrated the results of both
screens to yield a predicted set of yeast complexes (Collins et al., 2007a). In
the discussion section I will describe newer methods that assay protein-protein
interaction at a proteomic scale and their implications.

With the accumulation of large-scale information on protein-protein interac-
tions, many studies tried to infer the function of unannotated proteins using a
”guilt by association” approach (Galperin and Koonin, 2000; Marcotte et al.,
1999b; Deng et al., 2004; Zhao et al., 2008). The basic logic behind these methods
is that we can learn about the function of an uncharacterized protein by looking at
the known functions of its interaction partners.

1.1.2 Genetic interactions as a tool to decipher protein function

Another, indirect, type of information regarding functional relations between pro-
teins arises from genetic screens. In such screens the phenotypic effect of knock-
ing out target genes is measured under the genetic background of the knockout
of a query gene. In turn, if the mutation suppresses or amplifies the effect of
the query gene knockout, these two genes are deduced to be functionally related
(Boone et al., 2007).

The first large-scale genetic interactions screens focused on searching syn-
thetic lethal interactions. Those are the most drastic manifestation of genetic in-
teractions that occur when both single perturbations yield viable strains but the
double knockout is lethal (Tong et al., 2004). More recently, a more quantitative
measure was developed to determine the sign and strength of the genetic interac-
tion (Schuldiner et al., 2005; Collins et al., 2006; Costanzo et al., 2010). In these
methods the growth rate of the double knockout strain is compared to the expected
growth rate assuming an additive effect of both single knockouts. If the growth
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Figure 4: Schematic illustration of the possible results of a genetic interaction
assay: In all panels the first four columns illustrate a yeast colony (in grey) on
a petri dish for different genetic backgrounds. The size of the yeast colony is
a proxy to its growth rate. The fifth column describes possible pathways that
can result in such observations. The sixth column shows the formulation of each
type of interaction and the seventh column shows the resulting annotation. (a)
An example for an alleviating genetic interaction. (b) An example of two genes
that do not have a genetic interaction. (c) An example of two genes that have an
aggravating genetic interactions.

rate is faster than expected given the two single knockouts the genetic interaction
is termed an alleviating interaction. This effect can be caused by two genes that
belong to the same pathway (Figure 4 a). If the growth rate is slower than expected
then the genetic interaction is termed an aggravating interaction. This effect can
be caused, for example, by two proteins participating in two paralel pathways that
lead to the same product (Figure 4 c). Here each single knockout has almost no
effect since the alternative pathway compensates for the missing protein. How-
ever, a double knockout that eliminates both pathways will create a growth defect
that could not be expected given the two single knockouts.
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1.1.3 From interactions to networks

In addition to providing many insights into the function of specific proteins, the
accumulation of such large-scale data on cellular interactions raised more global
questions regarding the network of interactions. The seminal work of Erdos and
Renyi (1960) laid the basis for many of the modern works that model large-scale
interaction networks in many fields, suggesting a random graph model in which
each two nodes are connected with an edge with probability p. Barabasi and
Albert (1999) showed that the degree distribution of many biological networks
(including the protein-protein interaction network) does not fit a Poisson distri-
bution, as would be expected for the random network model of Erdos and Renyi.
Furthermore, they showed that the degree distribution in such biological networks
does fit a power law distribution, where most of the proteins interact with a small
number of partners, and a few proteins (termed hubs) interact with a large number
of partners. Such networks are called scale free networks because of the behav-
ior of their degree distribution. Another property that was observed in biological
networks is that any two nodes in the network are connected through a very short
path (Cohen and Havlin, 2003). This network property is called small world,
originating from its implication on social networks. Finally, Barabasi and Oltvai
(2004) showed how evolutionary principles of gene duplication and preferencial
attachment can result in networks with these properties.

These network properties have also biological implications, as they charac-
terize networks that are more robust to random perturbations. That is, a random
attack is more probable to perturb a node with a small number of interactions, and
might have little effect on the performance of the entire network. In support of
this theory many works show that the essential proteins are hubs in the network
(Jeong et al., 2001). Later, Han et al. (2004) showed that these hub proteins can
be divided to two major types according to the expression patterns of their inter-
action partners. The first type (termed date hubs) corresponds to proteins whose
interaction partners are expressed in different times, and thus are assumed to cre-
ate many pairwise interactions, each time with a different partner. On the other
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hand, proteins hubs which are expressed simultaneously with all their interaction
partners (termed party hubs) are assumed to create complexes that act together to
perform certain tasks in the cell.

In recent years, concerns were raised regarding this type of network analy-
sis based on both the quality of the data used in the analysis and also on the
quality of the statistical validations. For example, Lima-Mendez and van Helden
(2009) claim that the good fits of the scale free and small world models result
from sampling artifacts or improper data representation. Concerns were raised
also regarding the distinction between date and party hubs. Batada et al. (2006)
claim that this distinction might be a reflection of the small datasets used in the
analysis of Han et al. (2004). This topic is still under scrutiny, as Bertin et al.
(2007) claims that repeating the same analysis on larger datasets validates the dis-
tinction between the two type of hubs while Batada et al. (2007) claims that this
newer analysis is not controlled for the proper confounding factors.

Another work that tried to infer biological insights from the network proper-
ties looked for recurring connected patterns that appear in the network more than
expected at random, termed network motifs (Shen-Orr et al., 2002; Milo et al.,
2002). This method was initially applied to transcription regulation networks in
bacteria, reporting on the feed forward loop as a predominant network motif in
this transcription regulation network (Shen-Orr et al., 2002). Although concerns
were raised regarding the limitations of this identification method (Artzy-Randrup
et al., 2004), further analysis demonstrated both experimentally and computation-
ally the functional and biological meaning of these motifs in specific cellular path-
ways (Mangan et al., 2003, 2006; Kaplan et al., 2008). Furthermore, Milo et al.
(2004) showed that different networks have different sets of overrepresented mo-
tifs, which can result in different global properties. In addition, similar strategies
applied to networks combining various types of interactions (Yeger-Lotem et al.,
2004; Zhang et al., 2005) showed how such analysis can be used to provide a
useful simplification of complex biological relationships.
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1.1.4 Uncertainty in interaction networks

Identifying and characterizing the full repertoire of protein-protein interactions is
one of the main challenges in this field. However, it was shown that since most of
the large-scale assays contain noisy observations, one has to integrate information
from a number of screens in order to produce reliable predictions of such interac-
tions (von Mering et al., 2002; Sprinzak et al., 2003). As a result, many methods
have tried to take into account the results of the experimental results described
above, along with those of computational assays (Sprinzak and Margalit, 2001;
Pellegrini et al., 1999) into one integrated prediction (Jansen et al., 2003; Bock
and Gough, 2003; Zhang et al., 2004; Jensen et al., 2009). Most of these meth-
ods predict each of the protein-protein interactions independently of the others.
However, the analysis of network properties makes it clear that such indepen-
dent prediction ignores information arising from the properties of the network.
For example, the over-representation of 3-cliques in the protein-protein interac-
tion network (Yeger-Lotem et al., 2004) means that if we know that a protein x

physically interacts with proteins y and z, this raises our prior belief regarding an
interaction between y and z.

On the other hand, the majority of the studies that analyze the network prop-
erties ignore the uncertainty regarding the interaction data by trying to use one
relatively reliable source of information. This usually results in a compromise
between the coverage of the data and its reliability. In my PhD work, using the
language of probabilistic graphical models, I tried to bridge this gap by dealing
with uncertainty in the data while learning about the properties of the network.

1.2 Probabilistic graphical models

Probabilistic graphical models provide a framework for representing a complex
joint distribution over a set of n random variables X = {X1 . . . Xn}. Even in
the case of discrete binary random variables, naive representation of such a dis-
tribution requires specification of the probability for each of the 2n assignments.
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The main premise of these models is that we can take advantage of conditional
independence properties of the joint distribution to yield an efficient representa-
tion that will enable efficient performance of various tasks, such as probabilistic
inference and learning.

In the early 1970’s using the Hammersley-Clifford theorem, Besag (1974) in-
troduced the notion of Markov random fields that related between the conditional
independence properties and the graph structure for lattice models. Later, Frank
and Strauss (1986) applied similar ideas to general log-linear models which they
called Markov networks. The seminal work of Pearl (1988) laid the foundation
for the generalization of directed versions of these models, termed Bayesian net-
works. The common idea in all these models is that a qualitative graph structure,
in which each random variable is denoted by a node, specifies the set of condi-
tional independencies assumed by the model. In addition, a set of quantitative
parameters specifies the actual distribution.

In the last 20 years many works suggested new forms of models (Buntine,
1995; Murphy, 2002; Lafferty et al., 2001), improved exact and approximate in-
ference techniques (Yuille and Rangarajan, 2002; Wiegerinck and Heskes, 2003;
Wainwright et al., 2005b; Yedidia et al., 2005; Chavira et al., 2006), and devel-
oped methods to estimate the parameters and structure of the model from noisy
observations. Graphical models have been successfully used in many types of
applications, ranging from medical expert systems (Heckerman and Nathwani,
1992) through error correcting codes (Kschischang et al., 2001) and analysis of
gene expression data (Friedman et al., 2000; Segal et al., 2004) to image analysis
(Shotton et al., 2006).

1.2.1 Markov networks

In this dissertation I use the undirected version of graphical models, calledMarkov
networks (or sometimes Markov Random Fields). One standard way to describe
such models, is using Factor Graphs (Figure 5; Kschischang et al. (2001)) that
contain a bipartite graph between two kinds of nodes:
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Figure 5: Factor graph: factor nodes depicted by squares shown on the left.
Variable nodes, depicted as circles, shown on the right.

• Variable nodes that depict random variables, shown as circles.

• Factor nodes that define groups of variables, shown as rectangles.

Given a joint distribution over n random variables (X = {X1, . . . , Xn}) this
qualitative graph implies a decomposition of the joint distribution into a product
of local terms:

P (X ; Θ) =
1

Z(Θ)
exp

�
�

i

θi(Xi) +
�

α

θα(Xα)

�

, (1)

where Xi and Xα are subsets of X defined by the variable and factor nodes in
the graph, and Θ is the set of quantitative parameters (potential functions) that
specify the distribution. We denote by θi(Xi) and θα(Xα) the specific parameter
matching the assignment of Xi and Xα, respectively. The normalization term,
Z(Θ), is called the partition function:

Z(Θ) =
�

X
exp

�
�

i

θi(Xi) +
�

α

θα(Xα)

�

.
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1.2.2 Approximate inference in Markov networks

Inferring the marginal probabilities and likelihood in graphical models are crit-
ical tasks needed both for making predictions and for facilitating learning. The
marginal distribution of a group of k variablesXi1 , . . . , Xik is denoted by µi1,...,ik

and defined as:

µi1,...,ik = p(Xi1 , . . . , Xik)

=
�

X\{Xi1 ,...,Xik
}
p(X ).

The likelihood function ofM independent observations overX (denoted asX [1], . . . ,X [M ])
for a given parameterization Θ is given by:

p(X [1], . . . ,X [M ]; Θ) =
M�

m=1

p(X [m]; Θ)

=
M�

m=1

1

Z(Θ)
exp

�
�

i

θi(Xi[m]) +
�

α

θα(Xα[m])

�

.

Where Xi[m] and Xα[m] are the assignments for the appropriate variables in the
m’th observation.

Computing exact answers to these inference queries is often infeasible even
for relatively modest problems. Thus, there is a growing need for inference meth-
ods that are both efficient and can provide reasonable approximate computations.
The Loopy Belief Propagation (LBP, Pearl, 1988) algorithm has gained substan-
tial popularity in the last two decades due to its impressive empirical success, and
is now being used in a wide range of applications ranging from transmission de-
coding to image segmentation (Murphy and Weiss, 1999; McEliece et al., 1998;
Shental et al., 2003). The seminal work of Yedidia et al. (2005) has added theoret-
ical support to the loopy belief propagation algorithm by posing it as a variational
inference method. The general variation principle phrases the inference problem

12



as an optimization task:

log Z(Θ) = max
µ∈M(G)

�
ΘT

µ + H(µ)
�

(2)

Where:

• ΘT
µ is a vector notation that implies the multiplication of all marginal dis-

tributions (µi(Xi) and µα(Xα)) with their corresponding parameters (θi(Xi)

and θα(Xα)) for all variables and factors.

• M(G) is the marginal polytope associated with a graphG (Wainwright and
Jordan, 2008). A vector µ is inM(G) if it corresponds to the marginals of
some distribution p(X ):

M(G) =




µ

��� ∃p(X ) s.t.
µi(Xi) = p(Xi)

µα(Xα) = p(Xα)






• H(µ) is defined as the entropy of the unique exponential distribution p
∗ of

the form in Eq. (1) consistent with the marginals µ:

H(µ) = −
�

X
p
∗(X ) log p

∗(X ).

The objective in Eq. (2) is the negative of the free energy functional, denoted
F [µ, Θ]. Elegantly, solving this optimization problem will result in a solution
to the exponential summation needed in order to compute the partition function.
Furthermore, the set µ that results in the optimum also provides the marginal
probabilities for each variable and factor in the model.

In itself, this observation is not sufficient to provide an efficient algorithm,
since the maximization in Eq. (2) is as hard as the original inference task. Specif-
ically,M(G) is difficult to characterize and the computation of H(µ) is also in-
tractable, so both need to be approximated. First, one can relax the optimization
problem to be over an outer bound on the marginal polytope. In particular, it is
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natural to require that the resulting pseudo-marginals obey some local normaliza-
tion and marginalization constraints. These constraints define the local polytope:

L(G) =




µ ≥ 0
���

�
xi

µi(xi) = 1
�

xα\xi
µα(xα) = µi(xi)




 .

Obviously, any set µ ∈ M(G), that corresponds to some legal distribution, will
obey these constraints. Moreover, one can define sets of pseudo-marginals that
obey these local constraints but do not correspond to the marginal probabilities of
any legal distribution. Thus, L(G) defines an outer bound overM(G).

As for the entropy term, a family of entropy approximations with a long his-
tory in statistical physics is based on a weighted sum of local entropies:

Hc(µ) =
�

r

crHr(µr),

where r are subsets of variables (regions) and the coefficients cr are called count-
ing numbers (Yedidia et al., 2005). The approximate optimization problem then
takes the form:

log Z̃(Θ) = max
µ∈L(G)

�
ΘT

µ + Hc(µ)
�

(3)

These insights led to an explosion of practical and theoretical interest in prop-
agation based inference methods, and a range of improvements to the convergence
behavior and approximation quality of the basic algorithms have been suggested
(Wainwright et al., 2003; Wiegerinck and Heskes, 2003; Elidan et al., 06; Meshi
et al., 2009).

1.2.3 Relational graphical models

As discussed in Section 1.1.3, in many domains, including protein-protein inter-
action networks, local patterns can recur many times in the network. Relational
probabilistic models (Friedman et al., 1999; Getoor et al., 2001; Taskar et al.,
2002) provide a language for constructing models from such reoccurring sub-
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components. In these models, we distinguish the template-level model that de-
scribes the types of objects and components of the model and how they can be
applied, from the instantiation-level that describes a particular model that is an
instantiation of the template to a specific set of entities. Depending on the specific
instantiation, these sub-components are duplicated to create the actual probabilis-
tic model.

A set of template parameters Ψ = {ψ1, . . . ,ψT} are used to parametrize all
cliques using

P (X ; Ψ) =
1

Z(Ψ)
exp




�

t




�

i∈I(t)

ψt(Xi) +
�

α∈I(t)

ψt(Xα)







,

where I(t) is the set of ground features that are mapped to the t’th parameter. This
template based representation allows the definition of large-scale models using a
relatively small number of parameters.

This type of models has a couple of advantages. First, it enables instantiating
models over very large data-sets while using a relatively small number of param-
eters. Second, it enables implementation that formalizes the relational nature of
many real-life models. That is, it relates multiple observations of a local pattern
to each other as manifestations of the same template rule in various instantiations.
These two advantages are important in order to enable efficient and robust param-
eter estimation and structure learning.

1.3 Research Goals

The first paper in this thesis (Jaimovich et al., 2006) presents the foundations for
formalizing probabilistic models over an interaction network. This model enables
taking into account noisy observations from large-scale measurements while pro-
viding a simultaneous prediction over all interactions. I implement this model on
a set of protein-protein interactions and show how such simultaneous prediction
enables intricate information flow between the interactions, allowing for better
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prediction of protein-protein interactions from noisy observations.
Application of our model to the entire protein-protein interaction network

would require creation of a huge network over millions of interaction variables.
In order to learn the properties of such models from data one should be able to
answer queries regarding the marginal distributions of sets of variables. As exact
inference is not feasible in such settings, the second paper in this thesis (Jaimovich
et al., 2007) presents an algorithm for computing approximate answers to such
queries with a cost that scales only with the size of the template model (and not
with the size of the instantiation). We show that these approximations are equiv-
alent to those that can be computed by standard belief propagation on the fully
instantiated model.

The third paper in this thesis (Jaimovich et al., 2010b) presents a code frame-
work, created in order to enable efficient implementation of various approximate
inference algorithms to graphical models. Although this library was created in
order to implement our ideas towards analysis of the protein-protein interaction
network, a large effort was invested in implementation of such algorithms on gen-
eral models. In addition, we made an effort to document the code infrastructure,
and offer it as a free resource to the scientific community, hoping that it would
serve other groups to use such models in their analysis.

The last paper in this thesis (Jaimovich et al., 2010a) presents analysis of ge-
netic interaction networks. In this work we show how network analysis of such
networks can provide an automatic division of the genes into functionally coher-
ent modules. Furthermore, we show how using additional information on genetic
screens performed under a range of chemical perturbations can shed light on the
cellular function of specific modules. With the recent advances in technology,
large-scale screens of genetic interactions are becoming a very popular assay. I
believe that the methodology developed in this work will serve as a valuable tool
for extracting biological insights from the results of these assays.
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ABSTRACT

Protein–protein interactions play a major role in most cellular processes. Thus, the challenge
of identifying the full repertoire of interacting proteins in the cell is of great importance and
has been addressed both experimentally and computationally. Today, large scale experimen-
tal studies of protein interactions, while partial and noisy, allow us to characterize properties
of interacting proteins and develop predictive algorithms. Most existing algorithms, however,
ignore possible dependencies between interacting pairs and predict them independently of
one another. In this study, we present a computational approach that overcomes this draw-
back by predicting protein–protein interactions simultaneously. In addition, our approach
allows us to integrate various protein attributes and explicitly account for uncertainty of
assay measurements. Using the language of relational Markov networks, we build a unified
probabilistic model that includes all of these elements. We show how we can learn our model
properties and then use it to predict all unobserved interactions simultaneously. Our results
show that by modeling dependencies between interactions, as well as by taking into account
protein attributes and measurement noise, we achieve a more accurate description of the
protein interaction network. Furthermore, our approach allows us to gain new insights into
the properties of interacting proteins.

Key words: Markov networks, probabilistic graphical models, protein–protein interaction
networks.

1. INTRODUCTION

One of the main goals of molecular biology is to reveal the cellular networks underlying the
functioning of a living cell. Proteins play a central role in these networks, mostly by interacting with

other proteins. Deciphering the protein–protein interaction network is a crucial step in understanding the
structure, function, and dynamics of cellular networks. The challenge of charting these protein–protein
interactions is complicated by several factors. Foremost is the sheer number of interactions that have to be
considered. In the budding yeast, for example, there are approximately 18,000,000 potential interactions
between the roughly 6,000 proteins encoded in its genome. Of these, only a relatively small fraction occur

1School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.
2Hadassah Medical School, The Hebrew University, Jerusalem, Israel.
3Computer Science Department, Stanford University, Stanford, CA.

145



146 JAIMOVICH ET AL.

in the cell (von Mering et al., 2002; Sprinzak et al., 2003). Another complication is due to the large
variety of interaction types. These range from stable complexes that are present in most cellular states
to transient interactions that occur only under specific conditions (e.g., phosphorylation in response to an
external stimulus).
Many studies in recent years address the challenge of constructing protein–protein interaction networks.

Several experimental assays, such as yeast two-hybrid (Uetz et al., 2000; Ito et al., 2001) and tandem affinity
purification (Rigaut et al., 1999) have facilitated high-throughput studies of protein–protein interactions
on a genomic scale. Some computational approaches aim to detect functional relations between proteins,
based on various data sources such as phylogenetic profiles (Pellegrini et al., 1999) or mRNA expression
(Eisen et al., 1998). Other computational assays try to detect physical protein–protein interactions by, for
example, evaluating different combinations of specific domains in the sequences of the interacting proteins
(Sprinzak and Margalit, 2001).
The various experimental and computational screens described above have different sources of error

and often identify markedly different subsets of the full interaction network. The small overlap between
the interacting pairs identified by the different methods raises serious concerns about their robustness.
Recently, in two separate works, von Mering et al. (2002) and Sprinzak et al. (2003) conducted a detailed
analysis of the reliability of existing methods, only to discover that no single method provides a reasonable
combination of sensitivity and recall. However, both studies suggest that interactions detected by two (or
more) methods are much more reliable. This motivated later “meta” approaches that hypothesize about
interactions by combining the predictions of computational methods, the observations of experimental
assays, and other correlating information sources, such as that of localization assays. These approaches
use a variety of machine learning methods to provide a combined prediction, including support vector
machines (Bock and Gough, 2001), naive Bayesian classifiers (Jansen et al., 2003), and decision trees
(Zhang et al., 2004).
While the above combined approaches lead to an improvement in prediction, they are still inherently

limited by the treatment of each interaction independently of other interactions. In this paper, we argue that
by explicitly modeling such dependencies, we can leverage observations from varied sources to produce
better joint predictions of the protein interaction network as a whole. As a concrete example, consider the
budding yeast proteins Pre7 and Pre9. These proteins were predicted to be interacting by a computational
assay (Sprinzak and Margalit, 2001). However, according to a large-scale localization assay (Huh et al.,
2003), the two proteins are not co-localized; Pre9 is observed in the cytoplasm and in the nucleus, while
Pre7 is not observed in either of those compartments; see Fig. 1a. Based on this information alone, we
would probably conclude that an interaction between the two proteins is improbable. However, additional
information on related proteins may be relevant. For example, interactions of Pre5 and Pup3 with both
Pre9 and Pre7 were reported by large scale assays (Mewes et al., 1998; Sprinzak and Margalit, 2001);

FIG. 1. Dependencies between interactions can be used to improve predictions. (a) A possible interaction of two
proteins (Pre7 and Pre9). Pre9 is localized in the cytoplasm and in the nucleus (light gray) and Pre7 is not annotated
to be in either one of those. This interaction was predicted by a computational assay (Sprinzak and Margalit, 2001)
(dashed line). This evidence alone provides weak support for an interaction between the two proteins. (b) Two additional
proteins Pre5 and Pup3. These were found to interact with Pre9 and Pre7 either by a computation assay (Sprinzak and
Margalit, 2001) (dashed line) or experimental assays (Mewes et al., 1998) (solid line). The combined evidence gives
more support to the hypothesis that Pre7 and Pre9 interact.
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see Fig. 1b. These observations suggest that these proteins might form a complex. Moreover, as both Pre5
and Pup3 were found to be localized both in the nucleus and in the cytoplasm, we may infer that Pre7 is
also localized in these compartments. This in turn increases our belief that Pre7 and Pre9 interact. Indeed,
this inference is confirmed by other interaction (Gavin et al., 2002) and localization (Kumar, 2002) assays.
This example illustrates two reasoning patterns that we would like to allow in our model. First, we would
like to encode that certain patterns of interactions (e.g., within complexes) are more probable than others.
Second, an observation relating to one interaction should be able to influence the attributes of a protein
(e.g., localization), which in turn will influence the probability of other related interactions.
We present unified probabilistic models for encoding such reasoning and for learning an effective protein–

protein interaction network. We build on the language of relational probabilistic models (Friedman et al.,
1999; Taskar et al., 2002) to explicitly define probabilistic dependencies between related protein–protein
interactions, protein attributes, and observations regarding these entities. The use of probabilistic models
also allows us to explicitly account for measurement noise of different assays. Propagation of evidence
in our model allows interactions to influence one another as well as related protein attributes in complex
ways. This in turn leads to better and more confident overall predictions. Using various proteomic data
sources for the yeast Saccharomyces cerevisiae, we show how our method can build on multiple weak
observations to better predict the protein–protein interaction network.

2. A PROBABILISTIC PROTEIN–PROTEIN INTERACTION MODEL

Our goal is to build a unified probabilistic model that can capture the integrative properties of protein–
protein interactions as exemplified in Fig. 1. We represent protein–protein interactions, interaction assays
readout, and other protein attributes as random variables. We model the dependencies between these entities
(e.g., the relation between an interaction and an assay result) by a joint distribution over these variables.
Using such a joint distribution, we can answer queries such as What is the most likely interaction map
given an experimental evidence? However, a naive representation of the joint distribution requires a huge
number of parameters. To avoid this problem, we rely on the language of relational Markov networks
to compactly represent the joint distribution. We now review relational Markov network models and the
specific models we construct for modeling protein–protein interaction networks.

2.1. Markov networks for interaction models

Markov networks belong to the family of probabilistic graphical models. These models take advantage of
conditional independence properties that are inherent in many real world situations to enable representation
and investigation of complex stochastic systems. Formally, let X = {X1, . . . , XN } be a finite set of random
variables. A Markov network over X describes a joint distribution by a set of potentials !. Each potential
ψc  ! defines a measure over a set of variables Xc  X . We call Xc the scope of ψc. The potential ψc

quantifies local preferences about the joint behavior of the variables in Xc by assigning a numerical value
to each joint assignment of Xc. Intuitively, the larger the value, the more likely the assignment. The joint
distribution is defined by combining the preferences of all potentials

P(X = x) =
1
Z

 

c  C
eψc(xc) (1)

where xc refers to the projection of x onto the subset Xc and Z is a normalizing factor, often called the
partition function, that ensures that P is a valid probability distribution.
The above product form facilitates compact representation of the joint distribution. Thus, we can represent

complex distributions over many random variables using a relatively small number of potentials, each with
limited scope. Moreover, in some cases the product form facilitates efficient probabilistic computations.
Finally, from the above product form, we can read properties of (conditional) independencies between
random variables. Namely, two random variables might depend on each other if they are in the scope of
a single potential, or if one can link them through a series of intermediate variables that are in a scope
of other potentials. We refer the reader to Pearl (1988) for a careful exposition of this subject. Thus,
potentials confer dependencies among the variables in their scope, and unobserved random variables can
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mediate such dependencies. As we shall see below, this criteria allows us to easily check for conditional
independence properties in the models we construct.
Using this language to describe protein–protein interaction networks requires defining the relevant ran-

dom variables and the potential describing their joint behavior. A distribution over protein–protein interac-
tion networks can be viewed as the joint distribution over binary random variables that denote interactions.
Given a set of proteins P = {pi, . . . , pk }, an interaction network is described by interaction random vari-
ables Ipi ,pj for each pair of proteins. The random variable Ipi ,pj takes the value 1 if there is an interaction
between the proteins pi and pj , and 0 otherwise. Since this relationship is symmetric, we view Ipj ,pi

and Ipi ,pj as two ways of naming the same random variable. Clearly, a joint distribution over all these
interaction variables is equivalent to a distribution over possible interaction networks.
The simplest Markov network model over the set of interaction variables has a univariate potential

ψi,j (Ipi ,pj ) for each interaction variable. Each such potential captures the prior (unconditional) prefer-
ence for an interaction versus a noninteraction by determining the ratio between ψi,j (Ipi ,pj = 1) and
ψi,j (Ipi ,pj = 0). This model yields the next partition of the joint distribution function:

P(X ) =
1
Z

 

pi,pj  P
e
ψi,j (Ipi ,pj

) (2)

Figure 2a shows the graphic representation of such a model for three proteins. This model by itself is
overly simplistic as it views interactions as independent from one another.
We can extend this oversimplistic model by incorporating protein attributes that influence the probability

of interactions. Here we consider cellular localization as an example of such an attribute. The intuition
is simple: if two proteins interact, they have to be physically co-localized. As a protein may be present
in multiple localizations, we model cellular localization by several indicator variables, Ll,pi , that denote
whether the protein pi is present in the cellular localization l  L. We can now relate the localization
variables for a pair of proteins with the corresponding interaction variable between them by introducing
a potential ψl,i,j (Ll,pi , Ll,pj , Ipi ,pj ). Such a potential can capture preference for interactions between co-
localized proteins. Note that in this case the order of pi and pj is not important, and thus we require this
potential to be symmetric around the role of pi and pj (we return to this issue in the context of learning).
As with interaction variables, we might also have univariate potentials on each localization variable Ll,pj

that capture preferences over the localizations of specific proteins.
Assuming that X contains variables {Ipi ,pj } and {Ll,pi }, we now have a Markov network of the form

P(X ) =
1
Z

 

pi,pj  P
e
ψi,j (Ipi ,pj

)
 

l  L,pi  P
eψl,i (Ll,pi

)
 

l  L,pi ,pj  P
e
ψl,i,j (Ipi ,pj

,Ll,pi
,Ll,pj

) (3)

The graph describing this model can be viewed in Fig. 2b. Here, representations of more complex distri-
butions are possible, as interactions are no longer independent of each other. For example, Ipi ,pj and Ll,pi

are co-dependent as they are in the scope of one potential. Similarly, Ipi ,pk and Ll,pi are in the scope of
another potential. We conclude that the localization variable Ll,pi mediates dependency between interac-
tions of pi with other proteins. Applying this argument recursively, we see that all interaction variables are
co-dependent on each other. Intuitively, once we observe one interaction variable, we change our beliefs
about the localization of the two proteins and in turn revise our belief about their interactions with other
proteins.
However, if we observe all the localization variables, then the interaction variables are conditionally

independent of each other. That is a result of the fact that if Ll,pi is observed, it cannot function as a
dependency mediator. Intuitively, once we observe the localization variables, observing one interaction
cannot influence the probability of another interaction.

2.2. Noisy sensor models as directed potentials

The models we discussed so far make use of undirected potentials between variables. In many cases,
however, a clear directional cause and effect relationship is known. In our domain, we do not observe protein
interactions directly, but rather through experimental assays. We can explicitly represent the stochastic
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FIG. 2. Illustration of different models describing underlying different independence assumptions for a model over
three proteins. An undirected arc between variables denotes that the variables coappear in the scope of some potential.
A directed arc denotes that the target depends on the source in a conditional distribution. (a) Model shown in
Equation (2) that assumes all interactions are independent of each other. (b) Model shown in Equation (3) that
introduces dependencies between interactions using their connection with the localization of the proteins. (c) Model
described in Equation (4) that adds noisy sensors to the interaction variables.

relation between an interaction and its assay readout within the model. For each interaction assay a  A
aimed toward evaluating the existence of an interaction between the proteins pi and pj , we define a binary
random variable IAa

pi,pj
. Note that this random variable is not necessarily symmetric, since for some

assays, such as yeast two hybrid, IAa
pi,pj

and IAa
pj ,pi

represent the results of two different experiments.
It is natural to view the assay variable IAa

pi,pj
as a noisy sensor of the real interaction Ipi ,pj . In this

case, we can use a conditional distribution potential that captures the probability of the observation given
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the underlying state of the system:

e
ψa

i,j (IAa
pi ,pj

,Ipi ,pj
)

 P(IAa
pi,pj

| Ipi ,pj ).

Conditional probabilities have several benefits. First, due to local normalization constraints, the number of
free parameters of a conditional distribution is smaller (two instead of three in this example). Second, such
potentials do not contribute to the global partition function Z, which is typically hard to compute. Finally,
the specific use of directed models will allow us to prune unobserved assay variables. Namely, if we do
not observe IAa

pi,pj
, we can remove it from the model without changing the probability over interactions.

Probabilistic graphical models that combine directed and undirected relations are called chain graphs
(Buntine, 1995). Here we examine a simplified version of chain graphs where a dependent variable as-
sociated with a conditional distribution (i.e., IAa

pi,pj
) is not involved with other potentials or conditional

distributions. If we let Y denote the assay variables, then the joint distribution is factored as

P(X ,Y) = P(X )P (Y |X ) = P(X )
 

pi,pj  P,a  A
P(IAa

pi,pj
|Ipi ,pj ) (4)

where P(X ) is the Markov network of Equation (3). The graph for this model is described in Fig. 2c.

2.3. Template Markov networks

Our aim is to construct a Markov network over a large-scale protein–protein interaction network. Using
the model described above for this task is problematic in several respects. First, for the model with just
univariate potentials over interaction variables, there is a unique parameter for each possible assignment
of each possible interaction of protein pairs. The number of parameters is thus extremely large even for
the simplest possible model (in the order of ≈ 60002

2 for the protein–protein interaction network of the
budding yeast S. cerevisiae). Robustly estimating such a model from finite data is clearly impractical.
Second, we want to generalize and learn “rules” (potentials) that are applicable throughout the interaction
network, regardless of the specific subset of proteins we happen to concentrate on. For example, we want
the probabilistic relation between interaction (Ipi ,pj ) and localization (Ll,pi , Ll,pj ), to be the same for all
values of i and j .
We address these problems by using template models. These models are related to relational probabilistic

models (Friedman et al., 1999; Taskar et al., 2002) in that they specify a recipe with which a concrete
Markov network can be constructed for a specific set of proteins and localizations. This recipe is specified
via template potentials that supply the numerical values to be reused. For example, rather than using a
different potential ψl,i,j for each protein pair pi and pj , we use a single potential ψl . This potential is
used to relate an interaction variable Ipi ,pj with its corresponding localization variables Ll,pi and Ll,pj ,
regardless of the specific choice of i and j . Thus, by reusing parameters, a template model facilitates
a compact representation and at the same time allows us to apply the same “rule” for similar relations
between random variables.
The design of the template model defines the set of potentials that are shared. For example, when

considering the univariate potential over interactions, we can have a single template potential for all
interactions ψ(Ipi ,pj ). On the other hand, when looking at the relation between localization and interaction,
we can decide that for each localization value l we have a different template potential for ψl (Ll,pi ). Thus,
by choosing which templates to create, we encapsulate the complexity of the model.
For the model of Equation (3), we introduce one template potential ψ(Ipi ,pj ) and one template potential

for each localization l that specifies the recipe for potentials of the form ψl (Ipi ,pj , Ll,pi , Ll,pj ). The first
template potential has one free parameter, and each of the latter ones have five free parameters (due to
symmetry). We see that the number of parameters is a small constant, instead of growing quadratically
with the number of proteins.

2.4. Protein–protein interaction models

The discussion so far defined the basis for a simple template Markov network for the protein–protein
interaction network. The form given in Equation (4) relates protein interactions with multiple interaction
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assays (Fig. 3a) and protein localizations (Fig. 3b). In this model, the observed interaction assays are viewed
as noisy sensors of the underlying interactions. Thus, we explicitly model experiment noise and allow the
measurement to stochastically differ from the ground truth. For each type of assay, we have a different
conditional probability that reflects the particular noise characteristics of that assay. In addition, the basic
model contains a univariate template potential ψ(Ipi ,pj ) that is applied to each interaction variable. This
potential captures the prior preferences for interaction (before we make any additional observations).
In this model, if we observe the localization variables, then, as discussed above, interaction variables are

conditionally independent. This implies that if we observe both the localization variables and the interaction
assay variables, the posterior over interactions can be reformulated as an independent product of terms,
each one involving Ipi ,pj , its related assays, and the localization of pi and pj . Thus, the joint model can
be viewed as a collection of independent models for each interaction. Each of these models is equivalent
to a naive Bayes model (see, e.g., Jansen et al. [2003]). We call this the basic model (see Fig. 3e).
We now consider two extensions to the basic model. The first extension relates to the localization

random variables. Instead of using the experimental localization results to assign these variables, we
can view these experimental results as noisy sensors of the true localization. To do so, we introduce
localization assay random variables LAl,p, which are observed, and relate each localization assay variable
to its corresponding hidden ground truth variable using a conditional probability (Fig. 3c). The parameters
of this conditional probability depend on the type of assay and the specific cellular localization. For
example, some localizations, such as “bud,” are harder to detect as they represent a transient part of the
cell cycle, while other localizations, such as “cytoplasm,” are easier to detect since they are present in
all stages of the cell’s life and many proteins are permanently present in them. As we have seen above,
allowing the model to infer the localization of a protein provides a way to create dependencies between
interaction variables. For example, an observation of an interaction between pi and pj may change the

FIG. 3. Protein–protein interaction models. In all models, a plain box stands for a hidden variable, and a shadowed
box represents an observed variable. The model consists of four classes of variables and four template potentials
that relate them. (a) Conditional probability of an interaction assay given the corresponding interaction; (b) potential
between an interaction and the localization of the two proteins; (c) conditional probability of a localization assay given
a corresponding localization; (d) potential between three related interacting pairs; (e)–(h) The four models we build
and how they hold the variable classes and global relations between them.
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belief in the localization of pi and thereby influence the belief about the interaction between pi and another
protein, pk , as in the example of Fig. 1. We use the name noise model to refer to the basic model extended
with localization assay variables (see Fig. 3f). This model allows, albeit indirectly, interactions to influence
each other in complex ways via co-related localization variables.
In the second extension, we explicitly introduce direct dependencies between interaction variables by

defining potentials over several interaction variables. The challenge is to design a potential that captures
relevant dependencies in a concise manner. Here we consider dependencies between the three interactions
among a triplet of proteins. More formally, we introduce a three variables potential ψ3(Ipi ,pj , Ipi ,pk , Ipj ,pk )

(Fig. 3d). This model is known in the social network literature as the triad model (Frank and Strauss, 1986).
Such a triplet potential can capture properties such as preferences for (or against) adjacent interactions, as
well as transitive closure of adjacent edges. Given our set of proteins P , the induced Markov network has |P |
3

 
potentials, all of which replicate the same parameters of the template potential. Note that this requires

the potential to be ignorant of the order of its arguments (as we can “present” each triplet of interactions
in any order). Thus, the actual number of parameters for ψ3 is four—one when all three interactions are
present, another for the case when two are present, and so on. We use the name triplet model to refer to
the basic model extended with these potentials (see Fig. 3g). Finally, we use the name full model to refer
to the basic model with both the extensions of noise and triplet (see Fig. 3h).

3. LEARNING AND INFERENCE

In the previous section, we qualitatively described the design of our model and the role of the template
potentials, given the interpretation we assign to the different variables. In this section, we address situations
where this qualitative description of the model is given and we need to find an explicit quantification for
these potentials. At first sight, it may appear as if we could manually decide, based on expert advice,
on the values of this relatively small number of parameters. Such an approach is problematic in several
respects. First, a seemingly small difference might have a significant effect on the predictions. This effect
is amplified by the numerous times each potential is used within the model. We may not expect an expert
to be able to precisely quantify the potentials. Second, even if each potential can be quantified reasonably
on its own, our goal is to have the potentials work in concert. Ensuring this is nearly impossible using
manual calibration.
To circumvent these problems, we adopt a data-driven approach for estimating the parameters of our

model, using real-life evidence. That is, given a dataset D of protein–protein interactions, as well as
localization and interaction assays, we search for potentials that best “explain” the observations. To do so,
we use the maximum likelihood approach where our goal is to find a parameterization # so that the log
probability of the data, logP(D | #), is maximized. Note that obtaining such a database D is not always
an easy task. In our case, it means we have to find a reliable set of both interacting protein pairs and
“noninteracting” protein pairs. Finding such a reliable database is not simple, since we have no evidence
for such a “noninteraction.”

3.1. Complete data

We first describe the case whereD is complete, that is, every variable in the model is observed. Recall that
our model has both undirected potentials and conditional probabilities. Estimating conditional probabilities
from complete data is straightforward and amounts to gathering the relevant sufficient statistics counts. For
example, for the template parameter corresponding to a positive interaction assay given that the interaction
actually exists, we have

P(IAa
pi,pj

= 1 | Ipi ,pj = 1) =
N(IAa

pi,pj
= 1, Ipi ,pj = 1)

N(Ipi ,pj = 1)
(5)

where N(IAa
pi,pj

= 1, Ipi ,pj = 1) is the number of times both IAa
pi,pj

and Ipi ,pj are equal to one in D and
similarly for N(Ipi,pj = 1) (see, for example, Heckerman [1998]). Note that this simplicity of estimating
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conditional probability is an important factor in preferring these to undirected potentials where it is natural
to do so.
Finding the maximum likelihood parameters for undirected potentials is more involved. Although the

likelihood function is concave, there is no closed-form formula that returns the optimal parameters. This is
a direct consequence of the factorization of the joint distribution Equation (1). The different potentials are
linked to each other via the partition function, and thus we cannot optimize each of them independently.
A common heuristic is a gradient ascent search in the parameter space (e.g., Bishop [1995]). This requires
that we repeatedly compute both the likelihood and its partial derivatives with respect to each parameter.
It turns out that for a specific entry in a potential ψc(xc), the gradient is

∂ logP(D | #)

∂ψc(xc)
= P̂ (xc) − P(xc | #) (6)

where P̂ (xc) is the empirical count of xc (Della Pietra et al., 1997). Thus, the gradient equals to the
difference between the empirical count of an event and the probability of that event P(xc) as predicted by
the model. This is in accordance with the intuition that at the maximum likelihood parameters, where the
gradient is zero, the predictions of the model and the empirical evidence match. Note that this estimation
may be significantly more time consuming than in the case of conditional probabilities, and that it is
sensitive to the large dimension of the parameter space—the combined number of all values in all the
potentials.

3.2. Parameter sharing

In our template model, we use many potentials which share the same parameters. In addition to the
conceptual benefits of such a model (as described in Section 2), template potentials can also help us
in parameter estimation. In particular, the large reduction of the size of the parameter space significantly
speeds up and stabilizes the estimation of undirected potentials. Furthermore, many observations contribute
to the estimation of each potential, leading to an estimation that is more robust.
In our specific template model, we also introduce constraints on the template potentials to ensure that

the model captures the desired semantics (e.g., invariance to protein order). These constraints are encoded
by parameter sharing and parameter fixing (e.g., if two proteins are not in a specific cellular location, the
potential value should have no effect on the interaction of these two proteins). This further reduces the
size of the parameter space in the model. See Fig. 4 for the design of our potentials.
Learning with shared parameters is essentially similar to simple parameter learning. Concretely, let a set

of potentials C share a common potential parameter θ so that for all c  C we have ψc(xc) = θ . Using the
chain rule of partial derivatives, it can be shown that

∂ logP(e)
∂θ

=
 

c  C

∂ logP(e)
∂ψc(xc)

.

Thus, the derivatives with respect to the template parameters are aggregates of the derivatives of the corre-
sponding entries in the potentials of the model. Similarly, estimating template parameters for conditional
potentials amount to an aggregation of the relevant counts.
It is important to note that evaluating the gradients does not require access to the whole data. As the

gradient depends only on the aggregate count associated with each parameter, we need to store only these
sufficient statistics.

3.3. Incomplete data

In real life, the data is seldom complete, and some variables in the model are unobserved. In fact,
some variables, such as the true location of a protein, are actually hidden variables that are never observed
directly. To learn in such a scenario, we use the expectation maximization (EM) algorithm (Dempster et al.,
1977). The basic intuition is simple. We start with some initial guess for the model’s parameters. We then
use the model and the current parameters to “complete” the missing values in D (see Section 3.4 below).
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FIG. 4. A summary of the free parameters that are learned in the model. For each potential/conditional distribution,
we show the entries that need to be estimated. The remaining entries are set to 0 in potentials and to the complementary
value in conditional distributions.

The parameters are then reestimated based on the “completed” data using the complete data procedure
described above, and so on. Concretely, the algorithm has the following two steps:

• E-step. Given the observations e, the model, and the current parameterization #, compute the expected
sufficient statistics counts needed for estimation of the conditional probabilities and the posterior prob-
abilities P(xc | e, #) required for estimation of the undirected potentials.

• M-step. Maximize the parameters of the model using the computations of the E-step, as if these were
computed from complete data.

Iterating these two steps is guaranteed to converge to a local maximum of the likelihood function.



PROTEIN–PROTEIN INTERACTIONS 155

3.4. Inference

The task of inference involves answering probabilistic queries given a model and its parameters. That
is, given some evidence e, we are interested in computing P(x | e, #) for some (possibly empty) set of
variables e as evidence. Inference is needed both when we want to make predictions about new unobserved
entities and when we want to learn from unobserved data. Specifically, we are interested in computation of
the likelihood P(D | #) and the probability of the missing observations (true interactions and localization)
given the observed assays.
In general, exact inference is computationally intensive (Cooper, 1990) except for a limited classes of

structures (e.g., trees). Specifically, in our model that involves tens of thousands of potentials and many
undirected cycles, exact inference is simply infeasible. Thus, we need to resort to an approximate method.
Of the numerous approximate inference techniques developed in recent years, such as variational methods
(e.g., Jordan et al. [1998]) and sampling-based methods (e.g., Neal [1993]), propagation based methods
(e.g., Murphy and Weiss [1999]) have proved extremely successful and particularly efficient for large-scale
models.
In this work, we use the loopy belief propagation algorithm (e.g., Pearl [1988]). The intuition behind

the algorithm is straightforward. Let b(xc) be the belief (current estimate of the marginal probability)
of an inference algorithm about the assignment to some set of variables Xc. When inference is exact
b(xc)  P(xc). Furthermore, beliefs over different subsets of variables are consistent in that they agree
on the marginals of variables in their intersection. In belief propagation, we phrase inference as message
passing between sets of variables, which are referred to as cliques. Each clique has its own potential that
forms its initial belief. For example, these potentials can be defined using the same potentials as in the
factorization of the joint distribution function in Equation (1). During belief propagation, each clique passes
messages to cliques that share some of its variables, conveying its current belief over the variables in the
intersection between the two cliques. Each message updates the beliefs of the receiving clique to calibrate
the beliefs of the two cliques to be consistent with each other.
Concretely, a message from clique s to clique c that share some common variables is defined recur-

sively as

ms  c(xs  c) =
 

s!c

 

 eψs (xs )
 

t  {Ns!c}

mt  s(xs)

 

 (7)

where ψs(xs) is s’s potential, s  c denotes the variables in the intersection of the two cliques, and Ns is
the set of neighbors (see below for description of the graph construction) of the clique s. The belief over
a clique c is then defined as

b(xc) = eψc(xc)
 

s  Nc

ms  c(xc).

The result of these message propagations depends on the choice of cliques, their potentials, and the
neighborhood structure between them. To perform inference in a model, we select cliques that are consistent
with the model in the sense that each model potential (that is, every ψc(xc) from Equation (1)) is absorbed
in the potential of exactly one clique. This implies that the initial potentials of the cliques are exactly the
potentials of the model. Moreover, we require that all the cliques that contain a particular variable X form
one connected component. This implies that beliefs about X will be eventually shared by all cliques that
contain it.
Pearl (1988) showed that if these conditions are met and the neighborhood structure is singly connected

(that is, there is at most a single path between any two cliques), then this simple and intuitive algorithm is
guaranteed to provide the exact marginals for each clique. In fact, using the correct ordering of messages,
the algorithm converges to the true answer in just two passes along the tree.
The message defined in Equation (7) can be applied to an arbitrary clique neighborhood structure even if

it contains loops. In this case, it is not even guaranteed that the final beliefs have a meaningful interpretation.
In fact, in such a situation, the message passing is not guaranteed to converge. Somewhat surprisingly,
applying belief propagation to graphs with loops produces good results even when the algorithm does not
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converge and is arbitrarily stopped after some predefined time has elapsed (e.g., Murphy and Weiss [1999]).
Indeed, the loopy belief propagation algorithm has been used successfully in numerous applications and
fields (e.g., Freeman and Pasztor [2000] and McEliece et al. [1998]). The empirical success of the algorithm
found theoretical basis with recent works and in particular with the work of Yedidia et al. (2002) that
showed that even when the underlying graph is not a tree the fixed points of the algorithm correspond to
local minima of the Bethe free energy.
Here we use the effective variant of loopy belief propagation which involves the construction of a

generalized cluster graph over which the messages are propagated. The nodes in this graph are the cliques
that are part of the model. An edge Esc is created between any two cliques s and c that share common
variables. The scope of an edge is the variables Xs  c that are in the intersection of the scope of the two
cliques. To ensure mathematical coherence, each variable X must satisfy the running intersection property:
there must be one and only one path between any two cliques in which X appears. With the above
construction, this amounts to requiring that X does not appear in a loop. We ensure this by constructing
a spanning tree over the edges that have X in their scope and then remove it from the scope of all edges
that are not part of that tree. We repeat this for all random variables in the graph. Messages are then
propagated along the remaining edges and their scope. We note that our representation is only one out of
several possible options. Each different representation might produce different propagation schemes and
different resulting beliefs. We are guarantied though that the insights of Yedidia et al. (2002) hold in all
possible representations, as long as we satisfy the conditions above.

4. EXPERIMENTAL EVALUATION

In Section 2, we discussed a general framework for modeling protein–protein interactions and introduced
four specific model variants that combine different aspects of the data. In this section, we evaluate the utility
of these models in the context of the budding yeast S. cerevisiae. For this purpose, we choose to use four
data sources, each with different characteristics. The first is a large-scale experimental assay for identifying
interacting proteins by the yeast two hybrid method (Uetz et al., 2000; Ito et al., 2001). The second is a
large-scale effort to curate experimental results from the literature about protein complexes (Mewes et al.,
1998). The third is a collection of computational predictions based on correlated domain signatures learned
from experimentally determined interacting pairs (Sprinzak and Margalit, 2001). The fourth is a large scale
experimental assay examining protein localization in the cell using GFP-tagged protein constructs (Huh
et al., 2003). Of the latter, we regarded four cellular localizations (nucleus, cytoplasm, mitochondria,
and ER).
In our models, we have a random variable for each possible interaction and a random variable for each

assay measuring such an interaction. In addition, we have a random variable for each of the four possible
localizations of each protein and yet another variable corresponding to each localization assay. A model for
all ≈ 6,000 proteins in the budding yeast includes close to 20,000,000 random variables. Such a model is
too large to cope with using our current methods. Thus, we limit ourselves to a subset of the protein pairs,
retaining both positive and negative examples. We construct this subset from the study of von Mering et al.
(2002) who ranked ≈ 80,000 protein–protein interactions according to their reliability based on multiple
sources of evidence (including some that we do not examine here). From this ranking, we consider the
2,000 highest-ranked protein pairs as “true” interactions. These 2,000 interactions involve 867 proteins. The
selection of negative (noninteracting) pairs is more complex. There is no clear documentation of failure to
find interactions, and so we consider pairs that do not appear in von Mering’s ranking as noninteracting.
Since the number of such noninteracting protein pairs is very large, we randomly selected pairs from the
867 proteins and collected 2,000 pairs that do not appear in von Mering’s ranking as “true” noninteracting
pairs. Thus, we have 4,000 interactions, of these, half interacting and half noninteracting. For these entities,
the full model involves approximately 17,000 variables and 38,000 potentials that share 37 parameters.
The main task is to learn the parameters of the model using the methods described in Section 3. To

get an unbiased estimate of the quality of the predictions with these parameters, we test our predictions
on interactions that were not used for learning the model parameters. We use a standard four-fold cross
validation technique, where in each iteration we learn the parameters using 1,500 positive and 1,500 negative
interactions and then test on 500 unseen interactions of each type. Cross validation in the relational setting
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is more subtle than learning with standard i.i.d. instances. In particular, when testing the predictions on the
1,000 unseen interactions, we use both the parameters we learned from the interactions in the training set
and also the observations on these interactions. This simulates a real world scenario when we are given
observations on some set of interactions, and are interested in predicting the remaining interactions, for
which we have no direct observations.
To evaluate the performance of the different model elements, we compare the four models described in

Section 2 (see Fig. 3). Figure 5 compares the test set performance of these four models. The advantage of
using an integrative model that allows propagation of influence between interactions and protein attributes is
clear, as all three variants improve significantly over the baseline model. Adding the dependency between
different interactions leads to a greater improvement than allowing noise in the localization data. We
hypothesize that this potential allows for complex propagation of beliefs beyond the local region of a
single protein in the interaction network. When both elements are combined, the full model reaches quite
impressive results: close to 85% true positive rate with just a 1% false positive rate. This is in contrast
to the baseline model that achieves less than half of the above true-positive rate with the same amount of
false positives.
A potential concern is that the parameters we learn are sensitive to the number of proteins and interactions

we have. To further evaluate the robustness of the parameters in regard to these aspects, we applied the
parameters learned using the 4,000 interactions described above in additional settings. Specifically, we
increase the dataset of interaction by adding additional 2,000 positive examples (again from von Mering’s
ranking) and 8,000 negative examples (random pairs that do not appear in von Mering’s ranking), resulting
in a dataset of 14,000 interactions. We then performed four-fold cross-validation on this dataset, but used
the parameters learned in the previous cross-validation trial rather than learning new parameters. The
resulting ROC curve was quite similar to Fig. 5 (data not shown). This result indicates that at least in this
range of numbers the learned parameters are not specific to a particular number of training interactions.

FIG. 5. Test performance (based on 4-fold cross validation) of the different models we evaluate. Shown is the true
positive rate vs. the false positive rate for four models: Basic with just interaction, interaction assays, and localization
variables; Noise that adds the localization assay variables; Triplets that adds a potential over three interactions; and
Full that combines both extensions.
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Another potential concern is that in real life we might have few observed interactions. In our cross-
validation test, we have used the training interactions as observations when making our predictions about
the test interactions. A harder task is to infer the test interactions without observing the training interactions.
That is, we run prediction using only the observed experimental assays. We evaluated prediction accuracy
as before using the same four-fold cross validation training but predicting test interactions without using
the training set interactions as evidence. Somewhat surprisingly, the resulting ROC curves are quite similar
to Fig. 5 with a slight decrease in sensitivity.
We can gain better insight into the effect of adding a noisy sensor model for localization by examining

the estimated parameters (Fig. 6). As a concrete example, consider the potentials relating an interaction
variable with the localization of the two relevant proteins in Fig. 6b. In both models, when only one of the
proteins is localized in the compartment, noninteraction is preferred, and if both proteins are co-localized,
interaction is preferred. We see that smaller compartments, such as the mitochondria, provide stronger
support for interaction. Furthermore, we can see that our noise model allows us to be significantly more
confident in the localization attributes in the nucleus and in the cytoplasm. This confidence might reveal,
by using information from the learned interactions, the missing annotation of the interaction partners of
these proteins.
Another way of examining the effect of the noisy sensor is to compare the localization predictions

made by our model with the original experimental observations. For example, out of 867 proteins in our
experiment, 398 proteins are observed as nuclear (Huh et al., 2003). Our model predicts that 492 proteins
are nuclear. Of these, 389 proteins were observed as nuclear, 36 are nuclear according to YPD (Costanzo
et al., 2001), 45 have other cellular localizations, and 22 have no known localization. We get similar results
for other localizations. These numbers suggest that our model is able to correctly predict the localizations
of many proteins, even when the experimental assay misses them.
As an additional test to evaluate the information provided by localization, we repeated the original

cross-validation experiments with randomly reshuffled localization data. As expected, the performance
of the basic model decreased dramatically. The performance of the full model, however, did not alter
significantly. A possible explanation is that the training “adapted” the hidden localization variables to
capture dependencies between interactions. Indeed, the learned conditional probabilities in the model
capture a weak relationship between the localization variables and the shuffled localization assays. This
experiment demonstrates the expressive power of the model in capturing dependencies and shows the ability
of the model to use hidden protein attributes (the localization variables in this case) to capture dependencies

FIG. 6. Examples of potentials learned using the Basic and the Noise models. (a) Univariate potentials of interactions
and the four localizations. The number shown is the difference between a positive and a negative value so that a larger
negative number indicates preference for no interaction or against localization. (b) The four potentials between an
interaction Ipi ,pj and localizations of the proteins Ll,pi

, Ll,pj
for the four different localizations. For each model,

the first column corresponds to the case where one protein is observed in the compartment while the other is not. The
second column corresponds to the case where both proteins are observed in the compartment. The number shown is the
difference between the potential value for interaction and the value for no interaction. As can be seen, co-localization
typically increases the probability of interaction, while disagreement on localization reduces it. In the Noise model,
co-localization provides more support for interaction, especially in the nucleus and cytoplasm.
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between interaction variables. This experiment also reinforces the caution needed in interpreting what
hidden variables represent. In our previous experiment, the localization assay was informative, and thus the
hidden localization variables maintain the intended semantics. In the reshuffled experiment, the localization
observations were uninformative, and the learned model in effect ignores them.
To get a better sense of the way in which our model improves predictions, we consider specific examples

where the predictions of the full model differ from those of the basic model. Consider the unobserved
interaction between the EBP2 and NUG1 proteins. These proteins are part of a large group of proteins
involved in rRNA biogenesis and transport. Localization assays identify NUG1 in the nucleus, but do not
report any localization for EBP2. The interaction between these two proteins was not observed in any of the
three interaction assays included in our experiment and thus was considered unlikely by the basic model. In
contrast, propagation of evidence in the full model effectively integrates information about interactions of
both proteins with other rRNA processing proteins. We show a small fragment of this network in Fig. 7a.
In this example, the model is able to make use of the fact that several nuclear proteins interact with both
EBP2 and NUG1 and thus predicts that EBP2 is also nuclear and indeed interacts with NUG1. Importantly,
these predictions are consistent with the cellular role of these proteins and are supported by independent
experimental assays (Costanzo et al., 2001; von Mering et al., 2002).
Another, qualitatively different example involves the interactions between RSM25, MRPS9, and MRPS28.

While there is no annotation of RSM25’s cellular role, the other two proteins are known to be components
of the mitochondrial ribosomal complex. Localization assays identify RSM25 and MRPS28 in the mito-
chondria, but do not report any observations about MRPS9. As in the previous example, neither of these
interactions was tested by the assays in our experiment. As expected, the baseline model predicts that both
interactions do not occur with a high probability. In contrast, by utilizing a fragment of our network shown
in Fig. 7b, our model predicts that MRPS9 is mitochondrial and that both interactions occur. Importantly,
these predictions are supported by independent results (Costanzo et al., 2001; von Mering et al., 2002).
These predictions suggest that RSM25 is related to the ribosomal machinery of the mitochondria. Such
an important insight could not be gained without using an integrated model such as the one presented in
this work.
Finally, we evaluate our model in a more complex setting. We consider the interactions of various proteins

with the mediator complex. This complex has an important role in helping activator transcription factors to
recruit the RNA polymerase II. We used the results of Gugliemi et al. (2004) as evidence for interactions
with the mediator complex. We then applied the parameters previously learned to infer interactions of other
proteins with the complex. Specifically, we found a set of 496 proteins that according to the ranking of
von Mering et al. might be in interaction with proteins in the mediator complex. Among these proteins,
there are 7,179 potential interactions according to that ranking. We then applied the inference procedure to
the model involving these proteins and potential interactions, using the same assays as above and the same
learned parameters, and taking the interactions within the mediator complex to be observed. The predicted

FIG. 7. Two examples demonstrating the difference between the predictions by our Full model and those of the
Basic model. Solid lines denote observed interactions and a dashed line corresponds to an unknown one. Grey colored
nodes represent proteins that are localized in the nucleus in Fig. (a) and in the mitochondria in Fig. (b). White colored
nodes have no localization evidence. In (a), unlike the Basic model, our Full model correctly predicts that EBP2 is
localized in the nucleus and that it interacts with NUG1. Similarly, in (b) we are able to correctly predict that MRPS9
is localized in the mitochondria and interacts with RSM25, which also interacts with MRPS28.
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interaction network is shown in Fig. 8. Our model predicts that only a small set of the 496 proteins
interact directly with the mediator complex. Two large complexes could be identified in the network: the
proteasome complex and the TFIID complex. In the predicted network, these interact with the mediator
complex via Tbf1 and Spt15, respectively, two known DNA binding proteins. Many other DNA binding
proteins interact with the complex directly to recruit the RNA polymerase II.

5. DISCUSSION

In this paper we presented a general purpose framework for building integrative models of protein–
protein interaction networks. Our main insight is that we should view this problem as a relational learning
problem, where observations about different entities are not independent. We build on and extend tools
from relational probabilistic models to combine multiple types of observations about protein attributes and
protein–protein interactions in a unified model. We constructed a concrete model that takes into account
interactions, interaction assays, localization of proteins in several compartments, and localization assays, as
well as the relations between these entities. Our results demonstrate that modeling the dependencies between
interactions leads to significantly better predictions. We have also shown that including observations of
protein properties, namely, protein localization, and explicit modeling of noise in such observations, leads
to further improvement. Finally, we have shown how evidence can propagate in the model in complex
ways leading to novel hypotheses that can be easily interpreted.
Our approach builds on relational graphical models. These models exploit a template level description

to induce a concrete model for a given set of entities and relations among these entities (Friedman et al.,
1999; Taskar et al., 2002). In particular, our work is related to applications of these models to link
prediction (Getoor et al., 2001; Taskar et al., 2004b). In contrast to these works, the large number of
unobserved random variables in the training data poses significant challenges for the learning algorithm.
Our probabilistic model over network topology is also related to models devised in the literature of
social networks (Frank and Strauss, 1986). Recently, other studies tried to incorporate global views of the
interaction network when predicting interactions. For example, Iossifov et al. (2004) proposed a method to
describe properties of an interaction network topology when combining predictions from literature search
and yeast two-hybrid data for a dataset of 83 proteins. Their model is similar to our triplet model in that it
combines a model of dependencies between interactions with the likelihood of independent observations
about interactions. Their model of dependencies, however, focuses on the global distribution of node
degrees in the network, rather than on local patterns of interactions. Similarly, Morris et al. (2004) use
degree distributions to impose priors on interaction graphs. They decompose the interactions observed
by yeast two-hybrid data as a superimposition of several graphs, one representing the true underlying
interactions, and another the systematic bias of the measurement technology. Other recent studies employ
variants of Markov networks to analyze protein interaction data. In these studies, however, the authors
assumed that the interaction network is given and use it for other tasks, e.g., predicting protein function
(Deng et al., 2004; Leone and Pagnani, 2005; Letovsky and Kasif, 2003) and clustering interacting co-
expressed proteins (Segal et al., 2003). In contrast to our model, these works can exploit the relative
sparseness of the given interaction network to perform fast approximate inference.
Our emphasis here was on presenting the methodology and evaluating the utility of integrative mod-

els. These models can facilitate incorporation of additional data sources, potentially leading to improved
predictions. The modeling framework allows us to easily extend the models to include other properties of
both the interactions and the proteins, such as cellular processes or expression profiles, as well as different
interaction assays. Moreover, we can consider additional dependencies that impact the global protein–
protein interaction network. For example, a yeast two-hybrid experiment might be more successful for
nuclear proteins and less successful for mitochondrial proteins. Thus, we would like to relate the cellular
localization of a protein and the corresponding observation of a specific type of interaction assay. This can
be easily achieved by incorporating a suitable template potential in the model. An exciting challenge is to
learn which dependencies actually improve predictions. This can be done by methods of feature induction
(Della Pietra et al., 1997). Such methods can also allow us to discover high-order dependencies between
interactions and protein properties.
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FIG. 8. (a) The mediator complex (taken from Figure 8b of Gugliemi et al. (2004) with permission). (b) Part of
the interaction network predicted by our method (shown are interactions predicted with probability ≥ 0.5). Nodes
are colored according to their GO annotation, and mediator complex subunits are painted as in (a). The lower orange
circle marks the TFIID complex and the upper circle marks the proteasome complex.
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Extending our framework to more elaborate models and networks that consider a larger number of pro-
teins poses several technical challenges. Approximate inference in larger networks is both computationally
demanding and less accurate. Generalizations of the basic loopy belief propagation method (e.g., Yedidia
et al. [2002]) as well as other related alternatives (Jordan et al., 1998; Wainwright et al., 2002), may
improve both the accuracy and the convergence of the inference algorithm. Learning presents additional
computational and statistical challenges. In terms of computation, the main bottleneck lies in multiple in-
vocations of the inference procedure. One alternative is to utilize information learned efficiently from few
samples to prune the search space when learning larger models. Recent results suggest that large margin
discriminative training of Markov networks can lead to a significant boost in prediction accuracy (Taskar
et al., 2004a). These methods, however, apply exclusively to fully observed training data. Extending these
methods to handle partially observable data needed for constructing protein–protein interaction networks
is an important challenge.
Finding computational solutions to the problems discussed above is a crucial step on the way to a global

and accurate protein–protein interaction model. Our ultimate goal is to be able to capture the essential
dependencies between interactions, interaction attributes, and protein attributes, and at the same time to be
able to infer hidden entities. Such a probabilistic integrative model can elucidate the intricate details and
general principles of protein–protein interaction networks.
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Abstract

Relational Markov Random Fields are a general
and flexible framework for reasoning about the
joint distribution over attributes of a large num-
ber of interacting entities. The main computa-
tional difficulty in learning such models is infer-
ence. Even when dealing with complete data,
where one can summarize a large domain by suf-
ficient statistics, learning requires one to com-
pute the expectation of the sufficient statistics
given different parameter choices. The typical
solution to this problem is to resort to approx-
imate inference procedures, such as loopy be-
lief propagation. Although these procedures are
quite efficient, they still require computation that
is on the order of the number of interactions (or
features) in the model. When learning a large re-
lational model over a complex domain, even such
approximations require unrealistic running time.
In this paper we show that for a particular class of
relational MRFs, which have inherent symmetry,
we can perform the inference needed for learning
procedures using a template-level belief propa-
gation. This procedure’s running time is propor-
tional to the size of the relational model rather
than the size of the domain. Moreover, we show
that this computational procedure is equivalent to
sychronous loopy belief propagation. This en-
ables a dramatic speedup in inference and learn-
ing time. We use this procedure to learn rela-
tional MRFs for capturing the joint distribution
of large protein-protein interaction networks.

1 Introduction

Relational probabilistic models are a rich framework for
reasoning about structured joint distributions [6, 9]. Such
models are used to model many types of domains like the
web [22], gene expression measurements [20] and protein-
protein interaction networks [11]. In these domains, they
can be used for diverse tasks, such as prediction of missing

values given some observations [11], classification [22],
and model selection [20]. All of these tasks require the
ability to perform inference in these models. Since in many
models exact inference is infeasible, most studies resort to
approximate inference such as variational approximations
[12] and sampling [8]. Unfortunately in many cases even
these approximations are computationally expensive. This
is especially problematic in settings where inference is per-
formed many times, such as parameter estimation.
In this paper we show that we can exploit symmetry

properties of relational models to perform efficient approx-
imate inference. Our basic observation is that symmetry
in the relational model implies that many of the interme-
diate results of approximate inference procedures, such as
loopy belief propagation, are identical. Thus, instead of
recalculating the same terms over and over, we can per-
form inference at the template level. We define formally a
large class of relational models that have these symmetry
properties, show how we can use them to perform efficient
approximate inference and compare our results with other
methods. This is, to the best of our knowledge, the first ap-
proximate inference algorithm that works on the template
level of the model. However, this efficient inference proce-
dure is limited to cases were we have no evidence on the
model, since such evidence can break the symmetry prop-
erties. Nevertheless, we show that in many cases, inference
with no evidence is useful, especially in learning tasks. Fi-
nally, we show a real life application by learning the prop-
erties of a model for protein-protein interactions.

2 Symmetric relational models

Relational probabilistic models [6, 9, 18, 21] provide a lan-
guage for defining how to construct models from reoccur-
ring sub-components. Depending on the specific instantia-
tion, these sub-components are duplicated to create the ac-
tual probabilistic model. We are interested in models that
can be applied for reasoning about the relations between
entities. Our motivating example will be reasoning about
the structure of interaction networks (e.g., social interaction
networks or protein-protein interaction networks). We now
define a class of relational models that will be convenient
for reasoning about these domains. We define a language



that is similar to ones previously defined [19], but also a bit
different, to make our claims in the following section more
clear.
As with most relational models in the literature we dis-

tinguish the template-levelmodel that describe the types of
objects and components of the model and how they can be
applied, from the instantiation-level that describes a par-
ticular model which is an instantiation of the template to a
specific set of entities.
To define a template-level model we first set up the dif-

ferent types of entities we reason about in the model. We
distinguish basic entity types that describe atomic entities
from complex types that describe composite entities.

Definition 2.1: Given a set Tbasic = (T1, . . . , Tn) of basic
entity types we define two kinds of complex types:

• If T1, . . . , Tk are basic types, then T1 × · · · × Tk de-
notes the type of ordered tuples of entities of these
types. If e1, . . . , ek are entities of types T1, . . . , Tk,
respectively, then �e1, . . . , ek� is of type T1×· · ·×Tk.

• If T is a basic type, then T k denotes the type of un-
ordered tuples of entities of type T . If e1, . . . , ek are
entities of type T , then [e1, . . . , ek] is of type T k.
When considering ordered tuples, permutations of the
basic elements still refer to the same complex entity.
Thus, if e1, e2 are of type T , then both [e1, e2] and
[e2, e1] refer to the same complex entity of type T 2.

For example, suppose we want to reason about undirected
graphs. If we define a type Tv for vertices then an undi-
rected edge is of type Te ≡ T 2

v since an edge is a compos-
ite object that consists of two vertices. Note that we use
unordered tuples since the edge does not have a direction.
That is, both [v1, v2] and [v2, v1] refer to the same rela-
tionship between the two vertices. If we want to model
directed edges, we need to reason about ordered tuples
Te ≡ Tv × Tv. Now �v1, v2� and �v2, v1� refer to two dis-
tinct edges. We can also consider social networks, where
vertices correspond to people. Now we might also add a
type Tl of physical locations. In order to reason about rela-
tionships between vertices (people) and locations we need
to define pairs of type Tp ≡ Tv × Tl. Note that tuples that
relate between different types are by definition ordered.
Once we define the template-level set of types T over

some set of basic types Tbasic, we can consider particular
instantiations in terms of entities.

Definition 2.2: An entity instantiation I for (Tbasic, T )
consists of a set of basic entities E and a mapping σ : E �→
Tbasic that assigns a basic type to each basic entity.

Based on an instantiation, we create all possible instantia-
tions of each type in T :

• if T ∈ Tbasic then I(T ) = {e ∈ E : σ(e) = T }

Figure 1: An instantiation of the graph scheme over a domain of
three vertices.

• If T = T1×· · ·×Tk then I(T ) = I(T1)×· · ·×I(Tk).
• If T = T k

1 then I(T ) = {[e1, . . . , ek] : e1, . . . ek ∈
I(T1), e1 ≤ · · · ≤ ek} where ≤ is some (arbitrary)
order over I(T ) 1.

Once we define a set of basic entities, we assume that all
possible complex entities of the given type are defined (see
Figure 1 for an instantiation of the graph example).
The basic and complex entities define the structure of

our domain of interest. Our goal, however, is to reason
about the properties of these entities. We refer to these
properties as attributes. Again, we start by the definition
at the template level, and proceed to examine their applica-
tion to a specific instantiation:

Definition 2.3: A template attribute A(T ) defines a prop-
erty of entities of type T . The set of values the attribute can
take is denoted Val(A(T )).

A template attribute denotes a specific property we ex-
pect each object of the given type to have. In general,
we can consider attributes of basic objects or attributes of
complex objects. In our example, we can reason about the
color of a vertex, by having an attribute Color(Tv). We can
also create an attribute Exist(Te) that denotes whether the
edge between two vertices exists. We can consider other at-
tributes such as the weight of an edge and so on. All these
template attribute are defined at the level of the scheme and
we will denote by A the set of template attributes in our
model.
Given a concrete entity instance I we consider all the at-

tributes of each instantiated type. We view the attributes of
objects as random variables. Thus, each template attribute
in A defines a set of random variables:

XI(A(T )) = {XA(e) : e ∈ I(T )}

We define XI = ∪A(T )∈AXI(A(T )) to be the set of all
random variables that are defined over the instantiation
I. For example, if we consider the attributes Color
over vertices and Exist over unordered pairs of vertices,

1For example, considering undirected edges again, we think
of [v1, v2] and [v2, v1] as two different names of the same entity.
Our definition ensures that only one of these two objects is in the
set of entities and we view the other as an alternative reference to
the same entity.



and suppose that E = {v1, v2, v3} are all of type Tv,
then we have three random variables in X (Color(Tv))
which are XColor(v1), XColor(v2), XColor(v3), and
four random variables in X (Exist(Te)) which are
XExist([v1, v2]), XExist([v1, v3]), and so on.
Given a set of types, their attributes and an instantia-

tion, we defined a universe of discourse, which is the set
XI of random variables. An attribute instantiation ω (or
just instantiation) is an assignment of values to all random
variables in XI . We use both ω(XA(e)) and xA(e) to refer
to the assigned value to the attribute A of the entity e.
We now turn to the final component of our relational

model. To define a log-linear model over the random vari-
ables XI , we need to introduce features that capture pref-
erences for specific combinations of values to small groups
of related random variables. In our graph example, we can
introduce a univariate feature for edges that describes the
prior potential for the existence of an edge in the graph. A
more complex feature can describe preferences over triplets
of interactions (e.g., prefer triangles over open chains).
We start by defining template level features as a recipe

that will be assigned to a large number of specific sets of
random variables in the instantiated model. Intuitively, a
template feature defines a function that can be applied to a
set of attributes of related entities. To do so, we need to pro-
vide a mechanism to capture sets of entity attributes with
particular relationships. For example, to put a feature over
triangle-like edges, we want a feature over the variables
XExist([v1, v2]), XExist([v1, v3]), and XExist([v2, v3]) for
every choice of three vertices v1, v2, and v3. The actual
definition, thus involves entities that we quantify over (e.g.,
v1, v2, and v3), the complex entities over these arguments
we examine (e.g., [v1, v2], [v1, v3], and [v2, v3]), the at-
tributes of these entities, and the actual feature.

Definition 2.4: Template Feature A template feature F is
defined by four components:

• A tuple of arguments �ξ1, . . . , ξk� with a correspond-
ing list of type signature �T q

1 , . . . , T q
k �, such that ξi

denotes an entity of basic type T q
i .

• A list of formal entities ε1, . . . , εj , with correspond-
ing types T f

1 , . . . , T f
j such that each formal entity ε is

either one of the arguments, or a complex entity con-
structed from the arguments. (For technical reasons,
we require that formal entities refer to each argument
at most once.)

• A list of attributes A1(T
f
1 ), . . . , Aj(T

f
j ).

• A function f : Val(A1(T
f
1 ))× · · ·× Val(Aj(T

f
j )) �→ IR.

For example, Table 1 shows such a formalization for a
graph model with two such template level features.

Arguments Formal Attr. Function
entities

Fe �ξ1, ξ2� [ξ1, ξ2] Exist fδ(z) = 11{z = 1}
�Tv, Tv� Te

Ft �ξ1, ξ2, ξ3� [ξ1, ξ2] Exist f3(z1, z2, z3) =
[ξ1, ξ3] Exist 11{(z1 = 1) ∧
[ξ2, ξ3] Exist (z2 = 1) ∧

�Tv, Tv, Tv� Te, Te, Te (z3 = 1) }

Table 1: Example of two template-level features for a graph
model. The first is a feature over single edges, and the second
is one over triplets of coincident edges (triangles).

We view a template-level feature as a recipe for gen-
erating multiple instance-level features by applying dif-
ferent bindings of objects to the arguments. For exam-
ple, in our three vertices instantiation, we could create in-
stances of the feature Fe such as fδ(XExist([v1, v2])) and
fδ(XExist([v1, v3])). We now formally define this process.

Definition 2.5: Let F be a template feature with compo-
nents as in Definition 2.4, and let I be an entity instan-
tiation. A binding of F is an ordered tuple of k entities
β = �e1, . . . , ek� such that ei ∈ I(T q

i ). A binding is legal
if each entity in the binding is unique. We define

Bindings(F) = {β ∈ I(T q
1 )× · · · × I(T q

k )
: β is legal for F}

Given a binding β = �e1, . . . , ek� ∈ Bindings(F), we
define the entity εi|β to be the entity corresponding to εi

when we assign ei to the argument ξi. Finally, we define
the ground feature F|β to be the function over ω:

F|β(ω) = f
�
ω(XA1(ε1|β)), . . . , ω(XAj (εj |β)

�

For example, consider the binding �v1, v2, v3� forFt of Ta-
ble 1. This binding is legal since all three entities are of the
proper type and are different from each other. This binding
defines the ground feature

Ft|�v1,v2,v3�(ω) =
f3(xExist([v1, v2]), xExist([v1, v3]), xExist([v2, v3]))

That is, Ft|�v1,v2,v3�(ω) = 1 iff there is a triangle of edges
between the vertices v1, v2, and v3. Note that each bind-
ing defines a ground feature. However, depending on the
choice of feature function, some of these ground features
might be equivalent. In our last example, the binding
�v1, v3, v2� creates the same feature. While this creates a
redundancy, it does not impact the usefulness of the lan-
guage. We now have all the components in place.

Definition 2.6: A Relational MRF scheme S is defined by
a set of types T , their attributes A and a set of template



features FF = {F1, . . . ,Fk}. A model is a scheme com-
bined with a vector of parameters θ = �θi, . . . , θk� ∈ IRk.
Given an entity instantiation I a scheme uniquely defines
the universe of discourse XI . Given all this together we
can define the joint distribution of a full assignment ω as:

P (ω : S, I, θ) =
1

Z(θ, I)
exp

k�

i=1

θiFi(ω) (1)

where (with slight abuse of notation)

Fi(ω) =
�

β∈Bindings(Fi)

Fi|β(ω)

is the total weight of all grounding of the featureFi, and Z
is the normalizing constant.

This definition of a joint distribution is similar to stan-
dard log-linear models, except that all groundings of a tem-
plate feature share the same parameter [4].

3 Compact Approximate Inference

One broad class of approximate inference procedure are
variational methods [12]. Roughly speaking, in such meth-
ods we approximate the joint distribution by introducing
additional variational parameters. Depending on the par-
ticular method, these additional parameters can be thought
of as capturing approximation of marginal beliefs about se-
lected subsets of variables. Although the general idea we
present here can be applied to almost all variational meth-
ods, for concreteness and simplicity we focus here on loopy
belief propagation [16, 23] which is one of the most com-
mon approaches in the field.
To describe loopy belief propagation we consider the

data structure of a factor graph [14]. A factor graph is a bi-
partite graph that consists of two layers. In the first layer,
we have for each random variable in the domain a variable
node X . In the second layer we have factor nodes. Each
factor node ω is associated with a set Cω of random vari-
ables and a feature πω . If X ∈ Cω, then we connect the
variable nodeX to the factor node ω. Graphically we draw
variable nodes as circles and factor nodes as squares (see
Figure 2(a)).
A factor graph is faithful to a log-linear model if each

feature is assigned to a node whose scope contains the
scope of the feature. Adding these features multiplied by
their parameters defines for each potential node ω a poten-
tial function πω[cω ] that assigns a real value for each value
of Cω. There is usually a lot of flexibility in defining the
set of potential nodes. For simplicity, we focus now on fac-
tor graphs where we have a factor node for each ground
feature.
For example, let us consider a model over a graph

where we also depict the colors of the vertices. We cre-
ate for each vertex vi a variable node XColor(vi) and for

each pair of vertices [vi, vj ] a variable nodeXExist([vi, vj ]).
We consider two template features - the triangle feature
we described earlier, and a co-colorization feature that de-
scribes a preference of two vertices that are connected by
an edge to have the same color. To instantiate the trian-
gle feature, we go over all directed tuples of three vertices
β = �vi, vj , vk� ∈ Bindings(Ft) and define ωβ with scope
Cβ = {XExist([vi, vj ]), XExist([vi, vk]), XExist([vj , vk])}.
See Figure 2(a) to see such a factor graph for an instan-
tiation of 4 vertices. This factor graph is faithful since each
ground feature is assigned to a dedicated feature node.
Loopy belief propagation over a factor graph is defined

as repeatedly updating messages of the following form:

mX→ω(x) ←
�

ω�:X∈Cω� ,ω� �=ω

mω�→X(x)

mω→X(x) ←
�

cω�X�=x



eπω[cω ]
�

X �=X�∈Cω

mX�→ω(x�)





where cω�X� is the value ofX in the assignment of values
cω to Cω. When these messages converge, we can define
belief about variables as

bω(cω) ∝ eπω[x]
�

X�∈C

mX→ω(cω�X ��)

where the beliefs over Cω are normalized to sum to 1.
These beliefs are the approximation of the marginal proba-
bility over the variables in Cω [23].
Unfortunately, trying to reason about a network over

1000 vertices with the features we described earlier, will
produce

�
1000

2

�
variable nodes (one for each edge), 2·

�
1000

2

�

edge feature nodes and 3 ·
�
1000

3

�
triplet feature nodes2.

Building such a graph and performing loopy belief propa-
gation with it is a time consuming task. However, our main
insight is that we can exploit some special properties of this
model for much efficient representation and inference. The
basic observation is that the factor graphs for the class of
models we defined satisfy basic symmetry properties.
Specifically, consider the structure of the factor graph

we described earlier. An instantiation of graph vertices de-
fines both the list of random variables and of features that
will be created. Each feature node represents a ground fea-
ture that originates from a legal binding to a template fea-
ture. The groundings for an edge feature and for an edge
random variable span two vertices, while the grounding of
triplet feature covers three vertices. Since we are consid-
ering all legal bindings (i.e., all 2-mers and 3-mers of ver-
tices) while spanning the factor graph, each edge variable
node will be included in the scope of 2 edge feature nodes
and (n − 2) · 3 triplet feature nodes. More importantly,

2Since we defined the template feature using ordered tuples
and our edges are defined using unordered tuples, we will have
two features over each edge and three features over each triplet.



since all the edge variables have the same “local neighbor-
hood”, they will also compute the same messages during
belief propagation over and over again. We now formalize
this idea and show we can use it to enable efficient repre-
sentation and inference.

Definition 3.1: We say that two nodes in the factor graph
have the same type if they were instantiated from the same
template (either template attribute or template feature).

Given this definition, we can present our main claim for-
mally:

Theorem 3.2: In every stage t of synchronous belief prop-
agation that is initiated with uniformmessages, if vi, vk are
from the same type and also vj , vl are from the same type
thenmt

vi→vj
(x) = mt

vk→vl
(x).

We start by proving the local properties of symmetry of the
model:

Lemma 3.3: In a model created according to Defini-
tion 2.6, if two nodes in the factor graph have the same
type, then they have the same local neighborhood. That
is, they have the same number of neighbors of each type.

The proof of Theorem 3.2 is a direct consequence of
Lemma 3.3 by induction over the stage of the belief propa-
gation. We now turn to prove Lemma 3.3:
Proof: If vi and vj are feature nodes, then since they are of
the same type, they are instantiations of the same template
feature. From Definition 2.4 and Definition 2.5 we can see
that this means that they are defined over variables from
the same type. Since each feature is connected only to the
variables in its scope, this proves our claim. However, if vi

and vj are variable nodes, it suffices to show that they take
part in the same kind of features, and in the same number of
features of each such kind. Note that Definition 2.6 shows
that we use all legal binding for each feature. For simplic-
ity, we will assume that vi is instantiated from the attribute
of some basic type T (the proof in case it is a complex type
is similar). We need to compute how many ground features
contain vi in their scope, and do not contain vj . From Defi-
nition 2.5 we can see that all the legal bindings that include
vi and do not include vj are legal also if we replace vi with
vj .

After showing that many calculations are done over and
over again, we now show how we can use a more efficient
representation to enable much faster inference.

Definition 3.4: A template factor graph over a template
log-linear model is a bi-partite graph, with one level corre-
sponding to attributes and the other corresponding to tem-
plate features. Each template attribute T that corresponds
to a formal entity in some template featureF is mapped to a
template attribute node on one side of the graph. And each
template feature is mapped to a template feature node on
the other side of the graph. Each template attribute node is

(a) Full factor graph (b) Compact factor graph

Figure 2: Shown are the full (a) and compact (b) factor graphs
modeling a colored graph. We have basic types for colors and
vertices, and a complex type for edges. We consider two template
features - the triangle feature and a co-colorization feature. For
clarity, XExist([vi, vj ]) is shown as Ei,j and XColor(vi) is shown
as Ci. Orange edges show the edges connected to edge variables
and green edges are connected to color variables. |V | shows the
number of vertices in the graph.

connected with an edge to all the template feature nodes
that contain this feature in their scope. A feature node
needs to distinguish between its neighbors, since each mes-
sage refers to a message about different variable. Hence,
in the template factor graph we term an association to a
variable inside a template feature node port . If a factor
contains more than one variable of the same type, the cor-
responding edge splits to the corresponding ports when ar-
riving to the factor node. In addition, each ground variable
node takes part in many features that were instantiated by
the same template feature with different bindings. Hence,
each edge from a template feature node to a template at-
tribute node in the template factor graph is assigned with
a number indicating the number of repetitions it has in the
full factor graph.

Figure 2(b) shows such a template factor graph for our run-
ning example.
Running loopy belief propagation on this template fac-

tor graph is straightforward. The algorithm is similar to the
standard belief propagation only that when an edge in the
template-graph represents many edges in the instance-level
factor graph, we interpret this by multiplying the appropri-
ate message the appropriate number of times. Since Theo-
rem 3.2 shows that at all stages in the standard synchronous
belief propagation the messages between nodes of the same
type are similar, running belief propagation on the template
factor graph is equivalent to running synchronous belief
propagation on the full factor graph. However, we reduced
the cost of representation and inference from being propor-
tional to the size of the instantiated model, to be propor-



tional to the size of the domain. Specifically, this represen-
tation does not depend on the size of the instantiations and
can deal with a huge number of variables.

4 Evaluation

4.1 Inference

We start by evaluating our method in inference tasks. We
build a model representing a graph using the univariate and
triangle features described in the previous section and per-
form inferencewith various parameter combinations. In the
first step we consider instantiations of small graphs where
we can also perform exact inference. We compared ex-
act inference, MCMC (Gibbs sampling) [8], standard asyn-
chronous belief propagation [23], and compact belief prop-
agation on the template-level model. A simple way to com-
pare inference results is by examining the marginal be-
liefs. Such a comparison is possible since in all methods
the computed marginal probabilities for all edge variables
were equal. Hence, Figure 3 shows a comparison of the
marginal distributions over edge variables for different pa-
rameter settings and different inference methods. We ob-
serve that in small graphs the marginal beliefs are very sim-
ilar for all inference methods. To quantify the similarity we
calculate the relative deviation from the true marginal. We
find that on average MCMC deviates by 0.0118 from the
true marginal (stdev: 0.0159), while both belief propaga-
tion methods deviate on average by 0.0143 (stdev: 0.0817)
and are virtually indistinguishable. However, in the graph
over 7 vertices we notice that exact inference and MCMC
are slightly different from the two belief propagation meth-
ods in the case where the univariate parameter is small and
the triplet parameter is large (lower right corner).
An alternative measurement of inference quality is the

estimate of the partition function. This is especially im-
portant for learning applications, as this quantity serves to
compute the likelihood function. When performing loopy
belief propagation, we can approximate the log-partition
function using the Bethe approximation [23]. As seen in
Figure 4, the estimate of the log partition function by belief
propagation closely tracks the exact solution. Moreover, as
in the marginal belief test, the two variants of belief propa-
gation are almost indistinguishable. It is important to stress
that running times are substantially different between the
methods. For example, using exact inference with the 7
vertices graph (i.e., one pixel in the matrices shown in Fig-
ure 3) takes 80 seconds on a 2.4 GHz Dual Core AMD
based machine. Approximating the marginal probability
using MCMC takes 0.3 seconds, standard BP takes 12 sec-
onds, and compact BP takes 0.07 seconds.
On larger graphs, where exact inference and standard

belief propagation are infeasible, we compare only the
compact belief propagation and MCMC (see Figure 5).
While there are some differences in marginal beliefs, we
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Figure 3: Comparison of inference methods via marginal beliefs.
Each panel visualizes the the probability of an interaction when
we vary two parameters: the univariate potential for interaction
(y-axis) and the the potential over closed triplet (x-axis). The
color indicates probability where blue means probability closer to
0 and red means probability closer to 1. The first row of panels
shows exact computation, the second MCMC, the third standard
asynchronous belief propagation, and the fourth our compact be-
lief propagation.

see again that in general there is good agreement between
the two inference procedures. As the graph becomes larger
the gain in run-time increases. Since the mixing time of
MCMC should depend on the size of the graph (if accuracy
is to be conserved), running MCMC inference on a 100-
node graph takes 5 minutes. As expected, compact BP still
runs for only 0.07 seconds since it depends on the size of
the scheme which remains the same. For protein-protein
interaction networks over hundreds of vertices (see below),
all inference methods become infeasible except for com-
pact belief propagation.

4.2 Parameter estimation

Consider the task of learning the parameters Θ =
�θ1 . . . θk� for each template feature. To learn such param-
eters from real-life data we can use the Maximum Likeli-
hood (ML) estimation [4]. In this method we look for the
parameters that best explain the data in the sense that they
find argmaxθ∈Θp(D|θ). Since there is no closed form for
finding the maximum likelihood parameters of a log-linear
model, a common approach is to resort to greedy search
methods such as gradient ascent. In such approaches an ef-
ficient calculation of the derivative is needed. The partial
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Figure 4: Comparison of inference methods for computing the
log-partition function. Each panel visualizes the log-partition
function (or its approximation) for different parameter setting (as
in Figure 3). In the belief propagation methods, the log-partition
function is approximated using the Bethe free energy approxima-
tion. On the first row is the exact computation, the second row
shows standard asynchronous belief propagation and the third row
shows our compact belief propagation.

derivative of the log likelihood �(D) for a parameter θj that
corresponds to a template feature Fj can be described as:

∂�(D)
∂θj

= Ê [Fj ]−Eθ [Fj] (2)

Where Ê [Fj] is the number of times we actually see the
feature j inD, and

E [Fj ] =
�

β∈Bindings(Fj)

E [Fj|β ]

is the sum of times we expect to see each grounding of
the feature j according to Θ (see [4]). The first term is
relatively easy to compute in cases where we learn from
fully observed instances, since it is simply the count of each
feature in D. And the second term can be approximated
efficiently by our inference algorithm.
To evaluate this learning procedure we start by generat-

ing samples from a model using a Gibbs sampler [8]. We
then use these samples to estimate the original parameters
using exact and approximate inference. In this synthetic
context, we model a graph over seven vertices using only
triplet (Ft) and open chain (Fc) features and try to recover
the parameter of these features. As can be seen in Figure 6,
using both approximate and exact inference retrieved pa-
rameter values that are close to these we used to generate
the data. However, we can see that since the approximate
and exact likelihoods create a different scenery, the trace
of the exact search is much shorter, and retrieves better pa-
rameters.
We now proceed to learning a real-life model over inter-

actions between proteins. We build on a model described
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Figure 5: Comparison of approximate inference methods on
larger graph instances. As before, we show the probability of an
interaction as a function of parameter settings. On the first row is
MCMC and the second row shows our compact belief propaga-
tion.
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Figure 6: Learning trace of the parameters using exact (a) and
approximate (b) inference on a 7 vertex graph. In both panels
values of θ111 are shown on the x-axis while values of θ011 are
shown on the y-axis. The dark line shows the advancement of
the conjugate gradient learning procedure, and the bright asterix
in the middle shows the original parameters used for generating
the samples. Color scale shows the exact and approximate log-
likelihood respectively

in [11] for protein-protein interactions. This model is anal-
ogous to our running example, where the vertices of the
graph are proteins and the edges are interactions. We de-
fine the basic type Tp for proteins and the complex type
Ti = [Tp, Tp] for interactions between proteins. As with
edges, we consider the template attributeXe(Ti) that equals
one if the two proteins interact and zero otherwise. We rea-
son about an instantiation for a set of 813 proteins related
to DNA transcription and repair [2]. We collected statis-
tics over interactions between these proteins from various
experiments [1, 7, 13, 15].
We adopt an incremental approach considering only the

simplest template feature at the beginning and adding more
complex features later on (this approach is somewhat sim-
ilar to Della Pietra et al. [4]). We start by learning a
model with only univariate features over interactions. As
expected, the parameters we learn reflect the probability
of an interaction in the data. We can now consider more
complex features to the model by fixing the univariate pa-
rameter and adding various features. We start by adding
two features, Ft and Fc that describe the closed triangle of
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interactions and open chain of interactions respectively.
Using our efficient inference approximation we can

reevaluate the likelihood and its derivative for many param-
eter values and thereby gain an unprecedented view of the
likelihood landscape of the model. For example, Figure 7
shows the log-likelihood calculated for a grid of parameter
values and traces of a conjugate gradient learning proce-
dure initialized from different starting points. We find that
this view of the likelihood function is highly informative
as it shows the influence of different parameter values on
the model behavior. Specifically, the results show that the
likelihood sensitivity to each parameter is quite different.
This can be seen as a horizontal ridge in the upper part of
the region, meaning that changes in θ111 have smaller ef-
fect on likelihood value than changes in θ011. This behav-
ior might reflect the fact that there are 3-times more occur-
rences of open chains than occurrences of closed triangles
in the graph. Furthermore, our unique view of the likeli-
hood landscape, and especially the horizontal ridge we see,
illustrate that there is a strong relation between the param-
eters. As each of the gradient ascent runs converge to a
different local maxima, we can use the landscape to de-
termine whether this a consequence of rough landscape of
the approximate likelihood or is due to redundancies in the
parametrization that result in an equi-probable region.
We repeated the same exploration technique for other

features such as colocalization of proteins [11], star-2 and
star-3 [10], and quadruplets of interactions (results not
shown). We find that the overall gain in terms of likeli-
hood is smaller than in the case of triplet features. Again,
we find that whenever one of the features is more abundant
in the network, its influence on the approximate marginal
beliefs and likelihood is much larger. In such cases the in-
teresting region - where likelihood is high - narrows to a
small range of parameter values of the abundant feature.

5 Discussion

We have shown how we exploit symmetry in relational
MRFs to perform approximate inference at the template-
level. This results in an extremely efficient approximate
inference procedure. We have shown that this proce-
dure is equivalent to synchronous belief propagation in the
ground model. We have also empirically shown that on
small graphs our inference algorithm approximates the true
marginal probability very well. Furthermore, other approx-
imation methods, such as MCMC and asynchronous BP
yield inference results that are similar to ours. Note that
other works show that synchronous and asynchronous be-
lief propagation are not always equivalent [5].
Other works attempted to exploit relational structure for

more efficient inference. For example, Pfeffer et al. [17]
used the relational structure to cache repeated computa-
tions of intermediate terms that are identical in different in-
stances of the same template. Several recent works [3, 18]
derive rules as to when variable elimination can be per-
formed at the template level rather than the instance level,
which saves duplicate computations at the instance levels.
These methods focus on speeding exact inference, and are
relevant in models where the intermediate calculations of
exact inference have tractable representations. These ap-
proaches cannot be applied to models, such as the ones we
consider, where the tree-width is large, and thus intermedi-
ate results of variable elimination are exponential. In con-
trast, our method focuses on template level inference for
approximate inference in such intractable models.
We stress that the main ideas developed here can be ap-

plied in other variational methods such as generalized be-
lief propagation or structured mean field. Furthermore, it
is clear that the class of relational models we defined is not
the only one that has symmetry properties that can be ex-
ploited by our procedure. In fact, all the relational models
that obey Lemma 3.3 can be run in template level. For ex-
ample, it can be shown that a square wrap-around grid also
obeys such symmetry.
The key limitation of our procedure is that it relies on

the lack of evidence. Once we introduce evidence the sym-
metry is disrupted and our method does not apply. While
this seems to be a serious limitation, we note that inference
without evidence is the main computational step in learn-
ing such models from data. We showed how this proce-
dure enables us to deal with learning problems in large re-
lational models that were otherwise infeasible. Though the
search space proves to be very difficult [10], our method
allows us to perform many iterations of parameter estima-
tion in different settings and thereby get a good overview
of the likelihood landscape. This brings us one step closer
towards successful modeling of networks using relational
probabilistic models.
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Abstract
The FastInf C++ library is designed to perform memory and time efficient approximate inference
in large-scale discrete undirected graphical models. The focus of the library is propagation based
approximate inference methods, ranging from the basic loopy belief propagation algorithm to prop-
agation based on convex free energies. Various message scheduling schemes that improve on the
standard synchronous or asynchronous approaches are included. Also implemented are a clique
tree based exact inference, Gibbs sampling, and the mean field algorithm. In addition to inference,
FastInf provides parameter estimation capabilities as well as representation and learning of shared
parameters. It offers a rich interface that facilitates extension of the basic classes to other inference
and learning methods.
Keywords: graphical models, Markov random field, loopy belief propagation, approximate infer-
ence

1. Introduction

Probabilistic graphical models (Pearl, 1988) are a framework for representing a complex joint dis-
tribution over a set of n random variables X = {X1 . . .Xn}. A qualitative graph encodes probabilistic
independencies between the variables and implies a decomposition of the joint distribution into a
product of local terms:

P(X ) =
1
Z!i

"i(Ci),

whereCi are subsets of X defined by the cliques of the graph structure and"i(Ci) are the quantitative
parameters (potential functions) that define the distribution. Computing marginal probabilities and
likelihood in graphical models are critical tasks needed both for making predictions and to facilitate
learning. Obtaining exact answers to these inference queries is often infeasible even for relatively
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modest problems. Thus, there is a growing need for inference methods that are both efficient and
can provide reasonable approximate computations. Despite few theoretical guarantees, the Loopy
Belief Propagation (LBP, Pearl, 1988) algorithm has gained significant popularity in the last two
decades due to impressive empirical success, and is now being used in a wide range of applications
ranging from transmission decoding to image segmentation (Murphy and Weiss, 1999; McEliece
et al., 1998; Shental et al., 2003). Recently there has been an explosion in practical and theoretical
interest in propagation based inference methods, and a range of improvements to the convergence
behavior and approximation quality of the basic algorithms have been suggested (Wainwright et al.,
2003; Wiegerinck and Heskes, 2003; Elidan et al., 2006; Meshi et al., 2009).

We present the FastInf library for efficient approximate inference in large scale discrete prob-
abilistic graphical models. While the library’s focus is propagation based inference techniques,
implementations of other popular inference algorithms such as mean field (Jordan et al., 1998) and
Gibbs sampling are also included. To facilitate inference for a wide range of models, FastInf’s rep-
resentation is flexible allowing the encoding of standard Markov random fields as well as template-
based probabilistic relational models (Friedman et al., 1999; Getoor et al., 2001), through the use
of shared parameters. In addition, FastInf also supports learning capabilities by providing param-
eter estimation based on the Maximum-Likelihood (ML) principle, with standard regularization.
Missing data is handled via the Expectation Maximization (EM) algorithm (Dempster et al., 1977).

FastInf has been used successfully in a number of challenging applications, ranging from infer-
ence in protein-protein networks with tens of thousands of variables and small cycles (Jaimovich
et al., 2005), through protein design (Fromer and Yanover, 2008) to object localization in cluttered
images (Elidan et al., 2006).

2. Features

The FastInf library was designed while focusing on generality and flexibility. Accordingly, a rich
interface enables implementation of a wide range of probabilistic graphical models to which all
inference and learning methods can be applied. A basic general-purpose propagation algorithm is
at the base of all propagation variants and allows straightforward extensions.

A model is defined via a graph interface that requires the specification of a set of cliques
C1 . . .Ck, and a corresponding set of tables that quantify the parametrization "i(Ci) for each joint
assignment of the variables in the clique Ci. This general setting can be used to perform inference
both for the directed Bayesian network representation and the undirected Markov one.

2.1 Inference Methods

FastInf includes implementations of the following inference methods:

• Exact inference by the Junction-Tree algorithm (Lauritzen and Spiegelhalter, 1988)
• Loopy Belief Propagation (Pearl, 1988)
• Generalized Belief Propagation (Yedidia et al., 2005)
• Tree Re-weighted Belief Propagation (Wainwright et al., 2005)
• Propagation based on convexification of the Bethe free energy (Meshi et al., 2009).
• Mean field (Jordan et al., 1998)
• Gibbs sampling (Geman and Geman, 1984)
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By default, all methods are used with standard asynchronous message scheduling. We also imple-
mented two alternative scheduling approaches that can lead to better convergence properties (Wain-
wright et al., 2002; Elidan et al., 2006). All methods can be applied to both sum and max product
propagation schemes, with or without damping of messages.

2.2 Relational Representation

In many domains, a specific local interaction pattern can recur many times. To represent such
domains, it is useful to allow multiple cliques to share the same parametrization. In this case a set
of template table parametrizations "1, . . . ,"T are used to parametrize all cliques using

P(X ) =
1
Z!t !i∈I(t)

"t(Ci),

where I(t) is the set of cliques that are mapped to the t’th potential. This template based represen-
tation allows the definition of large-scale models using a relatively small number of parameters.

2.3 Parameter Estimation

FastInf can also be used for learning the parameters of the model from evidence. This is done
by using gradient-based methods with the Maximum-Likelihood (ML) objective. The library also
handles partial evidence by applying the EM algorithm (Dempster et al., 1977). Moreover, FastInf
supports L1 and L2 regularization that is added as a penalty term to the ML objective.

3. Documentation

For detailed instructions on how to install and use the library, examples for usage and documentation
on the main classes of the library visit FastInf home page at: http://compbio.cs.huji.ac.il/
FastInf.
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ABSTRACT
Motivation: Genetic interactions between genes reflect functional
relationships caused by a wide range of molecular mechanisms.
Large-scale genetic interaction assays lead to a wealth of information
about the functional relations between genes. However, the vast
number of observed interactions, along with experimental noise,
makes the interpretation of such assays a major challenge.
Results: Here, we introduce a computational approach to organize
genetic interactions and show that the bulk of observed interactions
can be organized in a hierarchy of modules. Revealing this orga-
nization enables insights into the function of cellular machineries
and highlights global properties of interaction maps. To gain further
insight into the nature of these interactions, we integrated data from
genetic screens under a wide range of conditions to reveal that
more than a third of observed aggravating (i.e. synthetic sick/lethal)
interactions are unidirectional, where one gene can buffer the
effects of perturbing another gene but not vice versa. Furthermore,
most modules of genes that have multiple aggravating interactions
were found to be involved in such unidirectional interactions. We
demonstrate that the identification of external stimuli that mimic the
effect of specific gene knockouts provides insights into the role of
individual modules in maintaining cellular integrity.
Availability: We designed a freely accessible web tool that includes
all our findings, and is specifically intended to allow effective
browsing of our results (http://compbio.cs.huji.ac.il/GIAnalysis).
Contact: maya.schuldiner@weizmann.ac.il;
hanahm@ekmd.huji.ac.il; nir@cs.huji.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A major goal in biology is to understand how thousands of genes act
together to create a functional cellular environment. An emerging
powerful strategy for investigating functional relations between
genes involves high-throughput genetic interaction maps (Butland
et al., 2008; Byrne et al., 2007; Collins et al., 2007a; Fiedler et al.,
2009; Makhnevych et al., 2009; Pan et al., 2006; Roguev et al.,
2008; Schuldiner et al., 2005; Segrè et al., 2005; Tong et al., 2001;
Wilmes et al., 2008), which measure the extent by which a mutation
in one gene modifies the phenotype of a mutation in another. The
interactions in these maps can be divided to alleviating interactions,
where the defect of the double mutant is less than expected from

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First authors.

two independent effects, and aggravating interactions, where the
defect of the double mutant is greater than expected from the single-
gene perturbations. Such systematic mapping typically uncovers a
large number of observed genetic interactions, which confounds
straightforward interpretation. Despite the large number of published
maps, a systematic methodology for extracting biological insights
remains a major challenge.

Previous analyses of genetic interaction data have primarily
focused on hierarchical clustering, resulting in many new
discoveries in key cellular processes (Collins et al., 2007a; Pan et al.,
2006; Schuldiner et al., 2005). Nonetheless, hierarchical clustering
has two major drawbacks: first, the similarity score between genes
is based on their entire interaction profile (with all other genes)
allowing large fraction of background interactions to dominate
the similarity. Second, it does not directly extract meaningful
groups of genes or interactions between such groups, preventing
a system-level view of the interaction map. Both challenges were
addressed by several methods. For example, the PRISM algorithm
(Segrè et al., 2005) uses monochromatic interactions (i.e. solely
aggravating or solely alleviating) within and between groups of
genes to define pathways (Fig. 1A). However, this algorithm,
which was evaluated on simulated interaction maps, fails on actual
data from large-scale maps due to the added complexity in real
cellular systems and assay noise (data not shown). Biclustering is
another approach that was suggested as an alternative to hierarchical
clustering, aiming to identify local signatures of functional modules
in the genetic interaction maps (Pu et al., 2008). While this
approach identifies many modules of genes, it does not eliminate
their overlap, hampering the generation of one coherent network
structure describing both the intra- and inter-modular interactions.
One possible way to overcome these drawbacks is by adding
different types of data or additional constraints. For example,
methods that combine physical protein–protein interactions in the
analysis of genetic interaction data identify functional modules with
high precision (Bandyopadhyay et al., 2008; Kelley and Ideker,
2005; Ulitsky et al., 2008). However, the requirement for physical
interaction data limits such approaches to protein sets and organisms
where such data exist, and may miss many functional pathways that
are not mediated by protein complexes (e.g. metabolic pathways).

Here, we introduce an automated approach that builds a concise
representation of large-scale genetic interaction maps. Toward
this goal, we relied on previous observations that complexes and
pathways induce signatures in the form of monochromatic cliques
and bi-cliques (Fig. 1A; Beyer et al., 2007; Boone et al., 2007;
Segrè et al., 2005). Our method seeks to find an organization that
is globally coherent, in the sense that genes are organized into
a hierarchy of modules. Moreover, our method requires that the
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Fig. 1. Modularity of genetic interactions. (A) Pathway architecture (left)
leads to expected patterns of genetic interactions between genes (right).
Each row/column represents the genetic interactions of a specific gene with
all other genes. Among these there are subsets of interactions that can be
represented as monochromatic cliques and bicliques. (B) Monochromatic
interactions can be captured by edges within and between modules (grey
boxes) organized in a hierarchical structure.

interactions between these modules will account for a large portion
of the data. We show how the resulting representation facilitates
better understanding of the underlying cellular phenomena. In turn,
we use these insights to shed light on the function of concrete
cellular pathways and also to provide information on the overall
organization of the network. We demonstrate how integration of data
from genetic screens for reduced fitness under various conditions
results in automatic creation of biological insights into the functional
role of gene modules.

2 HIERARCHY OF INTERACTING MODULES
Our basic premise is that a good hierarchical organization is defined
by a trade-off between succinct description of the network on one
hand, and capturing as much of the interactions in the map on the
other hand. To capture this quality, we devised a score based on the
minimum description length (MDL) principle (Rissanen, 1983) and
devised an iterative procedure that optimizes this score.

2.1 Hierarchical representation
The hierarchical representation consists of two parts. The first
is a hierarchy of modules. Briefly, a hierarchy is a set M of
modules, such that each module m is associated with a subset
of genes Genes(m) and a parent module Parent(m)∈M∪{ε},
where ε represents a null module (i.e. the module is a root). We
say that a module m′ is an ancestor of m if m′ =Parentk(m)
for some k ≥1. The hierarchy is legal if for every m,m′ ∈M
such that m′ =Parent(m), we have that Genes(m)⊂Genes(m′),
and moreover Genes(m)∩Genes(m′) '=∅ if and only if m is an
ancestor of m′ or vice versa. In the hierarchy of Figure 1B, we
have four modules, so that Genes(m1)={G1,G2,G3}, Genes(m2)=
{G5,G6}, Genes(m3)={G4,G5,G6}, and Genes(m4)={G7,G8}.
In this example, Parent(m1)=Parent(m3)=Parent(m4)=ε, and
Parent(m2)=m3.

The second component of the hierarchy describes a set E of edges
between modules. An edge can be of two types, alleviating (denoted
in yellow in our figures) or aggravating (denoted in blue). Each
edge represents a type of genetic interactions that is common for
the members of the modules linked by the edge. Formally, an edge
m1 ↔m2, represent the set Int(m1 ↔m2)=Genes(m1)×Genes(m2)
of genetic interactions. Edges in the hierarchy can be self-edges,

in which case they induce a clique of interactions, or between
two different modules in which case they induce a bi-clique of
interactions. In the example of Figure 1B, we have the alleviating
edges m1 ↔m1, m3 ↔m3, m4 ↔m4, and the aggravating edges
m1 ↔m3 and m2 ↔m4. These edges represent the interactions
described in the interaction matrix of Figure 1A.

2.2 Minimal description length score
We use the MDL principle (Rissanen, 1983) to score the quality of
module hierarchy as a guide for lossless encoding of the genetic
interaction map. Conceptually, imagine that we need to transmit the
genetic interaction map over a channel and search for the encoding
that would require the fewest bits. Under this principle, the length
of the transmission is a proxy for the quality of the representation,
with a shorter encoding denoting a better representation.

The application of this principle involves deciding how we encode
the interactions in the map. When we do not have any organization
of the map, we use the same codebook for each interaction. Since
weak interactions are much more abundant than strong ones, their
code words will be shorter (Cover and Thomas, 2001). Thus, we
will incur a penalty for strong interactions. When we have a module
hierarchy, we can use a different codebook for each edge in the
hierarchy and an additional codebook for background interactions.
This allows us to exploit a group of monochromatic interactions for
efficient encoding by a codebook that assigns strong interactions
of the appropriate short codewords. The benefit from covering a
large portion of the map with coherent edges is offset by the cost
of transmitting the codebooks themselves, which involves coding
the hierarchical organization and the edges with their signs. Thus,
when evaluating a possible organization of the genetic interaction
map there is a trade-off between the coverage of interactions and
the number of modules and edges.

Formally, if we denote the genetic interaction map by D and the
hierarchical organization by (M,E) then the MDL score consists of
two main terms:

S(D;M,E)=DL(M,E)+DL(D|M,E)

where DL(M,E) is the description length of the hierarchical
organization and DL(D|M,E) is the description length of the
interactions, given that we already encoded the hierarchy. We
start with the first term, DL(M,E). Here, we need to encode the
module hierarchy (which module is the parent of each module),
the assignment of genes to modules and the list of edges. This is a
relatively straightforward encoding using standard MDL practices.

The second term represents how to describe the genetic interaction
map once we know the modular organization. Standard results
in information theory (Cover and Thomas, 2001) show that if
the frequency of each word is p(w), then the optimal codebook
is one where encoding a word w is of length −log2p(w). Thus,
in each codebook we use the distribution of the strengths of
interactions covered by an edge to build an efficient codebook.
We assume that the different values are distributed according to
a Gaussian distribution. Thus, the encoding length is the minus log-
probability (or likelihood) of the data given the parameters of each
Gaussian codebook (i.e. the closer the distribution is to its parametric
description, the score is higher). To this length, we add the number
of bits needed to encode the parameters of each distribution. To
calculate the encoding length, for each edge e∈E we estimate the
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maximum likelihood parameters, (µe,σe). In addition, we estimate
the background distribution (µb,σb). We then define

DL(D|M,E) = −
∑

e∈E

∑

(i,j)∈Int(e)

log2p(Ii,j|µe,σe)

−
∑

(i,j)∈Bg

log2p(Ii,j|µb,σb)

+
∑

e∈E
log2 |Int(e)|+ log2 |Bg|

where p(Ii,j|µ,σ) is the likelihood of the genetic interaction score
Ii,j according to the Gaussian N(µ,σ2), Bg is the set of interactions
that do not belong to any edge in E , and log2(|Int(e)|) is the encoding
length of the parameters for the edge. Thus, we score interactions in
their specific context (either inside an edge or in the background).

For practical concerns, we restrict the network to include only
coherent edges. Thus, we require that an edge satisfies |µe|−σe >α,
where α is a strictness parameter (which we set to 1 in the results
below). If this is not the case, the network receives a large penalty
which effectively excludes it from consideration.

2.3 Constructing module hierarchy
Given a genetic interaction map D, we want to find the module
hierarchy that minimizes the MDL score. This problem is non-trivial
as the search space is huge. To address this we combine two ideas.
First, we use hierarchical clustering to get a good initial guess for
our hierarchical organization. Second, once we have a reasonable
initial candidate, a heuristic search procedure can perform ‘local’
improvements to find a much better one. Our procedure implements
these ideas by performing the following steps.

Clustering: we cluster the genetic interaction map using hierarchical
clustering with uncentered Pearson correlation (Eisen et al., 1998).
This results in a dendrogram, which in our terminology is a detailed
hierarchy, where each internal node defines a group of genes that
correspond to the leaves in its sub-tree and each pair of such internal
nodes defines a rectangle in the clustered matrix (Fig. 2a).

Identifying edges: treating the dendogram as an initial hierarchy of
modules, the procedure traverses overall pairs of internal nodes in
the dendrogram and in a greedy fashion adds modules and edges
as long as they increase the MDL score. At this stage, we have a
very large number of modules and some number of edges. We then
prune modules that do not participate in edges (while maintaining the
ancestral relationships between the remaining modules). This results
in a hierarchy that summarizes the initial clustering (Fig. 2b).

Greedy improvements: to re-evaluate and refine the modular
structure, the procedure performs a heuristic search by evaluating
local changes to the modular organization. These local changes
include: addition/removal of a gene to/from an existing module,
merging a module with its parent, transferring an edge from a module
to its parent (or vice-versa) and addition/removal of an edge. Each
of these local changes is evaluated and based on their score the
procedure decide which one to apply. We use a best-first-search
heuristic combined with a TABU list (Glover et al., 1993) to avoid
revisiting explored networks and thus escape local maxima. This
search leads to a refined model (Fig. 2c).

Fig. 2. Outline of our iterative algorithm. After clustering the interactions
(left) our procedure identifies modules of genes in the clustering hierarchy
that define monochromatic on-diagonal squares (e1) and off-diagonal
rectangles (e2), resulting in a hierarchical organization of genes into modules
(middle). Next, the module graph is refined by a series of local changes (e.g.
moving one gene from m2 to m1; right). At the end of each iteration (bottom
arrow), we re-cluster the genetic interaction matrix while maintaining the
identified modules. These steps are iterated until convergence.

Reiterations: to find structures that might elude local search steps,
the procedure iterates by returning to the first step. In each re-
iteration, we re-cluster the genetic interaction map while conserving
the module hierarchy from the previous step. That is, we allow only
agglomerative steps that do not break existing modules into separate
subunits. This constraint forces the resulting clustering to maintain
the found structure, but it can identify new sub-modules as well
as new modules of genes that are not assigned to a module. These
iterations are repeated until convergence (in score) (Fig. 2d).

2.4 Application to genetic interaction maps in
Saccharomyces cerevisiae

We applied our methodology to two large-scale genetic interaction
maps in the budding yeast S. cerevisiae. The first contains genes
localized to the Early Secretory Pathway (ESP; Schuldiner et al.,
2005) and the other comprises genes involved in Chromosome
Biology (CB; Collins et al., 2007b). This procedure automatically
constructed a hierarchical organization of modules in both: in the
ESP map it identified 113 modules covering 264 genes (out of
424) and in the CB map it identified 242 modules covering 487
genes (out of 743). Most of these modules represent functionally
coherent groups of genes (ESP: 76/113, CB: 193/242; Appendix A
in the Supplementary website), such as physical complexes (e.g.
Mediator subunits, HIR complex, SAS complex) and functional
pathways (e.g.N-linked glycosylation, chromatid cohesion). Inter-
and intra-module interactions correspond to a large fraction of the
interactions in the original maps, particularly the high confidence
ones (Fig. 3A and B). In addition, the edges we capture are also
coherent in the sense that most interactions covered by alleviating
edges have positive interaction scores and most interactions covered
by aggravating edges have negative scores (Fig. 3C and D). Thus, the
modular organization of the genetic interactions faithfully captures
a large portion of these maps.

The hierarchical nature of the network allows the definition of
large modules with more general functions that contain sub-modules
with more specific functions, which are distinguished by sets of
unique interactions. For example, module ESP-98 comprises eight
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Fig. 3. Edges capture most interactions. (A) Coverage of aggravating
interactions by our network (y-axis) as a function of threshold for EMAP
score (x-axis). Magenta solid lines and green dashed lines show results for CB
and ESP networks, respectively. (B) Coverage of alleviating interactions. (C)
Coherence of aggravating and alleviating edges in the CB network. Shown
is a histogram (y-axis) of EMAP scores (x-axis) for interactions covered by
aggravating and alleviating edges in blue and yellow, respectively. Histogram
for the entire data is show in grey. (D) Coherence of edges in our ESP
network.

genes that take part in the maturation of glycoproteins within the
ER lumen (Fig. 4). Specifically, these genes encode the sequential
enzymes adding on sugar moieties to a synthesized polysaccharide
chain. Our analysis identified two sub-modules that correspond to
two distinct stages in this process: one module (ESP-97) involves
genes encoding proteins that transfer mannose residues to the
nascent chain, and the second module (ESP-96) involves genes that
subsequently transfer glucose residues to the nascent chain (Helenius
and Aebi, 2004). This division was obtained automatically, based on
interactions that are specific to each of these sub-modules (Fig. 4).
Notably, the protein products of genes in these two modules do
not form physical complexes, and thus could not be identified by
methods that use protein–protein interactions to define the modules.
In addition, this subdivision was not obtained by solely applying
hierarchical clustering methods (Schuldiner et al., 2005).

2.5 Comparison to other methods
Comparing our method to previous methods for analysing genetic
interaction maps is difficult due to the different focus of the various
methods. A common theme to most methods is the determination
of gene modules. Although this is only one aspect of our analysis,
we compared our module list to modules found by other studies
of the CB map (Bandyopadhyay et al., 2008; Pu et al., 2008;
Ulitsky et al., 2008). Comparing to the methods of Bandyopadhyay
et al. (2008) and Ulitsky et al. (2008, Fig. 5A and B), we find
many more modules (242 modules compared with 91 and 62,
respectively), covering more genes (487 genes compared with 374
and 313, respectively).1 In addition, many of these modules are

1When comparing to Bandyopadhyay et al. (2008) we considered only
modules with more than one gene.

Fig. 4. Hierarchical organization of modules represents functional hierarchy.
(A) Modules are denoted by grey boxes (red labels denote functional
assignment based on annotations; black labels denote the name of each
module and in parentheses the number of genes included in it). Blue edges
between modules indicate that these modules create aggravating bicliques.
Module ESP-98 contains eight genes related to N-linked glycosylation. It is
further divided into two sub-modules (ESP-96 and ESP-97), each identified
by different interactions, which have more specific functions. (B) Schematic
view of the N-linked glycosylation pathway (adapted from Helenius and
Aebi, 2004). Inside the ER lumen, four mannose residues (green circles)
are added to Man5GlcNAc2 by Alg3, Alg9 and Alg12 (comprising module
ESP-97). In turn, three glucose residues (red triangles) are added by Alg5,
Alg6, Alg8 and Alg10 (comprising module ESP-96).

Fig. 5. Comparison to other methods: bar charts showing how many genes
(A) and interactions (B) are covered by each method. (C) Bar chart showing
how many of the protein pairs that are in the same module share a GO function
annotation, or physically interact with each other. GO annotations are divided
into categories according to the number of genes in the annotation.
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not enriched with physical protein–protein interactions, yet have
a coherent function. Furthermore, our approach is also applicable
to other systems, in which the protein–protein interaction data is
very sparse (such as in the ESP dataset) or in organisms in which
it does not exist. When comparing our results to those of Pu et al.
(2008) who finds 298 overlapping modules covering 181 genes, we
see that we find similar numbers of modules organized in a global
hierarchy and covering more genes. However, these advantages
come at the price of lower precision (Fig. 5C). Yet, as the larger
modules at the top of the hierarchy might correspond to more global
functions, their enrichment in more general GO terms is reasonable.
We conclude that each of the methods strikes a different trade off
between precision, sensitivity and global coherence.

3 UNCOVERING UNIDIRECTIONAL
COMPENSATION

Strikingly, a relatively large number of the gene pairs exhibit
genetic interactions, especially aggravating ones. We find that
aggravating interactions play a major role in the definition
of many modules (e.g. 150 of the 242 modules in the CB
network are defined solely based on aggravating interactions).
Aggravating interactions are commonly interpreted as an indication
of bidirectional compensation, where each gene can compensate for
the absence of the other by performing a similar function. However,
in many cases this explanation cannot account for the observed
patterns of aggravating interactions and the large number of such
interactions between genes with distantly related functions.

An alternative explanation (Boone et al., 2007; Pan et al., 2006)
is that one gene is crucial for functions that compensate for the
abnormal cellular state resulting from the loss of the other gene. In
this scenario, termed unidirectional compensation, the relationship
between the genes is asymmetric in the sense that one gene can
compensate for the loss of the other but not vice versa. We refer to
the gene whose knockout causes the perturbation as the upstream
gene and to the compensating gene as the downstream gene. While
examples for this type of interpretation have been shown on existing
data (Pan et al., 2006), no systematic test was carried out to
identify the aggravating interactions that can be explained by such
unidirectional interpretation and to assess their fraction within the
observed aggravating interactions.

3.1 Identifying unidirectional compensation
Our premise is that we can identify unidirectional compensation
by comparing the perturbation of a putative upstream gene with
perturbations caused by external stimuli. We say that an external
stimulus (e.g. a drug or an environmental insult) phenocopies a
gene deletion if the genes required for coping with the stimulus
are the same ones required to compensate for the perturbation of
the upstream gene. Stated in terms of available data, this definition
implies a significant overlap between the genes whose knockout
lead to sensitivity to the stimulus and these that have aggravating
interactions with the upstream gene. Moreover, genes in this overlap
are downstream to the specific upstream gene. By establishing such
phenocopy relations, we implicate unidirectional interactions from
the upstream genes and their matching downstream genes.

For example, deletion of the CHL1 gene leads to abnormal
chromosome segregation similar to the damage caused by external

Fig. 6. Identifying unidirectional interactions. (A) An example of
aggravating interactions (middle) that might be due to different mechanisms.
Both CHL1 and CTF19 genes (red ellipses) have functions related to sister
chromatid pairing during the S-phase. Thus, their aggravating interaction
(denoted by a blue line) might be a result of their overlapping functions
(left). However, the aggravating interactions of CHL1 and BUB3, which is
part of the spindle assembly checkpoint, is more likely the result of a different
mechanistic reason (denoted by a directed red arrow; right), where the lack of
a gene (i.e. chl1!) induces abnormal chromosome segregation, that requires
the activation of the spindle assembly checkpoint including BUB3. (B) Yeast
cells exposed to benomyl (denoted by a green diamond) show the same
sensitivity to BUB3 perturbation as the chl1! strain, suggesting that chl1!

background causes a stress similar to exposure to benomyl.

microtubule depolymerizing agents (e.g. benomyl). In turn, the
deletion strain of bub3! shows growth retardation under benomyl.
Thus, we interpret the aggravating interaction between CHL1 and
BUB3 as resulting from unidirectional compensation, where CHL1
is the upstream gene and BUB3 is the downstream gene (Fig. 6).
Indeed, this interpretation is conceivable, as Chl1 is involved in
sister chromatid pairing during the S phase, and Bub3 is part of
the spindle assembly checkpoint, in charge of delaying anaphase in
cases of abnormal spindle assembly.

When elaborating this reasoning we have to be careful not to
confuse unidirectional compensation with dosage effect: if a gene
phenocopies a stimulus, we might expect to see that its deletion
amplifies the effect of this stimulus, showing higher sensitivity to
its application (loosely stated, higher dosage of the stimulus). In
such cases, we might mistakenly implicate an upstream gene to
be downstream to another gene that also phenocopies the same
stimulus. However, in such situations we will, by definition, identify
bidirectional interactions where one gene is both upstream and
downstream to another gene. Thus, we can detect these situations,
and distinguish them from a proper unidirectional compensations.2

The reasoning we outline here (and apply below) detects,
up to usual concerns about experimental or statistical noise,
asymmetries of aggravating interactions with respect to phenotypes
of external stimuli. This is a well-defined and clear criterion. A more
ambitious step is to deduce from this asymmetry directionality in
the underlying biological mechanisms. In our example of CHL1
and BUB3, we have strong intuitions about the causal direction
(as sister chromatid pairing precedes spindle assembly). In other
cases, the underlying causality is much murkier. Moreover, we can
imagine external perturbations that will lead to opposite asymmetry.
For example, if a certain drug targets in a specific manner the
spindle assembly checkpoint, we would detect asymmetric behavior
of CHL1 and BUB3 to it, but in the opposite direction. This
thought exercise implies that we need to be careful about deducing

2We estimate that up to five percent of unidirectional interactions are actually
caused by dosage effect but were not identifed as such since not all the genes
were tested in all the screens (data not shown).
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directionality in the underlying biology. However, we believe it is
reasonable to assume that in most cases external perturbations are
ones that causes cellular imbalances or stress conditions rather than
disable mechanisms that cope with such situations.

3.2 Application to genetic interaction maps in
S.cerevisiae

To systematically detect unidirectional compensation, we collected
data from genetic screens that measured growth of yeast deletion
strains under various external conditions and insults compared to
YPD conditions (Bennett et al., 2001; Dudley et al., 2005; Giaever
et al., 2002; Hillenmeyer et al., 2008; Parsons et al., 2004, 2006).
We considered deletion strains from both homozygote diploid and
haploid deletions. We converted all measurements into a binary
score, by defining genes with growth defects as those that passed
the threshold defined by the authors of each study (for a detailed
description of how we handled each dataset see Appendix B in the
Supplementary website).

This process resulted in listing for each external stimulus the
repertoire of deletion strains that display a growth defect in its
presence. In a similar manner, each gene deletion defines a list
of genes that are sensitive to its deletion, i.e. display aggravating
interactions with it (using the same threshold, −2.5, as Collins et al.,
2007a; Schuldiner et al., 2005). We then define a unidirectional
compensation between genes X and Y (associated with external
perturbation P) if (i) there exists an aggravating interaction between
X and Y ; (ii) the perturbation of Y leads to sensitivity to the
external perturbation P; (iii) X has aggravating interactions with
a significant number of genes whose perturbations cause sensitivity
to the perturbation P (using hyper-geometric test with FDR of 0.1);
and (iv) at least one of the conditions 2 or 3 do not hold on the
opposite direction (when switching the roles of X and Y ).3

We applied this procedure to the CB and ESP genetic interaction
maps and found 348 gene deletions that are phenocopied by at least
one external stimulus. These stimuli include a wide range of external
perturbations that match the nature of the specific data set analyzed.
For example, many external stimuli corresponding to gene deletions
in the CB map include agents causing DNA damage and microtubule
depolymerization, while the stimuli related to the ESP map mostly
include agents causing protein synthesis and glycosylation inhibition
(see Supplementary website). To our surprise, more than one-third
of the aggravating genetic interactions (CB: 4659/11539; ESP:
1036/2718) could be explained by unidirectional compensation.

4 ELUCIDATING THE FUNCTION OF CELLULAR
PATHWAYS

We next asked whether unidirectional compensation can also be
assigned within the modular hierarchy in terms of upstream and
downstream modules. Toward this end, we incorporated these
unidirectional interactions into our hierarchical organization of
interacting modules. We annotated an aggravating edge between two
modules as caused by unidirectional compensation if the majority

3To measure the statistical significance of the interactions we found, we
created a random permutation of the names of the genes in the genetic
interaction screen, and repeated the procedure described above. In 10 repeats,
no significant overlaps between genes and external stimuli were found, thus
no unidirectional interactions were identified.

Fig. 7. Inter-module unidirectional interactions. (A) Systematic
identification of unidirectional interactions: a systematic search discovers
cases of statistically significant overlap between patterns of gene sensitivities
under specific external stimuli (green lines) and the aggravating partners of
specific genes (blue lines). We annotate these aggravating interactions as
unidirectional, and denote them by red arrows directed from the upstream
gene (whose deletion causes the cell perturbation) to the downstream genes
(which deal with the particular cell perturbation). (B) All inter-module
aggravating edges were scanned and searched for potential unidirectional
edges. If the majority of the interactions involved in an inter-module
aggravating edge are marked as consistent unidirectional interactions
(corresponding to the same external stimulus and in the same direction),
this edge was annotated as a unidirectional edge with respect to the specific
external stimulus (green diamond).

of interactions between these modules are unidirectional and share
the same context (i.e. have the same directionality and are related
to the same external stimulus; Fig. 7A; Supplementary website). By
requiring consistent unidirectional interactions between modules,
this incorporation also removes potential errors in the annotation
of unidirectional interactions (Supplementary website). We find
that this designation elucidates the cellular role of modules and
their interactions. Coming back to our previous example, we find
that perturbations of modules CB-119 and CB-187 lead to stress
conditions similar to those caused by microtubule de-polymerizing
agent benomyl (Fig. 7B). Our analysis identified module CB-183
as downstream to benomyl-like stress caused by mutations of
genes in CB-119 and CB-187. Indeed, the protein products of the
genes in CB-119 and CB-187 are components of the machinery
responsible for the correct distribution of chromosomes during
cell division (Hanna et al., 2001; Measday et al., 2002). By de-
polymerizing microtubules that create the spindle fibres, benomyl
attacks a crucial component of this process. Finally, the genes in
module CB-183 participate in the spindle assembly checkpoint that
delays the onset of anaphase in cells with defects in mitotic spindle
assembly (Nasmyth, 2005). This example demonstrates the power
of our approach in automatically providing biological insights into
the function of the genes in various modules.

The concise representation of the observed genetic interactions as
edges within and between modules, in combination with the specific
interpretation of many aggravating edges as caused by unidirectional
compensations, pinpoints novel functions of modules that are not
readily apparent from clustering of genetic interactions alone. The
results of our automatic search provide an elaborate network of
such inter- and intra-module edges, thus, we constructed a web-
tool providing a user-friendly interface to browse our results in an
effective manner (Supplementary website).

For example, examining unidirectional edges related to DNA
damage agents, such as hydroxyurea and camptothecin, we find
multiple upstream and downstream modules (Fig. 8A). A notable
downstream module (CB-137) comprises three sub-modules; of
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Fig. 8. Unidirectional interactions enable inference of functional hypotheses. Unidirectional edges between modules (grey boxes) are annotated by red arrows.
Aggravating and alleviating interactions between modules are annotated by blue and yellow lines, respectively. (A) Unidirectional edges involving stimuli
similar to hydroxyurea and camptothecin, two DNA damage-inducing drugs. Some edges were omitted from the graphical view for clarity. (B) Unidirectional
edges involving the deacetylation inhibitor Trichostatin-A (TSA). Some edges were omitted from the graphical view for clarity.

these, both CB-136, that contains the Holiday junction complex,
and CB-134 that comprises genes of the Rad51 pathway and MRX
complex are established mechanisms of DNA damage repair. The
third sub-module (CB-132) comprises five genes whose protein
products were recently characterized as involved in the acetylation
of histone H3 lysine 56 (H3K56Ac) pathway (Collins et al., 2007a).
In addition, we find an alleviating interaction between the H3K56Ac
module and S-phase-related module (CB-194), suggesting that the
function of H3K56Ac pathway is S-phase-related. This example
illustrates the power of the combination between the hierarchical
structure of modules and the annotation of unidirectional edges.
Our method identifies one parent module with a general DNA
repair annotation that contains three sub-modules with different
interactions that imply different specific functions. For example,
the alleviating interaction of CB-132 with CB-194 suggests that
the H3K56Ac pathway is involved in relieving DNA damage in
the S - phase. Indeed, loss of H3K56 acetylation results in higher
sensitivity to exposure to DNA damaging agents during S -phase
(Masumoto et al., 2005) and this pathway was proposed as a DNA
integrity check point following replication (Collins et al., 2007a).

Another example regards the unidirectional edges related to TSA,
a histone deacetylation inhibitor that affects class I and II histone
deacetylases (Furumai et al., 2001; Fig. 8B). We find two modules
whose perturbation is phenocopied by TSA: Set3 complex (CB-
82) and Thp1–Sac3 complex (CB-92). Set3 complex is a histone
deacetylation complex, and thus it is plausible that TSA phenocopies
its perturbation. However, the relation of the Thp1–Sac3 complex,
comprising mRNA export factors associated with the nuclear pore,
to deacetylation is less obvious. Clues to this puzzle can be found
when examining the downstream modules with respect to this
external stimulus. Most of these downstream modules are related
to chromosome segregation (CB-121 and CB-183) and the Swr1
complex (CB-218), a chromatin modifier with genome integrity
phenotype (van Attikum et al., 2007). This suggests that TSA
damages chromosome integrity, and that perturbations of Thp1–
Sac3 complex and Set3 complex lead to similar damage. Indeed,
previous studies showed that Thp1–Sac3 complex has a role in
transcription elongation, and that its perturbation affects genome
stability (González-Aguilera et al., 2008). Previous works suggested

that histone deacetylation by Set3 is also associated with active
transcription (Kim and Buratowski, 2009; Wang et al., 2002),
leading us to hypothesize that perturbations of these complexes
interfere with transcription elongation, resulting in chromosome
instability. Interestingly, we observe a directed interaction from
Set3 to the Rpd3 complex (CB-40), also a histone deacetylase. This
asymmetry is consistent with the wider range of functions of Rpd3
(Suka et al., 2001) in contrast to the specificity of Set3 targets (Wang
et al., 2002), explaining why Rpd3 can (partially) compensate for
defects in Set3 and not vice versa.

5 DISCUSSION
From maps to networks: our methodology takes a step forward
towards automating the extraction of biological knowledge from
large-scale genetic interaction maps. A crucial step in dealing
with the large quantities of interaction data is summarizing the
observations in a representation that identifies patterns in the
data. Previous works mainly used local signatures to capture
interactions between pairs of modules (Bandyopadhyay et al.,
2008; Pu et al., 2008) or learn a network of disjoint modules
that are coherent in terms of physical and genetic interactions
(Ulitsky et al., 2008). Here, we focus on finding a global
representation that captures the bulk of the genetic interactions,
without requiring additional information, and employ a module
hierarchy to capture functional specialization of different sub-
modules. Our representation facilitates inspection of the large-scale
results, by presenting each module along with all its interacting
partners as well as its hierarchical context. This representation
defines the modules within their biological context, minimizing
the requirements for expert knowledge for inference of testable
biological hypotheses from genetic interaction data.

Our empirical results on two very different genetic interaction
maps show that this representation captures much of the patterns
of interactions in the data. Although our representation captures
many interactions, it does not include all the interactions. Some
of the missed interactions may be false positives, and thus at this
front our analysis would serve to purge such data from the genetic
interaction maps. There are, however, various reasons for missing
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true interactions. For example, some interactions are excluded since
we restrict the module size to at least two genes, so that noisy
measurements for a specific deletion will not dominate the results.
This implies that our procedure may miss a consistent set of
interactions between a single gene and a module. Also, the constraint
of a strict hierarchy may lead to situations where a gene with multiple
functions has to choose which module to belong to and thus to
miss some of its interactions (Pu et al., 2008). A natural extension
of our method, which can partially resolve this issue, is to allow
an extended hierarchy, where a module can be the child of more
than one parent. As demonstrated by the success of GO ontology
in capturing functional annotations (Ashburner et al., 2000), such
hierarchical graphs are natural in the context of functional gene
organization.

Striving for mechanisms: one goal of the analysis of genetic
interaction maps is to decipher the causal explanation underlying
the observed interactions. Automating this aspect of the analysis
provides a significant advance toward interpretation of genetic
interaction maps. Earlier studies mostly focused on interpretations
that involve complexes and pathways (alleviating interactions
among members of the complex/pathway, and a similar spectrum
of interactions with other genes) and redundant functions of
such complexes/pathways (parallel pathways may have aggravating
interactions between genes involved in these pathways). Although
other explanations were acknowledged (Boone et al., 2007; Pan
et al., 2006) and implicitly used in interpreting the results,
these were not reflected in automated analyses. Here, we
introduce a novel automated analysis to systematically detect
unidirectional interactions where a downstream gene buffers or
compensates for the effect of the perturbation of an upstream
gene.

Using our automated analysis, we find that a large portion of the
observed aggravating genetic interactions (at least a third) can be
attributed to such unidirectional interactions. This finding partially
accounts for the large number of aggravating interactions between
genes of distantly related functions. Moreover, the analysis annotates
interactions by the type of damage caused by the perturbation of
the upstream genes, providing informative clues for interpreting the
results. Finally, we combine this analysis with the modular hierarchy
representation to understand the relations between modules. When
looking at the types of external stimuli phenocopied by gene
deletions in our analysis, we find that many of them can cause
major stress conditions in the cell such as DNA damage (e.g. by UV,
hydroxyurea, camptothecin and MMS) and translation inhibition
(e.g. cycloheximide and hygromycin B). In this case, we can
interpret unidirectional compensations as connecting between a
module whose perturbation causes stress and a module that has
a part in relieving this stress. Indeed, many of the downstream
modules associated with such stress conditions are known to be
central players in the cellular response to various stress conditions,
for example the DNA damage repair module (CB-137) and spindle
assembly checkpoint (CB-183).

Global examination of the resulting network shows that many
highly connected modules have a high percentage of their
aggravating partners related through unidirectional edges related
with major stress conditions (Fig. 9). Moreover, highly connected
modules tend to be either upstream (i.e. their removal causes
stress conditions) or downstream (i.e. stress relieving), but not
both (Supplementary website). These observations suggest that

Fig. 9. Many hubs of genetic interactions are related to unidirectional
compensation. A histogram of the fraction of unidirectional edges (y-axis)
for modules with different degree of aggravating edges (x-axis). Each bar
shows the portion of unidirectional edges out of all edges that are connected
to modules with this degree.

unidirectional compensation plays a pivotal role in forming
interaction hubs in genetic interaction maps. Furthermore, they
suggest that responses of cellular integrity mechanisms to genetic
perturbations are a major factor in shaping genetic interaction maps.

Toward organizational principles of genetic interaction maps: the
methodology we present here puts forward two major contributions
toward understanding the organization of genetic interaction maps.
First, the hierarchy of modules is automatically built independent
of additional data sources, allowing its application to various
existing genetic interaction maps and also to less studied organisms.
Moreover, the creation of a visual platform to study these
results should boost the usability of these datasets, many of
which are currently only used to find single interactions between
genes of interest. Second, we elucidate some of the mechanisms
underlying the interactions between modules. By integrating an
additional data source we enabled the distinction between uni-
and bi-directional aggravating interactions, and provided more
functionally coherent interpretations to the genetic interaction maps.
Our results demonstrate that searching for a causal explanation
for the genetic interactions highlights specific insights into the
cellular roles of genes and pathways as well as elucidates global
features of the genetic interaction map. With the increasing
availability of genetic interaction maps in yeast and as they
become available for a large number of organisms, many of
them with sparser annotation (Butland et al., 2008; Byrne et al.,
2007; Roguev et al., 2008), we believe that these methods
can be generalized and will prove valuable in the automated
highlighting of both the functional structure of the network as
well as specific biological phenomena. This should allow us to
make the first steps necessary to turn high-throughput maps into
a true understanding of cellular complexity by interpreting how
such maps relate to the underlying landscape of interacting cellular
pathways.

ACKNOWLEDGEMENTS
We thank N. Barkai, S. Gasser, Z. Itzhaki, T. Kaplan, P.D. Kaufman,
O.J. Rando, A. Regev, M. Yassour, E. Yeger-Lotem, I. Wapinski, and
J.S. Weissman for discussions and useful comments on the article.

i235



[11:39 12/5/2010 Bioinformatics-btq197.tex] Page: i236 i228–i236

A.Jaimovich et al.

We also thank S. Collins and N. Krogan for making data available
prior to publication.

Funding: Eshkol fellowship from the Israeli Ministry of Science
(to A.J.); Rudin Foundation (to R.R.); Human Frontiers Science
Program Career Development Award (to M.S.); European Union
grant 3D-Repertoire, contract number LSHG-CT-2005-512028
(to H.M.); National Institutes of Health grant 1R01CA119176-01
(to N.F.).

Conflict of Interest: none declared.

REFERENCES
Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat. Gen., 25, 25–29.
Bandyopadhyay,S. et al. (2008) Functional maps of protein complexes from quantitative

genetic interaction data. PLoS Comput. Biol., 4, e1000065.
Bennett,C.B. et al. (2001) Genes required for ionizing radiation resistance in yeast.

Nat. Gen., 29, 426–434.
Beyer,A. et al. (2007) Integrating physical and genetic maps: from genomes to

interaction networks. Nat. Rev. Genet., 8, 699–710.
Boone,C. et al. (2007) Exploring genetic interactions and networks with yeast. Nat.

Rev. Genet., 8, 437–449.
Butland,G. et al. (2008) eSGA: E. coli synthetic genetic array analysis. Nat. Methods.,

5, 789–795.
Byrne,A.B. et al. (2007) A global analysis of genetic interactions in Caenorhabditis

elegans. J. Biol., 6, 8.
Collins,S. et al. (2007a) Functional dissection of protein complexes involved in yeast

chromosome biology using a genetic interaction map. Nature, 446, 806–810.
Collins,S. et al. (2007b) Toward a comprehensive atlas of the physical interactome of

Saccharomyces cerevisiae. Mol. Cell Proteomics, 6, 439–450.
Cover,T. and Thomas,J. (2001) Elements of Information Theory. City College of New

York, John Wiley, New York.
Dudley,A. et al. (2005) A global view of pleiotropy and phenotypically derived gene

function in yeast. Mol. Syst. Biol., 1, 2005.0001.
Eisen,M. et al. (1998) Cluster analysis and display of genome-wide expression patterns.

Proc. Natl Acad. Sci., 95, 14863–14868.
Fiedler,D. et al. (2009) Functional organization of the S. cerevisiae phosphorylation

network. Cell, 136, 952–963.
Furumai,R. et al. (2001) Potent histone deacetylase inhibitors built from trichostatin a

and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl Acad. Sci. USA.,
98, 87–92.

Giaever,G. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome.
Nature, 418, 387–391.

Glover,F. et al. (1993) A user’s guide to TABU search. Ann. Oper. Res., 41, 1–28.

González-Aguilera,C. et al. (2008) The THP1-SAC3-SUS1-CDC31 complex works
in transcription elongation-mRNA export preventing RNA-mediated genome
instability. Mol. Biol. Cell., 19, 4310–4318.

Hanna,J. et al. (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for
sister chromatid cohesion. Mol. Cell. Biol., 21, 3144–3158.

Helenius,A. and Aebi,M. (2004) Roles of N-linked glycans in the endoplasmic
reticulum. Annu. Rev. Biochem., 73, 1019–1049.

Hillenmeyer,M. et al. (2008) The chemical genomic portrait of yeast: uncovering a
phenotype for all genes. Science, 320, 362–365.

Kelley,R. and Ideker,T. (2005). Systematic interpretations of genetic interactions using
protein networks. Nat. Biotech., 23, 561–566.

Kim,T. and Buratowski,S. (2009) Dimethylation of H3K4 by Set1 recruits the Set3
histone deacetylase complex to 5′ transcribed regions. Cell, 137, 259–272.

Makhnevych,T. et al. (2009) Global map of SUMO function revealed by protein-protein
interaction and genetic networks. Mol. Cell, 33, 124–135.

Masumoto,H. et al. (2005) A role for cell-cycle-regulated histone H3 lysine 56
acetylation in the DNA damage response. Nature, 436, 294–298.

Measday,V. et al. (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with
Mcm22p and Mm16p at the yeast outer kinetochore. Genes Dev., 16, 101–113.

Nasmyth,K. (2005) How do so few control so many? Cell, 120, 739–746.
Pan,X. et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae.

Cell, 124, 1069–1081.
Parsons,A. et al. (2004) Integration of chemical-genetic and genetic interaction data

links bioactive compounds to cellular target pathways. Nat. Biotechnol., 22, 62–69.
Parsons,A. et al. (2006) Exploring the mode-of-action of bioactive compounds by

chemical-genetic profiling in yeast. Cell, 126, 611–625.
Pu,S. et al. (2008) Local coherence in genetic interaction patterns reveals prevalent

functional versatility. Bioinformatics, 24, 2376–2383.
Rissanen,J. (1983) A universal prior for integers and estimation by minimum description

length. Ann. Stat., 11, 416–431.
Roguev,A. et al. (2008) Conservation and rewiring of functional modules revealed by

an epistasis map in fission yeast. Science, 332, 405–410.
Schuldiner,M. et al. (2005) Exploration of the function and organization of the yeast

early secretory pathway through an epistatic miniarray profile. Cell, 123, 507–519.
SegrèD. et al. (2005) Modular epistasis in yeast metabolism. Nat. Genet., 37, 77–83.
Suka,N. et al. (2001) Highly specific antibodies determine histone acetylation site usage

in yeast heterochromatin and euchromatin. Mol. Cell., 8, 473–479.
Tong,A. et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion

mutants. Science, 294, 2364–2368.
Ulitsky,I. et al. (2008) From E-MAPs to module maps: dissecting quantitative genetic

interactions using physical interactions. Mol. Syst. Biol., 4, 209.
van Attikum,H. et al. (2007) Distinct roles for SWR1 and INO80 chromatin remodeling

complexes at chromosomal double-strand breaks. EMBO J., 26, 4113–4125.
Wang,A. et al. (2002) Requirement of hos2 histone deacetylase for gene activity in

yeast. Science, 298, 1412–1414.
Wilmes,G.M. et al. (2008) A genetic interaction map of RNA-processing factors reveals

links between sem1/dss1-containing complexes and mRNA export and splicing.
Mol. Cell, 32, 735–746.

i236



6 Discussion and conclusions

In this dissertation I presented a methodology to learn the properties of a protein-
protein interaction network, while taking into account uncertainty originating from
noise in large-scale experimental data. The main premise is that this should be
viewed as a relational learning problem, where the large-scale experiments serve
as noisy observations over hidden interaction random variables. I started by pre-
senting the general formalization of this model, along with a proof-of-concept
implementation of this model for simultaneous prediction of interactions given
large-scale interaction data (Jaimovich et al., 2006). Next, to allow realistic ap-
plication of this model to interaction networks covering millions of interactions,
I developed tools that perform efficient approximate inference in such models
(Jaimovich et al., 2007). In another work (not included in this thesis), together
with Ofer Meshi, we worked on finding better approximate inference algorithms
that will enable successful reconstructions of such models from noisy observa-
tions (Meshi et al., 2009). Our methodology was implemented in a general code li-
brary that facilitates implementation of similar ideas to other problems (Jaimovich
et al., 2010b). Finally, I demonstrated how network analysis of genetic interaction
data can elucidate biological insights from large-scale genetic interaction maps
(Jaimovich et al., 2010a).

6.1 Learning relational graphical models of interaction net-
works

The main advantage of the application of graphical models to represent interac-
tion networks is that it allows an elegant methodology to cope with uncertainty
while dealing with various tasks, such as predicting missing links in the network
and learning its properties from noisy observations. Furthermore, similar meth-
ods were successfully applied to other types of networks, such as the World Wide
Web (Taskar et al., 2004) and social networks (Robins et al., 2007; Toivonen et al.,
2009). However, the application of graphical models to actual biological interac-
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tion networks poses many challenges. The biggest challenge is estimating the
’true’ model, both in terms of feature selection and in terms of parameterization.
In this setting one has to learn the set of features that define the qualitative nature
of the model (that is, the set of independencies it defines) as well as the correct
parameterization for these features. Della Pietra et al. (1997) proposed, what has
now become a classical approach for this challenge, starting with a basic set of
features and then performing a greedy search over all possible feature-sets that
improve some criterion (e.g., the likelihood of the data). This kind of search usu-
ally requires the calculation of the likelihood function and the expected sufficient
statistics for each of the features in order to enable a gradient descent optimization
of the estimated paramaters for each feature-set.

During my PhDwork, I have tried to develop efficient approximations that will
facilitate such learning procedures. One of the reasons that makes learning such
models a tough task, is that it is hard to estimate the quality of a learned model.
Thus, it is hard to tell the effect the approximations have on the results of the
learning procedure. One way to estimate this effect is by sampling networks from
a synthetic model using Markov Chain Monte Carlo methods (Geman and Geman,
1984; Gilks et al., 1996). In turn, we can use our approximate inference proce-
dures to learn the parameters and features from these ’synthetic’ networks and
compare them to those of the model we sampled from. Furthermore, by consid-
ering small networks where exact inference is feasible one can compare the same
learning strategy with exact computations to estimate the effect of approximate
inference on the learning results. Such comparison is not a trivial task, especially
for large models, as even seemingly different feature-sets and parameterizations
can describe the same distributions.

Initial results show that applying these ideas, the learning methodology de-
scribed by Della Pietra et al. (1997), using exact inference to compute the like-
lihood and sufficient statistics, and standard statistical criteria as stopping condi-
tions, it was possible to recover models that were relatively close to the models we
sampled from. Unfortunately, when using our implementations for approximate
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Figure 6: Visualization of parameter estimation: This image shows tracking
of the parameter estimation for a model with three features (univariate, chain and
closed triplets, denoted by θ1, θ2, θ3, respectively) from synthetic data. The black
asterix shows the parameters that were used to sample the data and the green
asterix shows the parameters used to initiate the optimization. Shown are two
tracks of gradient descent iterations where the likelihood and expected sufficient
statistics were estimated with exact and approximate inference (shown in blue and
red, respectively). The parameter space is illustrated by a red three dimensional
cube and the left and right panels show its projections on two dimensions.

inference by compact loopy belief propagation (Jaimovich et al., 2007), we ob-
served that the error introduced by the approximation in loopy belief propagation
(LBP) leads to large errors in parameter estimation (Figure 6).

One alternative that could improve the approximation quality is to use gener-
alized belief propagation (GBP) (Yedidia et al., 2001), which was shown to pro-
vide excellent approximations for other models (e.g., 2-dimensional grids (Yedidia
et al., 2001). However, the challenge here is choosing the appropriate regions and
counting numbers for our model (see Section 1.2.2). In collaboration with Ofer
Meshi, in a paper not included in this thesis, we developed and implemented a
general version of GBP to allow for a free choice of regions and counting numbers
(Meshi et al., 2009). In addition, although many works suggest specific choices
of counting numbers with proven guarantees (Wainwright et al., 2005b), it is not
clear how to define regions and counting numbers for a general model. More-
over, in many cases the standard LBP often performs empirically better than its
generalizations. We made a systematic comparison of various choices for count-
ing numbers on models over interaction networks, and suggested a novel method
to choose counting numbers that produce better results. Unfortunately, also this
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improvement did not result in successful learning procedures.
Another possible solution to this problem is to use an alternative score to eval-

uate the models (instead of the likelihood function), which might introduce some
bias, but is easier to compute. One such alternative is pseudo-likelihood (Besag,
1975, 1977). Although in a study of social networks this score was suggested
to be inferior to other approximate inference methods (van Duijn et al., 2009), it
was successfully used to learn biological networks in a model very close to the
one suggested here (Saul and Filkov, 2007). Our initial experiments on synthetic
data also indicate that using pseudo-likelihood as a score function results in ac-
curate reconstruction of the model parameters. However, inference of biological
hypotheses by its application to actual interaction networks still poses additional
computational challenges that we are trying to adress these days.

6.2 Lifted inference in models of interaction networks

The second paper in this dissertation presented a methodology for performing
inference in the template level of the model. This method allows efficient approx-
imate calculations of both the likelihood function and the marginal distribution
in a symmetric relational model over huge networks. However, one major draw-
back of this method is that it requires perfect symmetry in the model. In the
case of the interaction network I am aiming to model this has two implications.
First, we can perform inference only with either full evidence or no evidence
and not with partial evidence. Second, the symmetry preservation implies that
we can consider models that span all possible interactions between the relevant
proteins. Furthermore, these models must assign the same parameter and count-
ing number to each instantiation of a template feature, regardless of the actual
variables it encompasses. Importantly, although these are serious limitations, this
methodology still enables efficient computation of marginal probabilities and of
the likelihood function for fully observed datasets over symmetric models. These
calculations enable implementation of efficient procedures for parameter estima-
tion from fully observed data. However, when dealing with partially observed
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datasets, standard procedures of parameter estimation often use expectation max-
imization (EM) techniques that fill in the missing observations by computation of
marginal distributions conditioned on the partially observed evidence (Dempster
et al., 1977; Lauritzen, 1995). Unfortunately, our current implementation does not
allow efficient approximation for this kind of tasks.

Constraining the model to only consider the entire repertoire of possible in-
teractions between the proteins is a serious limitation. As we want to consider
networks over a large number of proteins, degeneracy of the model becomes a se-
rious concern. Specifically, for some models many parametric settings will yield
either a full or an empty network (Handcock, 2003). One approach to deal with
this issue, is to introduce features that capture the degree of each protein in the
network (Saul and Filkov, 2007). A different, computationally oriented solution,
is to allow models that break the symmetry but still use the relational nature of the
model to efficiently compute approximate inference. Recently, two works built
upon the work described in the second chapter of this dissertation to suggest such
algorithms (Singla and Domingos, 2008; Kersting et al., 2009). Their basic ap-
proach is very similar to ours, but they allow its implementation in more general
cases. Instead of requiring the entire model to be symmetric, they identify local
symmetries by grouping together similar nodes in the graphical model. Thus, if
the model is fully symmetric the two methods are equivalent as they will iden-
tify all local symmetry properties we assume. However, in cases the model is
not fully symmetric, their methodology captures the local symmetries that allow
to save computation time. Using these algorithms, we can consider a smaller set
of interactions by creating datasets that will be designed to have high coverage
(regardless of their false positive rate). In turn, we can use our methodology to
highlight reliable interactions in this dataset and characterize them. These meth-
ods can also be used for parameter estimation based on partially-observed data.
However, their efficiency remains questionable, as it is not clear whether the ap-
plication of these methods to our models will result in a dramatic decrease of
computation time.
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6.3 In-vivo measurements of protein-protein interactions

One of the major concerns regarding the classical approaches for large-scale as-
says of protein-protein interactions is that they do not query the interactions in
native conditions. For example, the affinity purification assay (Rigaut et al., 1999)
usually over-expresses the TAP-tagged protein, and the yeast two-hybrid screens
(Uetz et al., 2000; Ito et al., 2001) require the introduction of both prey and bait
proteins into the yeast nucleus. Recently, Tarassov et al. (2008) introduced a novel
method that enables in-vivo characterization of protein-protein interactions. The
idea behind their method is similar to that of the yeast two-hybrid methodology.
The difference is that instead of attaching the prey and bait proteins to two parts
of a transcription factor, they are attached to two parts of a reporter protein. If the
proteins interact the two parts of the reporter protein will be fused, and it will be-
come active. By using homologous recombination, both bait and prey proteins are
expressed in their endogenous genomic location under their original promoters.
Furthermore, using high-throughput microscopy, this method can detect the inter-
actions in-vivo in single cell resolution. This exciting methodology offers endless
possibilities: testing interactions under different cellular conditions and with vari-
ous perturbations, measuring cell-to-cell variability of protein-protein interactions
and so on. Analysis of such experiments will highlight the need for models that
take into account the dynamic nature of the interactions. The models I introduced
in this dissertation offer elegant extensions for both discrete (Murphy, 2002) and
continuous (Nodelman et al., 2002; El-Hay et al., 2006) dynamic models, and
could be naturally extended to model the results of such assays.

6.4 Analysis of genetic interaction maps

Comprehensive genetic interaction screens for a variety of organisms, ranging
from simple bacteria to multicellular eukaryotes, are becoming more and more
popular (Byrne et al., 2007; Typas et al., 2008; Wilmes et al., 2008; Roguev et al.,
2008; Butland et al., 2008; Breslow et al., 2008; Fiedler et al., 2009; Costanzo
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et al., 2010). Analysis of these data, mainly using manual intervention and ex-
pert knowledge, has already led to many biological insights. Yet, fully automated
analysis of large-scale genetic interaction screens poses a real challenge to the
computational biology community. In the fourth chapter of this dissertation I
presented a novel method that makes a step forward in this direction. Several
works tried to identify functional modules of genes from such screens (Ulitsky
et al., 2008; Pu et al., 2008; Bandyopadhyay et al., 2008). In this work we cre-
ated a hierarchical organization of these modules in one coherent structure and
showed how such organization makes it easier to deduce biological insights from
the results of genetic interaction screens. However, this hierarchical organization
comes at the price of lower coverage of the interactions since we can only cover
interactions that are consistent with our hierarchical organization. One possible
extension of this work would be to enable larger coverage while preserving some
organization of the results in a coherent structure. This can be obtained using a
more sophisticated hierarchical structure that allows a child module to have more
than one parent module. By limiting the number of parents one can ensure a
reasonably coherent structure. However, searching the space of such structures
might be much more complicated. Another interesting addition to this model is to
consider single-gene interactions. One of the reasons we join genes into modules
is to overcome noise in a single observed genetic interaction between two genes.
However, once the modules are created, we can look for patterns of interactions
between a single gene with all the genes in one module, and hope that these will
be coherent, since the genes in the module should have the same function. Thus,
we can systematically look for single genes that have a well defined pattern of
interactions with some module, leading to more focused insights into the function
of specific genes.

Another relatively delicate point in our work is that we are building our mod-
ules based directly on the actual values of the genetic interactions between the
genes. Although this results in coherent relations between modules, it is relatively
prone to noise. We hope to overcome this noise by looking for groups of inter-
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actions with the same sign and strength. We also indirectly take into account the
correlation between genetic interaction profiles of two genes by using the hierar-
chical clustering as the starting point for our greedy optimization procedure. One
possible extension of this work is to consider the correlation between two genes
also in the greedy improvement steps. Previous works have shown that this cor-
relation is a more robust measure for functional relation (Schuldiner et al., 2005;
Ulitsky et al., 2008) and can help in coping with noise in the data. In addition, it
can help in discriminating between proteins that share the same roles in a com-
plex and proteins that take part in the same complex but play different roles. This
also shows that considering various observations on the phenotype of each single
perturbation (in this case, its profile of genetic interactions) can strengthen the
computational analysis. In fact, a critical part of our work is based on using ad-
ditional data on the phenotype of each single deletion, its sensitivity to chemical
perturbations, to shed additional light on the observed genetic interactions.

Notably, the most obvious phenotype of the single perturbations, its growth
rate, was not measured directly in the assays we used in our analysis (Schuldiner
et al., 2005; Collins et al., 2007b). Instead, by assuming that most gene-pairs
do not have a significant functional relation they estimated the effect of the sin-
gle perturbations based on the double perturbations of each gene with all other
genes. The strength of this method is that it is relatively not sensitive to noise that
may occur when directly measuring the single perturbation phenotype. However,
more recent methods did measure directly the phenotype of single perturbations
(Breslow et al., 2008; Jonikas et al., 2009; Costanzo et al., 2010) and showed how
such measurements can help in the analysis of genetic interactions. Furthermore,
a recent work used the results of these assays to systematically identify functional
pathways as well as the directionality of interactions within them (Battle et al.,
2010). Their main idea is that if a protein x is ’upstream’ to a protein y in some
pathway then the phenotype of perturbing both x and y will be similar to that of
a single perturbation of x (and not to that of perturbing y). Furthermore, in case
of a longer pathways this same logic produces more complex predictions that can
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also add confidence to observed interactions with low scores. Namely, if we are
confident that x is upstream to y and that y is upstream to z then we can increase
the confidence of x being upstream of z.

Examining the results of Schuldiner et al. (2005) and Collins et al. (2007b), it
seems that using the growth rate phenotype to identify genetic interactions creates
a bias towards processes that are involved in cell division and growth. Although
other processes are also identified in the results, the most clear and coherent sig-
nals belong to pathways and complexes related to cell division, DNA duplication,
and other related cellular functions. This illustrates that the measured phenotype
will have a strong effect on the type of functional relations captured by this type
of large-scale assays. Advances in technology lead to exciting developments in
this field by allowing genetic screens with much more precise phenotypes. For
example, to analyze the activity of the unfolded protein response (UPR) Jonikas
et al. (2009) used a green fluorescent protein (GFP) attached to synthetic promoter
that contains multiple binding sites of a major UPR regulator (Hac1). The activ-
ity of the fluorescent protein can be measured in single cell resolution using flow
cytometry. By creating yeast strains that carry this promoter, along with various
single and double perturbations of yeast genes, they provided a large-scale assay
that characterizes genes required for protein folding in the endoplasmic reticulum.
Vizeacoumar et al. (2010) introduced a GFP fused tubulin protein to the arrayed
collection of deletion mutants, and later to a set of double deletion strains. By
using high throughput microscopy, they were able to explore the yeast spindle
morphogenesis in great detail. In these works, the measured phenotype is aimed
to enable analysis of a specific cellular mechanism. Obviously, this leads to some
information loss on genes whose functions are related to other mechanisms, but
on the other hand the characterized relations between genes readily provide actual
biological insights. Furthermore, these ’next generation’ genetic screens produce
single-cell resolution data on the system they query. Although current analyses
use only means (or medians) of these single-cell data (Jonikas et al., 2009; Vizea-
coumar et al., 2010; Battle et al., 2010), it is interesting to examine more detailed
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information in other features of the distribution of the reporter activity within the
population of cells. In fact , in an ongoing research [Rinott, Jaimovich and Fried-
man ; submitted] we show that by looking at the cell-to-cell variability in the data
of Jonikas et al. (2009) one can learn about the global properties of transcription
regulation as well as on the regulation of the unfolded protein response.

6.5 Implications of our methodology for analysis of networks

The relevance of network analysis has always been a matter of controversy. The
seminal work of Milo et al. (2002) has shown that by learning some local proper-
ties of the network (in their case, the over-represented network connected patterns,
termed motifs), one can actually learn about biological principles that are imple-
mented in many cellular processes. An interesting question that remains open
is to what extent the global properties of the graph are derived by this series of
local features. In this sense my methodology suggests a substancial advance in
our understanding of the network structure. First, when learning the set of fea-
tures of such a model and considering the addition of a new feature, the increase
in the model’s fit is tested given the current set of features that describe it. This
means that a feature will be added to the model only if it improves the model’s
fit to the observed network. Importantly, this strategy requires some statistical
tools that make sure we do not over-fit the data. Using advanced tools for learn-
ing such models, we can also allow removal of existing features from the model
once they become unnecessary. For example, if the existence of a large feature
in the network gives rise to an overabundance of smaller motifs, we expect the
model to identify the fact that once this large feature is added, the smaller features
are not needed any more. Unlike the work of Milo et al. (2002) who considered
each feature independently, this process should result in a non-redundant set of
features. One example that illustrates the significance of this advantage can be
seen in our analysis of genetic interactions. Originally, our research has started by
looking for enriched sets of network motifs in the network using the algorithms
introduced by Milo et al. (2002) and Yeger-Lotem et al. (2004). This search re-
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A B

Figure 7: Small and large features in the genetic interaction networks Left
panel shows network motifs analysis (Milo et al., 2002) using the algorithms of
Yeger-Lotem et al. (2004) applied to four large-scale genetic interaction assays.
The bars are colored according to the corresponding assays: Collins et al. (2007b)
in blue bars, Wilmes et al. (2008) in light blue bars, Schuldiner et al. (2005) in
yellow bars and Jonikas et al. (2009) in red bars. The x-axis shows the motifs (al-
leviating interactions in yellow and aggravating in blue) and the y-axis shows the
enrichment of this motif in terms of number of standard deviations compared with
random networks. Right panel shows how interactions between a small number
of functional modules can create numerous small motifs.

sulted in many small motifs that seemed significantly over represented (Figure 7a).
However, manual examination of these results by grouping known pathways dis-
covered that interactions between functional units are in fact responsible for this
over-representation (Figure 7b). Thus, in this case the interesting phenomenon is
defined by the larger motifs. Following this conclusion, we turned to search for
more complex structures in the network.

The more interesting question, however, is to what extent the global proper-
ties of the network can be explained as a direct result of its local features. The
generative nature of our models allows one direction to approach this question by
sampling networks from the learnt model and comparing their global features to
the interaction network. This could take us one step closer to understanding the
nature of biological interaction networks.
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6.6 Integration of interaction networks with other data sources

The results of Jaimovich et al. (2010a) show that integrating additional layers of
information with models of interaction networks leads to deciphering actual bi-
ological mechanisms. In our work, we consider the additional information only
after detection of the modules, to shed light on the mechanisms that cause their in-
teractions. Integrating information from additional data sources on single protein
attributes as well as on relations between proteins within the process of identifi-
cation of functional modules can take us another step towards deduction of bio-
logical insights from such observations. One possible algorithm that might yield
such an automatic division can be based on the work of Roy et al. (2007). Their
basic idea is to use data on single node attributes and on relations between nodes
to learn an annotated hierarchy that gives the best division of the nodes into cat-
egories. This algorithm presents several advantages. First, it finds a hierarchical
organization that will optimize the categorization in all relations and attributes si-
multaneously. Second, each such organization is scored by integrating over all
possible divisions into categories that are consistent with this hierarchical struc-
ture (in contrast to considering only the best division). Finally, Roy et al. (2007)
also devised a dynamic programing algorithm that enables exact calculation of
the score of each organization efficiently. A drawback of this method is that its
implementation for a search in the space of possible organizations is infeasible for
networks with hundreds of nodes, such as the genetic interaction networks. As
this space is very complex, devising an algorithm that will yield the best possible
search strategy remains a challenge.

6.7 Open source software

One of the main problems of the computational scientific community is the ability
to reproduce and build upon existing algorithms towards extending and improv-
ing current methodologies. Thus, when presenting novel computational tools that
suggest either algorithmic improvements or a novel methodology for analysis of
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data, it is of crucial importance to present open source software that implements
these ideas. Although this statement seems obvious, it is not trivial to produce
a software package that will truly offer both an efficient implementation along
with a documented class hierarchy that will allow easy extension of the imple-
mented algorithms. Most of the methods I developed during my PhD work were
implemented in an open source library, which also contains implementation of
many other existing algorithms. Together with Ofer Meshi and Gal Eldian we
have made a special effort to document its base classes and to offer user-guides
that will ease algorithmic and implementation improvements of our algorithms.
Since it was made officially publicly available, our software package was down-
loaded from the Machine Learning Open Source Software (MLOSS) website by
more than 300 users. Even before its publication, we shared it upon request and
it was used in a number of applications both in our labs and by our collaborators.
Starting with improvements of approximate inference techniques (Elidan et al.,
06; Meshi et al., 2009), followed by many applications in protein design (Fromer
and Yanover, 2008, 2009; Fromer and Shifman, 2009; Fromer et al., 2010), lo-
calization of objects in cluttered images (Elidan et al., 2006; Heitz et al., 2009)
and Cryo Electron Tomography image alignment (Amat et al., 2008). I hope that
many other works will be able to use this infrastructure to create new tools that
both improve current methodologies and implements existing ideas in other sci-
entific problems.

6.8 Concluding remarks

In my PhD work I strived to advance the field of biological network analysis
on two related fronts. The first front regards methodology that will provide a
rich modeling language of interaction networks. At the second front I aimed to
show how such modeling can actually lead to insights into biological mechanisms.
In recent years technological advances facilitate production of large-scale assays
measuring both physical and genetic interactions. I believe that the models and
algorithms presented in this dissertation will be a useful in the efforts to analyze
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this kind of results.
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R Toivonen, L Kovanen, M Kivelä, and J Onnela. A comparative study of social
network models: Network evolution models and nodal attribute models. Social
Networks, 2009.

A H Tong, G Lesage, G D Bader, H Ding, H Xu, X Xin, J Young, G F Berriz,
R L Brost, M Chang, Y Chen, X Cheng, G Chua, H Friesen, D S Goldberg,
J Haynes, C Humphries, G He, S Hussein, L Ke, N Krogan, Z Li, J N Levinson,
H Lu, P Menard, C Munyana, A B Parsons, O Ryan, R Tonikian, T Roberts,
A M Sdicu, J Shapiro, B Sheikh, B Suter, S L Wong, L V Zhang, H Zhu, C G
Burd, S Munro, C Sander, J Rine, J Greenblatt, M Peter, A Bretscher, G Bell,
F P Roth, G W Brown, B Andrews, H Bussey, and C Boone. Global mapping
of the yeast genetic interaction network. Science, 303: 808–813, 2004.

A Typas, R Nichols, D Siegele, M Shales, S Collins, B Lim, H Braberg, N Ya-
mamoto, R Takeuchi, B Wanner, H Mori, J Weissman, N Krogan, and C Gross.
High-throughput, quantitative analyses of genetic interactions in e. coli. Nat
Methods, 5: 781–787, 2008.

P Uetz, L Giot, G Cagney, T A Mansfield, R S Judson, J R Knight, D Lock-
shon, V Narayan, M Srinivasan, P Pochart, A Qureshi-Emili, Y Li, B Godwin,
D Conover, T Kalbfleisch, G Vijayadamodar, M Yang, M Johnston, S Fields,
and J M Rothberg. A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature, 403: 623–627, 2000.

I Ulitsky, T Shlomi, M Kupiec, and R Shamir. From e-maps to module maps:
dissecting quantitative genetic interactions using physical interactions. Mol Syst
Biol, 4:209, 2008.

M van Duijn, K Gile, and M Handcock. A framework for the comparison of
maximum pseudo-likelihood and maximum likelihood estimation of exponen-
tial family random graph models. Social Networks, 2009.

F J Vizeacoumar, N van Dyk, F S Vizeacoumar, V Cheung, J Li, Y Sydorskyy, N
Case, Z Li, A Datti, C Nislow, B Raught, Z Zhang, B Frey, K Bloom, C Boone,

89



and B J Andrews. Integrating high-throughput genetic interaction mapping and
high-content screening to explore yeast spindle morphogenesis. J Cell Biol,
188: 69–81, 2010.

C von Mering, R Krause, B Snel, M Cornell, S G. Oliver, S Fields, and P Bork.
Comparative assessment of large-scale data sets of protein-protein interactions.
Nature, 417: 399–403, 2002.

M J. Wainwright, T Jaakkola, and A S. Willsky. Exact map estimates by (hy-
per)tree agreement. In Advances in Neural Information Processing Systems 15
2002.

M J Wainwright, T S Jaakkola, and A S Willsky. A new class of upper bounds
on the log partition function. IEEE Transactions on Information Theory, 51:
2313–2335, 2005.

M J Wainwright and M I Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1: 1–305,
2008.

WWiegerinck and T Heskes. Fractional belief propagation. In Advances in Neural
Information Processing Systems 15 2003.

G MWilmes, M Bergkessel, S Bandyopadhyay, M Shales, H Braberg, G Cagney,
S R Collins, G B Whitworth, T L Kress, J S Weissman, T Ideker, C Guthrie,
and N J Krogan. A genetic interaction map of rna-processing factors reveals
links between sem1/dss1-containing complexes and mrna export and splicing.
Mol Cell, 32: 735–46, 2008.

I Xenarios, D W Rice, L Salwinski, M K Baron, E M Marcotte, and D Eisenberg.
DIP: the database of interacting proteins. Nucleic Acids Res, 28: 289–291,
2000.

90



T Yamada and P Bork. Evolution of biomolecular networks: lessons from
metabolic and protein interactions. Nature Reviews Molecular Cell Biology,
10: 791–803, 2009.

J S Yedidia, W T Freeman, and Y Weiss. Generalized belief propagation. In
Advances in Neural Information Processing Systems 13, 2001.

J S Yedidia, W T Freeman, and YWeiss. Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Informa-
tion Theory, 51: 2282–2312, 2005.

E Yeger-Lotem, S Sattath, N Kashtan, S Itzkovitz, R Milo, R Y. Pinter, U Alon,
and HMargalit. Network motifs in integrated cellular networks of transcription-
regulation and protein-protein interaction. Proc Natl Acad Sci U S A, 101:
5934–5939, 2004.

H Yu, P Braun, M A. Yildirim, I Lemmens, K Venkatesan, J Sahalie, T Hirozane-
Kishikawa, F Gebreab, N Li, N Simonis, T Hao, J F. Rual, A Dricot, A Vazquez,
R R. Murray, C Simon, L Tardivo, S Tam, N Svrzikapa, C Fan, A S. de Smet,
AMotyl, M E. Hudson, J Park, X Xin, M E. Cusick, TMoore, C Boone, M Sny-
der, F P. Roth, A L. Barabasi, J Tavernier, D E. Hill, and M Vidal. High-quality
binary protein interaction map of the yeast interactome network. Science, 322:
104–110, 2008.

A Yuille and A Rangarajan. The convex-concave computational procedure (cccp).
In Advances in Neural Information Processing Systems 14, , 2002.

L V Zhang, S L Wong, O D King, and F P Roth. Predicting co-complexed protein
pairs using genomic and proteomic data integration. BMC Bioinformatics, 5:
38, 2004.

L V Zhang, O DKing, S LWong, D S Goldberg, A Y Tong, G Lesage, B Andrews,
H Bussey, C Boone, and F P Roth. Motifs, themes and thematic maps of an
integrated saccharomyces cerevisiae interaction network. J Biol, 4: 6, 2005.

91



XM Zhao, L Chen, and K Aihara. Protein function prediction with the shortest
path in functional linkage graph and boosting. International journal of bioin-
formatics research and applications, 4: 375–84, 2008.

92



Servisiae!! !! !!! ! ! ! ! !! ! !

! !! !!"!!#! ! ! ! !! ! !

! ! !! !! ! !!! ! ! !! ! !

! "! #! ! ! ! ! ! ! ! ! ! ! ! !

! !! ! ! ! !! ! !! "!! #! !

!! ! ! ! ! ! ! !! ! ! !!

! #! ! ! !! !"! ! !! ! ! !

! #! ! ! !#!! ! ! !! "!! !

! ! ! ! !! !! !! !! ! ! ! !

!"! ! ! ! ! ! ! !$%&&! ! ! ! ! ! ! !

! ! ! ! ! ! ! !!"!!

!!

! !!! ! !!! !!!!"!

! #! ! !! #! !! ! ! ! !! ! !

! ! ! ! !"! !! ! !! !!

!! !!#! !! ! ! ! ! ! !

! "! #! ! ! ! ! ! ! ! ! ! !

! ! ! ! !! ! ! ! !!"!!!!

! ! !!!! ! ! ! !! #!!!

! ! ! ! ! ! ! ! ! ! ! ! !!! !!

! ! !!!!"!!



!!

!

! ! ! !! ! ! ! !!! "!! #!!

! ! ! !! #! !!!! #! !#!!!

! !! !!$%&'#!(&'!"!! ! ! ! ! !

!$!!! !!#! ! !!#! ! !!"

! !!#!! !!#! ! ! ! !!#!

!! #! ! ! ! ! ! !!! "! !!

! ! !!! ! ! !! "!! #! !

! ! ! ! !!! !!! "!! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! !

! ! ! !!!"#! ! !!!! ! !

!! ! ! !! #! !!!! !!! ! !

! ! ! ! !"!!

!!

! ! ! !! !! ! !!! ! ! !

! ! ! ! !! "! ! ! ! ! !

! ! ! ! ! ! ! ! ! !!!"! !

! !!! !! !! ! ! ! ! !!

! ! ! ! !)!!#!*!"! ! ! !! ! !

!! ! !! !! ! !! !Sacharomices 



!!

! ! ! !!!

!"! !!"!!!



!!

! !! !!!

!!

!!

!!

!!

! ! ! ! !!!

!!

!"!!

!!

!!

!!

!!

! ! ! !#!!

!$%&%!!!

!!


