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Abstract
In many domains,we are interestedin analyzingthe
structureof the underlyingdistribution, e.g.,whether
onevariableis a direct parentof the other. Bayesian
model-selectionattemptsto find the MAP modeland
useits structureto answerthesequestions.However,
when the amountof available data is modest,there
might be many modelsthat have non-negligible pos-
terior. Thus, we want computethe Bayesianposte-
rior of a feature,i.e., the total posteriorprobabilityof
all modelsthatcontainit. In this paper, we proposea
new approachfor this task. We first show how to ef-
ficiently computea sumover theexponentialnumber
of networks that areconsistentwith a fixed ordering
over network variables. This allows us to compute,
for a given ordering,both themarginal probability of
the dataand the posteriorof a feature. We thenuse
this result as the basisfor an algorithm that approx-
imatesthe Bayesianposteriorof a feature. Our ap-
proachusesanMarkov ChainMonteCarlo (MCMC)
method,but over orderingsratherthanover network
structures.Thespaceof orderingsis muchsmallerand
more regular than the spaceof structures,and hasa
smootherposterior“landscape”. We presentempiri-
cal resultsonsyntheticandreal-lifedatasetsthatcom-
pareour approachto full modelaveraging(whenpos-
sible), to MCMC over network structures,and to a
non-Bayesianbootstrapapproach.

1 Introduction

In thelastdecadetherehasbeenagreatdealof researchfo-
cusedontheproblemof learningBayesiannetworks(BNs)
from data[3, 8]. An obviousmotivationfor thisproblemis
to learna modelthatwe canthenusefor inferenceor de-
cisionmaking,asa substitutefor a modelconstructedby a
humanexpert.In certaincases,however, ourgoalis to learn
a modelof thesystemnot for prediction,but for discover-
ing the domainstructure.For example,we might want to
useBayesiannetwork learningto understandthe mecha-
nismsby which genesin a cell produceproteins,which in
turn causeother genesto expressthemselves,or prevent
themfrom doing so [6]. In this case,our main goal is to
discover the causalanddependencerelationsbetweenthe
expressionlevelsof differentgenes[12].

Thecommonapproachto discoveringstructureis to use
learningwith modelselectionto provide us with a single

high-scoringmodel. We thenusethatmodel(or its equiv-
alenceclass)asour modelfor thestructureof thedomain.
Indeed,in smalldomainswith asubstantialamountof data,
it has beenshown that the highestscoring model is or-
dersof magnitudemorelikely thanany other[11]. In such
cases,modelselectionis a goodapproximation.Unfortu-
nately, therearemany domainsof interestwherethis situ-
ationdoesnot hold. In our geneexpressionexample,it is
now possibleto measureof the expressionlevelsof thou-
sandsof genesin oneexperiment[12] (whereeachgene
is a randomvariablein our model [6]), but we typically
have only a few hundredof experiments(eachof which is
a singledatacase). In cases,like this, wherethe amount
of datais small relative to thesizeof themodel,thereare
likely to bemany modelsthatexplain the datareasonably
well. Model selectionmakesan arbitrarychoicebetween
thesemodels,andthereforewecannotbeconfidentthatthe
modelis a truerepresentationof theunderlyingprocess.

Given that thereare many qualitatively different struc-
turesthatareapproximatelyequallygood,we cannotlearn
a uniquestructurefrom thedata.However, theremight be
certainfeaturesof thedomain,e.g.,thepresenceof certain
edges,thatwecanextractreliably. As anextremeexample,
if two variablesare very strongly correlated(e.g., deter-
ministically relatedto eachother),it is likely thatanedge
betweenthemwill appearin any high-scoringmodel. Our
goal, therefore,is to computehow likely a featuresuchas
anedgeis to bepresentoverall models,ratherthanasingle
modelselectedby the learningalgorithm. In otherwords,
we areinterestedin computing:���������
	���
������������
	�������	��

(1)

where
������	

is � if thefeatureholdsin
�

and � otherwise.
Thenumberof BN structuresis super-exponentialin the

numberof randomvariablesin thedomain;therefore,this
summationcanbe computedin closedform only for very
small domains,or thosein which we have additionalcon-
straintsthat restrict the space(as in [11]). Alternatively,
thissummationcanbeapproximatedby consideringonly a
subsetof possiblestructures.Severalapproximationshave
beenproposed[13, 14]. One theoreticallywell-founded
approachis to useMarkov Chain Monte Carlo (MCMC)



methods:we definea Markov chainoverstructureswhose
stationarydistribution is theposterior

���������
	
, we then

generatesamplesfrom thischain,andusethemto estimate
Eq.(1).

In this paper, we proposea new approachfor evaluating
theBayesianposteriorprobabilityof certainstructuralnet-
work properties.Ourapproachis basedon two mainideas.
Thefirst is anefficient closedform equationfor summing
overall networkswith atmost � parentspernode(for some
constant� ) thatareconsistentwith afixedorderingoverthe
nodes.Thisequationallowsusbothto computetheoverall
probabilityof thedatafor thissetof networks,andto com-
putetheposteriorprobability of certainstructuralfeatures
— edgesandMarkov blankets—over this set.Thesecond
ideais theuseof anMCMC approach,butoverorderingsof
thenetwork variablesratherthandirectlyonBN structures.

Thespaceof orderingsis muchsmallerthanthespaceof
network structures;it alsoappearsto bemuchlesspeaked,
allowing muchfastermixing (i.e., convergenceto the sta-
tionarydistribution of theMarkov chain). We presentem-
pirical resultsillustratingthisobservation,showing thatour
approachhas substantialadvantagesover direct MCMC
over BN structures. The Markov chain over orderings
mixesmuch fasterandmore reliably than the chainover
network structures.Indeed,differentrunsof MCMC over
networks typically lead to very different estimatesin the
posterior probabilities of structural features,illustrating
poorconvergenceto thestationarydistribution;by contrast,
differentrunsof MCMC over orderingsconvergereliably
to thesameestimates.Wealsopresentresultsshowing that
our approachaccuratelycapturesdominantfeatureseven
with sparsedata,andthatit outperformsbothMCMC over
structuresandthenon-Bayesianbootstrapof [5].

2 Bayesian learning of Bayesian networks

Considerthe problem of analyzingthe distribution over
somesetof randomvariables� � �"!#!"!$� �&% , basedonafully
observeddataset

�'�)(+*-, �". �#!"!"!"�/*-, 0 .�1 , whereeach
*-, 2 .

is a completeassignmentto thevariables�
� �"!#!"!#� ��% .
2.1 The Bayesian learning framework

The Bayesianlearningparadigmtells us thatwe mustde-
fine a prior probabilitydistribution

����34	
over thespaceof

possibleBayesiannetworks
3

. This prior is thenupdated
usingBayesianconditioningto giveaposteriordistribution���536�7�
	

over this space.
For Bayesiannetworks,thedescriptionof a model

3
has

two components:the structure
�

of the network, andthe
valuesof the numericalparameters8 � associatedwith it.
For example,in adiscreteBayesiannetwork of structure

�
,

theparameters8 � definea multinomialdistribution 8�9�:<; =
for eachvariable �&> andeachassignmentof values ? to@BA � � ��> 	 . If weconsiderGaussianBayesiannetworksover
continuousdomains,then 8C9D:�; = containsthe coefficients
for a linearcombinationof ? anda varianceparameter.

To definethe prior
���53E	

, we needto definea discrete

probability distribution over graph structures
�

, and for
eachpossiblegraph

�
, to definea continuousdistribution

over thesetof parameters8 � .
The prior over structuresis usually consideredthe less

importantof the two components.Unlike other partsof
theposterior, it doesnot grow asthenumberof datacases
grows.Hence,relatively little attentionhasbeenpaidto the
choiceof structureprior, andasimpleprior is oftenchosen
largely for pragmaticreasons.The simplestandtherefore
mostcommonchoiceis auniformprior overstructures[8].
An alternativeprior, andtheoneweusein ourexperiments,
considersthe numberof optionsin determiningthe fami-
lies of

�
. If we decidethata node ��> has � parents,then

thereare F %HGI�JLK possibleparentssets.If weassumethatwe
chooseuniformly from these,we geta prior:������	NM %O>QP � R SUT �� @BA � � ��> 	#� V GW� !
Note that the negative logarithmof this prior corresponds
to the descriptionlengthof specifyingthe parentsets,as-
sumingthat thecardinalityof thesesetsareknown. Thus,
we implicitly assumethat cardinalitiesof parentsetsare
uniformly distributed.

A key propertyof all thesepriorsis thatthey satisfy:X Structure modularity Theprior
������	

canbewritten
in theform ������	�M O >ZY � ��> ��@BA � � ��> 	�	�!

That is, the prior decomposesinto a product,with a term
for eachfamily in

�
. In other words the choicesof the

familiesfor thedifferentnodesareindependentapriori.
Next we considertheprior over parameters,

��� 8 � �[��	 .
Here, the form of the prior variesdependingon the type
of parametricfamilieswe consider. In discretenetworks,
thestandardassumptionis a Dirichlet prior over 8C9�:/; = for
eachnode��> andeachinstantiation? to its parents[8]. In
Gaussiannetworks,we might usea Wishartprior [9]. For
our purpose,we needonly requirethat the prior satisfies
two basicassumptions,aspresentedin [10]:X Global parameter independence: Let 8�9 : ; \^]�_I`a9 :�b

betheparametersspecifyingthebehavior of thevari-
able ��> giventhevariousinstantiationsto its parents.
Thenwe requirethat��� 8 � ����	N� O > ��� 8c9 : ; \^]d_I`Q9 :�b �e��	 (2)X Parameter modularity: Let

�
and

�gf
betwo graphs

in which
@BA � � ��> 	��h@BA �ji � ��> 	-�6k then��� 8c9�:�; l �7��	��h��� 8C9D:�; l ��� f 	 (3)

Oncewedefinetheprior, wecanexaminetheform of the
posteriorprobability. UsingBayesrule,wehave that�����m���n	�Mo�����p����	<������	�!



The term
�����q�r��	

is themarginal likelihoodof thedata
given

�
, andis definedtheintegrationoverall possiblepa-

rametervaluesfor
�

.����������	��6st���������&� 8 � 	<��� 8 � ����	/u 8 �
The term

�����v�N�&� 8 � 	 is simply the probability of the
datagiven a specificBayesiannetwork. Whenthe datais
complete, this is simply aproductof conditionalprobabili-
ties.

Usingtheaboveassumptions,onecanshow (see[10]):

Theorem 2.1: If
�

is completeand
������	

satisfiesparam-
eterindependenceandparametermodularity, then����������	�� O > score

� � > �w@BA � � � > 	x���
	$!
where score

� � > ��ky���
	 iss O{z ����| > , } . � ? , } . � 8C9 : ; l 	/��� 8�9 : ; l 	<u 8c9 : ; l
If theprior alsosatisfiesstructuremodularity, we canalso
concludethatposteriorprobabilitydecomposes:�����~�7�n	-M O > Y � � > �w@BA � � � > 	/	 score

� � > ��@BA � � � > 	x�7�
	�!
2.2 Bayesian model averaging

Recallthatour goalis to computetheposteriorprobability
of somefeature

������	
over all possiblegraphs

�
. This is

equalto: ���������n	�� 
 � ������	/���������
	
Theproblem,of course,is that thenumberof possibleBN
structuresis super-exponential:�e� ` %e�^� �w�[% b , where

S
is the

numberof variables.
We can reducethis numberby restricting attentionto

structures
�

wherethereis a bound � on the numberof
parentsper node. This assumption,which we will make
throughoutthis paper, is a fairly innocuousone.Thereare
few applicationsin whichvery largefamiliesarecalledfor,
andthereis rarelyenoughdatato supportrobustparameter
estimationfor suchfamilies.Froma moreformal perspec-
tive, networks with very large families tend to have low
score.Let � J bethesetof all graphswith indegreebounded
by � . Notethatthenumberof structuresin � J is still super-
exponential:at least � J %j� ���[% .

Thus,exhaustiveenumerationoverthesetof possibleBN
structuresis feasibleonly for tiny domains(4–5 nodes).
Onesolution,proposedby severalresearchers[11, 13, 14],
is to approximatethis exhaustive enumerationby finding
a set � of high scoringstructures,andthenestimatingthe
relativemassof thestructuresin � thatcontains

�
:�������7�
	-��� �-�^� �����~�7�
	�������	� �B�^� @��#���m���n	 !

(4)

This approachleavesopenthe questionof how we con-
struct � . The simplestapproachis to usemodelselection
to pick a singlehigh-scoringstructure,andthenusethatas
our approximation.If the amountof datais large relative
to thesizeof themodel,thentheposteriorwill besharply
peakedarounda singlemodel,andthis approximationis a
reasonableone.However, aswe discussedin theintroduc-
tion, therearemany interestingdomains(e.g.,our biologi-
cal application)wheretheamountof datais small relative
to thesizeof themodel.In thiscase,thereis usuallya large
numberof high-scoringmodels,sousingasinglemodelas
ourset � is averypoorapproximation.

A simpleapproachto finding a largersetis to recordall
the structuresexaminedduring the search,andreturn the
high scoringones. However, the set of structuresfound
in this manneris quite sensitive to the searchprocedure
we use.For example,if we usegreedyhill-climbing, then
the setof structureswe will collect will all be quite simi-
lar. Sucha restrictedsetof candidatesalsoshow up when
we considermultiple restartsof greedyhill-climbing and
beam-search.This is a seriousproblemsincewe run the
risk of gettingestimatesof confidencethatarebasedon a
biasedsampleof structures.

Madigan and Raftery [13] proposean alternative ap-
proach called Occam’s window, which rejects models
whoseposteriorprobability is very low, as well as com-
plex modelswhoseposteriorprobabilityis notsubstantially
betterthana simplermodel(onethat containsa subsetof
the edges).Thesetwo principlesprunethespaceof mod-
els considered,often to a numbersmall enoughto be ex-
haustively enumerated.MadiganandRafteryalsoprovide
a searchprocedurefor finding thesemodels.

An alternative approach, proposedby Madigan and
York [14], isbasedontheuseof MarkovchainMonteCarlo
(MCMC) simulation. In this case,we define a Markov
Chainover thespaceof possiblestructures,whosestation-
ary distribution is theposteriordistribution

�������^�
	
. We

thengenerateasetof possiblestructuresby doingarandom
walk in thisMarkov chain.Assumingthatwecontinuethis
processuntil the chainmixes,we canhopeto get a setof
structuresthat is representative of theposterior. However,
it is notclearhow rapidly this typeof chainmixesfor large
domains. The spaceof structuresis very large, and the
probability distribution is often quite peaked, with neigh-
boringstructureshaving very differentscores.Hence,the
mixing rateof theMarkov chaincanbequiteslow.

3 Closed form for known ordering

In thissection,wetemporarilyturnourattentionto asome-
what easierproblem. Ratherthanperformmodelaverag-
ing over thespaceof all structures,we restrictattentionto
structuresthatareconsistentwith someknown total order-
ing � . In otherwords,we restrictattentionto structures�

whereif ��>g� @BA � � ��� 	 then ��� 2 . This assumption
wasa standardonein theearlywork on learningBayesian
networksfrom data[4].



3.1 Computing marginal likelihood

We first considertheproblemof computingtheprobability
of thedatagiventheordering:������� � 	-� 
�-�^��� ������� � 	<����������	 (5)

Note that this summation,althoughrestrictedto networks
with boundedindegreeandconsistentwith � , is still expo-
nentiallylarge: thenumberof suchstructuresis still at least� J %j� �w�[% .

Thekey insightis that,whenwerestrictattentionto struc-
turesconsistentwith agivenordering � , thechoiceof fam-
ily for one node placesno additional constraintson the
choiceof family for another. Note that this propertydoes
not hold without therestrictionon theordering;for exam-
ple, if we pick � > to bea parentof � � , then � � cannotin
turn beaparentof � > .

Therefore,we canchoosea structure
�

consistentwith� by choosing,independently, a family
k

for eachnode��> . The parametermodularity assumptionEq. (3) states
that thechoiceof parametersfor the family of ��> is inde-
pendentof the choiceof family for anotherfamily in the
network. Hence,summingover possiblegraphsconsistent
with � is equivalentto summingover possiblechoicesof
family for eachnode,eachwith its parameterprior. Given
our constrainton thesizeof thefamily, thepossibleparent
setsfor thenode� > is� >5��� ��(+k���k � ��> �+� k¡�£¢ ��1 !
where

k �y� > is definedto hold when all nodesin
k

precede� > in � . Giventhat,wehave������� � 	M 
�-�^��� O > Y � � > ��@BA � � � > 	�	 O > score
� � > ��@BA � � � > 	E�7�
	� O > 
l �¥¤ :§¦ ¨ Y � �&> ��k©	 score

� ��> ��kª�7�
	-! (6)

Intuitively, theequalitystatesthatwe cansumoverall net-
worksconsistentwith � by summingover thesetof possi-
ble familiesfor eachnode,andthenmultiplying theresults
for the differentnodes. This transformationallows us to
compute

�����q� � 	 very efficiently. Theexpressionon the
right-handsideconsistsof a productwith a term for each
node � > , eachof which is a summationover all possible
familiesfor � > . Giventhebound� overthenumberof par-
ents,the numberof possiblefamilies for a node ��> is at
most F % J K ¢ S J . Hence,thetotal costof computingEq.(6)
is at most

Sn«#S J � S J�¬ � .
We notethat thedecompositionof Eq. (6) wasfirst men-

tionedby Buntine [2], but the ramificationsfor Bayesian
model averaging were not pursued. The concept of
Bayesianmodelaveragingusinga closed-formsummation
over anexponentiallylargesetof structureswasproposed
(in a differentsetting)in [17].

The computationof
�����­� � 	 is useful in andof itself;

aswe show in thenext section,computingthe probability������� � 	 is a key stepin ourMCMC algorithm.

3.2 Probabilities of features

For certaintypesof features
�

, we canusethesametech-
niqueto compute,in closedform, the probability

�����h� ����n	
that

�
holdsin a structuregiven the orderingandthe

data.
In general,if

��� « 	
is a feature.We wantto compute������� � �w�
	-� �����C����� � 	������� � 	 !

We have just shown how to computethedenominator. The
numeratoris a sumover all structuresthatcontainthefea-
tureandareconsistentwith theordering:�����C�w��� � 	-�®
�B�^����������	/������� � 	<����������	 (7)

Thecomputationof this termdependson thespecifictype
of feature

�
.

The simplestsituationis whenwe want to computethe
posteriorprobability of the

� 9 :�¯ 9D° that denotesan edge��>j±²��� . In thiscase,wecanapplythesameclosedform
analysisto (7). Theonly differenceis thatwe restrict

� �w���
to consistonly of subsetsthatcontain �&> . Sincetheterms
thatsumovertheparentsof � J for �Z³�L2 arenotdisturbed
by thisconstraint,they cancelout from theequation.

Proposition 3.1:
����� 9 :�¯ 9´° � � ���
	-���µ l �¥¤ :5¦ ¨·¶+lE¸e9 °w¹ Y � ��> ��k©	 score

� ��> ��ky���
	� l �¥¤ :5¦ ¨ Y � ��> �wkU	 score
� ��> �wkª���n	

The sameargumentcan be extendedto ask more com-
plex queriesabouttheparentsof � > . For example,we can
computetheposteriorprobabilityof a particularchoiceof
parents,as����@BA � � ��> 	N�okª�7�º� � 	-�Y � ��> �wkU	 score

� �&> ��kª���
	� l i �¥¤ :§¦ ¨ Y � �&> ��k f 	 score
� ��> �wk f ���
	 ! (8)

A somewhatmoresubtlecomputationis requiredto com-
putetheposteriorof

� 9 :�» ¼ 9D° , the featurethatdenotesthat��> is in theMarkov blanket of ��� . Recallthis is thecase
if
�

containstheedge��>j±½��� , or theedge���¾±²�&> , or
thereis a variable � J suchthatbothedges��>N±¿� J and���¾±²� J arein

�
.

Assume,without lossof generality, that ��> precedes���
in the ordering. In this case,��> canbe in ��� ’s Markov
blanket either if there is an edgefrom � > to � � , or if� > and � � are both parentsof somethird node �·À . We
have just shown how the first of theseprobabilitiesÁ � ������ 9D: ¯ 9 ° �r�º� � 	 , canbecomputedin closedform. We
canalsoeasilycomputetheprobability Â"À �m��� � > � � � �@BA � � � À 	·���Ã� � 	 thatboth ��> and ��� areparentsof � À :
wesimply restrict

� À ��� to familiesthatcontainboth ��> and��� . The key is to note that as the choiceof families of
differentnodesareindependent,theseareall independent
events. Hence, ��> and ��� are not in the sameMarkov
blanketonly if all of theseeventsfail to occur. Thus,



Proposition 3.2:����� 9 : » ¼ 9D° �7�º� � 	-� � T � � T Á[� 	 « O9BÄ�ÅC9D° � � T Â À 	
Unfortunately, this approachcannotbe usedto compute

the probability of arbitrarystructuralfeatures.For exam-
ple, we cannotcomputethe probability that thereexists
somedirectedpath from ��> to ��� , aswe would have to
considerall possiblewaysin which this pathcouldmani-
festthroughourexponentiallymany structures.

We canovercomethis difficulty usinga simplesampling
approach.Eq. (8) providesus with a closedform expres-
sionfor theexactposteriorprobabilityof thedifferentpos-
siblefamiliesof thenode��> . Wecanthereforeeasilysam-
pleentirenetworksfrom theposteriordistributiongiventhe
ordering:wesimplysampleafamily for eachnode,accord-
ing to thedistribution in Eq. (8). We canthenusethesam-
plednetworksto evaluateany feature,suchastheexistence
of a causalpathfrom ��> to ��� .
4 MCMC methods

In the previoussection,we madethesimplifying assump-
tion that we were given a predeterminedordering. Al-
though this assumptionmight be reasonablein certain
cases,it is clearlytoorestrictive in domainswherewehave
very little prior knowledge(e.g.,our biology domain).We
thereforewant to considerstructuresconsistentwith all

SBÆ
possibleorderingsoverBN nodes.Here,unfortunately, we
have no elegant tricks that allow a closedform solution.
Therefore,we provide a solution which usesour closed
form solutionof Eq. (6) asasubroutinein aMarkov Chain
MonteCarloalgorithm[15].

4.1 The basic algorithm

We introducea uniform prior overorderings� , anddefine�����Ç� � 	 to be of the samenatureas the priors we used
in theprevioussection. It is importantto notethat the re-
sulting prior over structureshasa different form thanour
original prior over structures. For example,if we define������� � 	 to be uniform, we have that

������	
is not uni-

form: graphsthat areconsistentwith moreorderingsare
morelikely; for example,a Naive Bayesgraphis consis-
tentwith

� SUT � 	 Æ orderings,whereasany chain-structured
graphis consistentwith only one. While this discrepancy
in priors is unfortunate,it is importantto seeit in propor-
tion. The standardpriors over network structuresareof-
tenusednot becausethey areparticularlyappropriatefor a
task,but ratherbecausethey aresimpleandeasyto work
with. In fact,theubiquitousuniformprior overstructuresis
farfrom uniformoverPDAGs(Markov equivalenceclasses
over network structures)— PDAGs consistentwith more
structureshave a higher inducedprior probability. One
canarguethat, for causaldiscovery, a uniform prior over
PDAGs is moreappropriate;nevertheless,a uniform prior
over networksis mostoftenusedfor practicalreasons.Fi-
nally, theprior inducedover our networksdoeshave some

justification:onecanarguethatastructurewhichis consis-
tent with moreorderingsmakesfewer assumptionsabout
causalordering,andis thereforemorelikely apriori.

We now constructa Markov chain È with statespaceÉ
, consistingof all

SBÆ
orderings � ; our constructionwill

guaranteethat È hasthestationarydistribution
��� � �7�
	 .

We can thensimulatethis Markov chain,obtaininga se-
quenceof samples��� �"!#!"!"� �xÊ . We cannow approximate
theexpectedvalueof any function Ë � � 	 as:

IE
, Ë �7� . � �Ì Ê
 Í P � Ë � � Í 	�!

Specifically, we canlet Ë � � 	 be
�����Î� � ���
	 for somefea-

ture(edge)
�

. WecanthencomputeË � � Í 	��o������� � Í ���
	 ,
asdescribedin theprevioussection.

It remainsonly to discusstheconstructionof theMarkov
chain. We usea standardMetropolisalgorithm[15]. We
needto guaranteetwo things:X that the chain is reversible,i.e., the probability

��� �±Ï� fÐ	-�h��� � f ±Ï� 	 ;X that the stationaryprobability of the chain is the de-
siredposterior

��� � ���n	 .
We accomplishthis goalusinga standardMetropolissam-
pling. For eachordering � , we definea proposalproba-
bility Â � � fÑ� � 	 , which definestheprobability that thealgo-
rithm will “propose”a move from � to � f . Thealgorithm
thenacceptsthis movewith probabilityÒ&ÓaÔ¡Õ � � ��� � fÑ���
	 Â � � � � fQ	��� � �¥�
	 Â � � f � � 	IÖ !
It is well known that the resultingchain is reversibleand
hasthedesiredstationarydistribution [7].

We considerseveral specificconstructionsfor the pro-
posaldistribution,basedon differentneighborhoodsin the
spaceof orderings. In one very simple construction,we
consideronly operatorsthatflip two nodesin theordering
(leaving all othersunchanged):� � � !"!#! ��� !"!"! � J !#!"! � % 	-×± � � � !"!#! � J !"!#! ��� !#!"! � % 	$!
Anotheroperatoris “cutting thedeck” in theordering:� �/� !#!"! � � � � ¬ � !#!"! �Ñ% 	-×± � � � ¬ � !#!"! �Ñ%Ø�/� !#!"! � � 	�!

Wenotethatthesetwo typesof operatorsarequalitatively
verydifferent.The“flip” operatortakesmuchsmallersteps
in the space,and is thereforelikely to mix much more
slowly. However, any singlestepis substantiallymoreef-
ficient to compute(seebelow). In our implementation,we
choosea flip operatorwith someprobability Á , anda cut
operatorwith probability � T Á . We thenpick eachof the
possibleinstantiationsuniformly (i.e., given that we have
decidedto cut,all

S
positionsareequallylikely).
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Figure1: Comparisonof posteriorprobabilitiesfor differ-
ent Markov featuresbetweenfull Bayesianaveragingus-
ing: orderings(

|
-axis)versusPDAGs( Ú -axis)for two UCI

datasets(5 variableseach).

4.2 Computational tricks

Although the computationof the marginal likelihood is
polynomialin

S
, it canstill bequiteexpensive, especially

for large networks andreasonablesize � . We utilize sev-
eral computationaltricks for reducingthe complexity of
this computation.

First, for eachnode ��> , we restrictattentionto at most}©Û
othernodesaspossibleparents(for somefixed

}UÛ
).

We selectthese
} Û

nodesin advance,beforeany MCMC
step,asfollows: for eachpotentialparent� � , we compute
thescoreof thesingleedge� � ±Ü� > ; we thenselectthe} Û

nodes� � for which this scorewashighest.
Second,for eachnode ��> , we precomputethe scorefor

somenumber
}©Ý

of the highest-scoringfamilies. Again,
this procedureis executedonce,at the very beginning of
theprocess.Thelist of highest-scoringfamiliesis sortedin
decreasingorder;let Þ"> bethescoreof theworst family in��> ’s list. As we considera particularordering,we extract
from the list all familiesconsistentwith thatordering.We
know that all familiesnot in the list scoreno betterthanÞ > . Thus,if thebestfamily extractedfrom the list is some
factor ß betterthan Þ > , wechooseto restrictattentionto the
familiesextractedfrom the list, undertheassumptionthat
other familieswill have negligible effect relative to these
high-scoringfamilies. If the bestfamily extractedis not
thatgood,wedo a full enumeration.

Third, we prune the exhaustive enumerationof fami-
lies by ignoring families that augmentlow-scoringfami-
lies with low-scoringedges.Specifically, assumethat for
somefamily

k
, we have that score

� ��> �wkà�¾�
	
is sub-

stantially lower thanotherfamiliesenumeratedso far. In
this case, families that extend

k
are likely to be even

worse. More precisely, we definethe incrementalvalue
of a parentá for � > to be its addedvalueasa singlepar-
ent: â � á
ã/� > 	 � score

� � > � á 	 T score
� � > 	 . If we now

have a family
k

suchthat, for all other possibleparentsá , score
� ��> ��k©	jä â � á
ã/��> 	 is lower thanthebestfamily

foundsofar for ��> , wepruneall extensionsof
k

.
Finally, we notethatwhenwe take a singleMCMC step

in thespace,we canoftenpreserve muchof our computa-
tion. In particular, let � be an orderingandlet � f be the
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Figure2: Comparisonof posteriorprobabilitiesusingtrue
posteriorover orderings(

|
-axis) versusordering-MCMC

( Ú -axis). Thefiguresshow Markov featuresandEdgefea-
turesin theFlaredatasetwith 100samples.

orderingobtainedby flipping ��� and � J . Now, considerthe
termsin Eq. (6); thosetermscorrespondingto nodes��å in
theordering � thatprecede��� or succeed� J donotchange,
asthesetof potentialparentsets

� > Ä ��� is thesame.Further-
more,thetermsfor �ÑÀ thatarebetween� � and � J alsohave
a lot in common— all parentsets

k
thatcontainneither� �

nor � J remainthesame.Thus,weonly needto subtract
µ l �¥¤ :5¦ ¨·¶"lx¸e9�: ° ¹ Y � ��> ��k©	 score
� ��> ��kª�7�
	

andadd 
µ l �¥¤ :5¦ ¨ i ¶#lE¸e9�: � ¹ Y � � > ��k©	 score
� � > �wk����
	$!

By contrast,the“cut” operatorrequiresthatwe recompute
theentiresummationover familiesfor eachvariable� > .
5 Experimental Results

We first comparedtheexactposteriorcomputedby sum-
ming overall orderingsto theposteriorcomputedby sum-
ming over all equivalenceclassesof Bayesiannetworks
(PDAGs). (I.e., we countedonly a single representative
network for eachequivalenceclass.) The purposeof this
evaluationis to try andevaluatetheeffectof thesomewhat
differentprior overstructures.Of course,in orderto do the
exact Bayesiancomputationwe needto do an exhaustive
enumerationof hypotheses.For orderings,this enumera-
tion is possiblefor asmany as10 variables,but for struc-
tures,we are limited to domainswith 5–6 variables. We
tooktwo datasets— VoteandFlare— from theUCI repos-
itory [16] andselectedfive variablesfrom each. We gen-
erateddatasetsof sizesæe� and �7�^� , andcomputedthe full
Bayesianaveragingposteriorfor thesedatasetsusingboth
methods.Figure1 comparesthe resultsfor bothdatasets.
We seethat for smallamountsof data,thetwo approaches
areslightly differentbut in generalquite well correlated.
This illustratesthat,at leastfor smalldatasets,theeffectof
ourdifferentprior doesnot dominatetheposteriorvalue.

Next, we comparedthe estimatesmadeby our MCMC
sampling over orderingsto estimatesgiven by the full
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Figure3: Plotsof theprogressionof theMCMC runs.Eachgraphshowsplotsof 6 independentrunsoverAlarm with either
100,500,and1000samples.Thegraphplot thescore( èQéeêØë �������q�c��	<������	/	

or èaé^ê^ë �������ì� � 	/��� � 	/	 ) of the “current”
candidate( Ú -axis)for differentiterations(

|
-axis)of theMCMC sampler. In eachplot, threeof therunsareseededwith the

network foundby greedyhill climbing searchover network structures.Theotherthreerunsareseedeitherby theempty
network in thecaseof thestructure-MCMCor a randomorderingin thecaseof ordering-MCMC.

Bayesianaveragingover networks. We experimentedon
thenine-variable“flare” dataset.We rantheMCMC sam-
pler with a burn-in periodof 1,000stepsandthensampled
every 100 steps;we experimentedwith collecting 5, 20,
and50 samples.(We notethat theseparametersareprob-
ably excessive, but they ensurethat we aresamplingvery
closethestationaryprobabilityof theprocess.)Theresults
areshown in Figure2. Aswecansee,theestimatesarevery
robust. In fact,for Markov featuresevena sampleof 5 or-
deringsgivesa surprisinglydecentestimate.This is dueto
thefact thata singlesampleof anorderingcontainsinfor-
mationaboutexponentiallymany possiblestructures.For
edgeswe obviously needmoresamples,asedgesthat are
not in thedirectionof theorderingnecessarilyhaveproba-
bility 0. With 20and50samplesweseeaveryclosecorre-
lation betweenthe MCMC estimateandthe exactcompu-
tationfor bothtypesof features.

We then consideredlarger datasets,where exhaustive
enumerationis not an option. For this purposewe used
syntheticdatageneratedfrom theAlarmBN [1], anetwork
with 37 nodes. Here,our computationaltricks areneces-
sary. We usedthe following settings: � (max.numberof
parentsin a family)

��í
;
} Û

(max. numberof potential
parents)

� �e� ; } Ý (numberof familiescached)
��î �e�e� ;

and ß (differencein scorerequiredin pruning)
� �+� . Note

that ß � �+� correspondsto a differenceof � �ðï in thepos-
terior probability of the families. We note that different
familieshave hugedifferencesin score,soa differenceof� �<ï in theposteriorprobabilityis not uncommon.

Here,our primarygoalwasthecomparisonof structure-
MCMC and ordering-MCMC.For the structureMCMC,
we useda burn in of 100,000iterationsandthensampled
every 25,000iterations. For the orderMCMC, we useda
burn in of 10,000iterationsandthensampledevery 2,500
iterations.In bothmethodswe collecteda total of 50 sam-
plesperrun. Onephenomenonthatwasquiteclearwasthat
ordering-MCMCrunsmixedmuchfaster. That is, after a
smallnumberof iterations,theserunsreacheda “plateau”
wheresuccessive sampleshad comparablescores. Runs
startedin differentplaces(including randomorderingand
orderingsseededfrom theresultsof agreedy-searchmodel
selection)rapidly reachedthe sameplateau.On the other
hand,MCMC runs over network structuresreachedvery
different levels of scores,even thoughthey were run for
muchlargernumberof iterations.Figure3 illustratesthis
phenomenonfor examplesof alarm with 100, 500, and
1000instances.Notethesubstantialdifferencein scalebe-
tweenthetwo setsof graphs.

In the case of 100 instances,both MCMC samplers
seemedto mix. The structurebasedsamplermixesafter
about20,000–30,000iterationswhile the orderingbased
samplermixesafter about1,000–2,000iterations. On the
otherhand,whenwe examine500 samples,the ordering-
MCMC convergesto a high-scoringplateau,which we be-
lieveis thestationarydistribution,within 10,000iterations.
By contrast,differentrunsof the structure-MCMCstayed
in very different regionsof the in the first 500,000itera-
tions. Thesituationis evenworsein the caseof 1,000in-
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Figure 4: Scatterplots that compareposteriorprobability of Markov featureson the Alarm dataset,as determinedby
differentrunsof structure-MCMC.Eachpoint correspondsto a singleMarkov feature;its

|
and Ú coordinatesdenotethe

posteriorestimatedby thetwo comparedruns. Thepositionof pointsis slightly randomlyperturbedto visualizeclusters
of pointsin thesameposition.

stances.In this casethe structurebasedMCMC sampler
thatstartsfrom anemptynetwork doesnot reachthe level
of scoreachieved by the runs startingfrom the structure
foundby greedyhill climbing search.Moreover, theselat-
ter runs seemto fluctuatearoundthe scoreof the initial
seed. Note that runsshow differencesof 100 – 500 bits.
Thus,thesub-optimalrunssamplefrom networks thatare
at least � �<ï�ï lessprobable!

This phenomenonhastwo explanations.Either the seed
structureis theglobaloptimumandthesampleris sampling
from theposteriordistribution,which is “centered”around
theoptimum;or thesampleris stuckin a local “hill” in the
spaceof structuresfrom which it cannotescape.This lat-
ter hypothesisis supportedby the fact that runsstartingat
otherstructures(e.g.,theemptynetwork) take a very long
time to reachsimilar level of scores,indicatingthat there
is averydifferentpartof thespaceon whichstationarybe-
havior is reached.

We canprovide furthersupportfor this secondhypothe-
sisby examiningtheposteriorcomputedfor differentfea-
tures in different runs. Figure 4 comparesthe posterior
probability of Markov featuresassignedby differentruns
of structure-MCMC.Althoughdifferentrunsgiveasimilar
probability estimateto most structuralfeatures,thereare
several featureson which they differ radically. In particu-
lar, therearefeaturesthatareassignedprobabilitycloseto
1 by samplesfrom onerun andprobability closeto 0 by
samplesfrom the other. While this behavior is lesscom-
monin therunsseededwith thegreedystructure,it occurs
eventhere.Thissuggeststhateachof theseruns(evenruns
thatstartat thesameplace)getstrappedin adifferentlocal
neighborhoodin thestructurespace.

By contrast,comparisonof the predictionsof different
runsof the orderbasedMCMC sampleraretightly corre-
lated. Figure 5 comparestwo runs,onestartingfrom an
orderingconsistentwith thegreedystructureandtheother
from a randomorder. We canseethat the predictionsare
very similar, both for thesmall datasetandthe largerone.
This observation reaffirms our claim that thesedifferent
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Figure5: Scatterplots that compareposteriorprobability
of Markov featureson theAlarm domainasdeterminedby
differentrunsof ordering-MCMC.Eachpoint corresponds
to a singleMarkov feature;its

|
and Ú coordinatesdenote

theposteriorestimatedby thegreedyseededrunandaran-
domseededrun respectively.

runsareindeedsamplingfrom similar distributions. That
is, they aresamplingfrom thetrueposterior.

We believe thatthedifferencein mixing rateis dueto the
smootherposteriorlandscapeof thespaceof orderings.In
the spaceof networks,evena small perturbationto a net-
work canleadto ahugedifferencein score.By contrast,the
scoreof an orderingis a lot lesssensitive to slight pertur-
bations.For one,thescoreof eachorderingis anaggregate
of thescoresof avery largespaceof structures;hence,dif-
ferencesin scoresof individual networkscanoftencancel
out. Furthermore,for mostorderings,we arelikely to find
a consistentstructurewhich is not too bada fit to thedata;
hence,anorderingis unlikely to beuniformly horrible.

The disparity in mixing rates is more pronouncedfor
larger datasets.The reasonis quite clear: as the amount
of datagrows, the posteriorlandscapebecomes“sharper”
sincethe effect of a singlechangeon the scoreis ampli-
fied acrossmany samples.As we discussedabove, if our
datasetis large enough,model selectionis often a good
approximationto modelaveraging. (Although this is not
quite the casefor 1000-instanceAlarm.) Conversely, if



we considerAlarm with only 100 samples,or the (fairly
small) geneticsdataset,graphssuchasFigure3 indicate
that structure-MCMCdoeseventuallyconverge(although
still moreslowly thanordering-MCMC).

We notethat,computationally, structure-MCMCis faster
thanordering-MCMC.In ourcurrentimplementation,gen-
eratingasuccessornetwork is aboutanorderof magnitude
fasterthangeneratinga successorordering. We therefore
designedthe runs in Figure 3 to take roughly the same
amountof computationtime. Thus, even for the same
amountof computation,ordering-MCMCmixesfaster.

Whenboth ordering-MCMCandstructure-MCMCmix,
it is possibleto comparetheirestimates.In Figure6 wesee
suchcomparisonsfor Alarm. We seethat, in general,the
estimatesof thetwo methodsarenot toofarapart,although
the posteriorestimateof the structure-MCMCis usually
larger. This differencebetweenthe two approachesraises
the obvious question: which estimateis better? Clearly,
wecannotcomputetheexactposteriorfor adomainof this
size,sowe cannotanswerthis questionexactly. However,
we can test whetherthe posteriorscomputedby the dif-
ferentmethodscan reconstructfeaturesof the generating
model. To do so, we label Markov featuresin the Alarm
domainaspositiveif they appearin thegeneratingnetwork
andnegative if they do not. We thenuseour posteriorto
try anddistinguish“true” featuresfrom “f alse” ones: we
pick a thresholdñ , andpredictthat the feature

�
is “true”

if
�����W	ºò ñ . Clearly, aswe vary the the valueof ñ , we

will getdifferentsetsof features.At eachthresholdvalue
we can have two typesof errors: false positives— pos-
itive featuresthat aremisclassifiedasnegative, and false
negatives— negative featuresthat are classifiedas posi-
tive. Different valuesof ñ achieve different tradeoffs be-
tweenthesetwo typeof errors.Thus,for eachmethodwe
canplot thetradeoff curvebetweenthetwo typesof errors.
Note that, in mostapplicationsof structurediscovery, we
caremoreaboutfalsepositivesthanaboutfalsenegatives.
For example,in our biologicalapplication,falsenegatives
areonly to be expected— it is unrealisticto expect that
we would detectall causalconnectionsbasedon our lim-
ited data.However, falsepositivescorrespondto hypothe-
sizing importantbiological connectionsspuriously. Thus,
our mainconcernis with the left-hand-sideof thetradeoff
curve,thepartwherewehaveasmallnumberof falsepos-
itives. Within that region, we want to achieve thesmallest
possiblenumberof falsenegatives.

Wecomputedsuchtradeoff curvesfor Alarm datasetwith
100and1000instancesfor two typesof features:Markov
featuresand Path features. The latter representrelations
of the form “there is a directedpath from � to á ” in
the PDAG of the network structure.Directedpathsin the
PDAG arevery meaningful:if we assumeno hiddenvari-
ables,they correspondto asituationwhere� causesá . As
discussedin Section3,wecannotprovideaclosedform ex-
pressionfor theposteriorof sucha featuregivenanorder-
ing. However, we cansamplenetworksfrom theordering,
andestimatethefeaturerelative to those.In our case,(we
sampled10 networksfrom eachorder).We alsocompared
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Figure6: Scatterplots that compareposteriorprobability
of Markov featuresontheAlarm domainasdeterminedthe
two differentMCMC samplers.Eachpoint correspondsto
asingleMarkov feature;its
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posteriorestimatedby the greedyseededrun of ordering-
MCMC andstructure-MCMC,respectively.

to the tradeoff curve of the non-parametricBootstrap ap-
proachof [5], a non-Bayesiansimulationapproachto esti-
mate“confidence”in features.

Figure7 displaysthesetradeoff curves. As we cansee,
ordering-MCMCdominatesin mostof thesecasesexcept
for one(Pathfeatureswith 100instances).In particular, forñ largerthan � ! î , ordering-MCMCmakesno falsepositive
errorsfor Markov featureson the 1000-instancedataset.
We believe that featuresit missesaredueto weakinterac-
tions in the network that cannotbe reliably learnedfrom
sucha smalldataset.

6 Discussion and future work

In this section,we presenteda new approachfor estimat-
ing thetrueBayesianposteriorprobabilityof certainstruc-
tural network features.Our approachis basedon the use
of MCMC sampling,but over orderingsof network vari-
ablesratherthandirectly over network structures.Given
anorderingsampledfrom theMarkov chain,we cancom-
putetheprobabilityof edgeandMarkov-blanketstructural
featuresusingan elegantclosedform solution. For other
features,we can easily samplenetworks from the order-
ing, andestimatetheprobabilityof that featurefrom those
samples.We have shown that the resultingMarkov chain
mixessubstantiallyfasterthanMCMC overstructures,and
thereforegivesrobust high-qualityestimatesin the prob-
ability of thesefeatures.By contrast,the resultsof stan-
dardMCMC over structuresareoften unreliable,as they
arehighly dependenton the region of the spaceto which
theMarkov chainprocesshappensto gravitate.

We believe that this approachcan be extendedto deal
with datasetswheresomeof the datais missing,by ex-
tendingtheMCMC overorderingswith MCMC overmiss-
ing values,allowing us to averageover both. If success-
ful, we canusethis combinedMCMC algorithm for do-
ing full Bayesianmodelaveragingfor predictiontasksas
well. Finally, we plan to apply this algorithmin our biol-
ogy domain,in orderto try andunderstandtheunderlying
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structureof geneexpression.
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