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Abstract

In mary domains,we are interestedn analyzingthe
structureof the underlyingdistribution, e.g.,whether
onevariableis a direct parentof the other Bayesian
model-selectiorattemptsto find the MAP modeland
useits structureto answerthesequestions.However,

when the amountof available datais modest,there
might be mary modelsthat have non-ngjligible pos-
terior. Thus, we want computethe Bayesianposte-
rior of afeature,i.e., the total posteriorprobability of

all modelsthatcontainit. In this paper we proposea
new approachor this task. We first shav how to ef-

ficiently computea sumover the exponentialnumber
of networks that are consistenwith a fixed ordering
over network variables. This allows us to compute,
for a given ordering,both the maginal probability of

the dataandthe posteriorof a feature. We thenuse
this resultasthe basisfor an algorithmthat approx-
imatesthe Bayesianposteriorof a feature. Our ap-
proachusesan Markov Chain Monte Carlo (MCMC)

method,but over orderingsratherthan over network

structuresThespaceof orderingss muchsmallerand
more regular than the spaceof structures,andhasa
smootherposterior‘landscape”. We presentempiri-

calresultson syntheticandreal-life datasetshatcom-
pareour approachto full modelaveraging(whenpos-
sible), to MCMC over network structures,andto a
non-Bayesiamootstrapapproach.

1 Introduction

In thelastdecadeherehasbeenagreatdealof researclio-
cusedontheproblemof learningBayesiametworks (BNs)
from data[3, 8]. An obviousmotivationfor this problemis
to learna modelthatwe canthenusefor inferenceor de-
cisionmaking,asa substitutefor amodelconstructedy a
humanexpert. In certaincaseshowever, ourgoalis tolearn
amodelof the systemnot for prediction,but for discorer
ing the domainstructure.For example,we might wantto
use Bayesiannetwork learningto understandhe mecha-
nismsby which genesn a cell produceproteins,whichin
turn causeother genesto expressthemseles, or prevent
themfrom doing so[6]. In this case,our maingoalis to
discover the causaland dependenceelationsbetweenthe
expressiorievelsof differentgened12].

The commonapproacho discovering structureis to use
learningwith model selectionto provide us with a single
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high-scoringmodel. We thenusethat model(or its equiv-
alenceclass)asour modelfor the structureof the domain.
Indeed,n smalldomainswith asubstantiahmountof data,
it hasbeenshowvn that the highestscoringmodel is or-
dersof magnitudemorelik ely thanary other[11]. In such
casesmodelselectionis a goodapproximation.Unfortu-
nately therearemary domainsof interestwherethis situ-
ationdoesnot hold. In our geneexpressionexample,it is
now possibleto measureof the expressiorlevels of thou-
sandsof genesin one experiment[12] (whereeachgene
is a randomvariablein our model [6]), but we typically
have only a few hundredof experimentgeachof whichis
a singledatacase). In caseslike this, wherethe amount
of datais smallrelative to the size of the model, thereare
likely to be mary modelsthat explain the datareasonably
well. Model selectionmakesan arbitrary choicebetween
thesemodels andthereforewe cannotbe confidenthatthe
modelis atruerepresentationf theunderlyingprocess.

Given that there are mary qualitatively different struc-
turesthatareapproximatelyequallygood,we cannotlearn
a uniquestructurefrom the data. However, theremight be
certainfeaturesf thedomain,e.g.,the presencef certain
edgesthatwe canextractreliably. As anextremeexample,
if two variablesare very strongly correlated(e.g., deter
ministically relatedto eachother),it is likely thatan edge
betweerthemwill appeaiin ary high-scoringmodel. Our
goal, therefore s to computehow likely a featuresuchas
anedgeis to bepresenbverall models ratherthanasingle
modelselectedy the learningalgorithm. In otherwords,
we areinterestedn computing:

P(f|D)=)_P(G|D)f(@), 1)
G

wheref(G) is 1 if thefeatureholdsin G and0 otherwise.

The numberof BN structureds superexponentialin the
numberof randomvariablesin the domain;therefore this
summationcanbe computedn closedform only for very
small domains,or thosein which we have additionalcon-
straintsthat restrictthe space(asin [11]). Alternatively,
this summatiorcanbe approximatedy consideringonly a
subsebf possiblestructures Severalapproximationdave
beenproposed[13, 14]. One theoreticallywell-founded
approachis to useMarkov Chain Monte Carlo (MCMC)



methodswe definea Markov chainover structuresvhose
stationarydistribution is the posteriorP(G | D), we then
generatessampledrom this chain,andusethemto estimate
Eq.(2).

In this paper we proposea new approachor evaluating
the Bayesiarposteriorprobability of certainstructuralnet-
work properties Our approachis basedntwo mainideas.
Thefirst is an efficient closedform equationfor summing
overall networkswith atmostk parentgpernode(for some
constank) thatareconsistentvith afixedorderingoverthe
nodes.This equationallows usbothto computethe overall
probability of the datafor this setof networks,andto com-
putethe posteriorprobability of certainstructuralfeatures
— edgesandMarkov blankets—over this set. The second
ideais theuseof anMCMC approachbut overorderingsof
thenetwork variablesratherthandirectly on BN structures.

The spaceof orderingss muchsmallerthanthe spaceof
network structuresit alsoappearso bemuchlesspealed,
allowing muchfastermixing (i.e., corvergenceto the sta-
tionary distribution of the Markov chain). We presenem-
pirical resultsllustratingthis obsenation,shaving thatour
approachhas substantialadvantagesover direct MCMC
over BN structures. The Markov chain over orderings
mixes much fasterand more reliably thanthe chain over
network structures.Indeed,differentrunsof MCMC over
networks typically lead to very differentestimatesn the
posterior probabilities of structural features, illustrating
poorcornvergenceo thestationarydistribution; by contrast,
differentruns of MCMC over orderingscorvergereliably
to the sameestimatesWe alsopresentesultsshaving that
our approachaccuratelycapturesdominantfeatureseven
with sparseadata,andthatit outperforms$othMCMC over
structuresandthe non-Bayesiatootstrapof [5].

2 Bayesian learning of Bayesian networ ks

Considerthe problem of analyzingthe distribution over
somesetof randonwvariablesXy, . .., X,,, basednafully
obseneddatasetD = {x[1],...,x[M]}, whereeachx][j]
is acompleteassignmento thevariablesXy, . .., X,.

2.1 TheBayesian learning framework

The Bayesianearningparadigmtells us that we mustde-
fine a prior probability distribution P(B) over the spaceof
possibleBayesiametworks B. This prior is thenupdated
usingBayesiarconditioningto give a posteriordistribution
P(B | D) overthis space.

For Bayesiametworks, the descriptionof a model 5 has
two componentsithe structureG of the network, andthe
valuesof the numericalparameter®s associatedvith it.
Forexample,in adiscreteBayesiametwork of structureG,
the parameter® definea multinomialdistribution O, .,
for eachvariable X; and eachassignmentf valuesu to
Pag (X;). If weconsideiGaussiaiBayesiametworksover
continuousdomains,then 6, ,, containsthe coeficients
for alinearcombinationof u anda varianceparameter

To definethe prior P(B), we needto definea discrete

probability distribution over graph structuresG, and for
eachpossiblegraphG, to definea continuousdistribution
overthesetof parameteré.

The prior over structuresis usually consideredhe less
importantof the two components.Unlike other parts of
the posterior it doesnot grow asthe numberof datacases
grows. Hencerelatively little attentionhasbeenpaidto the
choiceof structureprior, anda simpleprior is oftenchosen
largely for pragmaticreasons.The simplestandtherefore
mostcommonchoiceis a uniform prior over structureg8].
An alternatve prior, andtheonewe usein our experiments,
considerghe numberof optionsin determiningthe fami-
liesof G. If we decidethata nodeX; hask parentsthen
thereare(";l) possibleparentssets.If we assumehatwe
choosauniformly from thesewe geta prior:

n—1

) H <|PaG )_1'

Note that the negative logarithmof this prior corresponds
to the descriptionlength of specifyingthe parentsets,as-
sumingthatthe cardinality of thesesetsareknown. Thus,
we implicitly assumethat cardinalitiesof parentsetsare
uniformly distributed.

A key propertyof all thesepriorsis thatthey satisfy:

e Structuremodularity Theprior P(G) canbewritten
in theform

P(G) « [] p(Xi, Pag (X))

Thatis, the prior decomposesto a product,with aterm
for eachfamily in G. In otherwords the choicesof the
familiesfor the differentnodesareindependena priori.

Next we considerthe prior over parametersP(8¢ | G).
Here, the form of the prior variesdependingon the type
of parametricfamilieswe consider In discretenetworks,
the standarcassumptions a Dirichlet prior over 6, |, for
eachnodeX; andeachinstantiationu to its parentd8]. In
Gaussiametworks, we might usea Wishartprior [9]. For
our purpose,we needonly requirethat the prior satisfies
two basicassumptionsaspresentedhn [10]:

e Global parameter independence: Let Ox,pa,(x;)
be the parameterspecifyingthe behaior of thevari-
able X; giventhevariousinstantiationdo its parents.
Thenwe requirethat

P(6c | G) = H POx.pag(x) | G) (2

e Parameter modularity: Let G andG' betwo graphs
in whichPag(X;) = Pag/(X;) = U then

P(Ox,u | G) = P(x,u | G') 3)

Oncewe definethe prior, we canexaminetheform of the
posteriomprobability. UsingBayesrule, we have that

P(G | D) x P(D | G)P(G).



Theterm P(D | G) is the mamginal likelihood of the data
givenG, andis definedtheintegrationoverall possiblepa-
rametevaluesfor G.

P(D|G) = / P(D | G,06)P(0c | G)dba

Theterm P(D | G,60¢) is simply the probability of the
datagiven a specificBayesiannetwork. Whenthe datais
completethisis simply a productof conditionalprobabili-
ties.

Usingtheabove assumptionspnecanshaw (see[10]):

Theorem 2.1 If D is completeand P(G) satisfiegparam-
eterindependencand parametemodularity, then

P(D | G) = [] scoré X;, Pag(X;) | D).
wheescoréX;,U | D) is
J TPt | w00 P(Ox; w)d0x, o

If the prior alsosatisfiesstructuremodularity we canalso
concludethatposteriomprobabilitydecomposes:

P(G | D) o [ p(Xi, Pag(X;))scoe(X;, Pac(X;) | D).

2.2 Bayesian model averaging

Recallthatour goalis to computethe posteriorprobability
of somefeaturef(G) over all possiblegraphsG. Thisis

equalto:
Z f@

The problem,of coursejs thatthe numberof possibleBN
structuress superexponential:20("* 108 ) wheren is the
numberof variables.

We can reducethis numberby restricting attentionto
structuresG wherethereis a boundk on the numberof
parentsper node. This assumptionwhich we will make
throughouthis paper is afairly innocuousone. Thereare
few applicationdn which verylargefamiliesarecalledfor,
andthereis rarelyenoughdatato supportrobustparameter
estimationfor suchfamilies. Froma moreformal perspec-
tive, networks with very large families tendto have low
score.Let Gy bethesetof all graphswith indegreebounded
by k. Notethatthenumberof structuresn G, is still super
exponential:atleast2knloen

Thus,exhaustive enumeratioroverthe setof possibleBN
structuresis feasibleonly for tiny domains(4-5 nodes).
Onesolution,proposedyy severalresearcherfll, 13, 14],
is to approximatethis exhaustve enumeratiorby finding
a setG of high scoringstructuresandthenestimatingthe
relative massof the structuresn G thatcontainsy:

> ceg P(G | D)f(G)
EGeg Pr(G|D)

P(f| D) P(G| D)

P(f| D)~ (4)

This approacHeaves openthe questionof how we con-
structG. The simplestapproachs to usemodelselection
to pick a singlehigh-scoringstructure andthenusethatas
our approximation.If the amountof datais large relative
to the size of the model,thenthe posteriorwill be sharply
pealedarounda singlemodel,andthis approximatioris a
reasonablene. However, aswe discussedn theintroduc-
tion, therearemary interestingdomaing(e.g.,our biologi-
cal application)wherethe amountof datais smallrelative
to thesizeof themodel. In this casethereis usuallyalarge
numberof high-scoringmodels sousingasinglemodelas
our setg is avery poorapproximation.

A simpleapproachto finding a larger setis to recordall
the structuresexaminedduring the search,andreturnthe
high scoringones. However, the setof structuresfound
in this manneris quite sensitve to the searchprocedure
we use. For example,if we usegreedyhill-climbing, then
the setof structureswve will collectwill all be quite simi-
lar. Sucharestrictedsetof candidateslsoshav up when
we considermultiple restartsof greedyhill-climbing and
beam-searchThis is a seriousproblemsincewe run the
risk of gettingestimateof confidencehatarebasedon a
biasedsampleof structures.

Madigan and Raftery [13] proposean alternatve ap-
proach called Occams window, which rejects models
whoseposteriorprobability is very low, aswell ascom-
plex modelswvhoseposteriomprobabilityis notsubstantially
betterthana simplermodel (onethat containsa subsetof
the edges).Thesetwo principlesprunethe spaceof mod-
els consideredpftento a numbersmall enoughto be ex-
haustvely enumeratedMadiganand Rafteryalsoprovide
asearchprocedurdor finding thesemodels.

An alternatve approach, proposedby Madigan and
York[14], is basedntheuseof Markov chainMonteCarlo
(MCMC) simulation. In this case,we define a Markov
Chainoverthe spaceof possiblestructuresyhosestation-
ary distribution is the posteriordistribution P(G | D). We
thengenerata setof possiblestructuredy doingarandom
walk in this Markov chain. Assumingthatwe continuethis
procesauntil the chainmixes,we canhopeto geta setof
structureghatis representatie of the posterior However,
it is notclearhow rapidly thistype of chainmixesfor large
domains. The spaceof structuresis very large, and the
probability distribution is often quite pealed, with neigh-
boring structureshaving very differentscores.Hence,the
mixing rateof the Markov chaincanbe quite slow.

3 Closed form for known ordering

In this sectionwe temporarilyturn our attentionto asome-
what easierproblem. Ratherthan perform modelaverag-
ing over the spaceof all structuresyve restrictattentionto
structureghatareconsistentvith someknown total order
ing <. In otherwords, we restrictattentionto structures
G whereif X; € Pag(X;) theni < j. This assumption
wasa standardnein the earlywork on learningBayesian
networksfrom data[4].



3.1 Computing marginal likelihood

We first considerthe problemof computingthe probability
of thedatagiventheordering:

P(D|<)= > P(G|<)P
GEGy

Note that this summation althoughrestrictedto networks
with boundedndegreeandconsistentvith <, is still expo-
nentiallylarge: thenumberof suchstructuregs still atleast
2kn logn.

Thekey insightis that,whenwe restrictattentionto struc-
turesconsistentvith agivenordering=<, thechoiceof fam-
ily for one node placesno additional constraintson the
choiceof family for another Note thatthis propertydoes
not hold without the restrictionon the ordering;for exam-
ple, if we pick X; to beaparentof X, then X; cannotin
turn beaparentof X;.

Therefore,we canchoosea structureG consistentwith
< by choosing,independentlya family U for eachnode
X;. The parametemodularity assumptiorig. (3) states
thatthe choiceof parametergor the family of X; is inde-
pendentof the choiceof family for anotherfamily in the
network. Hence,summingover possiblegraphsconsistent
with < is equivalentto summingover possiblechoicesof
family for eachnode,eachwith its parameteprior. Given
our constrainton the sizeof thefamily, the possibleparent
setsfor thenodeX; is

Ui’_< = {U : U< X, |U| < k}

whereU < X; is definedto hold whenall nodesin U
precedeX; in <. Giventhat,we have

(D] G) (%)

P(D |<)
x Y []p(Xi,Pag(Xy)) [ | scoe(X;, Pag(X;) | D)
GeGr 1 i
= ] Y. »(Xi,U)scoe(X;,U|D). (6)
i Uel; <

Intuitively, the equalitystateghatwe cansumoverall net-
worksconsistenwith < by summingoverthe setof possi-
ble familiesfor eachnode,andthenmultiplying theresults
for the differentnodes. This transformationallows us to
computeP (D |<) very efficiently. The expressioron the
right-handside consistsof a productwith aterm for each
node X;, eachof which is a summationover all possible
familiesfor X;. Giventheboundk overthenumberof par
ents,the numberof possiblefamiliesfor a node X; is at
most(}) < n*. Hence thetotal costof computingEd. (6)
is atmostn - nk = nk+1,

We notethatthe decompositiorof Eq. (6) wasfirst men-
tioned by Buntine[2], but the ramificationsfor Bayesian
model averaging were not pursued. The concept of
Bayesiammodelaveragingusinga closed-formsummation
over anexponentiallylarge setof structuresvasproposed
(in adifferentsetting)in [17].

The computationof P(D |<) is usefulin andof itself;
aswe show in the next section,computingthe probability
P(D |<) is akey stepin our MCMC algorithm.

3.2 Probabilitiesof features

For certaintypesof featuresf, we canusethe sametech-
nigueto compute,in closedform, the probability P(f |<
D) that f holdsin a structuregiventhe orderingandthe
data.
In generaljf f(-) is afeature.We wantto compute

P(f,D =)
P(D <)

We have just shovn how to computethedenominatarThe
numeratoilis a sumover all structureghatcontainthe fea-
tureandareconsistentvith theordering:

P(f,D|<)= Y (@)

GeGr

P(f1<,D) =

PG I=x)PD|G) (7)

The computatiorof this term depend®n the specifictype
of featuref.

The simplestsituationis whenwe wantto computethe
posteriorprobability of the fx, ., x, thatdenotesan edge
X; — Xj. Inthis casewe canapplythe sameclosedform
analysisto (7). Theonly differenceis thatwe restrictl/;, <
to consistonly of subsetghatcontainX;. Sincetheterms
thatsumovertheparentf X, for k # j arenotdisturbed

by this constraintthey cancelout from the equation.
Proposition 3.1 P(fx,-x; |<,D) =

E{UEUi,< : UsX;} p(X,, U)SCOI’QXi, U | D)
Y ueus - P(Xi, U)scordX;, U | D)

The sameargumentcan be extendedto ask more com-
plex queriesaboutthe parentsof X;. For example,we can
computethe posteriorprobability of a particularchoiceof
parentsas

P(Pag(Xi) =U | D, <) =
p(Xi, U)scor(X;, U | D)
> vreus  P(X:, U")scoe(X;, U [ D)’

(8)

A somavhatmoresubtlecomputatioris requiredto com-
putethe posteriorof f , thefeaturethatdenoteghat

X; isin the Markov bIanIetofX Recallthis is the case
if G containgheedgeX; — X ortheedgeX — X, or
thereis avariable X}, suchthatboth edgesX; — X and
X; = X areinG.

Assume without lossof generality that X; precedesX
in the ordering. In this case,X; canbein X;'s Markov
blanket either if thereis an edgefrom X; to X, or if
X; and X; are both parentsof somethird node X;. We
have just shovn how the first of theseprobabilitiesp; =
P(fx,-x; | D,=), canbe computedn closedform. We
canalsoeasilycomputethe probabilityg; = P(X;,X; €
Pag(X;) | D, <) thatboth X; and X; areparentsof X;:
we simply restrictl{;, , to familiesthatcontainboth X; and
X;. Thekey is to note that as the choice of families of
differentnodesareindependenttheseareall independent
events. Hence, X; and X; arenot in the sameMarkov
blanketonly if all of theseeventsfail to occur Thus,



Proposition 3.2

P(fymy | D) =1—(1-p;) 'XI;IX.(I - q)

Unfortunately this approachcannotbe usedto compute
the probability of arbitrary structuralfeatures. For exam-
ple, we cannotcomputethe probability that there exists
somedirectedpath from X; to X;, aswe would have to
considerall possiblewaysin which this path could mani-
festthroughour exponentiallymary structures.

We canovercomethis difficulty usinga simplesampling
approach.Eq. (8) providesus with a closedform expres-
sionfor the exactposteriomprobability of the differentpos-
siblefamiliesof thenodeX;. We canthereforeeasilysam-
ple entirenetworksfrom theposteriodistributiongiventhe
ordering:we simply sampleafamily for eachnode,accord-
ing to the distributionin Eq. (8). We canthenusethe sam-
plednetworksto evaluateary feature suchasthe existence
of acausapathfrom X; to X;.

4 MCMC methods

In the previous section,we madethe simplifying assump-
tion that we were given a predeterminedrdering. Al-
though this assumptionmight be reasonablen certain
casesit is clearlytoorestrictve in domainsvherewe have
very little prior knowledge(e.qg.,our biology domain).We
thereforewantto considerstructuresonsistentvith all n!
possibleorderingsover BN nodes.Here,unfortunatelywe
have no eleganttricks that allow a closedform solution.
Therefore,we provide a solution which usesour closed
form solutionof Eq. (6) asa subroutingn aMarkov Chain
Monte Carloalgorithm[15].

4.1 Thebasicalgorithm

We introducea uniform prior over orderings<, anddefine
P(G |<) to be of the samenatureasthe priors we used
in the previous section. It is importantto notethatthe re-
sulting prior over structureshasa differentform thanour
original prior over structures. For example,if we define
P(G |<) to be uniform, we have that P(G) is not uni-
form: graphsthat are consistentwith more orderingsare
morelikely; for example,a Naive Bayesgraphis consis-
tentwith (n — 1)! orderingswhereasary chain-structured
graphis consistentwith only one. While this discrepang
in priorsis unfortunatejt is importantto seeit in propor
tion. The standardpriors over network structuresare of-
tenusednot becausé¢hey areparticularlyappropriatdor a
task, but ratherbecausehey are simple and easyto work
with. In fact,theubiquitousuniformprior overstructuress
farfrom uniformover PDAGs(Markov equivalenceclasses
over network structures)}— PDAGSs consistentith more
structureshave a higher inducedprior probability One
canarguethat, for causaldiscovery, a uniform prior over
PDAGs is moreappropriate neverthelessa uniform prior
over networksis mostoftenusedfor practicalreasonsFi-
nally, the prior inducedover our networks doeshave some

justification: onecanarguethatastructurewhichis consis-
tent with more orderingsmakes fewer assumptiongbout
causabrdering,andis thereforemorelik ely a priori.

We now constructa Markov chain M with statespace
O, consistingof all n! orderings<; our constructionwill
guarante¢hat M hasthe stationarydistribution P(<| D).
We canthen simulatethis Markov chain, obtaininga se-
quenceof samples<y, ..., <r. We cannow approximate
theexpectedvalueof ary functiong(<) as:

1 X
Z!)(<t)-

Specifically we canlet g(<) be P(f |<, D) for somefea-
ture(edge)f. We canthencomputey(<;) = P(f |<¢, D),
asdescribedn the previoussection.

It remainsonly to discusghe constructiorof the Markov
chain. We usea standardVetropolisalgorithm[15]. We
needto guarantedwo things:

Elg| D] ~

M|

e thatthe chainis reversible,i.e., the probability P(<
- <) =P(='—=<);

¢ thatthe stationaryprobability of the chainis the de-
siredposteriorP(<| D).

We accomplishthis goalusinga standardvietropolissam-
pling. For eachordering<, we definea proposalproba-
bility ¢(<'|<), which definesthe probability thatthe algo-
rithm will “propose”amove from < to <'. Thealgorithm
thenacceptghis move with probability

P(<'| D)g(<|=")
" P(<| D)g(='|=)

min |1

It is well known thatthe resultingchainis reversibleand
hasthe desiredstationarydistribution [7].

We considersereral specific constructionsfor the pro-
posaldistribution, basedn differentneighborhood# the
spaceof orderings. In one very simple construction,we
consideronly operatorghatflip two nodesin the ordering
(leaving all othersunchanged):
in)-

(i1 tjeeipeein) = (i1.e i dj. ..

Anotheroperatoris “cutting thedeck”in the ordering:

We notethatthesewo typesof operatorarequalitatively
verydifferent. The“flip” operatotakesmuchsmallersteps
in the space,andis thereforelikely to mix much more
slowly. However, ary single stepis substantiallymore ef-
ficientto compute(seebelow). In ourimplementationwe
choosea flip operatorwith someprobability p, anda cut
operatowith probability1 — p. We thenpick eachof the
possibleinstantiationauniformly (i.e., giventhatwe have
decideduo cut, all n positionsareequallylik ely).
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Figurel: Comparisorof posteriorprobabilitiesfor differ-
ent Markov featuresbetweenfull Bayesianaveragingus-
ing: orderingqz-axis)versusPDAGs (y-axis)for two UCI
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4.2 Computational tricks

Although the computationof the maminal likelihood is
polynomialin n, it canstill be quite expensve, especially
for large networks andreasonablesize k. We utilize sev-
eral computationaltricks for reducingthe compleity of
this computation.

First, for eachnode X;, we restrictattentionto at most
mp othernodesaspossibleparents(for somefixedmp).
We selectthesem p nodesin advance beforeary MCMC
step,asfollows: for eachpotentialparentX ;, we compute
the scoreof the singleedgeX; — X;; we thenselectthe
mp nodesX; for whichthis scorewashighest.

Secondfor eachnode X;, we precomputehe scorefor
somenumberm g of the highest-scorindamilies. Again,
this procedures executedonce, at the very beginning of
theprocessThelist of highest-scorindamiliesis sortedin
decreasingrder;let £; bethe scoreof the worstfamily in
X;’'slist. As we considera particularordering,we extract
from thelist all familiesconsistentvith thatordering. We
know that all familiesnot in the list scoreno betterthan
£;. Thus,if the bestfamily extractedfrom thelist is some
factory betterthan/;, we chooseo restrictattentionto the
familiesextractedfrom the list, underthe assumptiorthat
otherfamilieswill have neggligible effect relative to these
high-scoringfamilies. If the bestfamily extractedis not
thatgood,we do afull enumeration.

Third, we prune the exhaustie enumerationof fami-
lies by ignoring families that augmentlow-scoringfami-
lies with low-scoringedges. Specifically assumethat for
somefamily U, we have that scoe(X;,U | D) is sub-
stantially lower than otherfamiliesenumeratedo far. In
this case,families that extend U are likely to be even
worse. More precisely we definethe incrementalvalue
of aparentY for X; to beits addedvalueasa singlepar
ent: A(Y; X;) = scoe(X;,Y) — scoe(X;). If we now
have a family U suchthat, for all other possibleparents
Y, scoe(X;, U) + A(Y; X;) is lowerthanthe bestfamily
foundsofarfor X;, we pruneall extensionsof U.

Finally, we notethatwhenwe take a singleMCMC step
in the spacewe canoften presere muchof our computa-
tion. In particular let < be anorderingandlet <’ be the
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Figure2: Comparisorof posteriorprobabilitiesusingtrue
posteriorover orderings(z-axis) versusordering-MCMC
(y-axis). Thefiguresshav Markov featuresandEdgefea-
turesin the Flaredatasetvith 100samples.

orderingobtainedby flipping i; andi,. Now, considerthe
termsin Eq. (6); thosetermscorrespondindo nodesi, in

theordering< thatprecede; or succeed;, donotchange,
asthesetof potentialparentsetsl;,  is thesame.Further

more,thetermsfor ¢; thatarebetweeni; andij, alsohave

alot in common— all parentsetsU thatcontainneither;

noriy, remainthe same.Thus,we only needto subtract

> p(X;, U)scoe(X;,U | D)
{Uetli, < : UX,,}
andadd
> p(X;, U)scoe(X;,U | D).

{Uey; v 1 UsXy, }

By contrastthe “cut” operatorequiresthatwe recompute
theentiresummatiorover familiesfor eachvariableX;.

5 Experimental Results

We first comparedhe exact posteriorcomputedoy sum-
ming over all orderingsto the posteriorcomputecby sum-
ming over all equivalenceclassesof Bayesiannetworks
(PDAGS). (l.e., we countedonly a single representatie
network for eachequivalenceclass.) The purposeof this
evaluationis to try andevaluatethe effect of the somavhat
differentprior over structuresOf coursejn orderto do the
exact Bayesiancomputationwe needto do an exhaustve
enumeratiorof hypotheses.For orderings,this enumera-
tion is possiblefor asmary as 10 variables but for struc-
tures,we arelimited to domainswith 5-6 variables. We
tooktwo datasets— VoteandFlare— from theUCI repos-
itory [16] andselectedive variablesfrom each. We gen-
erateddataset®f sizes50 and200, andcomputedhe full
Bayesiaraveragingposteriorfor thesedatasetsisingboth
methods.Figure 1 compareghe resultsfor both datasets.
We seethatfor smallamountsof data,the two approaches
are slightly differentbut in generalquite well correlated.
Thisillustratesthat,atleastfor smalldatasets the effect of
our differentprior doesnot dominatethe posteriorvalue.

Next, we comparedthe estimatesnadeby our MCMC
sampling over orderingsto estimatesgiven by the full
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Figure3: Plotsof theprogressiommf theMCMC runs.Eachgraphshows plotsof 6 independentunsover Alarmwith either
100,500, and 1000samples.The graphplot the score(log, (P(D | G)P(Q)) or log,(P(D |<)P(=<))) of the “current”
candidatgy-axis)for differentiterations(z-axis) of the MCMC sampler In eachplot, threeof therunsareseededvith the
network found by greedyhill climbing searchover network structures.The otherthreerunsareseedeitherby the empty
network in the caseof the structure-MCMCor arandomorderingin the caseof ordering-MCMC.

Bayesianaveragingover networks. We experimentedon

the nine-variable“flare” datasetWe ranthe MCMC sam-
pler with aburn-in periodof 1,000stepsandthensampled
every 100 steps;we experimentedwith collecting 5, 20,

and50 samples.(We notethat theseparametersreprob-

ably excessve, but they ensurethat we are samplingvery

closethe stationaryprobability of the process.)Theresults
areshavnin Figure2. Aswecanseetheestimategarevery

robust. In fact,for Markov featuresevena sampleof 5 or-

deringsgivesa surprisinglydecentestimate. Thisis dueto

thefactthata singlesampleof anorderingcontainsinfor-

mationaboutexponentiallymary possiblestructures.For

edgeswe obviously needmore samplesasedgesthat are
notin thedirectionof the orderingnecessariijhave proba-
bility 0. With 20 and50 samplesve seeavery closecorre-
lation betweenthe MCMC estimateandthe exactcompu-
tationfor bothtypesof features.

We then consideredlarger datasets,where exhaustve
enumeratioris not an option. For this purposewe used
syntheticdatageneratedrom the Alarm BN [1], a network
with 37 nodes. Here, our computationaltricks are neces-
sary We usedthe following settings: & (max. numberof
parentsin a family) = 3; mp (max. numberof potential
parents)= 20; mr (numberof familiescached)= 4000;
and~y (differencein scorerequiredin pruning)= 10. Note
thaty = 10 correspondso a differenceof 2! in the pos-
terior probability of the families. We note that different
familieshave hugedifferencesn score,so a differenceof
219 in the posteriorprobabilityis notuncommon.

Here,our primary goal wasthe comparisorof structure-
MCMC and ordering-MCMC. For the structureMCMC,
we useda burnin of 100,000iterationsandthensampled
every 25,000iterations. For the orderMCMC, we useda
burnin of 10,000iterationsandthensampledevery 2,500
iterations.In both methodawe collecteda total of 50 sam-
plesperrun. Onephenomenothatwasquiteclearwasthat
ordering-MCMCruns mixedmuchfaster Thatis, aftera
small numberof iterations,theserunsreached “plateau”
where successie sampleshad comparablescores. Runs
startedin differentplaces(including randomorderingand
orderingsseededrom theresultsof agreedy-searcmodel
selection)rapidly reachedhe sameplateau. On the other
hand, MCMC runs over network structuresreachedvery
differentlevels of scores,even thoughthey wererun for
muchlarger numberof iterations. Figure 3 illustratesthis
phenomenorfor examplesof alarmwith 100, 500, and
1000instancesNotethe substantiatifferencen scalebe-
tweenthetwo setsof graphs.

In the caseof 100 instances,both MCMC samplers
seemedo mix. The structurebasedsamplermixes after
about 20,000-30,000terationswhile the ordering based
samplermixesafter about1,000—2,000terations. On the
otherhand,whenwe examine500 samplesthe ordering-
MCMC corvergesto a high-scoringplateauwhich we be-
lieveis the stationarydistribution, within 10,000iterations.
By contrastdifferentrunsof the structure-MCMCstayed
in very differentregions of the in the first 500,000itera-
tions. The situationis evenworsein the caseof 1,000in-
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Figure 4: Scatterplots that compareposteriorprobability of Markov featureson the Alarm datasetas determinedby
differentrunsof structure-MCMC Eachpoint correspondso a single Markov feature;its  andy coordinateslenotethe
posteriorestimatedyy the two compareduns. The positionof pointsis slightly randomlyperturbedo visualizeclusters

of pointsin the sameposition.

stances.In this casethe structurebasedMCMC sampler
that startsfrom an emptynetwork doesnot reachthe level

of scoreachieved by the runs startingfrom the structure
foundby greedyhill climbing search.Moreover, theselat-

ter runs seemto fluctuatearoundthe scoreof the initial

seed. Note that runs shav differencesof 100 — 500 bits.

Thus,the sub-optimalrunssamplefrom networksthatare
atleast2'% lessprobable!

This phenomenoiastwo explanations.Eitherthe seed
structurds theglobaloptimumandthesampleiis sampling
from the posteriordistribution, which is “centered”around
the optimum;or the sampleris stuckin alocal “hill” in the
spaceof structurefrom which it cannotescape.This lat-
ter hypothesids supportedy the factthatrunsstartingat
otherstructureqe.g.,the emptynetwork) take a very long
time to reachsimilar level of scores,indicatingthatthere
is avery differentpartof the spaceon which stationarybe-
havior is reached.

We canprovide further supportfor this secondhypothe-
sis by examiningthe posteriorcomputedor differentfea-
turesin differentruns. Figure 4 compareshe posterior
probability of Markov featuresassigneddy differentruns
of structure-MCMC Althoughdifferentrunsgive a similar
probability estimateto most structuralfeaturesthereare
several featureson which they differ radically. In particu-
lar, therearefeatureshatareassignegrobability closeto
1 by samplesfrom onerun and probability closeto 0 by
sampledrom the other While this behaior is lesscom-
monin therunsseededvith the greedystructurejt occurs
eventhere.This suggestshateachof theseruns(evenruns
thatstartatthe sameplace)getstrappedn adifferentlocal
neighborhoodn the structurespace.

By contrast,comparisonof the predictionsof different
runsof the orderbasedMCMC sampleraretightly corre-
lated. Figure5 comparedwo runs, one startingfrom an
orderingconsistentvith the greedystructureandthe other
from arandomorder We canseethatthe predictionsare
very similar, both for the small dataseandthe largerone.
This obsenation reafirms our claim that thesedifferent

50instances 500instances

Figure5: Scatterplots that compareposteriorprobability
of Markov featuresonthe Alarm domainasdeterminedyy
differentrunsof ordering-MCMC.Eachpoint corresponds
to a singleMarkov feature;its 2 andy coordinatesienote
theposteriorestimatedy thegreedyseededunandaran-
domseededunrespectiely.

runsareindeedsamplingfrom similar distributions. That
is, they aresamplingfrom thetrue posterior

We believe thatthedifferencein mixing rateis dueto the
smoothemposteriorlandscapef the spaceof orderings.In
the spaceof networks, even a small perturbationto a net-
work canleadto ahugedifferencean score.By contrastthe
scoreof an orderingis a lot lesssensitve to slight pertur
bations.For one,the scoreof eachorderingis anaggreyate
of thescoresf averylarge spaceof structureshencedif-
ferencedn scoresof individual networks canoften cancel
out. Furthermorefor mostorderingswe arelikely to find
a consistenstructurewhich is nottoo badafit to the data;
hence anorderingis unlikely to be uniformly horrible.

The disparity in mixing ratesis more pronouncedfor
larger datasets.The reasonis quite clear: asthe amount
of datagrows, the posteriorlandscapdecomes'sharper”
sincethe effect of a single changeon the scoreis ampli-
fied acrossmary samples.As we discussedibore, if our
datasetis large enough,model selectionis often a good
approximationto model averaging. (Although this is not
quite the casefor 1000-instanceAlarm.) Corversely if



we considerAlarm with only 100 samples,or the (fairly
small) geneticsdataset, graphssuchas Figure 3 indicate
that structure-MCMCdoeseventually corverge (although
still moreslowly thanordering-MCMC).

We notethat, computationallystructure-MCMCis faster
thanordering-MCMC.In our currentimplementationgen-
eratinga successonetwork is aboutanorderof magnitude
fasterthangeneratinga successoordering. We therefore
designedthe runsin Figure 3 to take roughly the same
amountof computationtime. Thus, even for the same
amountof computationprdering-MCMCmixesfaster

Whenboth ordering-MCMCand structure-MCMCmix,
it is possibleto compareheir estimatesin Figure6 we see
suchcomparisondor Alarm. We seethat, in generalthe
estimate®f thetwo methodsarenottoo farapart,although
the posteriorestimateof the structure-MCMCis usually
larger. This differencebetweenthe two approachesaises
the obvious question: which estimateis better? Clearly,
we cannotcomputethe exactposteriorfor adomainof this
size,sowe cannotanswerthis questionexactly. However,
we cantest whetherthe posteriorscomputedby the dif-
ferentmethodscan reconstructfeaturesof the generating
model. To do so, we label Markov featuresin the Alarm
domainaspositiveif they appeain thegeneratinghetwork
andnegativeif they do not. We thenuseour posteriorto
try anddistinguish“true” featuresfrom “false” ones: we
pick a thresholdt¢, and predictthatthe featuref is “true”
if P(f) > t. Clearly aswe vary the the value of ¢, we
will getdifferentsetsof features.At eachthresholdvalue
we can have two typesof errors: false positives— pos-
itive featuresthat are misclassifiedas negative, and false
negatives— negative featuresthat are classifiedas posi-
tive. Differentvaluesof ¢ achieve differenttradeofs be-
tweenthesetwo type of errors. Thus,for eachmethodwe
canplot thetradeof curvebetweerthetwo typesof errors.
Note that, in mostapplicationsof structurediscovery, we
caremoreaboutfalsepositivesthanaboutfalsenegatives.
For example,in our biological application falsenegatives
areonly to be expected— it is unrealisticto expectthat
we would detectall causalconnectiondasedon our lim-
ited data. However, falsepositivescorrespondo hypothe-
sizing importantbiological connectionsspuriously Thus,
our main concernis with the left-hand-sideof the tradeof
curve, the partwherewe have a smallnumberof falsepos-
itives. Within thatregion, we wantto achieve the smallest
possiblenumberof falsenegatives.

We computedsuchtradeof curvesfor Alarm datasetwith
100and1000instancedor two typesof features:Markov
featuresand Path features. The latter representelations
of the form “there is a directedpath from X to Y in
the PDAG of the network structure. Directedpathsin the
PDAG arevery meaningful:if we assumeno hiddenvari-
ablesthey correspondo asituationwhereX cause¥’. As
discussedh Section3, we cannotprovideaclosedform ex-
pressiorfor the posteriorof sucha featuregivenanorder
ing. However, we cansamplenetworks from the ordering,
andestimatethe featurerelative to those.In our case (we
sampledL0 networksfrom eachorder). We alsocompared

50instances 500instances
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Figure 6: Scatterplots that compareposteriorprobability
of Markov featuresonthe Alarm domainasdeterminedhe
two differentMCMC samplers Eachpoint correspondso
asingleMarkov feature;its z andy coordinateslenotethe
posteriorestimatedoy the greedyseededun of ordering-
MCMC andstructure-MCMC respectiely.

to the tradeof curve of the non-pamametric Bootstap ap-
proachof [5], a non-Bayesiarsimulationapproacho esti-
mate“confidence”in features.

Figure 7 displaysthesetradeof curves. As we cansee,
ordering-MCMCdominatesn mostof thesecasesexcept
for one(Pathfeaturesvith 100instances)In particulat for
t largerthan0.4, ordering-MCMCmakesno falsepositive
errorsfor Markov featureson the 1000-instancelataset.
We believe thatfeaturest missesaredueto weakinterac-
tionsin the network that cannotbe reliably learnedfrom
suchasmalldataset.

6 Discussion and future work

In this section,we presentedh new approachor estimat-
ing the true Bayesiarposteriorprobability of certainstruc-
tural network features. Our approachis basedon the use
of MCMC sampling,but over orderingsof network vari-
ablesratherthandirectly over network structures. Given
anorderingsampledrom the Markov chain,we cancom-
putethe probability of edgeandMarkov-blanketstructural
featuresusing an elegantclosedform solution. For other
features,we can easily samplenetworks from the order
ing, andestimatethe probability of thatfeaturefrom those
samples.We have shavn that the resultingMarkov chain
mixessubstantiallyfastethanMCMC over structuresand
thereforegives robust high-quality estimatesn the prob-
ability of thesefeatures. By contrast,the resultsof stan-
dard MCMC over structuresare often unreliable,as they
are highly dependenbn the region of the spaceto which
theMarkov chainprocesshappendo gravitate.

We believe that this approachcan be extendedto deal
with datasetswheresomeof the datais missing,by ex-
tendingtheMCMC overorderingswvith MCMC over miss-
ing values,allowing us to averageover both. If success
ful, we canusethis combinedMCMC algorithm for do-
ing full Bayesianmodelaveragingfor predictiontasksas
well. Finally, we planto apply this algorithmin our biol-
ogy domain,in orderto try andunderstandhe underlying
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structureof geneexpression.
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