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Abstract. A central issue in molecular biology is understanding the
regulatory mechanisms that control gene expression. The recent flood of
genomic and post-genomic data opens the way for computational meth-
ods elucidating the key components that play a role in these mechanisms.
One important consequence is the ability to recognize groups of genes
that are co-expressed using microarray expression data. We then wish to
identify in-silico putative transcription factor binding sites in the pro-
moter regions of these gene, that might explain the co-regulation, and
hint at possible regulators. In this paper we describe a simple and fast,
vet powerful, two stages approach to this task. Using a rigorous hyper-
geometric statistical analysis and a straightforward computational proce-
dure we find small conserved sequence kernels. These are then stochasti-
cally expanded into PSSMs using an EM-like procedure. We demonstrate
the utility and speed of our methods by applying them to several data
sets from recent literature. We also compare these results with those of
MEME when run on the same sets.

1 Introduction

A central issue in molecular biology is understanding the regulatory mechanisms
that control gene expression. The recent flood of genomic and post-genomic data,
such as microarray expression measurements, opens the way for computational
methods elucidating the key components that play a role in these mechanisms.

Much of the specificity in transcription regulation is achieved by transcription
factors, which are largely responsible for the so called combinatorial aspects of
the regulatory process (the number of possible behaviors being much larger than
the number of factors). These are proteins that, when in the suitable state, can
bind to specific DNA sequences. By binding to the chromosome in a location
near the gene, these factors can either activate or repress the transcription of
the gene. While there are many potential sites where these factors can bind, it
is clear that much of the regulation occurs by factors that bind in the promoter
region which is located upstream of the transcription start site.

Unlike DNA-DNA hybridization, the dynamics of protein-DNA recognition
are not completely understood. Nonetheless, experimental results show that
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transcription factors have specific preference to particular DNA sequences. Some-
what generalizing, the affinity of most factors is determined to a large extent by
one or more relatively short regions of 6-10bp. (One must bear in mind that
DNA strands span a complete turn every 10 bases, thus geometric considera-
tions make it unlikely that a single protein binds to a longer region, although
counterexamples are known.) A common situation is the formation of dimers
in which two DNA binding proteins form a complex. Each of the two proteins,
binds to a short sequence, and together they bind to a sequence that can be
12-18bp long, with a short spacer separating the two regions. Common protein
motifs such as the DNA binding Helix-Turn-Helix (HTH) motif also induce the
same preference on the regulatory site.

The recent advances in microarray experiments allow to monitor the expres-
sion levels of genes in a genome-wide manner [8,9,14,15,22,23]. An important
aspect of these experiments is that they allow to find groups of genes that have
similar expression patterns across a wide range of conditions [12]. Arguably,
the simplest biological explanation of co-expression is co-regulation by the same
transcription factors.!

This observation sparked several works on in-silico identification of putative
transcription factor binding sites [4,17,19-21]. The general scheme that most
of these papers take involves two phases. First, they perform, or assume, some
clustering of genes based on gene expression measurements. Second, they search
for short DNA patterns that appear in the promoter region of the genes in
each particular cluster. These works are based to a large extent on methods
that were developed to find common motifs in protein and DNA sequences.
These include combinatorial methods [6,19,21,24,25], parameter optimization
methods such as Expectation Maximization (EM) [1], and Markov Chain Monte
Carlo (MCMC) simulations [18,20]. See [19] for a review of these lines of work.

The use of expression profiles helps to select relatively “clean” clusters of
genes (i.e., most of them are indeed co-regulated by the same factors). Our
interest here lies with the second phase, and is thus not limited to gene expression
analysis. Given high quality clusters of genes, suspected for any reason to be
co-regulated, we address the hardness of the computational problem of finding
putative binding sites in these clusters.

In this paper we describe a fast, simple, yet powerful, approach for finding
putative binding sites with respect to a given cluster of genes. Like some of the
other works we divide this phase into two stages. In the first stage we scan, in an
exhaustive manner, for simple patterns from an enumerable class (such as all 7-
mers). We use a straightforward, natural, and well understood statistical model
for filtering significant patterns out of this class. Using the hyper-geometric dis-
tribution, we compute the probability that a subset of genes of the given size will
have these many occurrences of the pattern we examine, when chosen randomly
from the group of all known genes. In the second stage, we use the patterns

! Clearly this is not always the case. Co-regulation can be achieved by other means,
and similar expression patterns can be a result of parallel pathways or a close serial
relationship. Nonetheless, this is often the case, and a reasonable hypothesis to test.
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that were chosen as seeds for training a more expressive position specific scoring
matriz (PSSM) to model the putative binding site. These models are both more
accurate representation of the binding site, and potentially capture much longer
conserved regions.

By assuming that most binding sites do contain highly conserved short sub-
sequences and by explicitly using our post-genomic knowledge of all known and
putative genes to contrast clusters of genes against the genome background,
we acquire quality seeds for the construction of PSSMs through a simplified
hyper-geometric model. The seeds allow us to track down potential binding site
locations through a specific relatively conserved region within them. We then use
these short seeds to guide the construction of potentially much longer PSSMs
encompassing more, or possibly the complete binding site. In particular, they
allow us to align multiple sequences without resorting to an expensive search
procedure (such as MCMC simulations).

Indeed, an important feature of our approach is the evaluation speed. Once
we finish a pre-processing stage, we can evaluate clusters very efficiently. The pre-
processing is genome-wide and not cluster specific. It can be done only once and
stored for all future reference. This is important both for facilitating interactive
analysis, and for serving as computationally-cheap quality starting points for
other, more complex analysis tools (such as [2]) on top of our method.

In the next three sections we outline our algorithmic approach, discussing sig-
nificance of events, seed finding, and seed expansion into PSSMs, respectively. In
Section 5 we describe experimental and comparative results, and then conclude
with a discussion.

2 Scoring Events for Significance

2.1 Preliminaries

Suppose we are given a set of genes G. Ideally, these are all the known and
putative genes in a genome. With each gene g € G we associate a promoter
sequence? s,. For simplicity we assume that each of these sequences is of the
same size, L.

Suppose we are now given a subset of genes G C G suspected to be co-
regulated by some transcription factor. (For example, based on clustering of
genes by their expression patterns.) Our aim is to find patterns in the promoter
region of these genes, that we will consider as putative binding sites. The as-
sumption being that the co-regulation is mediated by factors that are present in
most of the genes in group G, but overall rare in G. Thus, a pattern is considered
significant if it is characteristic of G compared to the background G.

Before we discuss what constitutes a pattern in our context, we address
the basic statistical definition of a characteristic property. Suppose we find a
pattern that appears in the promoter sequences of several genes in G. How do

2 Or an upstream region that best approximates it, when the transcription start site
is unknown.
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we measure the significance of these appearances with respect to G? A related
question one may ask, is whether the set G is significantly different, in terms of
the composition of its upstream region, from G.

For now, we concentrate on events occurring in the promoter region of a
gene. We focus on binary events, such as “s, contains the subsequence ACGTTCG
or its reverse complement”. Alternatively, one can consider counting the number
of occurrences of an event in each promoter sequence, e.g., “the number of times
the subsequence ACGTTCG appears in s,”. The analysis of such counting events,
while attractive in our biological context, is more complex, in particular since
multiple occurrences of an event in a sequence are not independent of each other.
See [21,24] for approximate solutions to this problem.

Formally, a binary event E is defined by a characteristic function I,
{4,C,G, T} — {0,1}, that determines whether that event occurred or not in
any given nucleotide sequence. Given a set G, we define #g(G) = >_ ;1. (sy)
to be the number of times E occurs in the promoter regions of group G. We
want to assess the significance of observing F at least #g(G) times in G, when
taking the set of genes G as the background for our decision.

There are two general approaches for testing such significance. In both cases
we compute p-values: the probability of the observations occurring under the
null-hypothesis. This value serves as a measure of the significance of the pattern
- the lower p-value is, the more plausible it is that an observation is significant,
rather than a chance artifact. The two approaches differ, however, in the nature
of each null-hypothesis.

2.2 Random Sequence Null Hypothesis

In this approach, the null hypothesis assumes that the sequences s, for g € G
are generated from a background sequence model Ppy(s). This background distri-
bution attempts to model “prototypical” promoter regions, but does not include
any group-specific motifs. Thus, if the event E detects such special motifs, then
the probability of randomly sampling genes that satisfy E is small.

The background sequence model can be, for example, a Markov process of
some order (say 2 or 3) estimated from the sequences in G (or, preferably, from
G — @). Using this background model we need to compute the probability p, =
Py(I,(s) = 1) that a random sequence of Length L will match the event of
interest. Now, if we also assume under the null hypothesis that the n sequences
in G are independent of each other, then the number of matches to F in G is
distributed Bin(n,pg). We can then compute the p-value of finding #g(G) or
more such random sequences by the tail weight of a Binomial distribution.

The key technical issue in this approach is computing pg. This, of course,
depends on the assumed form of the background distribution, and on the com-
plexity of the event. However, even for the simple definition of a pattern as an
exact subsequence (i.e., I (s) = 1 iff s contains a specific subsequence) and
background probability of the form of an order 1 Markov chain, the required
computation is not trivial. This forces the development of various approxima-
tions to pg of varying accuracy and complexity [4,7, 21].
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2.3 Random Selection Null Hypothesis

Alternatively, in the approach we focus on here, one does not make any assump-
tion about the distribution of promoter sequences. Instead, the null hypothesis
is that G was selected at random from G, in a manner that is independent of
the contents of the genes’ promoter regions.

Assume that K = #5(G) out of N = |G| genes satisfy E. Thus, we require
the number® of genes that satisfy E in G. The probability of an observation
under the null hypothesis is the probability of randomly choosing n = |G| genes
in such a way that k& = #g(G) of them include the event E. This is simply
the hyper-geometric probability of finding &k red-balls among n draws without
replacement from an urn containing K red balls and N — K black ones:

K\ (N-K
() Gioi)
(%)
The p-value of the observation is the probability of drawing k& or more genes

that satisfy E in n draws. This requires summing the tail of the hyper-geometric
distribution

Poyper(k | n, K,N) =

n
p-value(E,G) = MU Poyper(k' | n, K, N)
k'=k

The main appeal of this approach lies in its simplicity, both computation-
ally and statistically. This null hypothesis is particularly attractive in the post-
genomic era, where nearly all promoter sequences are known. Under this as-
sumption, irrelevant clustering selects genes in a manner that is independent of
their promoter region.

2.4 Dealing with Multiple Hypotheses

We have just defined the significance of a single event E with respect to a group
of genes G. But when we try many different events F,..., Ejy over the same
group of genes long enough, we will eventually stumble upon a surprising event
even in a group of randomly selected sequences, chosen under the null hypothesis.

Judging the significance of findings in such repeated experiments is known as
multiple hypotheses testing. More formally, in this situation we have computed
a set of p-values p1,...,p,,, the smallest corresponding to the most surprising
event. We now ask how significant are our findings considering that we have
performed M experiments.

One approach is to find a value ¢ = ¢(M), such that the probability that any
of the events (or the smallest one) has a p-value less than ¢ is small. Using the
union bound under the null hypothesis we get that

P(minp,, <t) <Y Ppm<q)=M-q
m m

% But not the identity, simplifying the implied underlying in-vitro measurements.
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Thus, if we want to ensure that this probability of a false recognition is less than
0.01 (i.e., 99% confidence), we need to set the Bonfferoni threshold ¢ = %
(see, for example, [11]).

The Bonfferoni threshold is strict, as it ensures that each and every validated
scoring event is not an artifact. Our aim, however, is a bit different. We want to
retrieve a set of events, such that most of them are not artifacts. We are often
willing to tolerate a certain fraction of artifacts among the events we return. A
statistical method that addresses this kind of requirement is the False Discovery
Rate (FDR) method of [3]. Roughly put, the intuition here is as follows. Under
the null hypothesis, there is some probability that the best scoring event will
have a small p-value. However, if the group was chosen by the null hypothesis,
it can be shown that the p-values we compute are distributed uniformly. Thus,
the p-value of the second best event is expected to be roughly twice as large as
the p-value of the best event. Given this intuition, we should be less strict in
rejecting the null hypothesis for the second best pattern and so on.

To carry out this idea, we sort the events by their observed p-values, so that
p1 < p2 < ... < p,,. We then return the events Ei,..., E; where £ < M is
the maximal index such that p; < a|>\w and ¢ is the significance level we want to
achieve in selecting. We have replaced a strict validation test of single events,
with a more tolerable version validating a group of events. We may now detect
significant patterns, weaker than the most prominent one, that were previously
below the threshold computed for the later.

3 Finding Promising Seeds

3.1 Simple Events

We want to consider patterns over relatively short subsequences. We fix a param-
eter ¢ that determines the length of the sequences we are interested in. Events
are then defined over the space of 4¢ ¢-mers.

Arguably the simplest f-mer pattern is a specific subsequence (or consensus).
Thus, if o is an f-mer it defines the event “o is a subsequence of s”. A useful
aspect of such events, is that they are ezhaustively enumerable for the range
of £ we are interested in. This suggests examining all {-mer patterns in G' and
ranking them according to their significance.

However, known binding sites that are identified by biological assays, display
variability in the binding sequence. Thus, we do not expect to see only exact
matches to the /-mer consensus. Instead, we want to allow approximate matches
when we search G. To formalize, consider a distance measure between two £-mers,
d(o,0"). The simplest such function is the hamming distance. However, we may
consider more realistic functions, such as distances that penalize changes in a
position specific manner. (Biology suggests, for example, that central positions
in short binding sites are more conserved.) For concreteness, we focus on the
hamming distance measure in the reminder of the paper. However, we stress
that the following discussion applies directly to any chosen distance measure.
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Let o be an f-mer. We define a ¢-ball centered around o to be the set Balls(o)
of f-mers that are of distance at most é from ¢. Thus, in the hamming distance,
example, Ball; (AAA) = {AAA, CAA, GAA, TAA, ACA, AGA, ATA, AAC, AAG, AAT}.
We match an event E with Balls(o) such that I,(s) = 1 iff s or its reverse
complementary contain an ¢-mer € Balls(o).

Given £ and ¢ we wish to examine all balls that have at least one occurrence
in G (the rest will never appear in any sub group). Balls that occur in all genes
in G are also discarded (as they occur in all genes of any sub group). We denote
this set of non-trivial events with respect to G as By, s). Note that for § > 0, it
may include balls whose centers do not appear in any promoter region.

Finding the set B(,s) of balls, and annotating for each gene whether it
matches each ball can be done in a straightforward manner. The time require-
ment then is N - L - 4%, and the space requirement N - 1B(e,5)l-

This genome-wide pre-processing needs to be done only once. Storing its re-
sults we can rapidly compute p-values of all B, 5 events with respect to any
proposed subset of genes. We simply look up which events occurred in the genes
in the cluster, and then compute the hyper-geometric tail distribution. Further-
more, one may wish to increase, shrink, or shift the regions under consideration
(e.g., from 1000bp to 2000bp upstream), or adjust the upstream regions of several
genes (say, due to elucidation of exact transcription start site). While in general
the pre-processing phase must be repeated, in practice, since it is mainly made up
of counting events, we may efficiently subtract, and add, respectively the counts
in the symmetrical difference between the old and new sets of strings, avoiding
repeating the complete process over again. With many completely sequenced
genomes and gene expression data of model organisms in various settings just
beginning to accumulate, our division of labour is especially useful.

3.2 Reducing the Event Space

The definition of B, ), holding all events we wish to examine, may include as
many as min(4¢, LN) balls. We note however, that many of these balls overlap.
Thus, if o and ¢’ are two f-mers that differ, in the hamming distance example?*,
in exactly one letter, then the overlap between Balls(c) and Balls(c') is clearly
substantial. Moreover, if we notice that most of the “mass” of these balls (in
terms of the number of occurrences in genes in G) lies in the intersection, we
expect that the significance of the events defined by both of them will be similar,
since they will be highly correlated.

A way to decrease the storage requirements, and thus extend the range of
manageable £’s can be found by a guided choice of a representative subset of
B(¢,5) during pre-processing. Based on the above intuitions we want a covering
set of balls with maximal mass, to minimize the size of the subset, and minimal
overlap, to diversify the events themselves. A heuristic solution can be offered
in the form of a greedy algorithm. Starting from an empty subset we repeatedly
choose balls of maximal mass that do not violate the minimal overlap demand,

* Analogous proximity thresholds can be defined for other distance measures.
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until we can no longer continue. We now proceed to examine and store the results
only for the events corresponding to the chosen balls.

We stress that since this sparsification is done during pre-processing, before
we observe any group @, it should not alter the statistical significance of the
results we observe when G is later given to us.

4 Learning Finer Representations

4.1 Position Specific Scoring Matrices

Using the methods of the previous section we can collect a set of promising
patterns that are significant for G. These patterns are based on the notion of
a d-ball. Biological knowledge about transcription factor binding sites suggests
that the definition of a binding site is in fact more subtle. Some positions are
highly conserved, while others are less so. In the literature, there are two main
representation of such sites. The first is the ITUPAC consensus sequences. This
approach determines the consensus string of the binding site using a 15 letter
alphabet that describe which subset of {A,C,G, T} is possible at each position.
A position specific scoring matriz (PSSM) (see, e.g., [10]) offers a more refined
representation. A PSSM of length ¢ is an object P = {p1,...,pe}, composed of ¢
column distributions over the alphabet {A,C,G, T}. The distribution p;, specifies
the probability of seeing each nucleotide at the i’th position in the pattern.
Once we have a PSSM P, we can score each ¢-mer ¢ by computing its com-
bined probability given P. A more common practice is to compute the log-odds
between the PSSM probability and a background probability of nucleotides.
Thus, if pg is assumed to be the nucleotide probability in promoter regions, then
the score of an /-mer o is:
pi(oli])
Scorep (o) MU log o)

If this score is positive ¢ is more probable according to P than it is accord-
ing to the background probability. In practice we set a threshold a (replacing
zero) for detecting a pattern. Thus, a pair (P, ) defines an event I, _,(s). This
event occurs iff the best matching subsequence of length £ in s, or in its reverse
complement, has a score higher than «. That is, if

max(Scorep (s[i,...,i + € — 1)), Scorep(s[i,...,i + £ —1]) > a

4.2 Selecting a Threshold

Before we discuss how to learn the PSSM, we consider choosing a threshold «
for a given PSSM P. It is possible to set a = 0, treating the background and the
PSSM as equiprobable. However, since the pattern is a rarer event, we want a
stricter threshold. Another potential approach tries to reduce the probability of
false recognition. That is, to find an «a such that the probability that a random
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background sequence ¢ will score higher than « is smaller than a pre-specified
€. Then, if we want to allow on average one false detection every k genes, we
would set € = \% - Unfortunately, we are not aware of an efficient computational
procedure to find such thresholds.

Here we suggest a simple alternative. We search for a threshold «, such that
the induced detections in the group G will be most significant. Thus, given a

group G of genes, and a PSSM P, we search for

o = arg min p-value(G, I ,, )
(e

That is, we adjust the threshold a so that the event defined by (P, a) has the
smallest p-value with respect to G. This discriminative choice of a threshold
ensures that we adjust it to take into account the amount of “spurious” matches
to the PSSM outside of G. Thus, we strive for a threshold that maximizes the
number of matches within G and at the same time minimizes the number of
matches outside G. The use of p-values provides a principled way of balancing
these two requirements.

We can find this threshold quite efficiently. We compute the best score of the
PSSM over each gene in G, and sort this list of scores. We then evaluate only
thresholds which are, say, half way between any two adjacent values in our list
of sorted scores (each succeeding threshold admits another gene into the group
of supposedly detected events). Using, for example, radix sort, this procedure
takes time O(NL).

4.3 Learning PSSMs

Learning PSSMs is composed of two tasks. Estimating the parameters of the
PSSM given a set of training sequences that are examples of the pattern we want
to match, and finding these sequences. The latter is clearly a harder problem
and requires some care.

We start with the first task. Suppose we are given a collection o1, ...,0, of
{-mers that correspond to aligned sites. We can easily estimate a PSSM P that
corresponds to these sequences. For each position 7, we count the number of
occurrences of each nucleotide in that position. This results in a count N(i,c) =
>, Hojli] = c}.

Given the counts we estimate the probabilities. To avoid entries with zero
probability, we add pseudo-counts to each position. Thus, we assign

N(i,c)+~
pi(c) = n+ 4y (1)
The key question is how to select the training sequences and how to align
them. Our approach builds on our ability to find seeds of conserved sequences.
Suppose that we find a significant d-ball using the methods of the previous
section. We can then use this as a seed for learning a PSSM. The simplest
approach takes the -mers that match the ball within the promoter regions of
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G as the training sequences for the PSSM. The learned PSSM then quantifies
which differences are common among these sequences and which ones are rare.
This gives a more refined view of the pattern that was captured by the §-ball.

This simple approach learns an £-PSSM from the d-ball events found in the
data. However, using PSSMs we can extend the pattern to a much longer one.
We start by aligning not only the sequences that match the d-ball, but also their
flanking regions. These are aligned by virtue of the alignment of the core /-mers.
We can then learn a PSSM over a much wider region (say 20bp). If there are
conserved positions outside the core positions, this approach will find them.?

Consider, for example, a HTH DNA binding motif, or a binding factor dimer,
where each component matches 6-10bps with several unspecific gap positions
between the two specific sites. If we find one of the two sites using the methods
of the previous sections, then growing a PSSM on the flanking regions allows us
to discover the other conserved positions.

Once we construct such an initial PSSM, we can improve it using a stan-
dard EM-like iterative procedure. This procedure consists of the following steps.
Given a PSSM Py, we compute a threshold ag as described above. We then con-
sider each position in the training sequences and compute the probability that
the pattern appears at that position. Formally, we compute the likelihood ratio
(Po, ao) assigns to the appearance of the pattern at s[i,...,i + ¢ — 1]. We then
convert this ratio to a probability by computing

ps.i = logit(Scorep, (s[i,...,i +¢—1]) — ap)

where logit(z) = 1/(1+e~ ") is the logistic function. We then re-scale these prob-
abilities by dividing by a normalization factor Z so that the posterior probability
of observing the pattern in s and its reverse complement sums to 1. Once we
have computed these posterior probabilities, we can accumulate expected counts

Niie) =3 > @Ng 1{s,[j +i] = c}.

These represent the expected number of times that the i’th position in the PSSM
takes the value ¢, based on the posterior probabilities.

Once we collected these expected counts, we re-estimate the weights of the
PSSM using Eq. 1 to get a new a PSSM. We optimize the threshold of this PSSM,
and repeat the process. Although this process does not guarantee improvement in
the p-value of the learned PSSM, it is often the case that successive iterations do
lead to significant such improvements. Note that our iterations are analogous to
EM’s hill-climbing behaviour, and differ from Gibbs samplers where one performs
a stochastic random walk aimed at a beneficial equilibrium distribution.

® This assume that there are no variable lengths gaps inside the patterns. The struc-
tural constraints on transcription factors suggest that these are not common.
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Table 1. Selected results on binding site regions of several yeast data sets, comparing
our findings with those of MEME.

Source/ Trans. Consensus Seed PSSM MEME <8 MEME < 50
Cluster Factor rank p-value rank p-value|rank e-value rank e-value
Spellman et al. [22]
CLN2 MBF ACGCGT 1 4e-26 1 3e-42 1 le-18 1 7e-31
SIC1 SWI5p CCAGCA 1 le-07 1 le-12 1 8e-00 8 5e+02
Tavazoie et al. [23]
3 putative GATGAG 2 9e-07 5 6e-09 4 le+06 2 le-14
putative GAAAAatT 3 4e-07 2 le-11 23 8e+07 3 Te-10
8 STRE aAGGgG 1 6e-07 3 4e-06 20 le+08 - —
14 putative TTCGCGT 1 2e-09 2 Te-11 13 1le+407 - -
putative TGTTTgTT 3 2e-07 - - - - 13 4e+405
30 MET31/32p gCCACAgT 1 2e-11 1 2e-11 2 5e4-02 8 le+03
Tyer et al. [16]
MBF MBF ACGCGT 1 le-12 1 3e-18 3 le+4-04 19 le-03
SBF SBF CGCGAAA 1 le-32 1 le-37 2 le-17 - —

5 Experimental Results

We performed several experiments on data from the yeast genome to evaluate
the utility and limitations of the methods described above. Thus, we focused on
several recent examples from the literature that report binding sites found either
using computational tools or by biological verification. To better calibrate the
results, we also applied MEME [1], one of the standard tools in this field, on the
same examples.

In this first analysis we chose to use the simple hamming distance measure
and treat the 1000bp sequence upstream of the ORF starting position as the
promoter region. We note that the latter is a somewhat crude approximation,
as this region also contains an untranslated region of the transcript.

We ran our method in two stages. In the first stage, we searched for patterns
of length 6-8 with 0 ranging between 0-2 mismatches, and an allowed ball overlap
factor of 0—1. Generally speaking, in these runs the patterns found with no
mismatches or ball overlaps had better p-values. This happens because we search
for relatively short patterns, allowing for a non-trivial probability of a random
match. For this reason we report below only results with exact matches and
no overlap. We believe that higher values of both parameters will be useful for
longer patterns (say of length 12 or 13). In the second stage we run the EM-like
procedure described above on all the patterns that received significant scores.
We chose to learn PSSMs of width 20 using 15 iterations of our procedure.

To compare the results of these two stages, we ran MEME (version 3.0.3) in
two configurations. The first restricted MEME to retrieve only short patterns
of width 68, corresponding to our /-mers stage. The second configuration used
MEME’s own defaults for pattern retrieval resembling our end product PSSMs.

We applied our procedure to several data sets from the recent literature.
Selected results are summarized in Table 1. In this table we rank the top results
from the different runs of each procedure by their p-values (or e-values) reported
by the programs after removing repeated patterns. We report the relative rank
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Fig.1. Examples of PSSMs learned by our procedure. (a) CLN2 cluster. (b) SBF
cluster. (c) Gasch et al. Cluster M. (d) Gasch et al. Cluster I/J.

of the patterns singled out in the literature and their significance scores. We
discuss these results in order.

The first data set is by Spellman et al. [22]. They report several cell-cycle
related clusters of genes. In a recent paper, Sinha and Tompa [21] report results
of a systematic search for binding sites in these clusters of IUPAC consensus
regions using a random sequence null hypothesis utilizing a Markov chain of
order 3. The main technical developments in [21] are methods for approximating
the p-value computation with respect to such a null-hypothesis.

We examined two clusters reported on by Sinha and Tompa. In the first one,
CLN2, our method identifies the pattern ACGCGT and various expansions of it.
This pattern was found using patterns of length 6, 7, and 8 with significant p-
values. The PSSMs learned from these patterns were quite similar, all containing
the above motif. Figure 1(a) shows an example. In the second cluster, SIC1, the
signal appears with a marginal p-value (close to the Bonfferoni cutoff) already at
{ = 6. The trained PSSM recovers the longer pattern with a significant p-value.
In both cases, the top ranking patterns correspond to the known binding site.

The second data set is by Tavazoie et al. [23]. That paper also examines
cell-cycle related expression levels that were grouped using k-means clustering.
They examined 30 clusters, and applied an MCMC-based procedure for finding
PSSM patterns in the promoter regions of genes in each cluster. We examined
the clusters they report as statistically significant, and were able to reproduce
binding sites that are very close to the PSSMs they report; see Table 1.

In a recent paper, Iyer at al. [16] identify, using experimental methods, two
groups of genes that are regulated by the MBF/SBF transcription factor. Here,
again, we managed to recover the binding sites they discuss with high confidence.
For example, we show one of our matching PSSMs in Figure 1(b).
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Finally, we discuss the recent data set of yeast response to environmental
stress by Gasch et al. [14]. We report on two clusters of genes “M”, and “I/J”.
In cluster M the string CACGTGA is found in several of the highest scoring pat-
terns. However, when we turned to grow PSSMs out of our seeds, a matrix of a
lower ranking seed GATAAGA exceeded the rest, exemplifying that seed ordering
is not necessarily maintained when the patterns are extended. The latter, more
prominent PSSM is shown in Figure 1(c). In cluster I/J a significant short pat-
tern rising above our threshold is not found. However when we extended the top
most seed we obtained the PSSM of Figure 1(d) which both nearly crosses our
significance threshold, and holds biological appeal, showing two conserved short
regions flanking a less conserved 2-mer.

In general, the scores of the learned PSSMs vary. In some cases, the best seeds
yield the best scoring PSSMs. More often, the best scoring PSSM corresponds to
a seed lower in the list (we took into account only seeds that have p-value match-
ing the FDR decision threshold). In most cases the PSSM learned to recognize
regions flanking the seed sequence. In some cases more conserved regions were
discovered. In general our approach manages to identify short patterns that are
close to the pattern in the data. Moreover, using our PSSM learning procedure
we are able to expand these into more expressive patterns.

We note that in most analysed cases MEME also identified the shorter pat-
terns. However, there are two marked differences. First and foremost is run
time. Compared on a 733 MHz Pentium III Linux machine our seed discovery
programs ran between half a minute and an hour, exhaustively examining all
possible patterns, while the EM-like PSSM growing iterations added a couple of
minutes. The shortest MEME run on the same data sets took about an hour,
while longer ones ran for days, when asked to return only the top thirty pat-
terns. Second, MEME often gave top scores to spurious patterns that are clear
artifacts of the sequence distributions in the promoter regions (such as poly A’s).
When using MEME one can try to avoid these problems by supplying a more
detailed background model. This has the effect of removing most low complexity
patterns from the top scoring ones. Our program avoids most of these pitfalls
by performing its significance tests with respect to the genome background to
begin with.

6 Discussion

In this paper we examined the problem of finding putative transcription factor
binding sites with respect to a selected group of genes. We advocate significance
calculations with respect to the random selection null hypothesis. We claim
that this hypothesis is both simple and clear and is more suitable for gene ex-
pression experiments than the random sequence null hypothesis. We then use
a simple hyper-geometric test in a framework for constructing models of bind-
ing sites. This framework starts by systematically scanning a family of simple
“seed” patterns. These seeds are then used for building PSSMs. We describe how
to construct statistical tests to select the most surprising threshold value for a



14 Yoseph Barash et al.

PSSM and combine this with an EM-like iterative procedure to improve it. We
thus combine a first phase of kernel identification based on a rigorous statistical
analysis of word over-representation, with a subsequent phase of optimization,
leading to a PSSM, which can be used to scan sequences for new matches of the
putative regulatory motif.

We showed that even before performing iterative optimization of the PSSMs,
our method recovers highly selective seed patterns very rapidly. We reconstructed
results from several recent papers that use more elaborate and computationally
intensive tools for finding binding sites, as well as present novel binding sites.

A potential weakness of our model is the fact that we disregard multiple
copies of a match in the same sequence (the restriction to binary events). Despite
the fact that this phenomenon is known to happen in eukaryotic genes, we recall
that a mathematical analysis of counting the number of occurrences in a single
string is more elaborate, and computationally intensive. This may indeed lead
in such cases to under-estimation, which is problematic mainly for small clusters
of co-regulated genes. The recognition of two conserved patterns separated by a
relatively long spacer (say of 10bp or more), resulting from a HTH motif or a
dimer complex, can however be attacked by looking for proximity relationships
between pairs of occurrences of different significant seeds.

As this field is showing an influx of interest, our work resembles several others
in different aspects. We highlight only the most relevant ones.

The use of the hyper-geometric distribution in the context of finding binding
sites is used by Jensen and Knudsen [17] to find short conserved subsequences of
length 4-6 bp. They demonstrate the ability to reconstruct sequences, but suffer
statistical problems when they consider longer ¢-mers, due to the large number
of competing hypotheses.

Already in Galas et al. [13], word statistics are used to detect over-represented
motifs, and a definition of a general concept of “word neighborhood” is given
similar to the ball definition we give here. However, the analysis there is restricted
to over-representations at specific positions with respect to a common point
of reference across all sequence, deeming it mostly appropriate for prokaryotic
transcription or translation promoter region elucidation.

The general outline of our approach is similar to that of Wolferstetter et
al. [27] and Vilo et al. [26]. Both search for over-represented words and try to
extend them. Vilo et al. examine /-mers of varying sizes that are identified by
building a suffix tree for the promoter regions. Then, they use a binomial formula
for evaluating significance. For the clustering they constructed, this resulted
in a very large pool of sequences (over 1500). They use multiple alignment-
like procedure for combining these ¢-mers into longer consensus regions. Thus,
to learn longer binding sites with variable position, they require overlapping
subsequences to be present in the data. This is in contrast to our approach that
uses PSSMs to extend the observed patterns, and so is more robust to highly
variable positions that flank the conserved region.

Van Helden et al. [24] also use binomial approach. They try to take into
consideration the presence of multiple copies of a motif in the same sequence, but
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suffer from resulting inaccuracies with respect to auto-correlating patterns. Our
work can be seen as generalizing this approach in several respects, including the
use of a hyper-geometric null model, the discussion of general distance functions
and event space coarsening, and the iterative PSSM improvement phase.

There are several directions in which we can extend our approach, some of
them embedding ideas from previous works into our context.

First, in order to estimate the sensitivity of our model it will be interesting
to examine it on smaller, and known, gene families, as well as on synthetic data
sets, as those advocated in [19]. Extending our empirical work beyond yeast
should also provide new insights and challenges.

Our method treats the complete promoter region as a uniform whole. How-
ever, biological evidence suggests that the occurrence of binding sites can depend
on the position within the promoter sequence [22]. We can easily augment our
method by defining events on sub-regions within the promoter sequence. This
will facilitate the discovery of subsequences specific to certain positions. Another
biological insight already mentioned is the phenomena of two conserved patterns
separated by a relatively long spacer. In the case of homeodimers we can easily
expand our scope to handle events that require two appearances of the subse-
quence within the promoter region. Otherwise, we can try to extend our PSSMs
further to flank the seed while weighting each column such as to allow for longer
spacers between meaningful sub-patterns.

So far we have looked for contiguous conserved patterns within the binding
site. More complex extensions involve defining new distance measures that in-
corporate preferences for more conserved positions in specific positions in the
pattern, and random projection techniques, akin to [5], which will allow us to
easily handle longer ¢-mers. We can also further generalize our model by al-
lowing ourselves to express our /-mer centroids over the IUPAC alphabet. This
allows both for a reduction of the event space and the natural incorporation of
biological insight, as outlined above. Our current method for diluting the set of
“covering” d-balls is highly heuristic. Interesting theoretical issues include the
formal criteria we should optimize in selecting this approximating set of d-balls
and how to efficiently optimize with respect to such a criterion. Finally, we in-
tend to combine the putative sites we discover with learning methods that learn
dependencies between different sites and between sites and other attributes such
as expression levels and functional annotations [2].
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