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Abstract
We consider Boolean functions over n binary variables, and the p-biased product measure

over the inputs. We show that if f is of low-degree, that is, if its weight on Walsh products of
size larger than k is small, then f is close to a junta, namely to a function which depends only
on very small number of variables, independent of n.

We conclude that any highly noise-resistant Boolean function must be a junta.
Furthermore, we utilize our results to prove a switching lemma, one which may prove useful

in the study of computational-complexity lower-bounds for AC0 or related classes.

1 Introduction

A Boolean function of the form f : {1,−1}n → {1,−1} (we use 1 and −1 as the two Boolean values)
is said to be symmetric if the symmetry group over its coordinates is transitive, namely if the affect
on f of each coordinate is the same as that of every other coordinate. It is said that f is a J-junta,
if there are J or less coordinates whose values completely determine the value of f. Symmetric
functions and J-juntas (for small J ’s) can be viewed as the opposite ends of a wide spectrum, which
on one sides contains functions which depend equally on all of their variables, and on the other
contains functions that depend greatly on a few of their coordinates but ignore all others.

Social choice. Symmetric functions and juntas play major roles in several areas of science. In
the theory of social choice, for example, Boolean functions f represent voting systems: a person
votes by assigning one of the coordinates of f to be either 1 or −1, and once the voting is over, f is
evaluated on the generated assignment to obtain the result of the election. For the voting system
to be fair, f must be symmetric, and if on the other hand f is a J-junta, then just J people control
the result of the election.

Noise-sensitivity. Consider a model where each voter decides on her vote randomly, and inde-
pendently of other voters. Also, suppose that after the election is over, each voter regrets her vote
with some probability λ, in which case she casts her vote again according to the same distribution
as before. When the election is re-evaluated according to the new votes, the probability that the
result of the election be changed is called the λ-noise sensitivity of the election, and is a parameter
of the voting system f (the λ-noise sensitivity also depends on the initial distribution according to
which each vote is selected).
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Symmetry breaking. A natural question arises: how low can the λ-noise sensitivity be for
a symmetric voting system. Bourgain considered the setting where each initial vote is chosen
uniformly, and in this case showed∗ [Bou01] that if the noise sensitivity is smaller than a certain
threshold, the voting system cannot be symmetric. In fact, he showed that the only functions whose
noise sensitivity is smaller than the aforementioned threshold are juntas that depends on a relatively
small number of variables, or functions which are very close to being juntas.

Bourgain’s result is one of several other “symmetry breaking” results. The first such result
by [KKL88], considered the average sensitivity of a Boolean function. This is the average, taken over
all assignments for a Boolean function f, of the number of individual coordinates that when flipped
cause the value of f to change. They showed that a balanced Boolean function f : {1,−1}n → {1,−1}
cannot be symmetric if its average sensitivity is below log n (f is balanced if it obtains the value 1
just as often as it obtains −1).

Moreover, it was shown in [Fri98] that when the average sensitivity becomes significantly lower
than log n, symmetry is shattered, and the only Boolean functions left are juntas. Specifically, he
showed that if the average sensitivity of a Boolean function f is smaller than k, and ϵ > 0 is any
parameter, then f must be ϵ-close to a 9k/ϵ-junta (f is ϵ-close to g if Prx [f(x) ̸= g(x)] ≤ ϵ).

Symmetry breaking in complexity. Symmetry breaking results play a crucial role also in
complexity, and in numerous hardness of approximation results ([BGS98, H̊as97, H̊as99, DS98,
Kho02] and many others). In these contexts a Boolean function f : {1,−1}n → {1,−1} is seen as a
binary string, the entries of which are indexed by the set {1,−1}n, and is used to encode elements
in [n]

.
={1, 2, . . . , n} via the long-code. The long-code encoding of an element i ∈ [n] is the 1-junta,

also called dictatorship, defined by f(x)
.
=xi.

Typically when using the long-code in a hardness-of-approximation result, a construction or a test
of some sort are used to verify that a Boolean function (manifested as a string) satisfies a certain
condition. It is then proved that a legal long-code word satisfies the condition, and moreover, that
any Boolean function which satisfies the condition has a short list-decoding, namely it must be
associated with a small set of coordinates in [n].

The construction in [Kho02], for example, verifies that certain Boolean functions have small noise-
sensitivity, and by Bourgain’s result, mentioned above, concludes that each of them is close to a
junta. The list-decoding of a function is thus the coordinates which dominate the junta associated
with it. Other proofs (e.g. [H̊as97, H̊as99]) use symmetry-breaking results which do not imply that
a given function is close to a junta, but rather that there must be a short list of coordinates which
affect it much more than other coordinates.

The biased distribution. So far, we only discussed the uniform distribution over {1,−1}n. For
many uses, however, it is interesting to consider the p-biased distribution, µp, where each coordinate
of the input is independently chosen to be −1 with probability p and 1 with probability (1−p). Note
that the distance between two Boolean functions f and g, namely the probability that f(x) ̸= g(x)
for random x, may change drastically when the distribution of x becomes biased. Hence a function
which is close to a junta with respect to one bias may be far from all juntas with respect to another.

Several combinatorial properties of Boolean function change when viewed with respect to biased
distributions. This was first used in a hardness-of-approximation result by Dinur and the second

∗Bourgain’s result is actually stated as a theorem concerning the tail of the Fourier transform of Boolean functions.
However, it translates easily to the language of noise-sensitivity.
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author [DS98] to show hardness for the vertex-cover problem. The proof in [DS98] used the biased
version of the result in [Fri98]. It seems that there is a lot of potential for using biased distributions
in hardness results, and for that purpose there might be need for symmetry-breaking results which
apply for such distributions.

Graph properties. Another field, in which analysis with respect to the biased measure is essen-
tial, is that of graph properties: a graph-property is a set of graphs closed under permutations of
the vertices. A graph G over n vertices can be represented by an element x ∈ {1,−1}m for m =

(
n
2

)
,

where each coordinate in x specifies whether a certain edge belongs to G. A graph-property can
thus be represented as a Boolean function f : {1,−1}m → {1,−1} which is invariant under a certain
set of permutations.

Note that the set of vertex-permutations is transitive over the edges, so graph properties make
symmetric Boolean functions. Results concerning symmetric Boolean functions therefore apply to
graph properties. When considering graph properties over random graphs, however, most graph
properties show interesting behavior only for relatively sparse graphs, namely graphs which contain
each edge with some probability p for p ≪ 1/2. To study such properties, one is therefore interested
in results for symmetric functions, that apply for biased distributions.

Our Results

The main contribution of this paper is analogous to the result in [Bou01], but applies in the case
of the biased measure. Our proof is also conceptually simpler than that of Bourgain, and the
techniques used may be of independent interest. The parameters achieved by our results are,
however, somewhat worse than those of [Bou01].

Biased Walsh Products. As mentioned in a footnote above, Bourgain’s theorem is formulated
in terms of the Fourier expansion of a Boolean function f, which is obtained by writing f as a linear
combination of Walsh products. The following theorem is the statement of our result in terms of
the expansion of a Boolean function as a combination of p-biased Walsh products, which is the
p-biased version of the Fourier expansion (the definition of p-biased Walsh products follows [Tal94],
and appears in the next section).It states that if the weight of the expansion of a Boolean function
f on high-frequency Walsh-products is small, then f must be close to a junta. We now give a formal
definition of ’being close to a junta’, and then state our results.

(ϵ, J)-juntas. A Boolean function f is said to be an (ϵ, J)-junta with respect to the biased measure
µp, if there exists a J-junta f ′ such that

Pr
x∼µp

[f(x) ̸= f ′(x)] ≤ ϵ

Theorem 1. Let f : {1,−1}n → {1,−1} be a Boolean function satisfying

∑

|S|>k

|̂f(S)|2 ≤ ϵ ,

where the coefficients f̂(S) are taken with respect to the p-biased expansion of f. Then f is an
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[O(
√

ϵ · k · log(1/p)/p2), J ]-junta with respect to µp, where

J = O

(
k

ϵpk

)

We achieve better parameters if the bias p is essentially constant.

Theorem 2. For every positive integer ℓ, there exists a positive function φℓ(p) satisfying the fol-
lowing.

For every positive integer k, every Boolean function f : {1,−1}n → {1,−1} satisfying

∥f>k∥2

2 ≤ ϵ ,

is an (η, J)-junta†, where

J = O

(
k

ϵpk

)
and η = φℓ(p) · kϵℓ/(ℓ+1) .

For comparison, we also cite here the result from [Bou01].

Theorem [Bou01]. Let ϵ, η > 0 any fixed constants, and let k be a positive integer. Then there is
a constant cη,ϵ, such that any Boolean function f : {1,−1}n → {1,−1} satisfying

∑

|S|>k

|̂f(S)|2 < cηk
− 1

2−η

is an (ϵ, k10k)-junta.

The main difference between our results and that of Bourgain, is how the the threshold on the
high-frequency weight, beyond which f is ensured to be close to a junta, behaves as a function of k.
While our results require that this weight be bounded by O(k−(ℓ+1)/ℓ), Theorem 1 requires only a
bound of order K−1/2−η (for η arbitrarily small).

Let us now translate Theorem 1 to the language of noise-sensitivity. Recall that the λ-noise-
sensitivity of a Boolean function f with respect to µp, is the probability that f yields the same value
when evaluated on a random input x, and then re-evaluated on an input x′, where a λ-fraction of the
coordinates are randomly re-assigned. We show that a Boolean function f whose noise-sensitivity
is small, must be ϵ-close to a junta of size independent of n.

Corollary 1.1. For any parameter λ > 0, fix k = log(1−λ)(1/2). Then every Boolean function
f : {1,−1}n → {1,−1} whose λ-noise-sensitivity with respect to µn

p is bounded by ϵ, is an [O(
√

ϵ · k ·
log(1/p)/p2), J ]-junta, where

J = O

(
k

ϵpk

)

A similar corollary, with improved parameters for constant bias p, follows from Theorem 2.

†The O notation here, as well as everywhere in this paper, means “up to a factor which is a global constant”.
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Corollary 1.2. For every positive integer ℓ, there exists a function φ : (0, 1
2) → R+, such that

the following holds. For any parameter λ > 0, fix k = log(1−λ)(1/2). Then every Boolean function

f : {1,−1}n → {1,−1} whose λ-noise-sensitivity with respect to µn
p is bounded by φ(p)(ϵ/k)

ℓ+1
ℓ is an

(η, J)-junta, where

J = O

(
k

ϵpk

)
and η = φℓ(p) · kϵℓ/(ℓ+1) .

The asymptotic distance from a junta. So far we were mostly interested in the threshold on
high-frequency weight, beyond which a Boolean function must be a junta. In the case where the
high-frequency weight tends to zero, however, it is natural to ask how the distance from a junta
behaves as a a function of that weight. We give an asymptotically optimal bound, up to a constant
factor, on the distance from a junta in that case. Our bound comes into effect when the weight of
f on Walsh-products larger than k becomes smaller than some negative exponent in k.

Theorem 3. There exists a constant M such that for every fixed positive integer k, the following
holds. Let f : P([n]) → {1,−1} be a Boolean function, let ϵ

.
=
∑

|S|>k

∣∣̂f(S)
∣∣2 and denote τ

.
=δ16k

p /M .

If ϵ < τ then f is an
((

1 + 1064(δp)
−4k(2ϵ)1/4

)
ϵ , k/τ

)
-junta.

Theorem 3 was proven in [FKN01] for the case k = 1, and with respect to the uniform measure
µ1/2. We prove Theorem 3 by first giving an alternative proof for the case k = 1, which is valid
with respect to every µp, and then extending the proof to the case k > 1.

A switching lemma. Another context in which our results may be of interest is that of switching
lemmas. Switching lemmas are used (e.g. in [Ajt83, Has86]) to study complexity classes such as AC0

(the class of circuits of non bounded fan-in and of constant depth), which lie low in the complexity
class hierarchy. For example, a switching lemma is used by Hastad in [Has86] to show that the
parity function (= χ[n]) is not computable in AC0 .

Hastad’s result is improved and extended in [LMN89], where it is proven that all functions
computed by an AC0 circuit are close to being low-degree, namely have almost all of their weight
on characters of small frequency. This immediately excludes the Parity function, and moreover,
shows that many other functions are not in AC0. The main technical tool in the proof of [LMN89]
is still the switching lemma of [Has86].

A typical switching lemma shows that a random restriction of a Boolean function in a given class,
is with high probability a very simple function (e.g. depends on a constant number of variables).
Completely analytical proofs for switching lemmas have been sought after for some time→. In this do they

leave it as
an open
question!?

paper (see Section 4), we show how our results imply certain switching lemmas, which can perhaps
be of help in the study of AC0.

Structure of the paper

→In Section 2 we define the biased Walsh products, and the biased Fourier expansion of functions. verify!
We also define other notions related to Boolean functions, and show their connections with the
biased Fourier expansion. In Section 3 we prove Theorem 1 in a slightly stronger form, which not
only states that the given function is close to a junta, but also points to the influential coordinates
in it.
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In Section 4 we prove Corollary 1.1 by translating Theorem 1 from the language of Fourier
expansion to the language of noise-sensitivity. We also give an example to show that Theorem 1
does not hold “out of the box” for the biased case. In Section 5 we show a version of the switching
lemma that is obtained from our results.

In Section 6 we show an alternative proof for the theorem of [FKN01], showing that a Boolean
function which is almost linear is close to a dictatorship. This proof not only holds in the case of
biased measure, but is also extendable to the case of higher frequencies. This is done in Section 7,
yielding a theorem that is similar to Theorem 2 but whose parameters are much better, for functions
whose weight beyond the k’th level is extremely small.

Finally, in Section 8 we prove Theorem 2 simply by plugging the result from Section 7 into the
proof of Theorem 6. By translating it into the language of noise-sensitivity, we obtain Corollary 1.2.

2 Preliminaries

It will be more convenient in the sequel to deal with Boolean functions of the form f : P([n]) →
{1,−1}, where P([n]) denotes the power-set of [n]

.
={1, 2, . . . , n}. The elements of P([n]) can, of

course, be easily identified with those of {1,−1}n (the value of the i’th variable determines whether
the argument of f contains i or not).

The biased measure is formally defined, in this notation, as follows. For every finite set I and
0 < p < 1, define a probability measure µI

p on P(I) by

∀ A ⊆ I , µI
p(A)

.
=p|A|(1 − p)|I\A|

Throughout this paper we assume (without loss of generality) that 0 < p ≤ 1/2. Also, we abbreviate

µn
p for µ[n]

p .

2.1 Discrete Fourier Expansion

We next define the basic notions we need concerning the space of real-valued functions over P([n]).

Inner-products and norms. The biased inner-product of two real-valued functions f, g over
P([n]) is defined by ⟨f, g⟩ .

=Ex∼µn
p
[f(x)g(x)]. For every real q, q ≥ 1, the q-norm of a function

f : P([n]) → R, is defined by

∥f∥q
.
=

(
E

x∼µn
p

[|f(x)|q]
)1/q

Fourier basis. The usual Fourier basis for the space of functions f : P([n]) → R is not orthonormal
(or even orthogonal) with respect to the biased inner-product. Following [Tal94] we define an
analogue basis, which is orthonormal with respect to the biased inner-product (for p = 1/2, it is the
usual Walsh/Fourier basis). Like the Fourier basis it is a “tensorised” basis, containing products
of functions each of which depending on only one coordinate, and having expectation zero and
variance one.
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Definition 1 (biased Walsh-Products). Let 0 < p < 1. For every i ∈ [n], we define the i’th
p-biased Rademacher function χ{i} : P([n]) → R by

χ{i}(x)
.
=

{√
p/(1 − p) i ̸∈ x

−
√

(1 − p)/p i ∈ x

For every set S ⊆ [n], the p-biased Walsh-product that corresponds to it is then defined by χS

.
=
∏
i∈S

χ{i} .

It is said that χS has frequency |S|, or that it has size |S|.

Since the set of biased Walsh-products forms an orthonormal basis, we have that every function
f : P([n]) → R can be written as a linear combination f =

∑
S⊆[n] f̂(S)χS , called the biased Fourier

expansion of f, where f̂(S) = ⟨f, χS⟩.

2.2 Projections

An important aspect of the Fourier representation is that it enables the definition and analysis of
simple but important orthonormal projections of f.

Frequency separation. The first two projections, which are crucial in this work, separate the
Walsh-products into low-frequencies and high-frequencies. For a given k and a function f denote
f≤k =

∑
|S|≤k f̂(S)χS and f>k =

∑
|S|>k f̂(S)χS .

The averaging projection. Let I ⊆ [n] be a set of coordinates. For a function f : P([n]) → R,
consider the function obtained from it by averaging , for each element x ∈ P([n]), over all distinct
input settings y such that x ∩ I = y ∩ I (the average is weighted according to the biased weights).
This is a real-valued function, AvgI [f] : P([n]) → R, that depends only on Ī = [n] \ I, and is
formally defined as AvgI [f] (x)

.
=Ez∼µI

p
[f((x \ I) ∪ z)].

One can easily verify that AvgI is the projection onto the set of p-biased Walsh-products whose
support is disjoint from I, namely

AvgI [f] =
∑

S∩I=∅

f̂(S)χS (1)

2.3 Variations

The variation of a Boolean function f : P([n]) → {1,−1} on a subset I ⊆ [n] of the coordinates
measures the dependency of f on I. The variation of f on a singleton {i} coincides with the classical
definition ([BL89, KKL88]) of the influence of the i’th coordinate on f. We define the variation of f
on I with respect to µp to be twice the probability that f yields different values, given two random
inputs that agree on all the coordinates outside I, that is

Vrf(I) = 2 Pr
y∼µ

[n]\I
p

z1,z2∼µI
p

[f(y ∪ z1) ̸= f(y ∪ z2)]

Note that for any two identically distributed and independent random variable X, Y taking
values in {1,−1}, Pr [X ̸= Y ] = V (X)/2, where V [X] denotes the variance (not variation) of X.
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The following is therefore an equivalent definition for the variation, but it extends for non Boolean
functions as well.

Definition 2 (variation). The variation of a function f : P([n]) → R on a set I ⊆ [n] of coordinates
is defined by

E
y∼µ[n]\I

p

[

V
z∼µI

p

[
f(y ∪ z)

]
]

The following claim, which follows directly from Definition 2 and from (1), expresses the variation
in terms of the averages, and in terms of the Fourier expansion of a given function f.

Claim 2.1. The variation of a function f : P([n]) → R on a set I ⊆ [n] of coordinates is defined by
Vrf(I)

.
=∥f − AvgI [f]∥2

2 =
∑

S∩I ̸=∅ f̂2(S).

It easily follows from the above definition that the variation is sub-additive, namely Vrf(I1 ∪ I2) ≤
Vrf(I1) + Vrf(I2).

The following proposition justifies our view of the variation as a measure of dependency, showing
that a Boolean function f whose variation on a given set of coordinates is small, is indeed almost
independent of the coordinates in that set. Putting it differently, if the variation of f on the
complement of a set I is small, than f is close to a Boolean function g which depends only on the
coordinates in I.

Proposition 2.2. Let f : P([n]) → {1,−1} be a Boolean function, and let I ⊆ [n] be a set of
coordinates. Then there exists a Boolean function g : P([n]) → {1,−1} which depends only on
coordinates from I, and satisfies

Pr
x∼µn

p

[f(x) ̸= g(x)] < Vrf([n] \ I)/2

Proof. Denote Ī
.
=[n] \ I, and let g

.
=sign (AvgĪ [f]) (we arbitrarily set sign(0)

.
=1). Then g depends

only on coordinates from I. Let us show that f(x) = g(x) for most x’s.
For y ∈ P(I), denote

α(y)
.
= Pr

z∼µĪ
p

[f(y ∪ z) ̸= g(y ∪ z)]

and note that α(y) ≤ 1/2 for all y. Therefore, we have

Pr
x∼µn

p

[f(x) ̸= g(x)] = E
y∼µI

p

[α(y)] ≤ E
y∼µI

p

[2α(y)(1 − α(y))] =

= Pr
y∼µI

p

z1,z2∼µĪ
p

[f(y ∪ z1) ̸= f(y ∪ z2)] =
1

2
Vrf(Ī)

2.4 Restrictions

Let f : P([n]) → R be any real-valued function. For a given set of coordinates I ⊆ [n] and any
x ∈ P([n] \ I), let us denote by fI [x] : P(I) → {1,−1} the restriction of f defined by

∀ y ∈ P(I) , fI [x](y)
.
=f(x ∪ y)
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The Fourier expansion of fI [x] can be deduced from the Fourier expansion of f as follows. For every
S ⊆ I, it is easily seen that

f̂I [x](S) =
∑

T⊆[n]
T∩I=S

f̂(T )χ
T\S

(x) (2)

(where χ
T\S

can in fact be replaced by χT ).

The variation of a function f on a subset I can be expressed in terms of the restrictions of f to I.

Claim 2.3. Let f : P([n]) → R, let I ⊆ [n], and denote Ī
.
=[n] \ I. Then

Vrf(I) = E
x∼µĪ

p

[

V
z∼µI

p

[
fI [x](z)

]
]

= E
x∼µĪ

p

[
VrfI [x](I)

]

where Vz∼µI
p

[
fI [x](z)

]
denotes the variance of fI [x](z), where z is distributed according to µI

p.

Proof. Both the first and the second inequalities follow immediately from Definition 2.

2.5 Bonami-Beckner Inequality

We define for every 0 ≤ δ ≤ 1 an operator Tδ over real-valued functions f : P([n]) → R. At each
point x, Tδ[f](x) is the expected value of f when a (1 − δ)-fraction of the coordinates in x are
randomly re-assigned (we say that a (1 − δ)-noise is applied to x). Thus

Tδ[f](x) = E
I∼µn

(1−δ) , z∼µI
p

[f((x \ I) ∪ z)]

Since Tδ is obviously a linear operator, and by evaluating it on biased Walsh-products, one easily
verifies that Tδ[f] =

∑
S δ|S |̂f(x)χS

Bonami [Bon70], and later Beckner [Bec75], independently proved that in the case of uniform
measure, Tδ is hyper-contractive for appropriate values of δ.

Theorem 4. Let q ≥ r ≥ 1, and let f : P([n]) → R. Then in the uniform case, namely when the
norms are taken with respect to µn

1/2,

∥ Tδ[f] ∥q ≤ ∥f∥r for any δ ≤
√

(r − 1)/(q − 1) .

In [Fri98], a special case of Theorem 4 was shown to hold for the biased case as well. We need
another special case of this theorem, which is sufficient for our purposes.

Theorem 5. For every p > 0 there exists a parameter δp > 0, such that for every δ ≤ δp and
every function f : P([n]) → R, ∥ Tδ[f] ∥4 ≤ ∥f∥2, where the norms and the operator Tδ are taken with
respect to µn

p .

Note that in the sequel all the parameters denoted δp refer, unless noted otherwise, to the best
parameter δp for which Theorem 5 holds. This best parameter was, in fact, found recently by K.
Oleszkiewicz.

Theorem [Ole02]. Let δp denote the largest parameter for which Theorem 5 holds. Then

δp = (1 + p−1/2(1 − p)−1/2)−1/2 = O(p1/4)
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3 The Main Arguments

This section introduces the main ideas used throughout this paper. The main result of this section,
Theorem 1, shows that a function f whose weight is concentrated on low-frequencies is close to a
junta. In fact we show a slightly more concrete result, showing exactly which are the coordinates
that determine most values of f. It is the set J of coordinates i whose influence on f≤k is large
(namely the coordinates i for which Vrf≤k({i}) is large enough).

The parameters which are achieved here are improved in Section 8 for constant biases p, by
repeating the proof and plugging in the parameters obtained from Theorem 11, which is proven in
Section 7.

Definition 3. Let f : P([n]) → {1,−1} be a Boolean function. For every parameter τ > 0 and
integer k > 0, let

Jk,τ(f)
.
= { i ∈ [n] | Vrf≤k({i}) > τ}

Since for every Boolean function f, ∥f∥2
2 = 1, one easily observes that |Jk,τ(f)| ≤ k/τ for every

such function.

The main result of this section is the following theorem, which is a more specified version of Theo-
rem 1.

Theorem 6. Every Boolean function f : P([n]) → {1,−1} satisfying ∥f>k∥2
2 ≤ ϵ, is O(

√
ϵ · k ·

log(1/p)/p2)-close to a Boolean function dominated by the coordinates in Jk,τ(f), where

τ
.
=(δp)

4kϵ = Θ(pkϵ)

Hence such a function f is an [O(
√

ϵ · k · log(1/p)/p2), J ]-junta for J = O( k
ϵpk ).

Note that the O-notation here, and throughout this paper, only hides global constants.

Proof. Denote J .
=Jk,τ(f), and J̄ .

=[n] \ J . To prove Theorem 6, it is enough to show that the
variation of f on J̄ is dominated by ϵ log(1/p)/p2. To show this, we take a random partition of J̄
into r subsets I1, . . . , Ir, where r

.
=k/

√
ϵ. We show that the expectation of the variation of f on each

of these subsets is very small, and then use a probabilistic argument to deduce that the variation
of f on their union is small as well.

The following lemma contains the main arguments in the proof of Theorem 6.

Lemma 3.1. There exists a global constant C, such that

E
I∼µJ̄

1/r

[Vrf(I)] ≤ C log(1/p)

p2

(
(δp)

−4k · τ + k2/r2 + ∥f>k∥2

2

)

Let us show how Lemma 3.1 implies Theorem 6. Note that when a random partition I1, . . . , Ir of
[n] is chosen, the distribution of each subset Ij in the partition is µJ̄

1/r. Hence Lemma 3.1 implies,
using the linearity of expectation and the sub-additivity of the variation, that the variation of f on
J̄ is small, namely

Vrf(J̄ ) ≤ E

[
r∑

h=1

Vrf(Ih)

]

≤ Cr log(1/p)

p2

(
(δp)

−4k · τ + k2/r2 + ∥f>k∥2

2

)

10



From Proposition 2.2 we thus obtain that f is Cr log(1/p)
2p2

(
(δp)−4k · τ + k2/r2 + ∥f>k∥2

2

)
-close to a

Boolean function that depends only on the coordinates of J . This completes the proof of Theorem 6,
since

Cr log(1/p)

2p2

(
(δp)

−4k · τ + k2/r2 + ∥f>k∥2

2

)
≤ Cr log(1/p)

2p2

(
(δp)

−4k · τ + k2/r2 + ϵ
)

=

= O

(√
ϵ · k · log(1/P )

p2

)

3.1 The Variation of f on Random Subsets of J̄ is Small

We now turn to the proof of Lemma 3.1. The idea of the proof is to choose I, to consider random
restrictions of the form fI [x], and to show that most of these restrictions are almost constant. Using
Claim 2.3, this implies that Vrf [I] is small.

In the interesting case we expect that r ≫ k, in which case the Fourier expansion of most of the
restrictions fI [x] will have very low weight on frequencies higher than 1. The result of [FKN01], which
we extend below to the biased case, ensures that such functions are close to being a dictatorship
(namely a 1-junta). However since we know that the coordinates in I have little influence, we can
show that most of these restrictions are in fact almost constant.

Almost linear functions

Let us cite here a corollary that is proven in Section 6, which is a biased version of the result
in [FKN01].

Corollary 6.1. Let f : P([n]) → {1,−1} be a Boolean function, and let ϵ
.
=∥f>1∥2

2. Assume that

ϵ ≤ p2

40(log( 1
p2 )+6)

. Then f is
(
1 + 60

p2 exp(− p2

40ϵ)
)
ϵ-close to some Boolean dictatorship.

For the proof of Lemma 3.1 we need Proposition 3.2 below, which follows from Corollary 6.1.
Proposition 3.2 essentially states that there are two kinds of Boolean functions f: a Boolean function
is either of the ‘dictatorship-type’, namely for some i it has a very large coefficient of the form
f̂({i}); or it is of the ‘bounded-variance’ type, namely its variance is bounded by its weight on
higher frequencies.

Proposition 3.2. There exists a global constant M so that given any Boolean function f : P(m) →
{1,−1}, either there exists a coordinate i such that |̂f({i})| >

√
p, or

V(f) = Vrf([m]) = ∥f>0∥2
2 ≤

M log(1/p)

p2
· ∥f>1∥2

2 (3)

Proof. Setting ϵ = ∥f>1∥2
2, one notes that there is nothing to prove in the case ϵ > p2

40(log( 1
p2 )+6)

, since

taking M to be a large-enough constant, the right-hand side of (3) is larger than 1.
If ϵ ≤ p2

40(log( 1
p2 )+6)

, Corollary 6.1 is applicable, and we have that f is 2ϵ-close either to a constant

dictatorship, or to a non-constant Boolean dictatorship g. An easy calculation shows that if g is a

11



non-constant Boolean dictatorship dominated by the i’th coordinate then |ĝ({i})| = 2
√

p(1 − p) ≥√
2p. Hence if f is 2ϵ-close to such a function there must be a coordinate i for which |̂f({i})| >

√
p.

If f is 2ϵ-close to a constant dictatorship then (3) obviously holds.

Few Non-Constant Dictatorships

Let I be a random set of coordinates, as specified in Lemma 3.1. Denote Ī
.
=[n] \ I, and consider

the restriction fI [x] for a random x ∈ P(Ī).
The proof of Lemma 3.1 continues as follows. We first show that there may only be a few values

of x for which fI [x] is of a ‘dictatorship-type’. Then we show by a simple combinatorial argument
that for a random x, the expected weight of fI [x] on frequencies above 1 is small. It therefore follows
from Proposition 3.2 that the expected variance of fI [x] is small as well.

Dictatorship-type restrictions. For a given I ⊆ [n] denote the ’dictatorship set’ by

DI
.
=
{

x ∈ P(Ī)
∣∣ ∃ i ∈ I for which

∣∣∣f̂I [x]({i})
∣∣∣ >

√
p
}

To bound the measure of DI , we consider the coefficient of χi in fI [x] as a function of x. As explained
in more detail below, it is a function of small norm (since every i ∈ I has small influence), and has
a low weight on higher frequencies. To bound the probability, over a random restriction fI [x], that
the coefficient of χi is large, we use the following bounds on large deviations of low-degree functions.

Claim 3.3. Let g : P([m]) → R be a real-valued function such that g>k = 0, and let α < 1 be a
positive parameter; then

Pr
x∼µm

p

[|g(x)| > α] ≤ α−4(δp)
−4k∥g∥4

2

Proof. By applying Markov’s inequality for |g|4 and then applying Theorem 5,
we have α4 · Prx∼µm

p
[|g(x)| > α] ≤ ∥g∥4

4 ≤ (δp)−4k∥g∥4
2.

Lemma 3.4. Let 0 < α < β be any parameters. Then for any function g : P([m]) → R

Pr
x∼µm

p

[|g(x)| > β] ≤ α−4(δp)
−4k∥g≤k∥4

2 + (β − α)−2∥g>k∥2

2

Proof. We break g into its low-frequency and its high-frequency parts, and note that

Pr
x∼µm

p

[|g(x)| > β] ≤ Pr
x∼µm

p

[∣∣g≤k(x)
∣∣ > α

]
+ Pr

x∼µm
p

[∣∣g>k(x)
∣∣ > β − α

]
≤

≤ α−4(δp)
−4k∥g≤k∥4

2 + Pr
x∼µm

p

[
(g>k(x))2 > (β − α)2

]
≤

≤ α−4(δp)
−4k∥g≤k∥4

2 + (β − α)−2∥g>k∥2

2

Now fix i ∈ I and consider the function gi : P(Î) → R, which assigns to every x the coefficient of
χi in fI . That is,

gi(x) = f̂I [x]({i})

12



For fI [x] to be a dictatorship, one of the gi’s must evaluate to at least
√

p in absolute value. To
bound the probability of a random restriction fI [x] to be a dictatorship, we use (2) to get the Fourier
expansion of gi, and then apply Lemma 3.4 with parameters α =

√
p/2 and β =

√
p to it.

Pr
x∼µĪ

p

[x ∈ DI ] ≤
∑

i∈I

Pr
x∼µĪ

p

[|gi(x)| >
√

p] ≤

= 16p−2(δp)
−4k
∑

i∈I

∥g≤k
i ∥4

2 +
4

p

∑

i∈I

∥g>k∥2

2 =

= 16p−2(δp)
−4k
∑

i∈I

∥∥∥
∑

|S|≤k
S∩I={i}

f̂(S)χS

∥∥∥
4

2
+

4

p

∑

i∈I

∥∥∥
∑

|S|>k
S∩I={i}

f̂(S)χS

∥∥∥
2

2
≤

≤ 16p−2(δp)
−4k
∑

i∈I

( ∑

|S|≤k
S∩I={i}

f̂2(S)

)2

+
4

p
∥f>k∥2

2

Since
∑

|S∩I|=1 f̂2(S) ≤ 1, it follows that

∑

i∈I

( ∑

|S|≤k
S∩I={i}

f̂2(S)

)2

≤ max
i∈I

∑

|S|≤k
S∩I={i}

f̂2(S) = max
i∈I

Vrf≤k({i}) < τ

Altogether this implies that for some constant M1,

Pr
x∼µĪ

p

[x ∈ DI ] ≤ M1p
−2(δp)

−4kτ + M1p
−1∥f>k∥2

2

Restrictions are Expectedly of Small Variation

We are now ready to prove that the variation of f on I is, with high probability, quite small. First,
note that for an x such that x ̸∈ DI , Proposition 3.2 asserts that

VrfI [x](I) ≤ M log(1/p)

p2

∑

|R|>1

f̂I [x]
2
(R)

and thus by Claim 2.3 we have

E
I∼µJ̄

1/r

[Vrf(I)] = E
I∼µJ̄

1/r

x∼µĪ
p

[
VrfI [x](I)

]
≤ Pr

I∼µJ̄
1/r

x∼µĪ
p

[x ∈ DI ] + E
I∼µJ̄

1/r

x∼µĪ
p

⎡

⎣M log(1/p)

p2

∑

|R|>1

f̂I [x]
2
(R)

⎤

⎦ ≤

≤ M1p
−2(δp)

−4k · τ + M1p
−1∥f>k∥2

2 +
M log(1/p)

p2 E
I∼µJ̄

1/r

⎡

⎣
∑

|S∩I|>1

f̂2(S)

⎤

⎦ ≤

≤ M1p
−2(δp)

−4k · τ + M1p
−1∥f>k∥2

2 +
M log(1/p)

p2

⎛

⎜⎝∥f>k∥2

2 + E
I∼µJ̄

1/r

⎡

⎢⎣
∑

|S|≤k
|S∩I|>1

f̂2(S)

⎤

⎥⎦

⎞

⎟⎠
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Now note that E
I∼µJ̄

1/r

[ ∑

|S|≤k
|S∩I|>1

f̂2(S)
]
≤ k2/r2

1 − k/r
≤ 2k2

r2
:

This follows since the total weight of all Walsh-products is bounded by 1, and since for a single
Walsh-product supported by S,

Pr
I

[|S ∩ I| > 1] ≤
k∑

i=2

(
k

i

)
r−i(1 − 1/r)k−i ≤

k∑

i=2

kir−i ≤ k2/r2

1 − k/r

Therefore, we get that overall, the expectation of the variation is bounded by

E
I∼µJ̄

1/r

[Vrf(I)] ≤ M1p
−2(δp)

−4k · τ + M1p
−1∥f>k∥2

2 +
M log(1/p)

p2

(
2k2

r2
+ ∥f>k∥2

2

)

This completes the proof of Lemma 3.1.

4 Discussion of Theorem 6

4.1 A Corollary Concerning Noise-Sensitivity

Let us next translate Theorem 6 from the language of Fourier coefficient to that of noise-sensitivity.

Definition 4. The λ-noise-sensitivity of a Boolean function f : [n] → {1,−1} (with respect to µp)
is defined by

NSλ,p(f)
.
= Pr

x∼µn
p , I∼µn

λ , z∼µI
p

[
f(x) ̸= f

(
(x \ I) ∪ z

)]

The noise-sensitivity can be also formulated in terms of the Fourier-expansion of f as follows.

Proposition 4.1. Let f : P([n]) → {1,−1} be a Boolean function. Then for every parameter λ,

NSλ,p(f) =
1

2
− 1

2

∑

S

(1 − λ)|S |̂f(S)2

Proof. If X and Y are two random variables obtaining values in {1,−1}, then

1 − 2Pr [X ̸= Y ] = E[XY ]

So

1 − 2NSλ,p(f) = E
x∼µn

p , I∼µn
λ , z∼µI

p

[
f(x)f

(
(x \ I) ∪ z

)]

=
∑

S,T⊆[n]

f̂(S)f̂(T )Ex, z , I [χS(x)χT ((x \ I) ∪ z)]

=
∑

S,T⊆[n]

f̂(S)f̂(T )EI

[
Ex, z

[
χS(x)χ

T\I
(x)χT∩I (z)

]]
(4)
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In each term of (4) the inner expectation is zero unless T ∩ I = ∅, since the expectation of χT∩I (z)
is zero. In case T ∩ I = ∅ the expectation is still zero unless S = T , since it is the inner-product of
two biased Walsh-products, and if indeed S = T , the expectation equals 1. Therefore we have

1 − 2NSλ,p(f) =
∑

S⊆[n]

f̂2(S)Pr
I

[S ∩ I = ∅] =
∑

S⊆[n]

(1 − λ)|S |̂f2(S)

which implies the desired identity.

Using Proposition 4.1 and Theorem 6, we obtain the Corollary 1.1. Let us cite it here for conve-
nience, and then prove it.

Corollary 1.1. For any parameter λ > 0, fix k = log(1−λ)(1/2). Then every Boolean function
f : {1,−1}n → {1,−1} whose λ-noise-sensitivity with respect to µn

p is bounded by ϵ, is an [O(
√

ϵ · k ·
log(1/p)/p2), J ]-junta, where

J = O

(
k

ϵpk

)

Proof. Let f be a Boolean function as stated in Corollary 1.1. Then
∑

S f̂(S)2 = ∥f∥2
2 = 1, and

hence using by Proposition 4.1 we have

NSλ,p(f) = ϵ ≥ 1

2
− 1

2

∑

S

(1 − λ)|S |̂f(S)2 ≥ 1

2
− 1

2

⎛

⎝
∑

|S|≤k

f̂(S)2 +
1

2

∑

|S|>k

f̂(S)2

⎞

⎠

=
1

2
− 1

2

⎛

⎝1 − 1

2

∑

|S|>k

f̂(S)2

⎞

⎠ =
1

4

∑

|S|>k

f̂(S)2

we thus obtain ∑

|S|>k

f̂(S)2 ≤ 4ϵ

Corollary 1.1 now follows from Theorem 6.

4.2 Tightness

It is worth noting that Bourgain’s result cannot hold “out of the box” for the case of general p. To
demonstrate this we consider the graph-property of having an induced triangle. Let f be a Boolean
function with one variable xe for each edge e of the undirected complete graph on m vertices (f
has n

.
=
(

m
2

)
variables). One can view an assignment to the variables of f as a graph on m vertices.

Define the value of f for such an assignment to be 1 if the graph contains an induced triangle and
−1 otherwise.

To describe the properties of f, we need the notion of average sensitivity.

Definition 5 (average sensitivity). Let f : P([n]) → {1,−1} be a Boolean function. For every
input x for f let

γ(x)
.
=♯ {i | f(x \ {i}) ̸= f(x ∪ {i})}
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The average sensitivity of f with respect to µp is defined by

asp(f)
.
= E

x∼µp

[γ(x)]

Here we will be interested in the following property of the average sensitivity.

Proposition 4.2. Let f : P([n]) → {1,−1} be a Boolean function. Then for every p < 1
2 and k,

∥f>k∥2

2 <
p · asp(f)

k

where both f>k and the norm are taken with respect to µp.

Proof. We omit the simple proof.

Let us return to the function f defined above. It is known that there exists a parameter p = pm,
p ≈ 1

m , for which
1

4
≤ Pr

x∼µp

[f(x) = 1] ≤ 3

4

and
p · asp(f) < C

where C is a constant which is independent of n. It hence follows from Proposition 4.2 that

∥f>k∥2

2 <
C

k
(5)

Now suppose that Theorem 1 holds with respect to µp. By applying it to f with parameters
ϵ = η = 1/10, one easily obtains from (5) that f is ϵ-close to some constant-sized junta. This
means that one can predict whether a graph has an induced triangle, up to probability 1/10, by
only looking at a constant number of edges. However since p ≈ 1

m , it follows that with probability
1 − o(1) the inspected edges are all absent from the graph, and therefore provide no prediction as
to whether it contains a triangle.

5 A Switching Lemma

Switching lemmas are a tool of great importance in the study of Boolean functions. A typical
switching lemma shows that a random restriction of a Boolean function in a given class, is with
high probability a very simple function (e.g. depends on a constant number of variables). As shown
below Theorem 1 yields a switching lemma, and our results extend it to the biased case.

Let us begin with the switching lemma obtained from Theorem 1.

Theorem 7. Let ϵ > 0 and K > 0 be some parameters, and let f : P([n]) → {1,−1} be a Boolean
function that can be described by a decision-tree with l nodes. Let I ⊆ [n] be a random subset,
containing each coordinate with probability K/ log(l/ϵ), and let x ∈ P([n] \ I) be chosen according

to µ[n]\I
1/2 .

Then with probability (1 − ϵ), fI [x] is an (ϵ, J)-junta, where

J ≤ 200K·(c/ϵ)1/eK

and c is some global constant.
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Before we prove Theorem 7, let us examine how it compares with the following (well known)
switching lemma of Hastad [Has86].

Theorem [Has86]. Let f : P([n]) → {1,−1} be Boolean function that can be written as a Boolean
OR over AND’s of at most m literals (that is, f is an m-DNF). Let I ⊆ [n] be a random set, I ∼ µn

ρ ,

and let x ∈ P([n] \ I) be chosen according to µ[n]\I
1/2 . Then with probability at least (1 − (7ρm)s),

fI [x] can be described by a decision tree of height at most s.

Note that in Theorem 5, if the number of AND’s is polynomial in the number of inputs, then
f has a decision tree where the number of nodes is polynomial in n. Therefore Theorem 7 holds
for such functions, and even for many other functions. Its main drawback, however, is that it only
yields an approximation for the random restriction, and not a full description of it.

Proof of Theorem 7. We only give the highlights of the proof (more details are given in the similar
proof, of Theorem 8 below). The first step is to approximate f by a Boolean function of small
degree. This is accomplished by the following well-known claim.

Claim 5.1. Let f be a Boolean function that is computed by a decision-tree with l nodes. Then
there exists a Boolean function g of degree m

.
= log(l/ϵ), such that ∥f − g∥2

2 ≤ ϵ.

Let g be as in the above claim. Let c = c1/4,ϵ be the constant that corresponds to taking η = 1/4
in Bourgain’s Theorem, and set t

.
=(c/ϵ)1/eK and k

.
=(t+1)K. Denoting h

.
=gI [x], one calculates that

Ex,I

[
∥h>k∥2

2

]
< cϵk−3/4, and hence Prx,I

[
∥h>k∥2

2 > ck−3/4
]

< ϵ. Applying Bourgain’s theorem,

we thus have that with probability at least (1 − ϵ), h is an (ϵ, k10k)-junta. This gives Theorem 7
immediately.

We now state the switching lemma that is obtained for the biased case from our results.

Theorem 8. Let ϵ > 0 and k > 0 be some parameters, and let f : P([n]) → {1,−1} be a Boolean
function that can be described by a decision-tree with l nodes. Let I ⊆ [n] be a random subset, con-
taining each coordinate with probability ϵ3/kk/(50e logp(l/ϵ)). Let x ∈ P([n] \ I) be chosen according

to µ[n]\I
p .

Then with probability (1 − ϵ), fI [x] is an (O(ϵ log(1/p)/p2), J)-junta, where J ≤ O(ϵ−2k3p−k).

Proof. We first use a simple analogue of Claim 5.1 for the biased case, as follows.

Claim 5.2. Let f be a Boolean function that is computed by a decision-tree with l nodes. Then
there exists a Boolean function g of degree m

.
= logp(l/ϵ) with respect to µp, such that ∥f − g∥2

2 ≤ 4ϵ.

Proof. Define g to be the function obtained by clipping the decision tree for f beyond depth m,
putting arbitrary values in the newly formed leaves. When computing f on a random input using
its decision tree, one easily notes that the probability of reaching the clipped section is at most ϵ,
and thus ∥f − g∥2

2 ≤ 4ϵ.

Let g be a Boolean function of degree m as in the above claim, and let h
.
=gI [x]. We need to prove

that with probability at least (1− ϵ), over the choice of I and x, h is an (O(ϵ log(1/p)/p2), J)-junta.

E
x,I

[
∥h>k∥2

2

]
= E

I

⎡

⎣
∑

|S∩I|>k

ĝ(S)2

⎤

⎦ =
∑

S

(
ĝ(S)2 · Pr

I
[|S ∩ I| > k]

)

17



Now let α
.
=ϵ3/k/(50e). Since g is of degree m, it follows that for every S

Pr
i

[|S ∩ I| > k] ≤
m∑

i=k+1

(
m

i

)(
αk

m

)i(
1 − αk

m

)i

≤

≤
m∑

i=k

mi

i!

(
αk

m

)i

≤
m∑

i=k

√
2πi(eα)i

(
k

i

)i

=
m∑

i=k

√
2πi(eα)i

(
1 − i − k

i

)i

≤

≤
m∑

i=k

√
2πi(eα)iek−i ≤

√
2πk(eα)k

m∑

i=k

(i − k + 1)αi ≤ 2
√

2πk(eα)k =

=
2
√

2πk · ϵ3

50k
≤ ϵ3

k2

We thus have

E
x,I

[
∥h>k∥2

2

]
≤ ϵ3

k2

and thus with probability at least (1 − ϵ), ∥h>k∥2
2 ≤ ϵ3

k2 . When this occurs then according to
Theorem 6, h is an (O(ϵ log(1/p)/p2), J)-junta.

6 Biased FKN

In this section, we prove that if a Boolean function f is close to being linear, namely ∥f>1∥2
2 is small,

then it is in fact close to being a dictatorship. This is an easy corollary of the following theorem,
which contains a slightly different statement. It considers a real-valued function f for which f>1 ≡ 0,
and shows that if f is close to being Boolean, it must also be close to a real-valued dictatorship,
namely to a real-valued function which depends on at most one coordinate.

Theorem 9. Let f : P([n]) → R be a linear real valued function, namely f>1 = 0. Let ϵ
.
=∥ |f|− 1 ∥2

2

measure the squared distance of f from the nearest Boolean function, and suppose that

ϵ ≤ p2

40(log( 1
p2 ) + 6)

(6)

Then, denoting by io the index such that
∣∣∣̂f({io})

∣∣∣ is maximal, we have

∥f −
(̂
f(∅) + f̂({io})χ{io}

)
∥

2

2
<

(
1 +

60

p2
exp(− p2

40ϵ
)

)
ϵ

Before we prove Theorem 9, we state and prove the following corollary.

Corollary 6.1. Let f : P([n]) → {1,−1} be a Boolean function, and let ϵ
.
=∥f>1∥2

2. Assume that

ϵ ≤ p2

40(log( 1
p2 )+6)

. Then f is
(
1 + 60

p2 exp(− p2

40ϵ)
)
ϵ-close to some Boolean dictatorship.

Proof. Note that ∥
∣∣f≤1

∣∣− 1 ∥2

2
≤ ∥f>1∥2

2 = ϵ. Hence according to Theorem 9, there is some coordi-
nate io ∈ [n] such that

Vrf([n] \ {io}) = ∥f − Avg[n]\{io} [f]∥2

2
= ∥f −

(̂
f(∅) + f̂({io})χ{io}

)
∥

2

2
≤

≤ ϵ + ∥f≤1 −
(̂
f(∅) + f̂({io})χ{io}

)
∥

2

2
< 2

(
1 +

60

p2
exp(− p2

40ϵ
)

)
ϵ
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It follows from Proposition 2.2 that there exists a Boolean function g that depends only on the
coordinate io (and is thus a dictatorship), such that

Pr
x∼µn

p

[f(x) ̸= g(x)] <

(
1 +

60

p2
exp(− p2

40ϵ
)

)
ϵ

Therefore f is a
( (

1 + 60
p2 exp(− p2

40ϵ)
)
ϵ , 1

)
-junta.

Proof of Theorem 9: For simplicity, we write f = a0 +
∑n

i=1 aiχ{i} , and assume without loss of
generality that |a1| ≥ |a2| ≥ . . . ≥ |an|. We also denote q = 1 − p. Our goal is then to prove that
∑n

i=2 |ai|2 <
(
1 + 60

p2 exp(− p2

40ϵ )
)
ϵ. As a first step, we show that none of the terms a2, . . . , an can be

large.

Claim 6.2. |a2| ≤ 2
√

qϵ
√

p .

Proof. Recall first that each character χ{i} attains two values, the difference of which is
√

p/q +√
q/p.
We prove the claim by contradiction. For each given setting of the values of x3, . . . , xn, consider

the values of f attained by assigning x1, x2. Suppose that |a2|
(√

p/q +
√

q/p
)
≥ 3

2 . In that case,

since |a1| ≥ |a2|, we have that the difference between the maximal value and the minimal value
obtained by assigning x1 and x2 is at least 3. At least one of these values is therefore within distance
at least 1

2 from the nearest Boolean value. It follows that with probability at least p2 over the choices

of x ∼ µn
p , we have | |f(x)|− 1| ≥ 1

2 . Together with (6) we thus obtain ∥|f(x)|− 1∥2
2 ≥ p2

4 > ϵ, a
contradiction.

Now suppose that
3

2
≥ |a2|

(√
p/q +

√
q/p
)

>
2
√

ϵ

p

In that case, fix any assignment for the variables x1 and x3, . . . , xn, and consider the values of f
attained for the two possible assignment of x2. If one of these values is within distance at most√

ϵ
p from, say, 1, then the other is within distance at least

√
ϵ

p from 1, and within distance at least
3
2 −

√
ϵ

p >
√

ϵ
p from (−1). It follows that for a random input x, there is at least probability p to have

| |f(x)|− 1| >
√

ϵ
p . Therefore in this case ∥|f(x)|− 1∥2

2 > ϵ, again a contradiction.

The only option not leading to contradiction is therefore that |a2|
(√

p/q +
√

q/p
)

≤ 2
√

ϵ
p , in

which case one easily obtains that |a2| ≤ 2
√

ϵq
√

p .

According to Claim 6.2, for every 2 ≤ i ≤ n, |ai|2 ≤ 4qϵ/p. We can thus choose m ∈ {2, . . . , n} to
be the minimal index satisfying

n∑

i=m

|ai|2 ≤ (
4q

p
+ 2)ϵ (7)
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Denote I
.
={m, . . . , n}. Then

ϵ ≥ ∥ |f|− 1 ∥2
2 = E

x∼µn
p

[
(|f(x)|− 1)2] = E

y∼µĪ
p

[

E
z∼µI

p

[
(|f(y ∪ z)|− 1)2]

]
=

= E
y∼µĪ

p

[
∥ |fI [y]|− 1 ∥2

2

]

hence for some y ∈ P(Ī), ∥ |fI [y]|− 1 ∥2
2 ≤ ϵ. Now fI [y] has the form

fI [y] = b +
n∑

i=m

aiχi

for some b, and therefore it satisfies the conditions of Theorem 9, with the additional property that
∥f>0

I [y]∥2
2 ≤ (4q

p + 2)ϵ. We use the following lemma, which deals with such a situation.

Lemma 6.3. Let f : P([n]) → R be a function satisfying f>1 ≡ 0. Let ϵ
.
=∥|f|− 1∥2

2, and suppose
that ∥f>0∥2

2 < (4q
p + 2)ϵ and that ϵ ≤ p2/60. Then it also holds that

∥f>0∥2
2 <

(
1 +

60

p2
exp

(
− p2

40ϵ

))
ϵ

Before proving Lemma 6.3, let us show how it concludes the proof of Theorem 9. We apply
Lemma 6.3 to fI [y], noting that fI [y] satisfies its conditions, and obtain that

n∑

i=m

|ai|2 = ∥f>0
I [y]∥2

2 <

(
1 +

60

p2
exp(− p2

40ϵ
)

)
ϵ

If m = 2, this is what we wanted to show. If m > 2, noting that by (6) the bound above is smaller
than 2ϵ, we obtain from Claim 6.2 that m is not the minimal index satisfying (7), a contradiction.

Proof of Lemma 6.3

We now return to the proof of Lemma 6.3. For convenience, we write f = b +
∑n

i=1 aiχ{i} .

Proof Overview. The norm ∥f>0∥2
2 is in fact the variance (not variation) of f. Now, since the

variance of |f| is bounded by ∥ |f|− 1 ∥2
2 (this expression is minimized by replacing 1 with the

expectation of |f|), we have V(|f|) < ϵ. Lemma 6.3 follows by showing that V(f) is essentially
bounded by V(|f|).

First, we show that the expectation of f, b, is well separated from zero. This holds since |f| is
ϵ-close to 1 on the one hand, and ( 4q

p +2)ϵ-close to |b| on the other hand. From the above it follows
that sign(f(x)) = sign(b) for almost all inputs x, since the weight of the non-constant part of f is
rather small, and cannot move the value of f over to the other side of zero very often. This implies
that |Ef| ≈ E|f| and hence that V(f) ≈ V(|f|).

Let us now commence with the actual proof. According to the definition of ϵ,

∥ |b|− 1 ∥2 ≤ ∥ |f|− |b| ∥2 + ∥ |f|− 1 ∥2 ≤ ∥f − b∥2 +
√

ϵ ≤
(

1 +

√
4q

p
+ 2

)√
ϵ
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and hence, using (6),

|b| ≥ 1 −
(

1 +

√
4q

p
+ 2

)√
ϵ ≥ 1 −

(
1 +

√
4q + 2p

p

)√
ϵ ≥ 1 −

(
2 +

4
√

p

)√
ϵ ≥ 1

2

We assume without loss of generality that b is positive. Writing |f|− f = 2|f|1{f<0}, we have

E|f|− Ef ≤ 2E|f|1{f<0} (8)

To show that the expectations on the left-hand side are approximately equal, we bound the term on
the right-hand side using the following special case of Azuma’s inequality (see [Sch99] for a proof).

Theorem 10 (Azuma’s inequality). Let X =
∑n

i=1 Xi be a sum of independent random variables
with zero expectation, such that the absolute value of each xi is bounded by di. Then

Pr [|X| > t] ≤ 2 exp

(
−t2

2 ·
∑n

i=1 d2
i

)

The absolute value of a Rademacher function χ{i} is bounded by some constant
√

q/p ≤ 1/
√

p.

Denoting λ
.
=
∑

i |ai|2, we have, by applying Azuma’s inequality to
∑n

i=1 aiχi , that

E|f|1{f<0} =

∫ ∞

t=0

Pr [f < −t]dt =

∫ ∞

t=0

Pr

[

b +
∑

i

aiχi < −t

]

dt =

=

∫ ∞

t=b

Pr

[
∑

i

aiχi < −t

]
dt ≤ 2

∫ ∞

t=b

exp

(
−pt2

2λ

)
dt ≤

≤ 2λ

pb

∫ ∞

t=b

pt

λ
exp

(
−pt2

2λ

)
dt ≤ 2λ

pb
exp

(
−pb2

2λ

)

Now since λ < (4q
p + 2)ϵ and b > 1

2 , we have

E|f|1{f<0} =
2(4q

p + 2)ϵ

pb
exp

(
−pb2

2(4q
p + 2)ϵ

)
≤ 20ϵ

p2
exp

(
− p2

40ϵ

)
(9)

It now follows from (8) and (9) that

ϵ > ∥|f|− 1∥2
2 ≥ V(|f|) = ∥f∥2

2 − E|f|2 = V(f) + Ef2 − (E|f|)2 =

= V(f) + (Ef + E|f|)(Ef − E|f|) ≥ (10)

≥ V(f) − (Ef + E|f|) · 20ϵ

p2
exp

(
− p2

40ϵ

)
(11)

Noting that

Ef + E|f| ≤ 2∥f∥1 ≤ 2∥f∥2 ≤ 2(∥|f|− 1∥2 + 1) ≤ 3,

we have that (10) implies

∥f>0∥2
2 = V(f) ≤ ϵ +

60ϵ

p2
exp

(
− p2

40ϵ

)

which completes the proof.
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7 Extending FKN to Higher Frequencies

Following, is an extension of the proof method of Theorem 9, to the case where f is concentrated
on Walsh-products of size at most k rather than 1. It examines the distance between f and a junta,
in the case where the weight of f on frequencies higher than k becomes very small – exponentially
small in k. For a high-frequency weight in this range, the bound on the distance of f from a junta
behaves much better, as a function of the weight, than the bound given in Theorem 6: The squared
2-norm distance from a (real-valued) junta is shown to be at most 1 + o(1) times the weight on
high frequencies. → We do not know whether the small range for which we prove this estimate is a !
weakness of our proof, or whether this really is the range where the squared 2-norm distance from
a junta behaves according to this estimate.

In Section 8 the following theorem is used to improve the parameters in Theorem 6.

Theorem 11 (high-frequency FKN). There exists a global constant M for which the following
holds. Let f : P([n]) → R be a real valued function of degree k, namely f>k ≡ 0, and take τ

.
=δ16k

p /M .

Let ϵ
.
=∥|f|− 1∥2

2 measure the squared distance of f from the nearest Boolean function, and suppose
that ϵ < τ . Then

Vrf([n] \ Jk,τ(f)) ≤ ϵ
(
1 + 1064(δp)

−4k(2ϵ)1/4
)

Note that theorem 3 follows from Theorem 11, using the same proof as in Corollary 6.1.

7.1 Proof of Theorem 11

Set J .
=Jτ,k, and J̄ .

=[n] \ J . We therefore need to show that Vrf(J̄ ) ≤ ϵ
(
1 + 1064(δp)

−4k(2ϵ)1/4
)

Suppose, w.l.o.g., that J̄ is not empty. We consider sets I ⊆ J̄ that satisfy Vrf(I) ≤ 3τ , and take
I ⊆ J̄ to be a maximal set with this property.

Program of proof. In the proof of Theorem 9 we used the fact that the variation on a set I of
coordinates is also the variation on I of any restriction fI [x]. We could thus fix x and focus only
on fI [x], as in Lemma 6.3. Here this is not the case, however according to Claim 2.3 the variation
on I of f, which is bounded by τ , is the average of the variations on I of restrictions of the form
fI [x]. The proof thus begins by bounding the deviation of the variations on I of restrictions fI [x],
showing that the contribution of restriction with high variation to this average is very small. For
restrictions fI [x] where the variation on I is not very high, it is shown that the squared 2-norm
distance of fI [x] from the nearest Boolean function is essentially bounded below by VrfI [x](I).

By averaging over all restrictions, this implies that the distance of f from the nearest Boolean
function is essentially bounded below by Vrf(I), and therefore

Vrf(I) < ϵ
(
1 + 1064(δp)

−4k(2ϵ)1/4
)

This completes the proof, since if I = J̄ we are obviously done, but on the other hand, if I ̸= J̄ ,
one can add a coordinate to I, keeping its variation below 3τ , in contradiction to the maximality
of I.

Bounding high variations of restrictions

To show that there cannot be too many restrictions fI [x] with large variation, we need the following
lemma, proven in the next section.
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Lemma 7.1. Let g1, . . . , gm : P([l]) → R be real-valued functions such that g>k
i ≡ 0 for every i.

Then for every α ≥ 0,

Pr
x∼µm

p

[∑
|gi(x)|2 > α

]
≤ 256α−2(δp)

−4k

(
m∑

i=1

∥gi∥2
2

)2

For shortness, denote η
.
=Vrf(I) (then η < 3τ), and let

D .
=
{
x ∈ P(Ī) | VrfI [x](I) > η3/4

}

be the set of restrictions whose variation is much higher than expected.

Proposition 7.2.

E
x∼µĪ

p

[
VrfI [x](I)1{x∈D}

]
< 512(δp)

−4kη5/4

Proof. For a non-empty set S ⊆ I, define for every x ∈ Ī,

gS(x)
.
=f̂I [x](S)

Then each gS is a function of degree at most k − 1, and for every x,

VrfI [x](I) =
∑

S⊆I
S ̸=∅

g2
S(x)

It follows that ∑

S⊆I
S ̸=∅

∥gS∥2
2 = E

x

[∑

S⊆I
S ̸=∅

g2
S(x)

]
= E

x

[
VrfI [x](I)

]
= Vrf(I) = η

Hence

EVrfI [x](I)1{x∈D} =

=

∫ ∞

t=0

Pr
[∑

gS(x)2 ≥ max(t, η3/4)
]
dt =

=

∫ η3/4

t=0

Pr
[∑

gS(x)2 ≥ η3/4
]
dt+

+

∫ ∞

t=η3/4

Pr
[∑

gS(x)2 ≥ t
]
dt ≤

(using Lemma 7.1)

≤ η3/4 · 256(δp)
−4kη−3/2η2 + 256(δp)

−4kη2

∫ ∞

t=η3/4

t−2dt =

= 512(δp)
−4kη5/4
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Bounding VrfI [x](I) for x ̸∈ D

Proposition 7.3. For every x ̸∈ D,

∥ |fI [x]|− 1 ∥2
2 ≥ VrfI [x](I) − 20(δp)

−4kη3/2

Proof. Define

C .
=

{
x ∈ Ī

∣∣∣∣
∣∣∣ |f̂I [x](∅)|− 1

∣∣∣ >
1

2

}

We proof the statement separately for x ∈ C \ D and for x ̸∈ C ∪D.

The case x ∈ C \D. It suffices to show that in this case for most y ∈ P(I),
∣∣∣ |fI [x](y)|− 1

∣∣∣ ≥ 1/4.

Note that fI [x] − f̂I [x](∅) is a function of degree at most k, and that since x ̸∈ D,

∥fI [x] − f̂I [x](∅)∥
2

2 = VrfI [x](I) ≤ η3/4

Hence by Claim 3.3

Pr
y∼µI

p

[∣∣∣fI [x](y) − f̂I [x](∅)
∣∣∣ > 1/4

]
< 44(δp)

−4kη3/2

It follows that with probability at least 1 − 44(δp)
−4kη3/2,

∣∣∣ |fI [x](y)|− 1
∣∣∣ > 1/4. Therefore in this

case

∥ |fI [x]|− 1 ∥2
2 ≥

1

16
(1 − 44(δp)

−4kη3/2) ≫ τ 3/4 > η3/4 ≥ VrfI [x](I)

The case x ̸∈ C ∪ D. Recall that VrfI [x](I) = V(fI [x]) and note that ∥ |fI [x]|− 1 ∥2
2 is bounded

from below by V(|fI [x]|). We thus show that V(|fI [x]|) ! V(fI [x]). For this purpose, we assume

without loss of generality that f̂I [x](∅) is positive (it is therefore at least 1/2 and at most 3/2). One
sees that

V(fI [x]) − V(|fI [x]|) = ∥ fI [x]∥2
1 −

∣∣∣f̂I [x](∅)
∣∣∣
2

=

=
(
∥ fI [x]∥1 + f̂I [x](∅)

)(
∥ fI [x]∥1 − f̂I [x](∅)

)
≤

≤
(
∥ fI [x]∥2 + f̂I [x](∅)

)(
∥ fI [x]∥1 − f̂I [x](∅)

)
≤

≤
((

V(fI [x]) + f̂I [x](∅)2
)1/2

+ f̂I [x](∅)
)(

∥ fI [x]∥1 − f̂I [x](∅)
)
≤

≤ 6
(
∥ fI [x]∥1 − f̂I [x](∅)

)
=

= 6 E
y∼µI

p

[
| fI [x](y) |− fI [x](y)

]
=

= 6 E
y∼µI

p

[
| fI [x](y) | · 1{fI [x](y)<0}

]
≤ 6

∫ ∞

t=0

Pr [fI [x] < −t]dt =

= 6

∫ ∞

t=0

Pr
[
fI [x] − f̂I [x](∅) + f̂I [x](∅) > −t

]
dt ≤
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(using claim 3.3)

≤ 6(δp)
−4kη3/2

∫ ∞

t= dfI [x](∅)
t−4dt ≤ 20(δp)

−4kη3/2

Hence we are done.

Completion of the argument

From Proposition 7.3 and Proposition 7.2, we have

η = Vrf(I) = E
x∼µĪ

p

[
VrfI [x](I)

]
=

= E
x∼µĪ

p

[
VrfI [x](I) · 1{x∈D}

]
+ E

x∼µĪ
p

[
VrfI [x](I) · 1{x ̸∈D}

]
<

< 512(δp)
−4kη5/4 + E

x∼µĪ
p

[
∥ |fI [x]|− 1 ∥2

2 · 1{x ̸∈D}
]
+ 20(δp)

−4kη3/2 ≤

≤ 532(δp)
−4kη5/4 + E

x∼µĪ
p

[
∥ |fI [x]|− 1 ∥2

2

]
=

= 532(δp)
−4k(Vrf(I))5/4 + ∥ |f|− 1 ∥2

2 =

= 532(δp)
−4kη5/4 + ϵ

From which it follows that
η
(
1 − 532(δp)

−4kη1/4
)

< ϵ (12)

We now select τ to be
(δp)

16k

3(1064)4

Since η < 3τ , we have 532(δp)
−4kη1/4 < 1/2, and thus Equation (12) yields η < 2ϵ. Recall that

1
1−x ≤ 1 + 2x for 0 < x < 1/2, hence putting this into Equation (12) again, we get

Vrf(I) = η <
ϵ

1 − 532(δp)
−4kη1/4

< ϵ
(
1 + 1064(δp)

−4kη1/4
)

<

< ϵ
(
1 + 1064(δp)

−4k(2ϵ)1/4
)

thus completing the proof.

7.2 Proof of Lemma 7.1

Before we prove Lemma 7.1, we need the following technical observation.

Lemma 7.4. Let λ1, . . . , λm be (not all zero) real numbers, and let y1, . . . , yn be independent random
variables, distributed uniformly on {1,−1}. Then

Pr

[( n∑

i=1

λiyi

)2

>
1

4

n∑

i=1

λ2
i

]

>
1

16
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Proof. Set λ2 .
=
∑

i λ
2
i , and let

p(t)
.
=Pr

[( n∑

i=1

λiyi

)2
> t
]

Then

λ2 = E
( n∑

i=1

λiyi

)2

=

∫ ∞

t=0

p(t)dt =

∫ λ2/4

t=0

p(t)dt +

∫ 8λ2

t=λ2/4

p(t)dt +

∫ ∞

t=8λ2

p(t)dt ≤

≤ λ2/4 + 8λ2p(λ2/4) +

∫ ∞

t=8λ2

p(t)dt (13)

Let us bound the last term on the right-hand side of (13). We use Azuma’s inequality (Theo-
rem 10).

∫ ∞

t=8λ2

Pr
[( n∑

i=1

λiyi

)2

> t
]
dt < 2

∫ ∞

t=8λ2

exp

(
− t

2λ2

)
dt = 4λ2 exp

(
−8λ2

2λ2

)
< λ2/4

Putting this back into (13) we have

p(λ2/4) >
λ2/2

8λ2
= 1/16

which is what we wanted.

Proof of Lemma 7.1: For x ∈ P([l]) and y ∈ P([l + m] \ [l]), let

g(x ∪ y)
.
=
∑

i̸∈y

gi(x) −
∑

i∈y

gi(x) =
m∑

i=1

vi(y)gi(x)

where vi is the i’th Rademacher function for bias 1/2. Then g contains mixed walsh-products (with
some biased Rademacher functions and some uniform Rademachers) of size at most k + 1, and

∥g∥2
2,µl

p×µm
1/2

=
m∑

i=1

∥gi∥2
2

According to Lemma 7.4,

Pr
x∼µm

p

[∑
|gi(x)|2 > α

]
≤ 16 Pr

x∼µl
p

y∼µm
1/2

[
g(x ∪ y)2 > α/4

]
(14)

To bound the right-hand side of (14), we use Claim 3.3 with respect to the measure‡ µl
p × µm

1/2.
We obtain, for some global constant δp (here δp is the minimum between the δp that is valid in
Theorem 5 for the uniform measure and for the biased measure)

Pr
x∼µm

p

[∑
|gi(x)|2 > α

]
≤ 16 · 16α−2(δp)

−4k∥g∥4
2 ≤ 256α−2(δp)

−4k

(
m∑

i=1

∥gi∥2
2

)2

‡ Claim 3.3 requires Theorem 5. As is shown in [Bec75], this theorem can be applied to a product of two-point
spaces, even if each is equipped with a different measure. In our case the coordinates of x lie in two-point spaces
with a biased measure, and the coordinates of y are uniformly distributed
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8 Improving the Junta Threshold

Building on the strengthening of Theorem 9 by Theorem 11, we turn to prove Theorem 2, improving
the tradeoff between ∥f>k∥2

2 and the distance of f from a junta. This is only an improvement in
terms of the dependency on ϵ and k – the dependency on p is considerably worse. Essentially,
Theorem 2 is only applicable for a constant bias parameter p, and the dependency on p appears in
its statement only for completeness. For convenience, let us first restate Theorem 2.

Theorem 2. For every positive integer ℓ, there exists a positive function φℓ(p) satisfying the
following.

For every positive integer k, every Boolean function f : P([n]) → {1,−1} satisfying

∥f>k∥2

2 ≤ ϵ ,

is O(φℓ(p) · k · ϵℓ/(ℓ+1))-close to a Boolean function dominated by the coordinates in Jk,τ(f), where
τ

.
=ϵ · (δp)4k = O(ϵpk).

Proof. The main argument in the proof of Theorem 2 is contained in the following lemma, which
we prove in Subsection 8.1 below.

Lemma 8.1. Fix a positive integer ℓ and set t
.
=
(
δp

)16/ℓ
/M , where M is the constant from Theo-

rem 11, and d
.
=1

2

(
p
2

)ℓ/2t
. Then for every Boolean function f : P([n]) → {1,−1}, and any parameter

τ > 0 and positive integers k and r,

E
I∼µJ̄

1/r

[Vrf(I)] ≤ 16

d4
(δp)

−4k · τ +
4

d2
∥f>k∥2

2 +
16

d

(
(k/r)ℓ+1

1 − k/r
+ ∥f>k∥2

2

)

where J .
=Jk,τ(f).

Following the proof of Theorem 6, but using the parameters of Lemma 8.1, we obtain the following
Lemma.

Lemma 8.2. Fix a positive integer ℓ, and set t
.
=
(
δp

)16/ℓ
/M , where M is the constant from The-

orem 11. Then for every Boolean function f : P([n]) → {1,−1}, and any parameter τ > 0 and
positive integers k and r,

Vrf([n] \ Jk,τ(f)) ≤ O

(
r

d4

(
(δp)

−4k · τ + ∥f>k∥2

2 +
(k/r)ℓ+1

1 − k/r

))

where d
.
=1

2

(
p
2

)ℓ/2t

Taking

r
.
=k

(
d4

ϵ

)1/(ℓ+1)

and τ
.
=(δp)

4kϵ

in Lemma 8.2, we obtain Theorem 2 with φℓ(p) = d−4.

Noise-Sensitivity. Note that Corollary 1.2 easily follows from Theorem 2. It can be derived by
plugging the parameters of Theorem 2 into the proof that was used to obtain Corollary 1.1 from
Theorem 6. We do not repeat the proof here.
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8.1 Proof of Lemma 8.1

The proof of Lemma 8.1 is similar to that of Lemma 3.1. First, it is shown that on a random I
chosen according to µJ̄

1/r, it is very likely that for almost all input settings x outside I the weight
of fI [x] is concentrated on Walsh-products of size at most ℓ. Theorem 11 is then applied, showing
that in this case fI [x] must either have a large Walsh-coefficient, or be close to constant. It is then
shown that in fact the first alternative almost never occurs, hence the lemma follows.

8.2 When k = ℓ

We start by a corollary of Theorem 11, showing that a Boolean function that is concentrated on
Walsh-products of size at most ℓ, either has a large Walsh-coefficient, or is very close to constant.

Corollary 8.3. Fix a positive integer ℓ, and set t
.
=
(
δp

)16/ℓ
/M , where M is the constant from

Theorem 11. Then for every Boolean function g : P(I) → {1,−1} the following holds. Denoting
ϵ
.
=∥g>ℓ∥2

2, either

Vrg(I) < 32

(
2

p

)ℓ/t

ϵ

or there exists a non-empty subset T ⊆ I such that |ĝ(T )| > 1
2

(
p
2

)ℓ/2t
.

Proof. If ϵ ≥ 1
32

(
p
2

)ℓ/t
, then there is nothing to prove, since the right-hand side of the second

inequality in the statement of Corollary 8.3 is bigger than 1.

If ϵ < 1
32

(
p
2

)ℓ/t
then in particular ϵ < t, and therefore according to Theorem 11, there exists a

Boolean function h which only depends on the coordinates of Jℓ,t(g), such that the distance between
f and g is bounded by ϵ

(
1 + 1064(δp)

−4ℓ(2ϵ)1/4
)

< 2ϵ. If h is constant, then

Vrg(I) ≤ 2
(
∥g − h∥2

2 + Vrh(I)
)
≤ 8ϵ

Since h is Boolean, if it is not constant, then ∥h>0∥2
2 ≥ p|Jℓ,t(g)| ≥ pℓ/t. Therefore, since there

there are less than 2ℓ/t non-empty subsets of Jℓ,t(g), there exists a non-empty subset T ⊆ Jℓ,t(g)

for which ĥ(T )2 ≥
(

p
2

)ℓ/t
. It follows that |ĝ(T )| ≥ 1

2

(
p
2

)ℓ/2t
, thus completing the proof.

8.3 Few Large Coefficients

We now return to the proof of Lemma 8.1 which states, in essence, that for most I’s and x’s fI [x]
is almost constant. We begin by giving an upper-estimate on the (weighted) number of restrictions
fI [x] that can be far from constant. The next subsection will show that indeed most restriction are
almost constant.

For a given I ⊆ [n] denote

DI
.
=
{

x ∈ P(Ī)
∣∣ ∃T ∈ I |T | ≤ ℓ ,

∣∣∣f̂I [x](T )
∣∣∣ > d

}

(Recall that d = 1
2

(
p
2

)ℓ/2t
, where t is as in Corollary 8.3). To bound the measure of DI , we note

that the coefficient of χT in fI [x] is a function of x that is concentrated on low-frequencies, and has
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small norm (since every i ∈ I has small variation). Hence according to Theorem 5, it cannot often
attain large values, and therefore the coefficient of χT almost never reaches d.

Fix T ⊆ I to be a non-empty set of size at most ℓ, and consider the function gT : P(Î) → R, which
assigns to every x the coefficient of χT in fI . That is,

gT (x) = f̂I [x](T )

For x to be in D, one of the gT ’s must evaluate to at least d in absolute value. Applying lemma 3.4,
with parameters α = d/2 and β = d, we get a bound on the probability, for a random x, that fI [x]
is a dictatorship.

Pr
x∼µĪ

p

[x ∈ DI ] ≤
∑

T⊆I
T ̸=∅

Pr
x∼µĪ

p

[|gT (x)| > d] ≤

= 16d−4(δp)
−4k
∑

T⊆I
T ̸=∅

∥g≤k
T
∥4

2
+

4

d2

∑

T⊆I

∥g>k∥2

2 =

= 16d−4(δp)
−4k
∑

T⊆I
T ̸=∅

∥∥∥
∑

S⊆[n],|S|≤k
S∩I=T

f̂(S)χS

∥∥∥
4

2
+

4

d2

∑

T⊆I
T ̸=∅

∥∥∥
∑

S⊆[n],|S|>k
S∩I=T

f̂(S)χS

∥∥∥
2

2
≤

≤ 16d−4(δp)
−4k
∑

T⊆I
T ̸=∅

( ∑

S⊆[n],|S|≤k
S∩I=T

f̂2(S)

)2

+
4

d2
∥f>k∥2

2

Since the sum of f̂2(S) over all S’s equals 1, we have

∑

T⊆I
T ̸=∅

( ∑

S⊆[n],|S|≤k
S∩I=T

f̂2(S)

)2

≤ max
T⊆I
T ̸=∅

∑

S⊆[n],|S|≤k
S∩I=T

f̂2(S) ≤ max
i∈I

Vrf≤k({i}) < τ

Altogether this implies that,

Pr
x∼µĪ

p

[x ∈ DI ] ≤ 16d−4(δp)
−4kτ +

4

d2
∥f>k∥2

2

8.4 Restrictions are Mostly Constant

We are now ready to prove that the restrictions fI [x] are mostly constant. First, note that for an x
such that x ̸∈ DI , Corollary 8.3 asserts that

VrfI [x](I) ≤ 16

d

∑

|R|>ℓ

f̂I [x]
2
(R)
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and by Claim 2.3 we have that

E
I∼µJ̄

1/r

[Vrf(I)] = E
I∼µJ̄

1/r

x∼µĪ
p

[
VrfI [x](I)

]
≤ Pr

I∼µJ̄
1/r

x∼µĪ
p

[x ∈ DI ] + E
I∼µJ̄

1/r

x∼µĪ
p

⎡

⎣16

d

∑

|R|>ℓ

f̂I [x]
2
(R)

⎤

⎦ ≤

≤ 16d−4(δp)
−4kτ +

4

d2
∥f>k∥2

2 +
16

d
E

I∼µJ̄
1/r

⎡

⎣
∑

|S∩I|>ℓ

f̂2(S)

⎤

⎦

Now note that E
I∼µJ̄

1/r

[ ∑

|S|≤k
|S∩I|>ℓ

f̂2(S)
]
≤ (k/r)ℓ+1

1 − k/r
:

This holds since for S ⊆ [n] with |S| ≤ k,

Pr
I

[|S ∩ I| > ℓ] ≤
k∑

i=ℓ+1

(
k

i

)
r−i(1 − 1/r)k−i ≤

k∑

i=ℓ+1

kir−i ≤ (k/r)ℓ+1

1 − k/r

and since the total weight of all Walsh-products is bounded by 1.

Therefore, we get that the overall probability of disagreement with the majority is bounded by

E
I∼µJ̄

1/r

[Vrf(I)] ≤ 16d−4(δp)
−4kτ +

4

d2
∥f>k∥2

2 +
16

d

(
(k/r)ℓ+1

1 − k/r
+ ∥f>k∥2

2

)

This completes the proof of Lemma 8.1.
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