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1
Abstract

The bipartite perfect matching problem is the cornerstone of many algorithmic and complexity-

theoretic tasks. Given a balanced bipartite graph, the goal is to find a collection of edges in

which each vertex appears exactly once, or determine that no such set exists.

The asymptotically fastest algorithm solving the problem was found by Hopcroft and Karp

[HK73], nearly half a century ago. However, despite its centrality, the complexity of bipartite

perfect matching remains undetermined. In the regime of dense graphs, i.e., when the number

of edges is Θ(n2), the known algorithms solve the problem in O(n2.5) time. Conversely, only

the “trivial” Ω(n2) lower bound (i.e., reading the input) is known, which follows from the

“evasiveness” of the problem, as shown by Yao [Yao88].

Our goal in this work is to shed more light on the complexity of bipartite perfect matching.

To this end, we represent its decision variant using multilinear polynomials over the Reals.

We find the explicit closed form of the unique multilinear polynomial representing the decision

problem, by leveraging a connection between the polynomial and the Möbius function of the

lattice of all “matching-covered” graphs. A key component of the proof is the fact that this

lattice was shown by Billera and Sarangarajan [BS94] to be isomorphic to the face lattice of

the Birkhoff Polytope.

In addition to the aforementioned polynomial, we also provide a fine grained characteri-

zation of its “dual” polynomial, i.e., the one in which the symbols 0 and 1 switch roles. Our

proof relies heavily on the properties of the Eulerian matching-covered lattice. Crucially, we

find that the number of monomials appearing in the dual polynomial is only exponential in

n logn. We consider the low number of monomials as some form of positive algorithmic result

for the bipartite perfect matching problem. In particular, it implies that for the associated

communication problem, the rank of the communication matrix is bounded by 2O(n logn).

These polynomials also allow us to obtain new lower bounds on the problem. We extend

the evasiveness result from classical decision trees, to trees whose internal nodes are labeled by

XOR functions. Furthermore, we show new lower bounds for two additional families of decision

trees; those whose internal nodes are labeled by AND and OR functions, respectively.

4



C
h
a
p
t
e
r

2

5



C
h
a
p
t
e
r

3
Introduction

Every Boolean function f ∶ {0,1}n → {0,1} can be represented in a unique way as a Real

multilinear polynomial. This representation and related ones (e.g. using the {1,−1} basis rather

than {0,1} – the “Fourier transform” over the hypercube, or approximation variants) have

many applications for various complexity and algorithmic purposes. See, e.g., [O’D14] for a

recent textbook.

In this paper we derive the representation of the bipartite-perfect-matching decision prob-

lem as a Real polynomial.

Definition. The Boolean function BPMn(x1,1, . . . , xn,n) is defined to be 1 if and only if the

bipartite graph whose edges are {(i, j) ∶ xi,j = 1} has a perfect matching, and 0 otherwise.

Our first result is determining the representation of this function as a Real multilinear

polynomial. By way of example, BPM2(x̄) = x1,1x2,2 + x1,2x2,1 − x1,1x1,2x2,1x2,2. Somewhat

surprisingly, finding the closed form expression for any n appears nontrivial. In fact, we do not

know of an easier proof than our own involved proof, even showing that for any n the degree

of this polynomial is n2. 1

To present our first result, let us introduce some notation. We will call a graph matching-

covered if its edges can be represented as a union of perfect matchings. As an example, for

n = 2 the graph whose edges are {(1,1), (1,2), (2,2)} is not matching-covered since any perfect

matching that contains the edge (1,2) must also contain the edge (2,1), which is not in the

graph. The connected components of matching-covered graphs are called “elementary graphs”

and were studied at length by [PL86]. Finally for a graph G, we denote its cyclomatic number

by χ(G) = ∣E(G)∣ − ∣V (G)∣ + ∣C(G)∣ where ∣C(G)∣ is the number of connected components of

G. The following Theorem characterizes the multilinear polynomial of BPMn.

1For the special case where n is a prime power, the full degree of the polynomial follows from an extension
of the evasiveness result of [RV75], due to [NSS08]. However, for n that is not a prime power, it is not true that
every monotone bipartite graph property has a full degree.

6



7

Theorem 1: The Bipartite Perfect Matching Polynomial

BPMn(x1,1, . . . , xn,n) = ∑
G⊆Kn,n

aG ∏
(i,j)∈E(G)

xi,j , where:

aG =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if G is not matching-covered

(−1)χ(G) if G is matching-covered

Our proof proceeds by studying the structure of the lattice of matching-covered graphs and

its Möbius function and the key step requires using the topological structure of this lattice.

Specifically, [BS94] showed that this lattice is isomorphic to the face lattice of the Birkhoff

Polytope, and is thus Eulerian. Counting the number of matching-covered graphs, we get:

Corollary. The polynomial BPMn has (1−on(1))⋅2n
2

monomials with non-zero coefficients.

Our characterization of the polynomial has several corollaries. For example, it allows us to

obtain a closed form expression counting the number of bipartite graphs containing a perfect

matching, and in particular to show that this number is odd. It also suffices for showing that

a (1− on(1))-fraction of the Fourier coefficients of BPMn are very small, 2−n
2+1, yet non-zero.

In the second part of the paper, we turn our attention towards the “dual representa-

tion” – a form in which the symbols 1 and 0 switch roles. Formally, for a Boolean function

f(x1, . . . , xn) we define its dual by f⋆(x1, . . . , xn) = 1−f(1−x1, . . . ,1−xn). Under this notation,

BPM⋆
n(x1,1, . . . , xn,n) gets the value 1 if the input graph contains a biclique over a total of

n + 1 vertices (i.e., its complement contains a violation of Hall’s condition).

To present our result, we will focus on the following two classes of graphs. A bipartite

graph is called totally ordered if there exists an ordering v1, . . . , vn of its left vertices such that

N(v1) ⊇ N(v2) ⊇ ⋅ ⋅ ⋅ ⊇ N(vn) where N(v) denotes the set of right vertices connected to v. In the

same vein, we call the graph strictly totally ordered if in fact N(v1) ⊋ N(v2) ⊋ ⋅ ⋅ ⋅ ⊋ N(vn) ⊋ ∅.

For the dual case, we do not obtain a complete characterization of the polynomial. Nevertheless,

we show the following fine grained characterization.

Theorem 2: The Dual Polynomial of Bipartite Perfect Matching

BPM⋆
n(x1,1, . . . , xn,n) = ∑

G⊆Kn,n

a⋆G ∏
(i,j)∈E(G)

xi,j , where:

� If G is not totally ordered, we have a⋆G = 0.

� If G is strictly totally ordered, we have a⋆G = (−1)n+1
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Our proof relies on properties of the lattice of matching-covered graphs, and heavily utilizes

its Eulerian structure. For graphs G that are totally ordered but not strictly so, the situation

is complex. We show that for some such graphs G, we have a⋆G = 0, for others a⋆G = ±1, and for

others still a⋆G /∈ {−1,0,1}. For example, for n > 2 and G =Kn−1,n−1 we have a⋆G = (n − 2)2. We

present the full polynomial of BPM⋆
3 in Appendix B. We leave the full characterization of the

dual polynomial as an open problem.

This characterization of the dual polynomial suffices for obtaining an accurate estimate of

the number of monomials with non-zero coefficients:

Corollary. The polynomial BPM∗
n has 2(2n log2 n)±O(n) monomials with non-zero coefficients.

We view the small number of non-zero coefficients as some form of a positive algorithmic

result regarding the perfect matching problem. For example, consider a communication setting

where the edges of a bipartite graph are partitioned somehow between two parties; Alice and

Bob. Their task is to devise a communication protocol for determining whether the combined

graph has a perfect matching. The known algorithms for bipartite matching imply a protocol

that uses O(n1.5) bits of communication [DNO19, Nis19]. However, the small number of mono-

mials in BPM⋆
n directly implies that the associated communication matrix has Real rank that

is only exponential in n logn (recall that the logarithm of the rank is a lower bound for the

deterministic communication complexity, and is conjectured to be polynomially related to it).

Conversely, the polynomial representations of BPMn and BPM⋆
n allow us to obtain new

lower bounds on the decision problem of bipartite perfect matching. Yao [Yao88] first showed

that the decision problem of bipartite perfect matching is “evasive”, i.e., any classical decision

tree deciding it has depth exactly n2. We extend Yao’s evasiveness result to parity decision

trees, wherein each internal node is labeled by an XOR function over an arbitrary subset of

the input bits. In the same vein, we obtain new lower bounds for AND and OR decision trees,

which are similarly defined. For each of these three families, we denote the minimal depth of a

tree in the family computing BPMn by DXOR(BPMn), DAND(BPMn) and DOR(BPMn),
respectively. We obtain the following lower bounds:

Corollary. BPMn is evasive for XOR decision trees, i.e., DXOR(BPMn) = n2.

Furthermore, for AND and OR decision trees, we have:

DAND(BPMn) ≥ (log3 2) ⋅ n2 − on(1), DOR(BPMn) ≥ 2 log3(n!)
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Of particular interest is the family of OR decision trees, which were shown by [Nis19] to

be complexity preserving proxies for bipartite perfect matching; Õ(n1.5) OR queries suffice

(even when slightly restricting each query), and any Ω(n1+α) lower bound would rule out

asymptotically fast algorithms from a wide class, i.e., “combinatorial algorithms”.
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4
Preliminaries and Notation

4.1 Polynomial Representations of Boolean Functions

Recall the following fact regarding polynomial representations of Boolean functions (see [O’D14]):

Fact 4.1.1. Any Boolean function f ∶ {0,1}n → {0,1} can be uniquely represented by a

multilinear polynomial over the Reals.

For a given a multilinear polynomial, we denote the set of all monomials appearing in it by:

Notation 4.1.2. Let f(x1, . . . , xn) = ∑S⊆[n] aS (∏i∈S xi) ∈ R[x1, . . . , xn] be a multilinear

polynomial over the Reals. Denote the set of monomials appearing in f by:

mon(f) = {S ⊆ [n] ∶ aS ≠ 0}

4.2 The Möbius Function of Partially Ordered Sets

When discussing partially ordered sets (hereafter, posets), we use the Möbius function for

posets. The Möbius function of a poset is the inverse, with respect to convolution, to the

poset’s zeta function ζ(y, x) = 1{y < x} (see, e.g., [Sta11]).

Definition 4.2.1 (Möbius Function for Posets). Let P = (P,<) be a finite poset. The Möbius

function of the poset P is denoted by µP ∶ P × P → R, and is defined as follows:

∀x ∈ P ∶ µP (x,x) = 1

∀x, y ∈ P, y < x ∶ µP (y, x) = − ∑
y≤z<x

µP (y, z)

10
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Given a poset P with a unique bottom element 0̂, the values µP (0̂, x), where x ∈ P, are

known as the Möbius Numbers of P.

4.3 Graphs

We use the standard definitions and notation relating to graphs. For a graph G, we denote

the sets of vertices and edges of G by V (G) and E(G), respectively. The set of all perfect

matchings of G is denoted by PM(G), and the set of all connected components is denoted by

C(G). Furthermore, for any vertex v ∈ V (G), we denote its neighbour set by NG(v).
In addition to the quantities relating to a given graph, it will be useful to also provide some

notation for basic operations on graphs. For example, the notations G∪{(a, b)} and G∖{(a, b)}
refer to the graph G with the addition or removal of the edge (a, b), respectively. In the same

vein, G − a is the graph where the vertex a is omitted, along with all the edges adjacent to

it. Lastly, if H and G are two graphs, the notation H ⊆ G indicates that E(H) ⊆ E(G) and

V (H) = V (G).
A somewhat less common quantity which we refer to throughout the paper is the Cyclo-

matic Number of the graph, which is defined as follows:

Definition 4.3.1. Let G be a graph. The cyclomatic number of G, χ(G), is defined:

χ(G) = ∣E(G)∣ − ∣V (G)∣ + ∣C(G)∣

We will often consider the edge sets corresponding to unions of graphs. Consequently, the

following notation will be useful:

Notation 4.3.2. Let S be a set of graphs. The set of all edges appearing in any graph G ∈ S
is denoted by:

Ē(S) = ⋃
G∈S

E(G)

Lastly, when dealing with Boolean graph functions (i.e., Boolean functions whose input bits

correspond to the edges of graphs over a fixed set of vertices), we use the following notation:

Notation 4.3.3. Let n,m ∈ N+. Let f ∶ {0,1}nm → {0,1} be a Boolean function whose inputs

are bipartite graphs over the vertices of Kn,m. Then, ∀G ⊆Kn,m denote:

f(G) ∶= f(xG), where ∀i ∈ [n], ∀j ∈ [m] ∶ (xG)i,j = 1{(i, j) ∈ E(G)}
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4.4 Decision Trees and Query Complexity

Decision trees are binary trees whose internal nodes are labeled by Boolean functions, and

whose leaves are labeled by the values {0,1}. Formally, we say that a decision tree T computes

a Boolean function f ∶ {0,1}n → {0,1} if for any root-to-leaf path in T , the value of the leaf

“agrees” with f(z) on all inputs z ∈ {0,1}n which are processed by the path. An input z ∈ {0,1}n

is processed by a path if for all functions h in the internal nodes along the path, we have h(z) = 1

if the path turns right at that node, and h(z) = 0 otherwise.

From an algorithmic perspective, decision trees can be viewed as algorithms whose every

step consists of querying the output of some Boolean function h ∈ H on the input bits, and

repeating the process until sufficient information is available to deduce the output. Thus,

decision trees give rise to the query complexity model. In this model, we disregard the amount

of computation required, and instead measure the minimal amount of information. There are

several families of decision trees, which differ from one another in the set of functions H which

label their internal nodes.

Classical Decision Trees. The most commonly studied decision trees, also known as “clas-

sical” decision trees, are those whose internal nodes are labeled by dictatorship functions, i.e.,

each internal node “queries” the value of a single input bit. For such trees, we use the following

worst-case complexity measure:

Notation 4.4.1. Let f ∶ {0,1}n → {0,1} be a Boolean function. The minimal depth of a

classical decision tree computing f is known as the Query Complexity of f.

Generalized Decision Trees. Three natural extensions of classical decision trees are those

whose internal nodes are labeled by XOR, OR and AND functions, respectively, over arbitrary

subsets of the input bits. XOR decision trees have been studied at length, and are known to be

related to the Fourier expansion of a function (see, e.g., [O’D14]). OR and AND decision trees

have also been studied, for example in [ML19], and in the setting of group property testing.

For these three families of trees, we denote their associated query complexities as follows:

Notation 4.4.2. Let f ∶ {0,1}n → {0,1} be a Boolean function. Denote the minimal depth

of any XOR, OR or AND decision tree computing f , by DXOR(f), DOR(f) and DAND(f),

respectively.
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4.5 Fourier Analysis

Fourier Analysis of Boolean functions is a wide field of study, in which powerful analysis tools

are applied to functions over the Hamming cube, yielding combinatorial (and other) insights.

Given a Boolean function f ∶ {−1,1}n → {−1,1}, the Fourier expansion of f is the unique

multilinear polynomial representing f over the Reals in the {1,−1} basis (i.e., −1 corresponds

to True and 1 to False). The Fourier expansion of f is given by:

f(x1, . . . , xn) = ∑
S⊆[n]

f̂S ⋅∏
i∈S
xi

Where each f̂S is a Real number, referred to as the Fourier coefficient of S, and each

monomial ∏i∈S xi corresponds to a parity function over the set S. The aforementioned rep-

resentation is unique, and the set of Fourier coefficients of f is commonly referred to as its

Fourier Spectrum. Crucially, the set of all monomials forms an orthonormal basis. There are

many important properties of the Fourier expansion, which we will not recount here. For an

extensive treatment of the topic, we refer the reader to [O’D14].
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5
The Bipartite Perfect Matching Polynomial

This chapter centers around the proof of Theorem 1. We begin with some basic observations

regarding a family of Boolean graph functions called “Graph Cover functions”. These observa-

tions lead us to the connection between the multilinear polynomial representing BPMn, and

the Möbius numbers of the lattice of matching-covered graphs. To compute these Möbius num-

bers, we rely on a result of Billera and Sarangarajan [BS94], showing that the aforementioned

lattice is isomorphic to the face lattice of the Birkhoff Polytope.

Using Theorem 1, we deduce several corollaries. For example, we find a closed form expres-

sion counting the number of bipartite graphs having a bipartite perfect matching, and deduce

that this number is odd. We also compute asymptotically almost all the Fourier spectrum of

BPMn. Lastly, we obtain new lower bounds for decision trees; we show that BPMn is “eva-

sive” for XOR decision trees (i.e., exactly n2 queries are required), and that for AND decision

trees, at least (log3 2) ⋅ n2 − on(1) queries are required.

5.1 Graph Cover Functions

Let H be a set of labeled graphs over a fixed common vertex set. Consider the following natural

Boolean graph function: “Given a labeled graph G over the same vertex set, does G contain

any graph in H as a subgraph?”. In what follows, we restrict our discussion to bipartite graphs

and fix our vertex set to be the vertices of the complete bipartite graph, Kn,m. Nevertheless,

the same observations apply to general graphs. Formally, we define the Graph Cover function

of H as follows:

Definition 5.1.1. Let H be a set of bipartite graphs over the vertices of Kn,m. The Graph

Cover function of H, fH ∶ {0,1}nm → {0,1}, is defined as follows:

∀G ⊆Kn,m ∶ fH(G) = 1{∃H ∈H, H ⊆ G}

14
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Given a set of graphs H over the vertices of Kn,m and a graph G ⊆ Kn,m, we say that G

is H-covered if there exists some ∅ ≠ S ⊆ H such that Ē(S) = E(G). Moreover, we denote

by C(H) the set of all H-covered graphs. The following simple observation regarding the

monomials of the multilinear polynomial representing fH can be made.

Proposition 5.1.2. Let H be a set of bipartite graphs over the vertices of Kn,m. The only

monomials appearing in the multilinear polynomial representing fH over the Reals are those

corresponding to H-covered graphs.

Proof. The DNF formula representing the graph cover function is:

ϕ = ⋁
H∈H

⋀
(i,j)∈E(H)

xi,j

Since each xi,j ∈ {0,1}, we have ∀k ∈ N+, xki,j = xi,j . Therefore, arithmetizing the formula

yields the following polynomial representation:

fH(x1,1, . . . , xn,m) = 1 − ∏
H∈H

(1 − ∏
(i,j)∈E(H)

xi,j)

= ∑
∅≠S⊆H

(−1)∣S∣+1 ∏
G∈S

∏
(i,j)∈E(G)

xi,j

= ∑
G∈C(H)

⎛
⎜⎜⎜
⎝

∑
∅≠S⊆H

Ē(S)=E(G)

(−1)∣S∣+1

⎞
⎟⎟⎟
⎠

∏
(i,j)∈E(G)

xi,j

The set of H-covered graphs, together with the subset relation over edges, form a partially

ordered set. This partially ordered set has two important properties. Firstly, it is a lattice; every

two elements have a unique supremum (“join”) and a unique infimum (“meet”). Secondly, the

Möbius numbers of this lattice exactly describe the coefficients of the multilinear polynomial

representing the graph cover function, fH.

Proposition 5.1.3. Let H be a set of bipartite graphs over a fixed vertex set. The poset

P = (C(H) ⊍ {0̂},⊆) is a bounded lattice, where 0̂ is the empty graph.

Proof. The subset relation over the edges is reflexive, transitive and anti-symmetric, thus P is

a poset. Furthermore, P is bounded, since 0̂ = (V (H),∅) and 1̂ = (V (H), Ē(H)). It remains

to show that ∀G1,G2 ∈ C(H) there exists a join (unique supremum) and a meet (unique

infimum).

Let G1,G2 ∈ C(H). The meet and join of G1 and G2 are given by:
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E(G1 ∨G2) = ⋃
H∈H

(H⊆G1)∨(H⊆G2)

E(H) = E(G1) ∪E(G2)

E(G1 ∧G2) = ⋃
H∈H

(H⊆G1)∧(H⊆G2)

E(H)

For the join operator, let G ∶= G1 ∨G2. By construction, G1 ⊆ G and G2 ⊆ G, therefore G

is a supremum. Assume towards a contradiction that there exists another supremum Ĝ ≠ G
such that G /⊆ Ĝ. Let x ∈ E(G) ∖E(Ĝ). Without loss of generality, assume x ∈ E(G1). Then

x ∈ E(G1) and x ∉ E(Ĝ) therefore G1 /⊆ Ĝ, in contradiction to the fact that Ĝ is a supremum.

For the meet operator, let G ∶= G1 ∧G2. By construction, G ⊆ G1 and G ⊆ G2, therefore

G is an infimum. Assume towards a contradiction that there exists another infimum Ĝ ≠ G
such that G /⊇ Ĝ. Let x ∈ E(Ĝ) ∖ E(G). Since Ĝ ∈ C(H), there exists Hx ∈ H such that

Hx ⊆ Ĝ, x ∈ E(Hx). However, Ĝ is an infimum, thus Hx ⊆ Ĝ ⊆ G1 and Hx ⊆ Ĝ ⊆ G2, thus by

construction Hx ⊆ G and x ∈ E(G), a contradiction.

Proposition 5.1.4. Let H be a set of bipartite graphs over the vertices of Kn,m and let

P = (C(H) ⊍ {0̂},⊆) be the graph cover lattice of H. Then:

fH(x1,1, . . . , xn,m) = ∑
G∈C(H)

−µP (0̂,G) ⋅ ∏
(i,j)∈E(G)

xi,j

Namely, the coefficients of the multilinear polynomial representing fH over the Reals are

given by the (negated) Möbius numbers of P.

Proof. Let f be the polynomial f(x1,1, . . . , xn,m) = ∑G∈C(H) −µP (0̂,G) ⋅ ∏(i,j)∈E(G) xi,j , and let

H ⊆ Kn,m be a graph. Denote by H ′ the union of all graphs G ∈ C(H) such that G ⊆ H. We

now show that f agrees with fH on all inputs, and deduce the identity by the uniqueness of

the representing polynomial. If H ′ = 0̂, then indeed f(H) = 0 as required. Otherwise, we have:

f(H) = ∑
G∈C(H)

−µP (0̂,G) ⋅ 1{G ⊆H}

= ∑
0̂⊂G⊆H′

G∈C(H)

−µP (0̂,G)

= ∑
0̂⊆G⊆H′

G∈C(H)

−µP (0̂,G) + µP (0̂, 0̂)

And by the definition of the Möbius function, µP (0̂, 0̂) = 1 and ∑
0̂⊆G⊆H′

G∈C(H)

−µP (0̂,G) = 0
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5.2 The Bipartite Perfect Matching Polynomial

Matching-Covered and Elementary Graphs

Let us begin by recalling the definition of the Boolean Bipartite Perfect Matching function:

Definition. The Boolean Bipartite Perfect Matching function, BPMn ∶ {0,1}n2 → {0,1}, is

defined as follows:

BPMn(x1,1, . . . , xn,n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 {(i, j) ∶ xi,j = 1} has a Perfect Matching

0 Otherwise

The monotone Boolean function BPMn represents the decision problem of bipartite

perfect matching. Given a bipartite graph G ⊆ Kn,n, the function outputs 1 if and only if G

contains a bipartite perfect matching. The aforementioned function may also be cast in terms

of graph cover functions. In particular, it is a graph cover function for the set H = PM(Kn,n).
Thus, by Proposition 5.1.2, the only monomials that may appear in its multilinear polynomial

over the Reals are those corresponding to H-covered graphs. For the particular case where

H = PM(Kn,n), we introduce the following definition:

Definition 5.2.1. Let G ⊆ Kn,n be a balanced bipartite graph. G is matching-covered if

and only if there exists some S ⊆ PM(Kn,n) such that Ē(S) = E(G).

For simplicity, we introduce some notation. The set of all matching-covered graphs H ⊆ G
is denoted by MC(G). In the same vein, the set of all bipartite matching-covered graphs of

order 2n is denoted MCn ∶= MC(Kn,n). Lovász and Plummer [PL86] previously considered

a family of graphs called elementary graphs, which are closely related to matching-covered

graphs. Elementary graphs are simply the connected components of matching-covered graphs.

Formally:

Definition 5.2.2 ([PL86]). G is elementary ⇔ G is a connected matching-covered graph.

We recall two key Theorems regarding elementary graphs. The first, due to Hetyei [Het64],

provides several necessary and sufficient conditions for elementarity of a given graph. The

second, due to Lovász and Plummer [PL86], shows that all elementary graphs admit a normal

form, called the bipartite ear decomposition.
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Figure 5.1: A matching-covered graph, composed of three elementary graphs

Theorem 5.2.3 ([Het64]). Let G = (A⊍B,E) be a bipartite graph. The following are equiv-

alent:

� G is elementary.

� G has exactly two minimum vertex covers, A and B.

� ∣A∣ = ∣B∣ and for every ∅ ≠X ⊂ A, ∣N(X)∣ ≥ ∣X ∣ + 1.

� G =K2, or ∣V (G)∣ ≥ 4 and for any a ∈ A, b ∈ B, G − a − b has a perfect matching.

� G is connected and every edge is “allowed”, i.e., appears in a perfect matching of G.

Definition 5.2.4 ([PL86]). Let G be a balanced bipartite graph. G has a bipartite ear

decomposition of length k if it can be written in the form:

G = e + P1 + ⋅ ⋅ ⋅ + Pk

Where e ∈ E(G), and each Pi is an odd-length path, in which any pair of adjacent vertices are

from different colour classes (and in particular, so are its endpoints). The vertices appearing

in each path Pi, other than its two endpoints, are “fresh” – i.e., they do not appear in

e + P1 + ⋅ ⋅ ⋅ + Pi−1. Note that each Pi can also be a single edge connecting two preexisting

vertices of different colour classes.

Theorem 5.2.5 ([PL86]). Let G be a balanced bipartite graph. Then:

G is elementary ⇐⇒ G has a bipartite ear decomposition

The vast majority of balanced bipartite graphs, are in fact elementary (and in particular,
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matching-covered). For example, any G ⊆ Kn,n containing a Hamiltonian cycle is elementary

– since its bipartite ear decomposition is that of the cycle, followed by single edge ears for all

the remaining edges. Since asymptotically most bipartite graphs contain a Hamiltonian cycle

[Fri85], the claim thus follows. Alternately, one may use Hetyei’s characterization and a simple

probabilistic method argument, to obtain a more explicit bound:

Proposition 5.2.6. Let n > 1. Then:

∣MCn∣ ≥ ∣ {G ⊆Kn,n ∶ G is elementary} ∣ ≥ 2n
2 (1 − 2n4

2n
) = 2n

2(1 − on(1))

Proof. Let n > 1 and let A,B be two sets, where ∣A∣ = ∣B∣ = n. Denote by G(n,n, p) the

distribution over balanced bipartite graphs of order 2n, in which each edge appears i.i.d with

probability p. Recall that by Theorem 5.2.3, G = (A ⊍B,E) ⊆ Kn,n is elementary if and only

if ∀a ∈ A, ∀b ∈ B: G − a − b has a perfect matching. By the union bound:

Pr
G∼G(n,n,0.5)

[G is not elementary] = Pr
G∼G(n,n,0.5)

[∃a ∈ A, b ∈ B ∶ G − a − b has no perfect matching]

≤ n2 ⋅ Pr
G∼G(n−1,n−1,0.5)

[G has no perfect matching]

By Hall’s Theorem, G has a perfect matching if and only if ∀X ⊆ A: ∣N(X)∣ ≥ ∣X ∣. Thus G

has no perfect matching if and only if there exist two sets S ⊆ A, T ⊆ B such that ∣S∣+∣T ∣ = n+1,

and none of the edges in S × T appear in G. Using the union bound again:

Pr
G∼G(n,n,0.5)

[G has no perfect matching] ≤
n

∑
k=1

(n
k
)( n

k − 1
)2−k(n−k+1) ≤ n

2

2n

Thus:

Pr
G∼G(n,n,0.5)

[G ∈MCn] ≥ Pr
G∼G(n,n,0.5)

[G is elementary] ≥ 1 − 2n4

2n

The Birkhoff Polytope and the Lattice of Matching-Covered Graphs

Let P be a polytope. The face lattice of P is the lattice whose elements are the faces of P ,

ordered by containment, together with a unique bottom element 0̂ (i.e., the “empty face”) and

a unique top element 1̂ (corresponding to the polytope P itself). The aforementioned lattice is

graded, and the rank of each face Q ≠ 0̂ is given by dim(Q) + 1.
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We now recall a particular polytope: the Birkhoff polytope, Bn. This polytope is defined

as the convex hull of all n × n permutation matrices. Billera and Sarangarajan proved the

following powerful theorem regarding the face lattice of Bn:

Theorem 5.2.7 ([BS94]). The face lattice of the Birkhoff polytope Bn is isomorphic to the

lattice of all matching-covered graphs of order 2n, ordered by inclusion, together with the

empty graph.

A lattice that is isomorphic to the face lattice of a polytope is known as “Eulerian”.

The Möbius function of an Eulerian lattice satisfies the following identity (see, e.g., [Sta11]):

∀x ≤ y ∶ µ(x, y) = (−1)rk(y)−rk(x), where rk(⋅) refers to the rank of elements in the lattice. For

the proof of Theorem 1, we only require the Möbius numbers of an Eulerian lattice. Thus, for

completeness, we provide a simple proof of the identity regarding the Möbius numbers of an

Eulerian lattice, using the Euler-Poincaré Formula:

Lemma 5.2.8. Let Q be a polytope and denote by F (Q) the set of all faces of Q. Let

P = (F (Q) ⊍ {0̂},≤) be the face lattice of Q. The Möbius numbers of P satisfy:

∀x ∈ (F (Q) ⊍ {0̂}) ∶ µP (0̂, x) = (−1)rk(x)

Proof. Recall that every face of a polytope is also a polytope. Thus, for any face x ∈ F (Q), we

denote its face lattice by Px. The lattice Px consists of all faces y ∈ F (Q) where y ≤P x, thus

Px is a sub-lattice of P and µP(0̂, x) = µPx(0̂, x). By the definition of the face lattice, the rank

of any face y ∈ F (x) in Px is given by rk(y) = dim(y) + 1, and thus agrees with its rank in P.

Consequently, we denote the rank of any face by rk(⋅).
The proof proceeds by induction. If x = 0̂, the equality follows from the definition of the

Möbius function. Otherwise, let x ∈ F (Q), where k ∶= rk(x) ≥ 1. By the definition of the Möbius

function and using the induction hypothesis:

µPx(0̂, x) = − ∑
y∈F (x)⊍{0̂}

y≠x

µPx(0̂, y) = − ∑
y∈F (x)⊍{0̂}

y≠x

(−1)rk(y)

Since x is a Polytope of dimension k−1, then by the Euler-Poincaré Formula for Polytopes
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(see, e.g., [Grü13]) we have:

1 =
k−1

∑
j=0

(−1)j ∣ {y ∈ F (x) ∶ dim(y) = j} ∣

= ∑
x≠y∈F (x)

(−1)rk(y)−1 + (−1)k−1

= − ∑
y∈F (x)⊍{0̂}

y≠x

(−1)rk(y) + (−1)k−1 + 1 = µPx(0̂, x) + (−1)k−1 + 1

Ranks in the Lattice of Matching-Covered Graphs

By Theorem 5.2.7, the lattice of matching-covered graphs P = (MCn ⊍ {0},⊆) is isomorphic

to the face lattice of the Birkhoff polytope, Bn. Thus, the lattice is graded, and its Möbius

numbers are given by µP (0̂, x) = (−1)rk(x). In a graded bounded lattice, all maximal chains

have identical length. The rank of any element in the lattice is defined to be the length of any

maximal chain in the lattice ending at the chosen element.

Using the properties of matching-covered graphs, we now show that for any matching-

covered graph G ∈MCn, there exists a maximal chain of length χ(G)+1 from G to 0̂. Therefore,

we deduce that in the lattice of matching-covered graphs, we have rk(G) = χ(G) + 1, where χ

is the cyclomatic number.

Lemma 5.2.9. Let G be an elementary graph. The following inequality holds:

∀G ≠H ∈MC(G) ∶ χ(H) < χ(G)

Proof. Let G be an elementary graph and let G ≠ H ∈ MC(G). If H is elementary, then

∣E(H)∣ < ∣E(G)∣ and ∣C(H)∣ = ∣C(G)∣ = 1, thus χ(H) < χ(G), as required.

Otherwise, if H is not elementary then the connected components of H are joined by

edges in G, since G is elementary and in particular connected. Observe that every connected

component of H must be incident to at least 2 edges in E(G) ∖ E(H) – one connected to

a left vertex of the connected component, and another to a right vertex. Assume toward a

contradiction that this were not the case, then there exists a component C ∈ C(H) which is

only incient to a single edge e ∈ (E(G) ∖ E(H)). Since G is elementary, there exists some

perfect matching involving e (i.e., the edge e is allowed). However, upon selecting the edge e,

the component C becomes unbalanced, and therefore the perfect matching cannot be extended

over C, a contradiction.

Thus, since each component of G has at least two incident edges in E(G)∖E(H), we have

that ∣E(H)∣ + ∣C(H)∣ ≤ ∣E(G)∣ (i.e., if the incident edges form a cycle joining the components
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C(H)). Thus:

χ(H) = ∣E(H)∣ − ∣V (H)∣ + ∣C(H)∣ ≤ ∣E(G)∣ − ∣V (G)∣ < χ(G)

Corollary 5.2.9.1. Let G ∈MCn. The following inequality holds:

∀G ≠H ∈MC(G) ∶ χ(H) < χ(G)

Proof. If H is elementary, the proof follows from Lemma 5.2.9. Otherwise, the proof follows

from the additivity of χ, by applying Lemma 5.2.9 to each connected component in which G

and H differ.

Lemma 5.2.10. Let G ∈MCn, G ∉ PM(Kn,n). Then there exists H ∈MC(G) such that:

χ(H) = χ(G) − 1

Proof. Let G ∈ MCn, G ∉ PM(Kn,n). Since G is not a perfect matching, there exists a com-

ponent C ∈ C(G) such that C ≠K2. C is elementary, and therefore there exists a bipartite ear

decomposition: C = e +P1 + ⋅ ⋅ ⋅ +Pk. Let C ′ = e +P1 + . . . Pk−1, and observe that since C ′ has a

bipartite ear decomposition, it too is elementary.

If Pk is a single edge, then we construct H by taking G, and replacing the component C

with C ′. Observe that H ∈ MCn, and furthermore ∣C(H)∣ = ∣C(G)∣ and ∣E(H)∣ = ∣E(G)∣ − 1.

Thus χ(H) = χ(G) − 1, as required.

Otherwise, Pk is an ear (v1, u1, . . . , vt, ut). In this case, we construct H by taking G, re-

placing C with C ′, and replacing the ear Pk with the edges (v2, u1), . . . , (vt, ut−1). Once again,

H ∈MCn (since all its components are elementary). Furthermore ∣C(H)∣ = ∣C(G)∣ + t − 1 and

∣E(H)∣ = ∣E(G)∣ − t, and thus χ(H) = χ(G) − 1.

Thus, combining Corollary 5.2.9.1 and Lemma 5.2.10, we find that:

Corollary 5.2.10.1. Let P = (MCn∪{0̂},⊆) be the lattice of matching-covered graphs. Then:

∀0̂ ≠ G ∈MCn ∶ rk(G) = χ(G) + 1
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Completing the Proof of Theorem 1

We are now ready to prove the main theorem for this section:

Theorem 1. The unique multilinear polynomial representing BPMn over the Reals is:

BPMn(x1,1, . . . , xn,n) = ∑
G∈MCn

(−1)χ(G) ⋅ ∏
(i,j)∈E(G)

xi,j

Proof. Let P = (MCn ∪ {0̂},⊆) be the lattice of matching-covered graphs, and let Bn be the

Birkhoff Polytope. Since BPMn is a graph cover function for the set PM(Kn,n), then by

Proposition 5.1.4 we have:

BPMn(x1,1, . . . , xn,n) = ∑
G∈MCn

−µP (0̂,G) ⋅ ∏
(i,j)∈E(G)

xi,j

By Theorem 5.2.7, P is isomorphic to the face lattice of Bn, and thus by Corollary 5.2.10.1

and Lemma 5.2.8, we get:

∀G ∈MCn ∶ µP (0̂,G) = (−1)rk(G) = (−1)χ(G)+1

5.3 Another Technique for Evasiveness?

The proof regarding the multilinear polynomial of BPMn could, perhaps, be viewed as another

“technique” for evasiveness. Given a (not necessarily bipartite) graph cover function whose

corresponding lattice is isomorphic to the face lattice of some polytope, we can conclude that

the function has full polynomial degree over the Reals, and is thus evasive. In fact, such

functions also exhibit full polynomial degree over F2, and are therefore evasive even for XOR

decision trees. Nevertheless, we are presently only aware of two such functions exhibiting an

isomorphism between their lattice and the face lattice of a polytope – the first being that of

bipartite perfect matching and the Birkhoff polytope, and the second being the ORn function

and the n-dimensional Hypercube.

Previously, Kahn, Saks and Sturtevant [KSS84] showed a topological approach for eva-

siveness of monotone graph properties. Given a monotone graph property P, their technique

considers the abstract simplicial complex formed by all sets in the complement of P, and shows

that if the aforementioned complex is not contractible, then the property is evasive.

These two techniques are incomparable. While the [KSS84] technique is much more widely

applicable, it does not imply that monotone graph properties exhibit full polynomial degree,

neither over F2 nor over the Reals (and indeed, many do not). Nevertheless, our approach for
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evasiveness appears useful only in cases where the Möbius numbers of the corresponding lattice

are “easy” to compute, e.g. when the lattice is isomorphic to the face lattice of a polytope.

Therefore, this technique appears rather limited.

5.4 Corollaries of Theorem 1

Corollary 5.4.0.1. The number of monomials in BPMn is at least 2n
2 (1 − 2n4

2n ).

Proof. The bound follows immediately from Proposition 5.2.6 and Theorem 1.

Corollary 5.4.0.2. The degree of BPMn over the Reals, as well as over F2, is n2.

Corollary 5.4.0.3. BPMn is evasive, even for XOR decision trees:

DXOR(BPMn) = n2

Proof. We show that for any Boolean function f , DXOR(f) ≥ deg2(f), where deg2(f) is the

degree of the polynomial representing f over F2. Thus in particular DXOR(BPMn) = n2. Let

f ∶ {0,1}n → {0,1} be a Boolean function and let T be a XOR decision tree computing f . Let

P be the set of all root to 1-leaf paths in T . For any path P ∈ P we construct the indicator

over the path, denoted 1P (x1, . . . , xn), by taking the product over any parity along the path

(taking the parity itself for any right turn, and adding 1 to the term for any left turn). Observe

that f(x1, . . . , xn) = ∑P ∈P 1P (x1, . . . , xn), therefore deg2(f) ≤ maxP ∈P deg2(1P (x1, . . . , xn)) ≤
depth(T ), where the last inequality follows since parities over F2 are linear functionals.

Corollary 5.4.0.4. The number of balanced bipartite graphs of order 2n containing a perfect

matching is odd. Furthermore, the number of matching-covered graphs of order 2n is also odd.

Proof. For any Boolean function f , ∣ {x ∈ {0,1}n ∶ f(x) = 1} ∣ ≡ 1 (mod 2) if and only if the

polynomial representing f over F2 has full degree. Thus the number of graphs containing a

perfect matching is odd. Let H ∈MCn. Clearly H has a perfect matching, therefore:

1 = BPMn(H) = ∑
G∈MCn

(−1)χ(G) ⋅ 1{G ⊆H}

= ∑
G∈MC(H)

(−1)χ(G)
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In particular Kn,n ∈MCn, thus:

1 ≡ BPMn(Kn,n) (mod 2) ≡ ∣MCn∣ (mod 2)

Lower Bound for AND Decision Trees

Given a Boolean function f ∶ {0,1}n → {0,1}, the unique multilinear polynomial representing

f can be used to deduce lower bounds on the query complexity of f for AND decision trees.

Lemma 5.4.1. Let f ∶ {0,1}n → {0,1} be a boolean function. Then:

DAND(f) ≥ log3(∣mon(f)∣)

Proof. Let T be an AND decision tree computing f and denote d = depth(T ). Let P be the set

of all root to 1-leaf paths in T . For any P ∈ P, construct the indicator function for the path as

follows:

1P (x1, . . . , xn) =
⎛
⎝ ∏
¬AND(S)∈P

(1 −∏
i∈S
xi)

⎞
⎠
⎛
⎝ ∏
AND(S)∈P

(∏
i∈S
xi)

⎞
⎠

Notice that the multilinear polynomial of each indicator function of a path P making k left

turns has at most 2k monomials. Furthermore, in a binary tree of depth d there are at most

(d
k
) paths making exactly k left turns (i.e., by selecting the position in the path at which the

left turns are made). Finally, observe that f(x1, . . . , xn) = ∑P ∈P 1P (x1, . . . , xn). Thus by the

uniqueness of the multilinear polynomial representing f , we have:

∣mon(f)∣ ≤ ∑
P ∈P

∣mon(1P )∣ ≤
d

∑
k=0

(d
k
)2k = 3d

Applying the aforementioned lemma to BPMn (and recalling Corollary 5.4.0.1), we obtain:

Corollary 5.4.1.1. The depth of any AND decision tree computing BPMn is at least:

DAND(BPMn) ≥ (log3 2) ⋅ n2 + on(1)

We note that the same decision tree lower bound can in fact be derived for the l1-norm

of the coefficient vector of the multilinear polynomial, rather than the number of monomials.

Generally, the l1 norm provides a stronger lower bound, however for the case of BPMn this

does not yield a better bound, since all its coefficients have a magnitude of exactly 1.
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5.5 The Fourier Spectrum of BPMn

In this section we briefly discuss another multilinear polynomial representing BPMn over the

Reals – the Fourier Expansion of BPMn. Given a multilinear polynomial over the Reals rep-

resenting a Boolean function f in the {0,1} basis, the polynomial can be “converted” into the

Fourier expansion of f by replacing each monomial ∏i∈S xi with the indicator 1S(x1, . . . , xn) =
∏i∈S

−xi+1
2 , and applying the transformation x↦ −2x + 1 to the output. Thus:

Lemma 5.5.1. Let f ∶ {0,1}n → {0,1} be a Boolean function represented by the Real multi-

linear polynomial:

f(x1, . . . , xn) = ∑
S⊆[n]

aS ⋅∏
i∈S
xi

Then the Fourier expansion of f is given by:

f̂(x1, . . . , xn) = 1 + ∑
S⊆[n]

((−1)∣S∣−1 ∑
T⊇S

aT

2∣T ∣−1
) ⋅∏

i∈S
xi

Combining Lemma 5.5.1 and Theorem 1, we thus conclude that:

Corollary 5.5.1.1. The Fourier coefficients of BPMn are given by:

∀0̂ ≠ G ⊆Kn,n ∶ B̂PMG
n = (−1)∣E(G)∣ ∑

H⊇G
H∈MCn

(−1)χ(H)−1

2∣E(H)∣−1

While the above expression might be difficult to compute in the general case, we will now

see that for the asymptotic majority of graphs (all elementary graphs), the Fourier coefficient

can be exactly computed.

Proposition 5.5.2. Let n ∈ N+ and let G ⊆Kn,n be an elementary graph. Then:

B̂PMG
n = 2−n

2+1

Proof. If G is elementary, then any graph H ⊇ G is also elementary, as its ear decomposition is

that of G, followed by adding single-edge ears for each edge in E(H)∖E(G). Thus by Theorem
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1 and Lemma 5.5.1:

B̂PMG
n = (−1)∣E(G)∣−1 ∑

H⊇G
H∈MCn

(−1)χ(H)

2∣E(H)∣−1

=
n2−∣E(G)∣
∑
t=0

(n
2 − ∣E(G)∣

t
) (−1)t

2t+∣E(G)∣−1
= 2−n

2+1

Corollary 5.5.2.1. Let n > 0. For (1 − on(1)) ⋅ 2n
2

of the Fourier coefficients, we have:

B̂PMG
n = 2−n

2+1

Proof. By Proposition 5.2.6, the number of elementary graphs is at least:

∣ {G ⊆Kn,n ∶ G is elementary} ∣ ≥ (1 − 2n4

2n
) ⋅ 2n2 = (1 − on(1)) ⋅ 2n

2

Like all monotone graph properties, bipartite perfect matching exhibits a sharp threshold.

Erdős and Rényi first showed [ER64] that in the random graph model G(n,n, p), when p =
f(n)+lnn

n , then the probability that a perfect matching exists satisfies:

lim
n→∞

Pr
G∼G(n,n,p)

[G has a Perfect Matching] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 f(n) → −∞
e−2e−c f(n) → c

1 f(n) → ∞

Using Hall’s Theorem, it is not hard to show that for p = 1/2, the probability that a perfect

matching exists in a randomly sampled bipartite graph is 1 − poly(n)
2n . We now use the Fourier

expansion of BPMn in order to derive an explicit closed-form expression for the aforementioned

probability, in terms of matching-covered graphs and their cyclomatic number.

Proposition 5.5.3. Let n > 0. The probability that a perfect matching exists in a uniformly

sampled balanced bipartite graph of order 2n is:

Pr
G∼G(n,n,1/2)

[G has a Perfect Matching] = ∑
G∈MCn

(−1)χ(G)

2∣E(G)∣

Proof. By Theorem 1 and Lemma 5.5.1, the Fourier coefficient of the empty set in BPMn is:
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B̂PM∅
n = 1 − ∑

G∈MCn

(−1)χ(G)

2∣E(G)∣−1

Furthermore, for any Boolean function f ∶ {1,−1}n → {1,−1}:

f̂∅ = E
x∼{1,−1}n

[f(x)] = E
x∼{1,−1}n

[−2 ⋅ 1{f(x) = −1} + 1] = −2 ⋅ Pr
x∼{1,−1}n

[f(x) = −1] + 1

And the equality now follows by rearranging.
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The Dual Bipartite Perfect Matching Polynomial

In the previous chapter, we dealt with the unique multilinear polynomial representing BPMn

over the Reals in the {0,1} basis (Section 5.2). We also briefly encountered the multilinear

polynomial representing BPMn in the {1,−1} basis, i.e., its Fourier expansion (Section 5.5).

We now turn our attention towards a third multilinear polynomial, the one representing

the “dual function” of BPMn; namely, the function in which the symbols 0 and 1 have been

“flipped”, whereby 1 indicates False and 0 is True (which we refer to as the “{1,0}-basis”).

In this chapter we will prove Theorem 2, which exhibits a fine-grained characterization of the

dual polynomial. To this end, let us now introduce several more useful definitions and notation

for this chapter.

6.1 Definitions and Notation

Dual Functions

Definition 6.1.1. Let f ∶ {0,1}n → {0,1} be a Boolean function. The dual function of f ,

denoted f⋆ ∶ {0,1}n → {0,1}, is defined by:

∀x ∈ {0,1}n ∶ f⋆(x1, . . . , xn) = 1 − f(1 − x1, . . . ,1 − xn)

Hereafter, we denote by BPM⋆
n the dual function of BPMn. For any graph G ⊆ Kn,n, we

denote its corresponding coefficient in the polynomial representing BPM⋆
n by a⋆G. Under this

notation, the polynomial representing BPM⋆
n is given by:

BPM⋆
n(x1,1, . . . , xn,n) = ∑

G⊆Kn,n

a⋆G ⋅ ∏
(i,j)∈E(G)

xi,j

29
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Graphs

Hall’s Theorem states that a balanced bipartite graph G has no perfect matching if and only if

there exists an anticlique over a total of n+1 vertices. In this chapter, we consider dual functions,

wherein the input bits (and output bit) are flipped. Thus, it will be useful to consider the “dual”

to the above condition: the set of all complete bipartite graphs over a total of n+1 vertices. We

will hereafter refer to any such graph as a “Hall Violator”, and will use the following notation

for these graphs and for graphs which are “covered” by them:

Notation 6.1.2. Let n > 1. The set of all “Hall Violator” graphs is defined as follows:

HVn = {KX,Y ⊆Kn,n ∶ ∣X ∣ + ∣Y ∣ = n + 1}

Where KX,Y is the complete bipartite graph whose edges are X×Y , and the remaining vertices

are isolated.

Notation 6.1.3. Let n > 1. The set of all graphs which are “covered” by Hall violators is

denoted by HVCn, where for every G ⊆Kn,n:

G ∈HV Cn ⇐⇒ ∃S ⊆HVn ∶ Ē(S) = E(G)

We also consider the following two families of graphs:

Definition 6.1.4. Let n > 1. A bipartite graph G ⊆ Kn,n is called totally ordered if there

exists an ordering of its left vertices {a1, . . . , an}, such that:

NG(a1) ⊇ NG(a2) ⊇ ⋅ ⋅ ⋅ ⊇ NG(an)

Similarly, G is called strictly totally ordered if in fact:

NG(a1) ⊋ NG(a2) ⊋ ⋅ ⋅ ⋅ ⊋ NG(an) ⊋ ∅

6.2 A Fine Grained Characterization of the Dual Polynomial

In this section, we obtain a fine grained characterization of the multilinear polynomial repre-

senting BPM⋆
n . Unlike the multilinear polynomial of BPMn, we do not provide an explicit
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closed form of this polynomial. Nevertheless, we obtain an asymptotically tight estimate of the

number of monomials appearing in the dual polynomial. Our characterization is the following:

Theorem 2. Let n > 1 and let BPM⋆
n be the dual function of BPMn, represented by the

following multilinear polynomial over the Reals:

BPM⋆
n(x1,1, . . . , xn,n) = ∑

G⊆Kn,n

a⋆G ∏
(i,j)∈E(G)

xi,j

Then for every G ⊆Kn,n, we have:

� If G is not totally ordered, then a⋆G = 0.

� If G is strictly totally ordered, then a⋆G = (−1)n+1

For the remainder of this section, we will set about proving Theorem 2.

BPM⋆
n as a Graph Cover Function

Let G ⊆Kn,n. By Hall’s Theorem, G has a perfect matching if and only if its complement does

not have a biclique over n + 1 vertices. Therefore, by the definition of the dual function, we

have:

BPM⋆
n(G) = 1{Ḡ does not have a perfect matching}

= 1{Ḡ has an anticlique over a total of n + 1 vertices}
= 1{G has a biclique over a total of n + 1 vertices}
= 1{∃H ∈HVn, H ⊆ G}

Thus, BPM⋆
n is a graph cover function over the set HVn. In particular, by Proposition

5.1.2, the only monomials appearing in the multilinear polynomial representing BPM⋆
n are

those corresponding to graphs G ∈HV Cn.

This observation alone already restricts the possible graphs which may appear as monomials

of BPM⋆
n . For example, it allows us to deduce that every G ⊆ Kn,n with a⋆G ≠ 0 has a single

non-trivial connected component, since every H ∈HVn appearing in G contributes a connected

component with exactly n+1 vertices. Nevertheless, this restriction does not suffice for bounding

the number of monomials of BPM⋆
n (as is exemplified later, in Subsection 6.3). Thus we now

turn to our second characterization.
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Using The Eulerian Lattice of Matching-Covered Graphs

The characterization of BPM⋆
n as a graph cover function for the lattice of graphs covered

by Hall violators allowed us to restrict the set of monomials that may appear in its polyno-

mial representation. To gain further headway, we now shift our attention back to the Eulerian

lattice of matching-covered graphs. Ideally, it would be advantageous to take the “neat” rep-

resentation of BPMn in terms of the lattice of matching-covered graphs, and “convert” it into

a characterization of BPM⋆
n .

Given a multilinear polynomial over the Reals representing any Boolean function f ∶
{0,1}n → {0,1}, the dual polynomial of f can immediately be derived by negating the in-

puts and output of f . In particular, if the polynomial representing f is given by:

f(x1, . . . , xn) = ∑
S⊆[n]

aS ⋅∏
i∈S
xi

Then the dual polynomial of f can be expressed as follows:

f⋆(x1, . . . , xn) = 1 − f(1 − x1, . . . ,1 − xn) = 1 − ∑
T⊆[n]

aT ⋅∏
i∈T

(1 − xi)

= 1 − ∑
T⊆[n]

aT (∑
S⊆T

(−1)∣S∣∏
i∈S
xi)

= 1 + ∑
S⊆[n]

(−1)∣S∣+1 (∑
T⊇S

aT) ⋅∏
i∈S
xi

Thus by applying the above to BPMn and using the characterization of Theorem 1, we

obtain the following:

Lemma 6.2.1. Let P = (MCn ⊍ {0̂},⊆) be the lattice of matching-covered graphs. Then for

every nonempty G ⊆Kn,n, we have:

a⋆G = (−1)∣E(G)∣+1 ∑
G⊆H⊆Kn,n

H∈MCn

(−1)χ(H) = (−1)∣E(G)∣ ∑
G⊆H⊆Kn,n

H∈MCn

µP (0̂,H)

We now show the following powerful characterization, which leverages the properties of the

Möbius function of an Eulerian lattice:

Lemma 6.2.2. Let n > 1. For all G ∈ (MCn ∖ {Kn,n}), we have a⋆G = 0.

Proof. Let G ∈ (MCn∖{Kn,n}) and let P = (MCn∪{0̂},⊆) be the Eulerian lattice of matching-

covered graphs, where 0̂ is the empty graph. Since P is Eulerian, its Möbius function satisfies
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the following identity [Sta11]: ∀H ∈MCn,H ⊇ G ∶ µP(0̂,H) = µP(0̂,G) ⋅ µP(G,H). Therefore

by Definition 4.2.1 and Lemma 6.2.1, we have:

a⋆G = (−1)∣E(G)∣ ∑
G⊆H⊆Kn,n

H∈MCn

µP (0̂,H)

= (−1)∣E(G)∣µP(0̂,G) ∑
G⊆H⊆Kn,n

H∈MCn

µP(G,H) = 0

Extending Beyond the Lattice of Matching-Covered Graphs

By using the properties of the Möbius function of an Eulerian lattice, we were able to deduce

that all matching-covered graphs (other than the complete bipartite graph), have a zero dual

coefficient. While matching-covered graphs constitute the asymptotic majority of all balanced

bipartite graphs, the previous observation is nevertheless insufficiently powerful to obtain our

bound (indeed there are at least 2n
2−2n graphs that are not matching-covered).

Subsequently, we now extend our characterization to graphs beyond the lattice of matching-

covered graphs. To this end, we introduce the notion of “umbrellas” – a set of matching-covered

graphs that forms a “basis” for a given graph G, even when G itself is not matching-covered.

Notation 6.2.3. Let n > 1 and let G ⊆Kn,n be a graph. The Umbrella of G, U(G) ⊆MCn,

is the set of all minimal matching-covered graphs, with respect to containment, which contain

G as a subgraph. Formally:

H ∈ U(G) ⇐⇒ (G ⊆H ∈MCn) ∧ (/∃H ′ ∈MCn ∶ G ⊆H ′ ⊂H)

The umbrella of G is an anti-chain in the lattice of matching-covered graphs. In particular,

any matching-covered graph H ∈MCn containing G as a subgraph, also contains a graph from

the umbrella of G. Using umbrellas we now show the following identity for general graphs (i.e.,

not necessarily matching-covered):

Lemma 6.2.4. Let n > 1 and let G ⊆Kn,n be a nonempty graph. Then:

a⋆G = (−1)n+∣E(G)∣ ⋅ ∑
∅≠S⊆U(G)
Ē(S)=Kn,n

(−1)∣S∣+1
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Proof. Let n > 1 and let P = (MCn∪{0̂},⊆) be the Eulerian lattice of matching-covered graphs,

where 0̂ is the empty graph. Let G ⊆Kn,n, where G ≠ 0̂. For any ∅ ≠ S ⊆MCn, denote by ⋁S
the join of all graphs in S. Recall (Proposition 5.1.3) that in P, the join ⋁S is the union of

all graphs in S. By Lemma 6.2.1, we have:

a⋆G = (−1)∣E(G)∣ ⋅ ∑
G⊆H⊆Kn,n

H∈MCn

µP(0̂,H)

Using the inclusion-exclusion principle on the umbrella of G, U(G), we obtain:

∑
G⊆H⊆Kn,n

H∈MCn

µP(0̂,H) = ∑
∅≠S⊆U(G)

(−1)∣S∣+1 ∑
(⋁S)⊆H⊆Kn,n

H∈MCn

µP(0̂,H)

=
⎛
⎜⎜⎜
⎝

∑
∅≠S⊆U(G)
(⋁S)⊂Kn,n

(−1)∣S∣+1 ∑
(⋁S)⊆H⊆Kn,n

H∈MCn

µP(0̂,H) + ∑
∅≠S⊆U(G)
(⋁S)=Kn,n

(−1)∣S∣+1µP(0̂,Kn,n)
⎞
⎟⎟⎟
⎠

Since P is Eulerian, the sum of Möbius numbers in any nontrivial closed interval is zero

(see Lemma 6.2.2). In particular, for any S ⊆ U(G) where (⋁S) ≠Kn,n, we have:

∑
(⋁S)⊆H⊆Kn,n

H∈MCn

µP(0̂,H) = 0

Therefore:

a⋆G = (−1)∣E(G)∣ ⋅ ∑
∅≠S⊆U(G)
Ē(S)=Kn,n

(−1)∣S∣+1(−1)χ(Kn,n)+1

= (−1)n+∣E(G)∣ ⋅ ∑
∅≠S⊆U(G)
Ē(S)=Kn,n

(−1)∣S∣+1

Given a graph G ⊆Kn,n, we say that G has an Incomplete Umbrella if Ē(U(G)) ≠Kn,n,

i.e., there exists some edge which is not present in any of the graphs in the umbrella of G.

Observe that by Lemma 6.2.4, this is a sufficient condition for exhibiting a zero dual coefficient.

Corollary 6.2.4.1. Let n > 1 and let G ⊆Kn,n be a nonempty graph. Then:

Ē(U(G)) ≠Kn,n Ô⇒ a⋆G = 0
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Graphs with an Incomplete Umbrella

Definition 6.2.5. Let n > 1 and let G ⊆ Kn,n be a nonempty graph. An edge (a, b) ∉ E(G)
is called a Wildcard Edge for G if and only if:

∀H ∈MCn, H ⊇ G ⊍ {(a, b)} ∶ (H ∖ {(a, b)}) ∈MCn

Lemma 6.2.6. Let n > 1 and let G ⊆Kn,n be a nonempty graph. Then:

G has a wildcard edge Ô⇒ G has an incomplete umbrella

Proof. Let (a, b) ∉ E(G) be a wildcard edge for G. We show that (a, b) ∉ Ē(U(G)). Assume

towards a contradiction that (a, b) ∈ Ē(U(G)), and let H ∈ U(G) be a graph such that

(a, b) ∈ E(H). Then by the definition of (a, b), we have H ′ = (H ∖ {(a, b)}) ∈ MCn, and

furthermore G ⊆H ′ ⊂H, in contradiction to the fact that H ∈ U(G).

Building upon wildcard edges, we now introduce the following (slightly weaker) sufficient

condition:

Definition 6.2.7. Let n > 1 and let G ⊆ Kn,n be a nonempty graph. Denote by A the set of

left vertices of G. An edge (a, b) ∉ E(G) is called a Surplus Edge for G if and only if:

∀X ⊂ A, a ∈X, b ∉ NG(X) ∶ ∣NG(X)∣ > ∣X ∣

The above can be seen as a strengthening of Hall’s condition, in which we require that the

condition holds with a positive surplus. However, note that we only require the condition for a

particular family of sets – those in which a is present, and b is not in the neighbour set. Finally,

we show that surplus edges are, in fact, wildcard edges.

Lemma 6.2.8. Let n > 1 and let G ⊆Kn,n be a nonempty graph. Then:

(a, b) ∉ E(G) is a surplus edge for G Ô⇒ (a, b) ∉ E(G) is a wildcard edge for G

Proof. Let (a, b) ∉ E(G) be a surplus edge for G and let H ∈MCn such that H ⊇ G⊍ {(a, b)}.

Denote H ′ =H ∖{(a, b)}. It remains to show that H ′ ∈MCn. Assume towards a contradiction
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that H ′ ∉ MCn and denote by C = (AC ⊍ BC ,E) ∈ C(H) the connected component of H

containing the edge (a, b). First, note that K2 ≠ (C ∖ {(a, b)}) ∈ C(H ′), since elementary

graphs are 2 − connected. Since C ∖ {(a, b)} is not elementary, then by Theorem 5.2.3 there

exists ∅ ≠X ⊂ AC ⊆ A such that ∣NH′(X)∣ ≤ ∣X ∣.
Observe that a ∈ X and b ∉ NH′(X). Otherwise, we have NH′(X) = NH(X) and since

H ∈MCn then C is elementary and thus ∣NH′(X)∣ = ∣NH(X)∣ > ∣X ∣, a contradiction. However,

since (a, b) is a surplus edge for G, then for all X ⊂ A such that a ∈ X, b ∉ NG(X), we have

∣NG(X)∣ > ∣X ∣. In particular, since H ′ ⊇ G, then for our X we have a ∈ X and b ∉ NG(X) and

thus ∣NH′(X)∣ ≥ ∣NG(X)∣ > ∣X ∣, in contradiction to the definition of X.

Non-Totally Ordered Graphs Have a Zero Coefficient

Recall that the only monomials which may appear in BPM⋆
n are those corresponding to graphs

G ∈ HV Cn. Combining this characterization with those obtained using the Eulerian lattice of

matching-covered graphs, we get:

Lemma 6.2.9. Let n > 1 and let G ∈ HV Cn. If G is not totally ordered, then G has a

surplus edge.

Proof. Let A = {a1, . . . , an}, B = {b1, . . . , bn} be two sets, and let G = (A⊍B,E) ∈HV Cn, such

that G is not totally ordered. Thus, there exist two vertices ai, aj ∈ A such that:

N(ai) /⊇ N(aj) ∧ N(aj) /⊇ N(ai) ∧ ∣N(ai)∣ ≥ ∣N(aj)∣

We will show that ∀bk ∈ (N(aj)∖N(ai)) ∶ (ai, bk) is a surplus edge for G. Let bk ∈ N(aj)∖N(ai),
bm ∈ N(ai)∖N(aj). Since G ∈HV Cn, every edge of G is covered by some graph K ∈HVn, and

in particular so are (ai, bm), (aj , bk). Thus, there exist Xi,m,Xj,k ⊆ A, Yi,m, Yj,k ⊆ B such that:

∣Xi,m∣ + ∣Yi,m∣ = n + 1,

(Xi,m × Yi,m) ⊆ E(G)
∣Xj,k∣ + ∣Yj,k∣ = n + 1

(Xj,k × Yj,k) ⊆ E(G)

and furthermore, ai ∈ Xi,m, bm ∈ Yi,m, aj ∈ Xj,k and bk ∈ Yj,k. Assume towards a contra-

diction that (ai, bk) is not a surplus edge for G. Then, there exists X ⊂ A such that ai ∈ X,

bk ∉ N(X) and ∣N(X)∣ ≤ ∣X ∣.
Since ai ∈X then N(X) ⊇ N(ai) and in particular ∣N(X)∣ ≥ ∣N(ai)∣. Furthermore, observe

that X ∩Xj,k = ∅, since otherwise bk ∈ N(X), in contradiction to the definition of X. Thus,

we have n− ∣Xj,k∣ ≥ ∣X ∣. Moreover, recall that by the definition of ai and aj , we have ∣N(ai)∣ ≥
∣N(aj)∣. Since the edge (aj , bk) is covered by KXj,k,Yj,k , then N(aj) ⊇ Yj,k. Lastly, by the

definition of X, ∣N(X)∣ ≤ ∣X ∣. Putting all the above inequalities together, we have:

n − ∣Xj,k∣ ≥ ∣X ∣ ≥ ∣N(X)∣ ≥ ∣N(ai)∣ ≥ ∣N(aj)∣ ≥ ∣Yj,k∣
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Figure 6.1: A graph G ∈HV C4, which is not totally ordered.
The edge (ai, bm) is covered by KXi,m,Yi,m , and (aj , bk) is covered by KXj,k,Yj,k .

Therefore ∣Xj,k∣ + ∣Yj,k∣ ≤ n, in contradiction to the fact that ∣Xj,k∣ + ∣Yj,k∣ = n + 1.

Corollary 6.2.9.1. Let n > 1 and let G ⊆Kn,n. If G is not totally ordered, then a⋆G = 0.

Strictly Totally Ordered Graphs Have a Non-Zero Coefficient

Lemma 6.2.10. Let n > 1 and let G ⊆Kn,n be strictly totally ordered. Then:

a⋆G = (−1)n+1

Proof. Let G = (A⊍B,E) ⊆Kn,n be a graph, where A = {a1, . . . , an} and B = {b1, . . . , bn}. The

edges of G are given by: ∀i ∈ [n] ∶ NG(ai) = {b1, . . . , bi}. Observe that G is strictly totally

ordered, since N(an) ⊋ N(an−1) ⊋ . . .N(a1) ⊋ ∅.

For every k ∈ [n], denote Ak = {ak, . . . , an} ⊆ A, Bk = {b1, . . . , bk} ⊆ B. By the definition

of G, ∀k ∈ [n], KAk,Bk
⊆ G. We now show that for any KX,Y ∈ HVn such that KX,Y ⊆ G and

∣Y ∣ = k, we necessarily have X = Ak and Y = Bk.
Assume towards a contradiction this is not the case. Let KX,Y ∈HVn such that KX,Y ⊆ G,

∣Y ∣ = k and Y ≠ Bk or X ≠ Ak. If Y = Bk, then for any ai ∈ X where ai ∉ Ak (i.e., i < k), the

edge (ai, b1) ∉ E(G) – a contradiction. Otherwise, let Y ≠ Bk and let j > k the maximal index

such that yj ∈ Y . By the definition of G, ⋂b∈Y NG(b) = NG(yj) = Aj . Since KX,Y ⊆ G, then

in particular X ⊆ Aj , and therefore ∣Y ∣ + ∣X ∣ ≤ k + ∣Aj ∣ = n, in contradiction to the fact that

KX,Y ∈HVn.

Thus, the only Hall violators appearing in G are the set:
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H ∶= {H ∈HVn ∶H ⊆ G} = {KAk,Bk
∶ k ∈ [n]}

The union of all graphs in H is exactly G, therefore G ∈HV Cn. However, recall that BPM⋆
n

is a graph cover function for the set HVn, and thus by arithmetizing the formula representing

the function (recall Proposition 5.1.2), we get that:

BPM⋆
n(x1,1, . . . , xn,n) = ∑

G∈HV Cn

⎛
⎜⎜⎜
⎝

∑
∅≠S⊆HV Cn

Ē(S)=E(G)

(−1)∣S∣+1

⎞
⎟⎟⎟
⎠

∏
(i,j)∈E(G)

xi,j

Observe that the only set of graphs S ⊆ HV Cn whose union is equal to G is the set

H itself, since by omitting any KAk,Bk
we will fail to cover the edge (ak, bk) ∈ E(G). Thus

a⋆G = (−1)∣H∣+1 = (−1)n+1, as required.

Lastly, we observe that any strictly totally ordered graph G′ ⊆ Kn,n is equivalent, up

to permutations over each bipartition, to G (and therefore has the same coefficient). This

equivalence can be achieved by sorting the vertices of each bipartition by the cardinality of

their neighbour sets, where the left vertices are sorted in ascending order, and the right vertices

in descending order.

This concludes the proof of Theorem 2.

6.3 Counting the Monomials of BPM⋆
n

Using Theorem 2, we now deduce the following asymptotically tight bound on the number of

monomials appearing in BPM⋆.

Corollary 6.3.0.1. Let n > 1. The number of monomials in BPM⋆
n satisfies:

(n!)2 ≤ ∣mon(BPM⋆
n)∣ < (n + 2)2n+2

And in particular:

log2 (∣mon(BPM⋆
n)∣) = 2n log2 n ±O(n) = Θ(n logn)

Proof. Let n > 1. For the lower bound, let G be a strictly totally ordered graph. By Lemma

6.2.10, all strictly totally ordered graphs, and in particlar G, have a⋆G = (−1)n+1. However, since

no two right or left vertices of G have the same set of neighbours, any pair of permutations
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over the left and right bipartitions yields a new strictly totally ordered graph G̃ ≅ G, thus

completing the lower bound.

For the upper bound, let U = {u1, . . . , un+1}, V = {v1, . . . , vn+1} be two sets. Denote by Cn

the set of all graphs G ⊆Kn,n that are totally ordered. We begin by showing that:

∣Cn∣ =
n+1

∑
k=1

((k − 1)! ⋅ {n + 1

k
})

2

Where the notation {n
k
} refers to the Stirling number of the second kind. To prove the

equality, let us explicitly construct the set Cn as follows; for every 1 ≤ k ≤ n + 1, let:

U = U1 ⊍U2 ⋅ ⋅ ⋅ ⊍Uk V = V1 ⊍ V2 ⋅ ⋅ ⋅ ⊍ Vk

be partitions of U,V , respectively, into k non-empty subsets, where without loss of gener-

ality un+1 ∈ Uk and vn+1 ∈ Vk. Then, for every π, τ ∈ Sk−1, consider the graph G ∈ Cn, whose

edges are given by:

∀i ∈ [k − 1] ∶ ∀u ∈ Uπ(i) ∶ NG(u) = Vτ(1) ⊍ ⋅ ⋅ ⋅ ⊍ Vτ(i)

Recall that the number of partitions of n elements into k non-empty subsets is given by {n
k
},

the Stirling number of the second kind. Thus by the above construction, the cardinality of the

set Cn satisfies:

∣Cn∣ =
n+1

∑
k=1

((k − 1)!)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Choosing π,τ

⋅ {n + 1

k
}

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Partitioning U,V

Therefore:

∣mon(BPM⋆
n)∣ ≤ ∣Cn∣ =

n+1

∑
k=1

((k − 1)! ⋅ {n + 1

k
})

2

≤ (
n+1

∑
k=1

k! ⋅ {n + 1

k
})

2

= (Fn+1)2

Where Fn denotes the n’th Fubini number. We now use the upper bound [Mez19]: ∀n ≥ 1 ∶
Fn < (n + 1)n, thereby concluding the proof.

Is the Totally Ordered Condition Necessary?

Since BPM⋆
n is a graph cover function for HVn, the only monomials which may appear in

BPM⋆
n are those corresponding to graphs G ∈ HV Cn – i.e., graphs covered by Hall violators.

Clearly the number of Hall violators is Ω(22n), however, one might wonder about a correspond-

ing upper bound for the number of graphs covered by Hall violators. In particular, could we
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perhaps have derived as strong an asymptotic bound as the one yielded by the totally ordered

condition (Definition 6.1.4), by simply bounding the size of the set HV Cn? The following

proposition shows that this is not the case, namely, there are (asymptotically) many more

graphs which are covered by Hall violators:

Proposition 6.3.1. Let n > 1. Then:

log2(∣HV Cn∣) ≥ ⌊n
2
⌋ (⌈n

2
⌉ + 1) ≥ n

2

4
− 1

Proof. Let n > 1 and without loss of generality assume that n = 2k where k ∈ N+. Let A,B

be two sets such that ∣A∣ = ∣B∣ = n. The lower bound follows by constructing a graph G =
(A ⊍ B,EG) ∈ HV Cn where ∣E(G)∣ = n2 − n/2(n/2 + 1), such that {H ⊇ G} ⊆ HV Cn. First,

partition each bipartition A,B into two sets, as follows:

A = (X ⊍ Y ) ∶
B = (U ⊍ V ) ∶

X = {a1, . . . , ak} ,

U = {b1, . . . , bk−1} ,
Y = {ak+1, . . . , a2k}
V = {bk, . . . , b2k}

The edges of G are formed by connecting all edges between X and B, and all edges between

Y and U , thus: E(G) = (X ×B) ∪ (Y × U). Observe that G ∈ HV Cn, since it can be covered

by taking k copies of Kx,B, one for each x ∈ X, and taking another k − 1 copies of KA,u, one

for each u ∈ U .

Any missing edge (y, v) ∉ E(G) (where y ∈ Y and v ∈ V ) can be covered by KX⊍{y},U⊍{v}
(the complete bipartite graph connecting X ⊍ {y} and U ⊍ {v}). Observe that KX⊍{y},U⊍{v} ∈
HVn, since ∣X ⊍U ⊍ {y, v}∣ = n + 1. Thus {H ⊇ G} ⊆HV Cn, as required.

6.4 Corollaries of Theorem 2

Communication Matrix Rank

Consider the following communication problem. Given an input graph G ⊆Kn,n, its edges are

distributed between two parties, Alice and Bob, according to some arbitrary fixed partition. The

parties’ task is to devise a communication protocol to determine whether G contains a bipartite

perfect matching. This communication problem is known as the “2-Party Communication

Problem of Bipartite Perfect Matching”.

Clearly, the rank of the associated communication matrix for this problem is at least ex-

ponential in n (e.g., using a fooling set argument). Interestingly, the compact representation

of BPM⋆
n given by Theorem 2 allows us to deduce that the rank of the communication matrix

is, in fact, at most exponential in n logn.
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Corollary 6.4.0.1. Let M be the communication matrix for the 2-party communication

problem of bipartite perfect matching. The rank of M over the Reals is bounded by:

rankR(M) ≤ (n + 2)2n+2 = 2O(n logn)

Proof. Let M be the aforementioned communication matrix, and let M̄ = J −M , where J is

the all-ones matrix. The polynomial BPM⋆
n induces an (at most) ∣mon(BPM⋆

n)∣-rank de-

composition of M̄ , since each monomial is a rank-1 matrix (see, e.g., [NW95]). However,

rank(M) ≤ rank(M̄) + 1, and by Corollary 6.3.0.1, ∣mon(BPM⋆
n)∣ < (n + 2)2n+2, thus con-

cluding the proof.

Lower Bound for OR Decision Trees

Much in the same way that the multilinear polynomial representing BPMn allowed us to

derive query complexity lower bounds for AND decision trees, the multilinear polynomial

representing BPM⋆
n can be used to obtain similar lower bounds against OR decision trees.

The proof is very similar to that of Lemma 5.4.1, but differs in several key steps, thus we

provide it for completeness.

Lemma 6.4.1. Let f ∶ {0,1}n → {0,1} be a boolean function. Then:

DOR(f) ≥ log3(∣mon(f⋆)∣)

Where f⋆ is the dual function of f .

Proof. Let T be an OR-decision tree computing f and denote d = depth(T ). Let P be the set

of all root to 0-leaf paths in T . For any P ∈ P, the indicator function for the path is given by

the following multilinear polynomial:

1P (x1, . . . , xn) =
⎛
⎝ ∏
¬OR(S)∈P

⎛
⎝

1 − ∑
∅≠S⊆[n]

(−1)∣S∣+1∏
i∈S
xi

⎞
⎠
⎞
⎠
⎛
⎝ ∏
OR(S)∈P

⎛
⎝ ∑
∅≠S⊆[n]

(−1)∣S∣+1∏
i∈S
xi

⎞
⎠
⎞
⎠

By the definition of the dual function, we can construct f⋆ by summing the indicators for

all paths P ∈ P, where the inputs to each indicator are the negated input bits:

f⋆(x1, . . . , xn) = ∑
P ∈P

1P (1 − x1, . . . ,1 − xn)

= ∑
P ∈P

⎛
⎝ ∏
OR(S)∈P

(1 −∏
i∈S
xi)

⎞
⎠
⎛
⎝ ∏
¬OR(S)∈P

(∏
i∈S
xi)

⎞
⎠
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Therefore, each path P making k right turns contributes at most 2k monomials to f⋆. In

a binary tree of depth d there are at most (d
k
) paths making exactly k right turns (i.e., by

selecting the position in the path at which the right turns are made). Thus, we have:

∣mon(f⋆)∣ ≤
d

∑
k=0

(d
k
)2k = 3d

Applying the aforementioned lemma to BPMn, we obtain:

Corollary 6.4.1.1. The depth of any OR decision tree computing BPMn is at least:

DOR(BPMn) ≥ 2 log3(n!)

6.5 Additional Coefficients of the Dual Polynomial

Theorem 2 offers a characterization of BPM⋆
n in terms of totally ordered and strictly totally

ordered graphs. The theorem states that only totally ordered graphs may exhibit non-zero

coefficients, and that all strictly totally ordered indeed have non-zero coefficients. For graphs

that are totally ordered but not strictly so, the situation is more complex 1. The following

proposition shows that for any n > 2, there exist graphs which are totally ordered but not

strictly so, whose dual coefficient is 1, 0 and even (n − 2)2.

Proposition 6.5.1. Let n > 2. There exist graphs G ⊆Kn,n which are totally ordered but not

strictly so, such that:

a. a⋆G = 0, b. a⋆G = 1, c. a⋆G = (n − 2)2

Proof. Let n > 2 and let A = {a1, . . . , an}, B = {b1, . . . , bn} be two sets. Denote:

An−1 = {a1, . . . , an−1}, Bn−1 = {b1, . . . , bn−1}

For the case a⋆G = 0, consider any totally ordered graph such that G ∈ (MCn ∖{Kn,n}). For

example, let G = (A ⊍B,E) such that ∀i ∈ [n − 1] ∶ NG(ai) = B and NG(an) = {b1, b2}. G is

totally ordered, since NG(a1) ⊇ NG(a2) ⊇ ⋅ ⋅ ⋅ ⊇ NG(an). However, we also have that G ∈MCn,

therefore by Lemma 6.2.2, a⋆G = 0.

1An additional analysis exclusively for graphs containing a perfect matching can be found in Appendix A
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For the case a⋆G = 1, consider any graph G ∈ HVn. Observe that G is both totally ordered

and G ∈ HV Cn. Furthermore G contains a single Hall violator graph (itself), and is therefore

a minterm of BPM⋆
n , and so a⋆G = 1.

Lastly, for the case a⋆G = (n−2)2, consider the graph G =KAn−1,Bn−1 . Using Theorem 5.2.3,

the set of matching-covered graphs containing G, which we will denote by H, can be partitioned

into three sets H =H1 ⊍H2 ⊍H3, as follows:

H1 = {G ⊍ {(an, bn)}}
H2 = {G ⊍ {(an, bn)} ⊍ (U × {bn}) ⊍ ({an} × V ) ∶ ∅ ≠ U ⊆ An−1, ∅ ≠ V ⊆ Bn−1}
H3 = {G ⊍ (U × {bn}) ⊍ ({an} × V ) ∶ U ⊆ An−1, V ⊆ Bn−1, ∣U ∣ ≥ 2, ∣V ∣ ≥ 2}

By Lemma 6.2.1, the dual coefficient of G is given by:

a⋆G = (−1)∣E(G)∣+1 ∑
H⊇G

H∈MCn

(−1)χ(H) = − ∑
H∈H

(−1)∣E(H)∖E(G)∣+∣C(H)∣

For the single graph H ∈ H1, ∣E(H) ∖E(G)∣ = 1, ∣C(H)∣ = 2, thus contributing 1 to the sum.

For each H ∈H2, ∣C(H)∣ = 1, thus H2’s contribution to the sum is:

n−1

∑
i=1

n−1

∑
j=1

(n − 1

i
)(n − 1

j
)(−1)i+j+1 = −1

Lastly, for each H ∈H3, ∣C(H)∣ = 1. Thus H3’s contribution to the sum is:

n−1

∑
i=2

n−1

∑
j=2

(n − 1

i
)(n − 1

j
)(−1)i+j = (n − 2)2

Summing up all the contributions, we get a⋆G = (n − 2)2, thus concluding the proof.
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Convex polytopes, volume 221.

Springer Science & Business Media, 2013.

[Het64] Gábor Hetyei.

Rectangular configurations which can be covered by 2×1 rectangles.
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A
Graphs with a Perfect Matching

In this section, we restrict our attention to graphs containing a perfect matching, which appear
in the dual polynomial BPM⋆

n . By Theorem 2, the only graphs appearing in the dual polyno-
mial are those which are “totally ordered”. However, by nature of having a perfect matching,
a more precise characterization of their structure can be obtained.

Given a graph G with a perfect matching, we consider the graph G′, formed by the union
of all perfect matchings of G. In this section, we show that if the monomial corresponding to
G appears BPM⋆

n , then the following conditions (and perhaps others) must hold. First, all
the connected components of G′ must be complete bipartite graphs. Furthermore, for any edge
in G connecting two such components, all the edges between the components’ corresponding
bipartitions must appear.

Lemma A.0.1. Let n > 1 and let G ⊆Kn,n, where G ∉MCn and PM(G) ≠ ∅. Denote by G′

the union of all the perfect matchings of G. If G′ has a connected component which is not a
complete bipartite graph, then a⋆G = 0.

Proof. Let G = (A⊍B,E) ∉MCn, where PM(G) ≠ ∅ and denote by G′ the union of all perfect
matchings of G. Let C be a connected component of G′ which is not a complete bipartite graph.
Let (a, b) ∈ (A ∩ V (C)) × (B ∩ V (C)) be an edge such that (a, b) ∉ E(C). We will show that
(a, b) is a wildcard edge for G. Therefore, let H ∈MCn be a graph such that H ⊇ G⊍{(a, b)}),
and denote by H̃ the connected component of H containing C.

Observe that H̃ − V (C) contains a perfect matching (in particular, any of the perfect
matchings induced by the components Ci of G′ which are contained in H̃). Thus, H̃ has a
bipartite ear decomposition of the form: H̃ = C + P1 + ⋅ ⋅ ⋅ + Pq, where there exists a path
Pi = (a, b) (since the vertices a, b were present in C). Therefore H̃ ∖{(a, b)} also has a bipartite
ear decomposition: H̃ ∖ {(a, b)} = C + P1 + ⋅ ⋅ ⋅ + Pi−1 + Pi+1 + ⋅ ⋅ ⋅ + Pq, and by Theorem 5.2.5,
H̃∖{(a, b)} is elementary. Thus (H∖{(a, b)}) ∈MCn and the proof follows by Lemma 6.2.6.

Lemma A.0.2. Let n > 1 and let G = (A⊍B,E) ⊆Kn,n. Denote G′ the union of G’s perfect
matchings. If all the following conditions hold:

1. G ∈HV Cn and PM(G) ≠ ∅.

46
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2. All the connected components of G′ are complete bipartite graphs.

3. There exist C1 = (A1 ⊍B1,E1), C2 = (A2 ⊍B2,E2), where C1,C2 ∈ C(G′), such that:

∅ ⊊ ((A1 ×B2) ∩E(G)) ⊊ (A1 ×B2)

Then a⋆G = 0.

Proof. Let G be a graph satisfying the above conditions, and let G′, C1, C2 be the graphs
described above. Denote C(G′) = {C1, . . . ,Ct}, where ∀i ∈ [t] ∶ Ci = (Ai ⊍Bi,Ei). Hereafter,
we use the notation Ci ↝ Cj to denote an edge (u, v) ∈ (Ai ×Bj).

First, since G ∈HV Cn and G has a perfect matching, then G is connected. Let (a, b), (u, v) ∈
(A1 ×B2) be two edges, such that (a, b) ∉ E(G) and (u, v) ∈ E(G). We will show that (a, b)
is a wildcard edge of G. Let H ∈MCn be a graph such that H ⊇ G ⊍ {(a, b)}). We will show
that H ′ = H ∖ {(a, b)} is elementary, thus by Lemma 6.2.6, a⋆G = 0. Let (x, y) ∈ E(H ′). To
show that H ′ is elementary, by Theorem 5.2.3 it is sufficient to exhibit a perfect matching of
H ′ containing (x, y).

Clearly, if ∃i ∈ [t] ∶ (x, y) ∈ E(Ci) then since Ci is elementary, Ci − x − y has a perfect
matching, which can be extended to a perfect matching of H ′ by adding a single perfect
matching for each Cj ∈ (C(G′) ∖Ci).

Otherwise, denote by Ci,Cj the components for which x ∈ Ci, y ∈ Cj . We begin by showing
that H has a directed cycle C̄ = Ci ↝ Cj ↝ ⋅ ⋅ ⋅ ↝ Ci containing (x, y). Since H ∈MCn, every
edge of H participates in a perfect matching, and in particular so does (x, y). Let M be a
perfect matching of H involving (x, y). Since Ci − x is unbalanced, there must be some edge
Ck ↝ Ci in M . Iteratively applying the same argument to Ck and then to the component
connected to it, we eventually gather a directed cycle C̄ ∈ E(H) composed of edges of M ,
where (x, y) ∈ C̄.

Lastly, we use C̄ to construct a perfect matching of H ′ containing (x, y). First, if (a, b) ∈ C̄,
then replace (a, b) with (u, v). Now, construct a perfect matching M̄ as follows:

1. For each Ck ∉ C̄, take a single perfect matching over Ck.

2. For each edge (ak, bm) ∈ C̄, match ak and bm.

3. For each Ck ∈ C̄, denote ak ∈ Ak, bk ∈ Bk the vertices of Ck appearing in C̄. By Theorem
5.2.3, Ck − ak − bk has at least one perfect matching (or is empty if Ck = K2), which we
add to M̄ .
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B
The Polynomial of BPM⋆

3

BPM⋆
3 (x) = x1,1x1,2x1,3 + x1,1x2,1x3,1 + x2,1x2,2x2,3 + x1,2x2,2x3,2 + x1,3x2,3x3,3 + x3,1x3,2x3,3

+ x1,1x1,2x2,1x2,2 + x1,1x1,3x2,1x2,3 + x1,2x1,3x2,2x2,3 + x1,1x1,2x3,1x3,2 + x1,1x1,3x3,1x3,3

+ x1,2x1,3x3,2x3,3 + x2,1x2,2x3,1x3,2 + x2,1x2,3x3,1x3,3 + x2,2x2,3x3,2x3,3 − x1,1x1,2x1,3x2,1x2,2

− x1,1x1,2x1,3x2,1x2,3 − x1,1x1,2x1,3x2,2x2,3 − x1,1x1,2x1,3x2,1x3,1 − x1,1x1,2x2,1x2,2x2,3

− x1,1x1,2x1,3x2,2x3,2 − x1,1x1,3x2,1x2,2x2,3 − x1,2x1,3x2,1x2,2x2,3 − x1,1x1,2x1,3x2,3x3,3

− x1,1x1,2x2,1x2,2x3,1 − x1,1x1,2x2,1x2,2x3,2 − x1,1x1,3x2,1x2,3x3,1 − x1,1x1,2x1,3x3,1x3,2

− x1,1x1,2x1,3x3,1x3,3 − x1,1x1,2x1,3x3,2x3,3 − x1,1x1,3x2,1x2,3x3,3 − x1,2x1,3x2,2x2,3x3,2

− x1,2x1,3x2,2x2,3x3,3 − x1,1x1,2x2,1x3,1x3,2 − x1,1x1,2x2,2x3,1x3,2 − x1,1x2,1x2,2x2,3x3,1

− x1,1x1,3x2,1x3,1x3,3 − x1,2x2,1x2,2x2,3x3,2 − x1,1x1,3x2,3x3,1x3,3 − x1,2x1,3x2,2x3,2x3,3

− x1,3x2,1x2,2x2,3x3,3 − x1,2x1,3x2,3x3,2x3,3 − x1,1x2,1x2,2x3,1x3,2 − x1,2x2,1x2,2x3,1x3,2

− x1,1x1,2x3,1x3,2x3,3 − x1,1x2,1x2,3x3,1x3,3 − x1,1x1,3x3,1x3,2x3,3 − x1,3x2,1x2,3x3,1x3,3

− x1,2x1,3x3,1x3,2x3,3 − x1,2x2,2x2,3x3,2x3,3 − x1,3x2,2x2,3x3,2x3,3 − x1,1x2,1x3,1x3,2x3,3

− x2,1x2,2x2,3x3,1x3,2 − x1,2x2,2x3,1x3,2x3,3 − x2,1x2,2x2,3x3,1x3,3 − x2,1x2,2x2,3x3,2x3,3

− x1,3x2,3x3,1x3,2x3,3 − x2,1x2,2x3,1x3,2x3,3 − x2,1x2,3x3,1x3,2x3,3 − x2,2x2,3x3,1x3,2x3,3

+ 2x1,1x1,2x1,3x2,1x2,2x2,3 + x1,1x1,2x1,3x2,1x2,2x3,1 + x1,1x1,2x1,3x2,1x2,3x3,1

+ x1,1x1,2x1,3x2,1x2,2x3,2 + x1,1x1,2x1,3x2,2x2,3x3,2 + x1,1x1,2x1,3x2,1x2,3x3,3

+ x1,1x1,2x1,3x2,2x2,3x3,3 + x1,1x1,2x2,1x2,2x2,3x3,1 + x1,1x1,2x1,3x2,1x3,1x3,2

+ x1,1x1,3x2,1x2,2x2,3x3,1 + x1,1x1,2x1,3x2,1x3,1x3,3 + x1,1x1,2x2,1x2,2x2,3x3,2

+ x1,1x1,2x1,3x2,2x3,1x3,2 + x1,1x1,2x1,3x2,3x3,1x3,3 + x1,1x1,2x1,3x2,2x3,2x3,3

+ x1,1x1,3x2,1x2,2x2,3x3,3 + x1,2x1,3x2,1x2,2x2,3x3,2 + x1,2x1,3x2,1x2,2x2,3x3,3

+ x1,1x1,2x1,3x2,3x3,2x3,3 + 2x1,1x1,2x2,1x2,2x3,1x3,2 + 2x1,1x1,3x2,1x2,3x3,1x3,3

+ 2x1,1x1,2x1,3x3,1x3,2x3,3 + 2x1,2x1,3x2,2x2,3x3,2x3,3 + x1,1x1,2x2,1x3,1x3,2x3,3

+ x1,1x2,1x2,2x2,3x3,1x3,2 + x1,1x1,3x2,1x3,1x3,2x3,3 + x1,1x1,2x2,2x3,1x3,2x3,3

+ x1,2x2,1x2,2x2,3x3,1x3,2 + x1,1x2,1x2,2x2,3x3,1x3,3 + x1,2x2,1x2,2x2,3x3,2x3,3

+ x1,1x1,3x2,3x3,1x3,2x3,3 + x1,3x2,1x2,2x2,3x3,1x3,3 + x1,2x1,3x2,2x3,1x3,2x3,3

+ x1,3x2,1x2,2x2,3x3,2x3,3 + x1,2x1,3x2,3x3,1x3,2x3,3 + x1,1x2,1x2,2x3,1x3,2x3,3

+ x1,2x2,1x2,2x3,1x3,2x3,3 + x1,1x2,1x2,3x3,1x3,2x3,3 + x1,2x2,2x2,3x3,1x3,2x3,3

+ x1,3x2,1x2,3x3,1x3,2x3,3 + x1,3x2,2x2,3x3,1x3,2x3,3 + 2x2,1x2,2x2,3x3,1x3,2x3,3

− x1,1x1,2x1,3x2,1x2,2x2,3x3,1 − x1,1x1,2x1,3x2,1x2,2x2,3x3,2 − x1,1x1,2x1,3x2,1x2,2x2,3x3,3

− x1,1x1,2x1,3x2,1x2,2x3,1x3,2 − x1,1x1,2x1,3x2,1x2,3x3,1x3,3 − x1,1x1,2x1,3x2,2x2,3x3,2x3,3

− x1,1x1,2x2,1x2,2x2,3x3,1x3,2 − x1,1x1,2x1,3x2,1x3,1x3,2x3,3 − x1,1x1,2x1,3x2,2x3,1x3,2x3,3

− x1,1x1,3x2,1x2,2x2,3x3,1x3,3 − x1,1x1,2x1,3x2,3x3,1x3,2x3,3 − x1,2x1,3x2,1x2,2x2,3x3,2x3,3

− x1,1x1,2x2,1x2,2x3,1x3,2x3,3 − x1,1x1,3x2,1x2,3x3,1x3,2x3,3 − x1,2x1,3x2,2x2,3x3,1x3,2x3,3

− x1,1x2,1x2,2x2,3x3,1x3,2x3,3 − x1,2x2,1x2,2x2,3x3,1x3,2x3,3 − x1,3x2,1x2,2x2,3x3,1x3,2x3,3

+ x1,1x1,2x1,3x2,1x2,2x2,3x3,1x3,2x3,3
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The Monomials of BPM⋆

4

Figure C.1: The monomials of BPM⋆
4 , grouped by their coefficient.

For each coefficient, different colours indicate isomorphism classes.
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The Lattice of Matching-Covered Graphs, for n = 3

Figure D.1: The Lattice P = (MC3 ⊍ {0̂},⊆), which is isomorphic to the face lattice of the Birkhoff Polytope B3
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