
Communications of the ACM 52(5),
pp. 46-56, May 2009

BASIC SEMINAR ON SOFTWARE ENGINEERING

H E B RE W U N IVE RSIT Y | 5 M AY 2 0 1 1

•

 Good code is modular; each module has an API

•

•

•

•

•

 Intuitive
• Easy to learn
• Easy to use (even without documentation)

 Hard to misuse
• Forces you to do the right thing

 Easy to read and maintain code that uses it
 Sufficiently powerful to satisfy requirements
 Easy to evolve (to meet future requirements)
 Well documented
 Appropriate to audience

•

 APIs are provided once, but called many times

 Minor design flaws get magnified
• Problems show up at every point the API is called

 Isolated flaws can interact with each other in
surprisingly damaging ways

• Lead to a lot of collateral damage

• Select()

// API

public static void Select(List checkRead, List checkWrite,

List checkError, int microseconds);

•

// Server code

int timeout = ...;

ArrayList readList = ...; // Sockets to monitor for reading.

ArrayList writeList = ...; // Sockets to monitor for writing.

ArrayList errorList; // Sockets to monitor for errors.

// Server code

while (!done) {

SocketList readTmp = readList.Clone();

SocketList writeTmp = writeList.Clone();

SocketList errorTmp = readList.Clone();

Select(readTmp, writeTmp, errorTmp, timeout);

for (int i = 0; i < readTmp.Count; i++)

// Deal with each socket that is ready for reading...

for (int i = 0; i < writeTmp.Count; i++)

// Deal with each socket that is ready for writing...

for (int i = 0; i < errorTmp.Count; i++)

// Deal with each socket that encountered an error...

if (readTmp.Count == 0 && writeTmp.Count == 0 && errorTmp.Count == 0) {

// No sockets are ready...

}

}

•

1
•

•

•

2
•

The fewer types, functions, and parameters an API uses –

the easier it is to learn, remember, and use correctly

•

Minimize non-fundamental ‘convenience functions’ –

a function is worth adding only if it will be used frequently

•

You can always add later to an API, but you can never remove

3
•

 Consider a string map (string pairs of key-value)
 Lookup method behavior if mapping is not set:

• Throw a VariableNotSet exception
• Return null
• Return the empty string

4
•

 Dictates semantics, style

•

 Lookup() should return null

•

 Catches more compile-time errors

 Select() fails this

•

 Displease everyone equally

 Strategy design pattern is useful – caller-provided policies

e.g. Comparator, Templates

•

•

•

•

 makeTV(false, true);

 makeTV(Color, FlatScreen);

5

6
•

 A good API is clear about what it wants to achieve and what it doesn’t

 "I should not pay for what I don't use"

•

 It’s an illusion; caller does the dirty work instead of the API

 Select() fails this…

•

 If so, do I have valid reasons for not doing it?

7
•

•

 Implementer is mentally contaminated by the implementation

 Tends to write what he or she has done

 Too familiar with API, assumes some things are obvious

 Misses important use cases

•

 Neither caller nor implementation concerns are neglected

•

 Check how much of the API can be understood without documentation

char *strncpy(char *dst, char *src, size_t n);
void *bcopy (void *src, void *dst, size_t n);

8
•

•



 Use simple and uniform naming conventions for related tasks
 Easier to use and memorize
 Enables transference of learning

•
 Good APIs

read like prose

 Names are a good indication of how good your design is

if (car.speed() > 2 * SPEED_LIMIT)
speaker.generateAlert("Watch out for cops!");

•

•
 Recognition of the importance of the topic

•
 Retain experienced programmers

 Software designers should eat their own dog food

•
 There are APIs whose correct functioning is of immense importance;

any change in them incurs an enormous economic cost

 Find the right balance between legislation and open peer review

•

•

•

•

•

•

•

 A good API is a subjective term

 You have to know your audience

•

 Serious mistakes in APIs can cause
unprecedented damage

•

•




•


