b

BASIC SEMINAR ON SOFTWARE ENGINEERING
J~ HEBREW UNIVERSITY | 5 MAY 2011

Design Matters

Michi Henning

Chief Scientist of ZeroC

Presented by
Danny Burakov

Communications of the ACM 52(5),
pp. 46-56, May 2009

Prominent Australian software engineer

25+ years of experience

Worked on ICE, CORBA, Unix kernel

More info: www.triodia.com

NSS | """ A TS B .

Why is APl Design important to you?

* If you program, you are an API designer
= Good code is modular; each module has an API

* Good APIs increase the pleasure and productivity of the
developers who use them

* Thinking in terms of APIs improves code quality

» Designing a bad API can have a great cost

Good APls are hard

* We recognize a good APl when we use one

* Characteristics of a Good API:

= |ntuitive
* Easy tolearn
* Easy to use (even without documentation)

* Hard to misuse

* Forces you to do the right thing
= Easy to read and maintain code that uses it
= Sufficiently powerful to satisfy requirements
= Easy to evolve (to meet future requirements)
= Well documented
= Appropriate to audience

Why so many bad APIs?

- = . = B

* They're too easy to create.

= APIs are provided once, but called many times

= Minor design flaws get magnified
* Problems show up at every point the API is called

= |solated flaws can interact with each other in
surprisingly damaging ways
* Lead to a lot of collateral damage

Fxample - Select () function

« .NET socket Select () functionin C#

// API
public static void Select(List checkRead, List checkWrite,

List checkError, int microseconds);

* Typical use

// Server code

int timeout = ...;
ArrayList readlList = ...; // Sockets to monitor for reading.
ArrayList writelist = ...; // Sockets to monitor for writing.

ArrayList errorlList; // Sockets to monitor for errors.

// Server code
while (!done) {

SocketList readTmp = readList.Clone();
SocketList writeTmp = writelList.Clone();
SocketList errorTmp = readlList.Clone();

Select(readTmp, writeTmp, errorTmp, timeout);

for (int i = 0; 1 < readTmp.Count; i++)

// Deal with each socket that is ready for reading...
for (int i = 0; 1 < writeTmp.Count; i++)

// Deal with each socket that is ready for writing...
for (int i = @; i < errorTmp.Count; i++)

// Deal with each socket that encountered an error...

if (readTmp.Count == 0 && writeTmp.Count == @ && errorTmp.Count == Q) {
// No sockets are ready...

The cost of poor APIs

Require writing Makes programs larger,
additional code less readable and less efficient

Difficult to
Longer to Increased
understand and :
: write code development cost
work with
Results in Higher likelihood for Increased
complex code expensive, undetected bugs testing effort

e Cumulative cost easily runs to
many billions of dollars

So, how to do better?

gell

S 'consider

Sufficient Functionality

APl must provide sufficient
functionality for the caller to
achieve its task.

Insufficiency can go undetected

Use a checklist of functionality

Smaller is Better

APl should be minimal.

The fewer types, functions, and parameters an APl uses —

the easier it is to learn, remember, and use correctly

Don't impose undue inconvenience on the caller

Minimize non-fundamental ‘convenience functions’ —

a function is worth adding only if it will be used frequently

When in doubt - leave it out

You can always add later to an API, but you can never remove

Understand the Context

* APIs cannot be designed without
an understanding of their context.

= Consider a string map (string pairs of key-value)
= [ookup method behavior if mapping is not set:

Exa m p ‘ e Throw a VariableNotSet exception

e Return null
e Return the empty string

General-purpose APIs should be "policy-free’,
Spedial-purpose APIs should be "policy-rich”

APIs inevitably dictate policy

= Dictates semantics, style

Little known context — keep all options open
» Lookup () should return null

More known context — set more policy
= Catches more compile-time errors
= Select() fails this

You cannot please everyone; make compromises

= Displease everyone equally

= Strategy design pattern is useful — caller-provided policies

e.g. Comparator, Templates

Design from the perspective of the caller

APl is a user interface, just as much as GUI

" makeTV (false, true);

Example
" makeTV (Color, FlatScreen);

Let the customer write the function signature

Design with needs of the caller in mind

... even if it makes your job more complicated

Don't “Pass the Buck”

Don't be afraid to set policy
= A good APl is clear about what it wants to achieve and what it doesn’t
= "l should not pay for what | don't use"

Don't sacrifice usability on the altar of efficiency
= |t’s an illusion; caller does the dirty work instead of the API
= Select() fails this...

Is there anything | could reasonably do for the caller | am
not doing?

= |fso, do | have valid reasons for not doing it?

Document Before You Implement

* Never forget: documentation is part of the API.

* Worst person to write documentation is the implementer, and

worst time is after implementation
= |mplementer is mentally contaminated by the implementation

= Tends to write what he or she has done
= Too familiar with API, assumes some things are obvious

= Misses important use cases

* Caller and implementer should iterate over the design

= Neither caller nor implementation concerns are neglected

* The APl should be tried out by someone unfamiliar with it
= Check how much of the API can be understood without documentation

Good APIs are ergonomic

Ergonomics are hard to pin-down

Be Consistent

char *strncpy(char *dst, char *src, size t n);

- E |
(bad) Example void *bcopy (void *src, void *dst, size_t n);

= Use simple and uniform naming conventions for related tasks
= Easier to use and memorize
= Enables transference of learning

Names matter - they should be largely self-explanatory

= Good APIs if (car.speed() > 2 * SPEED_LIMIT)
read like prose speaker.generateAlert("Watch out for cops!");

= Names are a good indication of how good your design is

APl Change Requires Cultural Change

* We need to address the problem at its root

* Education

= Recognition of the importance of the topic

* (Career Path

= Retain experienced programmers

= Software designers should eat their own dog food

» External Controls - legislation, peer review

= There are APIs whose correct functioning is of immense importance;
any change in them incurs an enormous economic cost

" Find the right balance between legislation and open peer review

summary Conclusions

* APlis one of the most * We lack a precise definition of a good API
fundamental parts of

programming « We need API design patterns

* Poorly designed APIs are
as common as ever

* It'simpossible to please everyone
= Agood APl is a subjective term

= You have to know your audience
* Guidelines for how to

'MProve * We better start treating this issue more
seriously
* Look beyond the mere = Serious mistakes in APIs can cause
technical issues unprecedented damage

* APl Design truly matters — we'd better
realize it before we're left without choice

L

Thank you!

Questions, please

e et N
o e N N N N

N N Nt N

20

w

* How To Design A Good APl and Why it Matters

= Joshua Bloch, Google Tech Talks
" www.youtube.com/watchv=aAb/hSCtvGw

* API Design Wiki
" www.apidesign.org -

Additional Resources | courtesy of Google

