
Metrics and Benchmarking for Parallel JobSchedulingDror G. Feitelson1 and Larry Rudolph21 Institute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelhttp://www.cs.huji.ac.il/~feit2 Laboratory for Computer ScienceMITCambridge, MA 02139http://www.csg.lcs.mit.edu:8001/Users/rudolph/Abstract. The evaluation of parallel job schedulers hinges on two things:the use of appropriate metrics, and the use of appropriate workloads onwhich the scheduler can operate. We argue that the focus should be onon-line open systems, and propose that a standard workload should beused as a benchmark for schedulers. This benchmark will specify dis-tributions of parallelism and runtime, as found by analyzing accountingtraces, and also internal structures that create di�erent speedup and syn-chronization characteristics. As for metrics, we present some problemswith slowdown and bounded slowdown that have been proposed recently.1 IntroductionSince the performance of a computer system depends on the workload whichit is processing [3, 18], we argue that a workload benchmark suite is needed inorder to evaluate and compare the many features of job schedulers for parallelsupercomputers. But unlike standard benchmarks suites that consist of a setof \representative jobs" executed in isolation, a workload benchmark speci�esthe submission of jobs into the system and characterizes the types of jobs. Partof this characterization may include a description of the internal structure ofthe jobs themselves. This additional speci�cation allows one to exercise variousscheduler features.A workload benchmark is likely to be useful in quantitative comparisons oftwo di�erent job schedulers, perhaps even if they are executing on two di�erentmachine types. The only requirement is that the same type of generic workloadwill be relevant to both machines. Moreover, it is useful in evaluating the impactof various scheduler features. For example, it will be possible to evaluate thebene�t of a scheduler sensitive to the mass-storage needs of its workload over onethat ignores them. It is by far preferable to demonstrate the usefulness of somescheduler feature on a workload that is representative of what may occur on real



systems, rather than generating one's own workload tailored to demonstratingthe superiority of one's new feature.There are other approaches to scheduler evaluation. One common methodis to use traces of real workloads directly. The problem with this approach isthat such traces are not necessarily representative, and that they only providea single data point. In order to be able to assess the importance of di�erentcharacteristics of the workload, it is better to use a synthetic benchmark suite.Analytical methods are another common approach. Although this works �ne incertain limited domains, most realistic scenarios are too complex. These methodsmake assumptions about the workload of the scheduler. It is the claim of thispaper, that the workload assumptions should be standardized. It does not matterif the synthetic workload is input to analysis, simulation, emulation, or realexecution.We start by explaining the di�erent types of system dynamics that may beassumed, and justifying our focus on on-line, open systems (Section 2). As itseems premature to fully specify a benchmark, we discuss the speci�cations thatare needed and identify topics that require additional research (Section 3). Adiscussion of metrics then follows since it is the goal of a scheduler to optimize oneor more metrics (Section 4). Then we discuss implementation concerns (Section5) and �nally present our conclusions (Section 6).2 Types of Queueing SystemsA computer system is essentially a queueing system: jobs arrive, may wait forsome time, receive the required service, and depart. Such systems can be clas-si�ed as on-line vs. o�-line, with the on-line branch being further classi�ed asopen or closed (Fig. 1). All of these classes have been used in the analysis ofcomputer systems.
off-line openclosedFig. 1. The three generic types of queueing systems.O�-line analysis assumes all the jobs | and maybe also their resource re-quirements | are available from the outset. There are no additional arrivalslater. The scheduler can then pack the jobs together in order to minimize thetotal processing time. Such a model is often suitable for space slicing, batch jobschedulers and their performance can often be predicted using analytical meth-ods [7]. It is also convenient for measuring the execution of real applications asscheduled by real schedulers.Alternatively, one can assume an on-line model where jobs arrive over aperiod of time. In this case the scheduler must handle new jobs \in real time,"



without the bene�t of prior knowledge about future arrivals. A closed on-linesystem assumes that there is a �xed set of jobs to be handled. Thus arrivalsare in e�ect linked with departures of previous jobs, and there is a bound onthe maximum number of jobs in the system at any one time. Although moredi�cult, such a workload model is still amenable to analytic analysis.The approach followed in this paper can be characterized as an open, on-line system in which there is an endless stream of jobs arriving for service. Thismost closely models the challenges of real job schedulers, where arrivals areindependent of departures and indeed of the current load conditions. However,this type of model is more complex, because the arrival process has to be modeledas well.Using an open, on-line model implies that the scheduler must be able tohandle extreme situations, since in an open system, the tail of a distribution canand will occur. In fact, part of the analysis is to see when the scheduler breaksdown because it can no longer handle the incoming load (this always happenswhen the load approaches the system capacity). Such an analysis is not possiblewith o�-line or closed models.
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stateFig. 2. User reaction to system performance may be described by supply and demandcurves. Only the \system e�ciency" curve need be characterized in order to evaluatethe system.At �rst blush, it appears that the modeling process is complicated by thefact that users may react to certain \features" (or bugs :-) of the job scheduler.Sophisticated users will learn to exploit imbalances, and cause a bias in theworkload. Static workloads, such as those assumed by o�-line or closed on-lineanalysis, cannot capture such user's reactions. Dynamic workloads | as in on-



line open systems | allow for a better characterization of the system, but moreimportantly, they leave the modeling of the user as a separate issue (Fig. 2).Finally, we note that the use of dynamic workloads captures some second-order e�ects, whereby feedback due to system characteristics may modify theworkload. Examples include jobs that receive preferential treatment, and there-fore stay in the system less time, whereas jobs that receive degraded service stayin the system longer than may be expected. As a result the observed mix hasmore \bad" jobs than the original mix. While it is not clear whether such e�ectsare really signi�cant, it is prudent to be conservative and use a model that doesnot preclude them.3 Workload Speci�cationsA workload description for an on-line, open system can be viewed as consistingof two major components: job arrival and job structure. Each job arrives at aspeci�c time and requires a speci�c amount of processing time, which we referto as work. Thus, there is a model for the distribution of the arrival process anda separate model for the distribution of each particular job's work requirement.Fortunately, trace data accumulated at various supercomputer computation cen-ters enables realistic models.The �rst component describes how jobs are submitted to the system overa period of time. This can be somewhat involved, as a distinction has to bemade between short interactive jobs and long batch jobs. In addition, there aredaily and weekly cycles in the arrival process, due to the working patterns of thehuman users of the system.The second component is that of modeling the work requirements of eachjob. This can be done in a monolithic manner, or else the internal structureof each job can be speci�ed. As additional internal job structure is modeled,more sophisticated scheduler features can be evaluated, presumably resultingin a more e�cient system. Unfortunately, there is not much hard data thathas been measured about typical internal structural distributions, but there arecommon scenarios. The most common and clearly identi�able structures are thecomputational structure (parallelism and barrier synchronizations), interprocesscommunication, memory requirements, and I/O needs. The discussion will belimited to only the computational structure because of two reasons: it is the oneabout which we have some knowledge about typical patterns and it illustratesthe speci�cation choices.The rest of this section addresses possible choices for arrival and computa-tional structure distributions.3.1 Modeling Job ArrivalsTwo broad classes of arrival scenarios can be identi�ed. In one, the arrival processis a memory-less, continuous process. In the other, it is cyclic. The latter casemore closely represents observed arrival patterns, where the number of jobs
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time of dayFig. 3. Left: cyclic job arrival pattern in the NASA Ames iPSC/860 (from [10]). Right:model of Calzarossa and Serazzi for workload at the University of Pavia [2].submitted strongly correlates with the time of day and the day of the week (Fig.3). However, the simpler continuous model is the one that system performanceevaluation almost always uses in practice. This has the unfortunate e�ect ofexcluding the evaluation of scheduler optimizations that increase the priority ofinteractive jobs during the day, at the expense of computational (batch) jobsthat are delayed to when more resources are available at night.It should be noted that a good model of the arrival process is also necessary inorder to create various load conditions for the evaluation. If the cyclic structureof the arrival process is acknowledged, it is no longer possible to increase theload by uniformly reducing the interarrival times, because such a practice willalso shrink the cycle length. Regrettably, very little work has been done on thederivation of realistic models.The only detailed model we know of was proposed by Calzarossa and Serazzi[2]. This model uses a polynomial of degree 8 to model the changing arrival rateof interactive work (Fig. 3). The proposed polynomial for \normal" days is�(t) = 3:1�8:5t+24:7t2+130:8t3+107:7t4�804:2t5�2038:5t6+1856:8t7+4618:6t8where �(t) is the arrival rate at time t, and t is in the range [�0:5::0:5], and shouldbe scaled to the range from 8:30 AM to 6:00 PM. This expression represents thecentroid for a set of polynomials that were obtained by �tting measured resultsfor di�erent days. Slightly di�erent polynomials were discovered for abnormaldays, in which the administrative o�ce closed early, or were the �rst day aftera weekend or a holiday. While the authors warn against using this data withoutadditional veri�cations, we propose it as an initial model until more suitableones are derived.Much additional work is required in order to better characterize the arrivalprocess of parallel jobs. Speci�c research questions include



{ The possible di�erentiation between arrival models for batch and interactivejobs. Do both types of jobs arrive according to the same patterns?{ The possible correlation of arrival time with work requirement. Are jobs thatarrive at di�erent times of the day and night statistically equivalent, or dothey tend to have di�erent structures? For example, do users submit smallerjobs during the morning and larger ones in the afternoon, in anticipation ofthe resources that will be freed up at night?3.2 Modeling Rigid JobsAt the least speci�c level, no internal computational structure is speci�ed and ajob consists of just an amount of work. This work can be processed sequentiallyor in parallel, with no loss of e�ciency. However, such a model is usually toosimple minded to be useful.The simplest useful model is rigid jobs, in which both the work and thedegree of parallelism are speci�ed. This is an \external" model, with no details ofthe internal structure of jobs. It is useful because many parallel supercomputersprovide schedulers for this type of jobs, and because this type of workload modelcan be derived from accounting logs. Indeed, a number of such models havealready been derived and used in the evaluation of schedulers for parallel systems[8,15, 18].
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Interestingly, the accounting logs from many diverse systems show severalcommoncharacteristics, most of which were not anticipated in advance. One suchcharacteristic concerns the distribution of job sizes, i.e. the number of processorsthat are used. It turns out that even in very large machines, small jobs usingonly a handful of processors dominate the workload (in terms of number ofjobs, though not in terms of runtime). In fact, in machines having more thanabout 100 processors, there are usually only very few jobs that use the wholesystem. In addition, there is a strong tendency to use a power-of-two numberof processors, even if this is not warranted by the architecture. A representativedistribution of job sizes, taken from the 400-node Paragon machine at San-DiegoSupercomputer Center, is shown in Fig. 4.Modeling the distribution of degrees of parallelism is relevant for schedulersthat handle rigid jobs. We propose the following approach: �rst, model the over-all distribution as linear in the logarithm of the parallelism, as suggested byDowney [5]. This means that the probability of using fewer than n processors isroughly proportional to logn. Then, modify the distribution by creating steps atpowers of two. The size of the steps is determined by a parameter describing theworkload, which speci�es what percentage of the jobs use power-of-two nodes.The value for the SDSC Paragon cited above is about 81% (including 21% thatwere serial). More work is required to derive better models, including answersto the following questions:{ What is a good representative value for the fraction of jobs that use power-of-two processors?{ Is the use of powers of two a real feature of workloads, or only an artifactresulting from old habits and common interfaces to batch queueing systems?{ Are all powers of two equally likely?Another potentially important characteristic concerns the correlation be-tween the degree of parallelism and the runtime. In the past, it has been specu-lated that highly parallel jobs should be shorter, because parallelism is used toachieve speedup. In fact, workload traces indicate that highly parallel jobs runlonger (Fig. 5). This has two possible interpretations: either the smaller jobs aredevelopment while the larger ones are production runs, or parallelism is used tosolve larger problems rather than to achieve speedup on given problems.A possible model for such a correlation has been proposed by Feitelson [8].The basis for the model is the observation that job runtimes have a very largevariability,manifested by a coe�cient of variation that is larger than 1. A plausi-ble model for runtimes is therefore a hyperexponential distribution. For example,a two-stage hyperexponential can be used; intuitively, this means that we �rstchoose at random from two exponential distributions according to a probabilityp, and then sample the chosen distribution. The correlation with parallelism isachieved by making the probability, p, a function of the parallelism, n. Speci�-cally, Feitelson used p(n) = 0:95� 0:2(n=N )where N is the system size; thus for small n we get that p is near 0.95, and forlarge n it goes down to 0.75. Given p, sample an exponential distribution with



0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime

LLNL Cray T3D

1st q
2nd q
3rd q
4th q

Fig. 5. Correlation of runtime with parallelism is evident when the distribution ofruntimes is plotted for 4 sets of jobs independently, where each set contains jobs witha di�erent degree of parallelism. The weight of the distribution for the set with thesmallest jobs is at low values, while jobs with high parallelism tended to have higherruntimes as well. (Data from LLNL Cray T3D.)mean 1 with probability p, or a distribution with mean 7 with probability 1� p.We are now working on a better model, that will be based on better statisticalanalysis of workload traces.Simpler models for job runtime have also been proposed. For interactive jobs(e.g. in a Unix environment), it has been suggested that job runtimes have acumulative distribution of F (t) = tk, with k � �1, provided the jobs are longerthan a second or so [13]. This means thatp(runtime = t j age = 1sec) = 1=t2For batch jobs, it has been proposed that the logarithms of the runtimes areuniformly distributed, so their cumulative distribution is linear, F (t) = a ln t+b,with a � 0:1 [6]. This leads top(runtime = t) = 1=10t3.3 Modeling Internal Job StructureJobs come in many di�erent shapes, sizes, and styles, and it is important tomodel much of this internal job structure since models of rigid jobs do not allowfor the evaluation of many innovative schedulers. For example, schedulers maywish to change dynamically the degree of parallelism provided to a job, in orderto account for various load conditions. The resulting performance depends onthe speedup curves of the application [21,19]. Thus, for each job, it must bepossible to compute runtime as a function of partition size. Another example



is that a scheduler may want to modify the \gangedness" of an application,that is the degree to which all the processes execute simultaneously on distinctprocessors. Again, the resulting performance depends on the characteristics ofthe application [17], and the workload model must specify runtime as a functionof skew.There are two general methods for modelling the \internal" job structure.One is based on equations describing job behavior. This approach has been usedfor analyzing speci�c situations, such as how runtime changes with degree ofparallelism for adaptive partitioning [20, 4]. However these equations are typ-ically expressed as speedup functions, and imply some assumption about thescheduling, e.g. that all the threads execute simultaneously without interference[19]. A more general approach is to specify the internal structure so that simu-lation or detailed analytic methods can be used to calculate the runtime fromthe structure.A hierarchical model that includes the internal structure of the workloadhas been proposed by Calzarossa et al [1]. Their model includes the levels ofapplications, algorithms, and routines, and thus is suitable for the modelingof real applications. We prefer a synthetic workload that only includes certainabstract structures.
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keep the set of alternatives manageable, it is necessary to exclude many combi-nations. At the top level are external models as described above. Lower levelsinherit the distributions of total work in the di�erent jobs, and add internalstructure. Two basic internal structures are proposed: one in which the com-putation is organized as communicating threads that synchronize with barriers,and the other in which the computation is organized as an unordered workpile.The barrier structure has a variant in which the number of threads changes frombarrier to barrier | this is essentially the fork/join model that represents a se-quence of parallel loops. All models are parameterized by their granularity: forbarriers, this is the amount of computation each thread does between barriers;for workpile, this is the typical task size. Finally, in all models we may add im-balance by specifying a distribution of task sizes. Workload parameters used tode�ne these workloads are described in Section 5.One anticipated use of the workload models is that one can choose the modelthat is most suitable to exercise the scheduler being evaluated. Another impor-tant use is to check how the scheduler handles jobs with other characteristics,that are not speci�cally dealt with in the design of the scheduler. For example,how does a gang scheduler handle a job with evolving parallelism?And how doesa two-level scheduler with dynamic partitioning handle a strictly SPMD codewith barriers?While standardization of the job structures that are used to benchmark par-allel job schedulers is important, it does not cover the whole workload modelingquestion. The missing part is creating a job mix from these structures. One mustalways be careful when evaluating a scheduler with a set of jobs that all havethe same structure, because then the likelihood of correlations between the jobsgrows. Regrettably, there is no information about typical and realistic job mixes.The de�nition of good mixes is left as a question for future research.4 Performance MetricsAs noted in Section 2, computer systems can be modeled in several ways. Foreach type of system, a di�erent metric is commonly used (Fig. 7). In this sectionwe investigate metrics related to the response time, which is the most suitablefor open on-line systems, and explain why we do not use other metrics such asutilization and throughput.4.1 Metrics and System TypesOne problemwith selecting a performance metric is that in a real system di�erentmetrics may be relevant for di�erent jobs. For example, response time may bethe most important metric for interactive jobs, while system utilization is moreimportant for batch jobs. But in an open, on-line system, utilization is largelydetermined by the arrival process and the requirements of the jobs, not by thescheduler. This leaves response time as the main metric.
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4.2 Response Time, Slowdown, and Bounded SlowdownThe average response time is a widely accepted metric for open, on-line systems.However, it seems that this metric places greater emphasis on long jobs, asopposed to short jobs, which are much more common. For example, the averageresponse time of 100 1-hour jobs and one 3-week job is 6 hours. A possiblesolution to this problem is to normalize the reported values by using slowdownrather than raw response time (slowdown is de�ned as runtime on a loadedsystem divided by runtime on a dedicated system). Thus all jobs are reduced tothe same scale, with 1 indicating good performance, and higher values measuringthe degree of degradation. The problem with slowdown is that extremely shortjobs with reasonable delays lead to excessive slowdown values. For example, a1 second job that is delayed for 20 minutes su�ers a slowdown of 1200. Theproposed solution to this problem is to apply a lower bound on job runtimes,e.g. 10 seconds [12]. Shorter jobs are treated as if their duration is this lowerbound; in the above example, the bounded slowdown value is then 120 ratherthan 1200.The above \handwaving" arguments indicate that using bounded slowdownshould lead to measurements with less variance (and thus quick convergence)that take fair account of all jobs. Regrettably, actual measurements seem toindicate that this is in fact not always the case. The following results are froma simulation of variable partitioning with back�lling, using a realistic model ofrigid jobs (similar to the proposal in Section 3.2), and assuming a system of 128nodes. This is one of the simulations reported in [9], which has been instrumentedto collect more data.Fig. 8 shows the behavior of the three metrics (response time, slowdown, andbounded slowdown) for the �rst 5000 jobs in the simulation run. The individualvalue for each job is plotted, as well as a running average. It shows that whileresponse times vary much more than slowdowns, both types of slowdown su�erfrom bursts of very high values. As a result, the running average of the slowdownconverges more slowly than that of the response time. Bounded slowdown issomewhat better.The same e�ect can be seen in Fig. 9, in which the average values are plottedfor a very long simulation. remarkably, the plot for the bounded slowdown isnearly identical to that of the response time, whereas the one for slowdown ismuch more erratic. Nevertheless, even the \better behaved" response time andbounded slowdown continue to vary even after more than 200000 jobs have beensimulated. This is extremely long, considering that typical large supercomputersexecute less than 100000 jobs in a whole year.Some insights can be obtained from Fig. 10, which shows a scatter plotsof slowdown and bounded slowdown vs. response time. Two clusters stand outin these plots. In one cluster, jobs have a high response time coupled with alow slowdown. This means that these are long jobs, and the high response timeactually reects their computational demands. In the other cluster the slowdownis proportional to the response time, with much weight concentrated where bothslowdown and response time are high. This cluster includes jobs that are actually
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Fig. 8. Pointwise and running average of metrics for �rst 5000 jobs in simulation.



0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000 300000 350000

av
er

ag
e 

re
sp

on
se

 ti
m

e

number of jobs

0

200

400

600

800

1000

1200

1400

1600

0 50000 100000 150000 200000 250000 300000 350000

av
er

ag
e 

sl
ow

do
w

n

number of jobs

0

50

100

150

200

250

300

0 50000 100000 150000 200000 250000 300000 350000

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

number of jobsFig. 9. Running average of metrics for a very long simulation. Each data point repre-sents an additional 3333 job terminations.



0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06

sl
ow

do
w

n

response time

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06

bo
un

de
d 

sl
ow

do
w

n

response timeFig. 10. Scatter plots of slowdown vs. response time.quite short, and their high response time reects time stuck in the queue waitingfor some long job to terminate. Using bounded slowdown trims the most extremevalues in this case (bottom plot), where the jobs that are delayed are very short.In this cases the denominator in taken as a constant, rather than being the job'sruntime, leading to values that are linearly related to the response time | hencethe similarity of bounded slowdown and response time.Nevertheless, this manipulation can't make the problem go away. Due tothe high variability of runtimes, at rare intervals a long job comes along andjerks the response time; it also causes multiple short jobs to wait, and thus jerksthe slowdown and bounded slowdown. However, this is actually an artifact ofthe scheduler used in these simulations, which is based on variable partitioningand causes short jobs to be delayed. The behavior of slowdown and boundedslowdown with mechanisms that do not delay jobs, such as gang scheduling ordynamic partitioning, is expected to be di�erent.In summary, the question of what makes a good metric is still open. Morework is required in order to re�ne our understanding of the relations between



response time, slowdown, and bounded slowdown, and maybe additional metricsshould also be investigated.4.3 Workload-Dependent MetricsOur proposed benchmark suite (Section 3) contains families of programs whosebehavior depends on a parameter that speci�es their granularity. The resultswill naturally depend on the value chosen for this parameter. One approach is toreport performance results for a range of granularity values. Another is to makesuch detailed measurements, but report only the following:1. The best performance that is obtained, at either very high or very low gran-ularity, and2. The granularity at which half this performance is obtained.This approach is inspired by the r1; n1=2 metrics proposed for vector processors[14].5 Implementation IssuesThis section addresses some practical issues for the implementation of a workloadbenchmark generator. There is a small set of parameters that need to be speci�edin order to generate the workloads discussed in Section 3. Some parameters dealwith the external job structure, while the rest deal with the internal job structure.The basic idea is to have one common set of parameters through which therelevant internal job structure features can be speci�ed. Then, a single syntheticjob skeleton is required for either a simulated or real execution environment.Of all the parameters, there is su�cient trace data to realistically model thearrival time of a job and its parallelism. There is little or no data concerningthe internal job structure. It is therefore hard to assess representative distribu-tions of the parameter values. Unfortunately, when executing jobs in a parallelenvironment, the actual time of the execution of individual pieces of code is ofcrucial importance. In particular, if the time between barriers is too short, theimplementation of the barrier may dominate the performance.5.1 Workload Parameter SpaceWe de�ne small set of parameters that can be used to capture all the workloadsde�ned in Section 3. This is based on the observation that they are all expressibleby various combinations of barrier synchronizations and workpile semantics. Byworkpile semantics we mean that processors do not stay idle if there is an atomicunit of work to execute; thus if the number of work units is no more than thenumber of processors, they get mapped one each to the processors. If there aremore work units than processors, they are executed in an unde�ned order by theprocessors as they become available.



W Total number of work units in the jobPl; Pu lower and upper bounds on the number of processorsBl; Bu lower and upper bounds on the number of barriers�wi; wstd mean number of work units per barrier,standard deviation of the work units per berrier�ui; ustd mean compute time of a work unit,standard deviation of work unit timeFig. 11. A proposed set of parameters to specify the internal structure of a workload.The table in Fig. 11 lists the parameters. The idea is that the work doneby the job is the sum of many atomic work units, W , which are each computedby a single processor. Precedence constraints between these work units, if any,are expressed by the number B of barrier synchronizations. The number of workunits between barriers wi therefore represents the degree of parallelism in thatphase. The mean compute time of a work unit u is used to calibrate the workloadacross di�erent machines. The variability of u, expressed as its standard variationustd, can be used to add variability among work units.The next paragraphs explain how to set these parameters to specify thedi�erent workloads.Rigid Jobs Rigid jobs are usually represented by two parameters: the num-ber of processors P and the execution time T . It is assumed that the job isgang scheduled, since if it is not, then there is not enough internal structure tounderstand the runtime.
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u    = 0 u    > 0stdFig. 12. Expressing a rigid job structure with the parameters.This formulation is expressed using our parameters by creating P work unitsthat execute on P processors for T time, with no additional structure (Fig. 12).The de�nitions of P and W are then Pl = Pu = P and W = P . Since there isno internal structure, the rest of the parameters are easily set too: Bl = Bu = 0,



w0 = P , wstd = 0. The mean compute time �u links with the parameter Tnormally used to express the duration of rigid jobs: �u = T , ustd = 0. In fact, wecan say that the total work in work units is actually W = PT=�u, but becausethere is only one work unit on each processor, T and �u cancel out. The variabilityof ustd can be used to express imbalance among the processors.Workpile A workpile job has no real internal structure, rather there is a pileof work to be processed. The more processors there are, the faster the work canbe processed. However, there is often a minimal number of processors requiredto meet resource constraints (e.g. to have enough memory). There is also amaximum number of processors that can be assigned to a job. This is triviallybounded by the total number of processors in the system. Therefore the tworelevant parameters typically used to describe a workpile are W and Pmin. It isusually assumed that there is a linear speedup for processing the job.
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Fig. 13. Expressing a workpile job structure with the parameters. With W > P thereis no internal structure.These parameters are easily converted to our job parameters as follows. Wis simply the number of work units in the pile. Pl = Pmin based on resourcerequirements, and Pu = Pmax. There are no barriers, so Bl = Bu = 0, w0 = W ,and wstd = 0. Assuming W > Pmax, there are more work units then processors,and they can therefore be computed on any processor in any order. �u can be setas desired for calibration, and ustd is used to add variability in work unit sizes.Barriers The main internal job structure feature in this type of job is the num-ber of barriers. The crucial parameter in terms of scheduling and performanceis the granularity of each barrier. A secondary issue is how the barrier is imple-mented: with busy wait, with yielding, with operating system help, or with somecombination of these; this a�ects overhead.Let us start with a simple case in which each processor performs one unit ofwork at each barrier (Fig. 14). This is expressed by wi = P; 0 � i � B, where Bis the number of barriers in the job. It then follows that B = W=P (assuming
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w  = PFig. 14. Expressing a simple barrier job structure with the parameters.that the number of processors is �xed: Pl = Pu = P ). Alternatively, it is possibleto select B from the range Bl � B � Bu, and then set W = BP . This is usefulto create a workload of non-identical jobs, representing runs that took a di�erentnumber of iterations to converge. The granularity of the barriers is expressed by�ui. Alternatively, the granularity may be expressed using a \workpiles betweenbarriers" structure. This structure represents a sequence of parallel loops, wherethe iterations are independent of each other and can be done in any order. Inthis case wi > P for all i, so all the processors share all the work units betweenbarriers in a workpile manner. The granularity can then be expressed in workunits, rather than in time, as �wi=P : this is the average number of work unitsper processor per barrier. The number of barriers is implicitly de�ned by theformula B = W= �wi.Fork-Join There is a large class of jobs in which the amount of parallelismvaries during the course of the execution. For example, there may be a sequenceof parallel loops with di�erent degrees of parallelism, or separated by sequentialphases. It is possible to express such structures by using di�erent values for wi,the number of work units associated with barrier i (Fig. 15).If wi � P for all i, then some processors will be idle in some phases, becausethere are less work units than processors. If wi > P in some phases, the workunits are computed as a workpile in this phase; if it is in all phases, this is thesituation discussed above. The number of processors P can be �xed, or else it canvary according to resource requirements and availability, leading to a continuumof possibilities between these two end points.Creating a Job Mix We note that although it is possible to allow all theparameters to vary, it is doubtful that much meaningful information can begathered from such cases.There are two choices for specifying the mean values and their standarddeviations: they can be identical for all the jobs (but each job has its own uniqueseed to the random number generator), or they can be generated from some
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Fig. 15. Expressing a variable-parallelism job structure with the parameters.other distribution during job creation. Without any hard evidence from actualworkloads, it is impossible to say which is preferable. The mechanisms outlinedabove easily permit either approach.5.2 Granularity IssuesAlthough we leave the actual distribution of the parameters as a subject for fu-ture research, there are some interesting points to be noted about the granularityof barriers, or in other words, the length of time of a work unit. It seems to bevery important to get this value correct: if it is too big, there is little bene�t forgang scheduling and if too small, jobs may never complete.When there is a large value for a work unit, nearly as long as a time quantum,there is almost no di�erence between workpile or barrier. Moreover, there is littledi�erence whether or not the system is gang scheduled or not. Similarly, whenthe work unit is very small the job terminates within the �rst time quantum,assuming that the processors all begin at the same time.The number of barriers is also a sensitive issue. If there are too many barriers,the work-unit is short, and the system is not gang-scheduled, many jobs maynever terminate. On the other hand, if the are only a few barriers, and the work-unit is short, then jobs may terminate within the �rst time quantum. Furtherexperimentation is necessary to resolve these issues.As an example, we experimented with a job with 10,000 barriers executedon an SMP IBM RS/6000 workstation with four PowerPC 604 Processors. Theupper table in Fig. 16 shows the execution times on an idle system, as a functionof the duration of the work units between barriers and the number of processors.Barriers were implemented by the MPI function. Notice that it is not until thework unit is 105 instructions long, that a linear speedup occurs. In the bottomtable, the same set of experiments were performed while another 4 node job wasexecuting. Here the four node jobs execute relatively worse than the others untilthe granularity is even larger.Another example shows a case of shared memory jobs executed on the sameidle system while varying the number of processors from 1 to 4. The barrier



Empty Machinegranularity of work between barriersP 100 101 102 103 104 105 1061 0.013 0.026 0.160 3.494 16.836 150.293 1486.2612 4.022 4.028 6.720 6.977 12.071 80.657 748.4083 5.279 7.315 7.736 54.859 500.4944 5.302 5.122 5.110 7.360 9.211 42.705 382.139With One Other Jobgranularity of work between barriersP 100 101 102 103 104 105 1061 0.013 0.026 0.160 1.697 22.233 228.080 2300.6672 8.673 6.662 8.967 10.390 21.454 144.723 1418.3243 10.080 10.015 12.114 11.206 12.696 112.375 1136.8344 11.462 13.975 11.112 12.166 19.621 104.883 1004.811Fig. 16. Run-time of an MPI program, with 10,000 barriers, and various values for thegranularity between the barriers.Empty Machine (Shared Memory Program)granularity of work between barriersP 100 101 102 103 104 105 1061 0.007 0.012 0.057 0.510 5.034 50.279 502.7612 0.022 0.024 0.047 0.227 2.822 27.188 251.6143 0.028 0.033 0.047 0.196 1.712 18.815 168.0684 2.056 0.092 0.064 0.178 1.315 14.703 128.787Fig. 17. Run-time of a shared-memory program, with 10,000 barriers, and variousvalues for the granularity between the barriers. The barriers were implemented usingbusy-waiting on a global variable protected by a system mutex lock.synchronization was executed as a busy-wait by increasing a counter protectedby a lock, and there were 10,000 barrier synchronizations. The performanceresults are shown in Fig. 17. The granularity has a large e�ect on how theprogram performs: with a shared memory implementation of barriers, linearspeedup occurs for a granularity as small as 103.5.3 Execution IssuesPortability One goal of the benchmarks is that they be executable on a largenumber of platforms { both hardware and software. But, to be useful, the portto a new system should be as smooth as possible. The problem is that di�erentsystems support di�erent features. For example, not many systems provide sup-



port for dynamically allocating and deallocating processors to jobs. It has beenclaimed that this ability dramatically improves overall performance.The easiest option is for the system to simply ignore the extra speci�cationof the job. If the amount of parallelism per barrier is variable, a system thatdoes not support this feature can simply choose the maximum parallelism.Length of Execution How long should the benchmark be executed? Giventhe probabilistic nature, given enough time, anything is likely to happen. Thatis, the system may get into a saturated state from which it never exits. We alsodo not have unbounded time in which to execute benchmarks. Experience willhave to be teacher.But we can say that the scheduler will behave di�erently during warm up andcool down. For this reason, we suggest that measurements only be taken duringthe steady-state behavior of the system. It is crucially important to ensure thatthe system does not \dry out" towards the end. For example, if we want tomeasure performance characteristics of 10000 jobs, we need to keep the arrivalprocess going until all 10000 terminate. When the system is close to saturation,this means that we may have to generate much much more than 10000 jobs.6 ConclusionsThere is still much to be done before a comprehensive workload benchmark canbe built. There are many aspects of a job's internal structure for which thereis no experimental evidence concerning their actual distributions. It is our hopethat this be recti�ed.Thus, this paper has only begun the quest for a workload benchmark and forwidely accepted and suitable metrics. Although a large design space has beenoutlined, it is likely that only a small portion of the space is needed to makeprogress. This portion should be identi�ed and subjected to a focused researche�ort.References1. M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and D. Tessera, \A hierarchicalapproach to workload characterization for parallel systems". In High-PerformanceComputing and Networking, pp. 102{109, Springer-Verlag, May 1995. Lect. NotesComput. Sci. vol. 919.2. M. Calzarossa and G. Serazzi, \A characterization of the variation in time of work-load arrival patterns". IEEE Trans. Comput. C-34(2), pp. 156{162, Feb 1985.3. M. Calzarossa and G. Serazzi, \Workload characterization: a survey". Proc. IEEE81(8), pp. 1136{1150, Aug 1993.4. S-H. Chiang and M. K. Vernon, \Dynamic vs. static quantum-based parallel pro-cessor allocation". In Job Scheduling Strategies for Parallel Processing, D. G. Fei-telson and L. Rudolph (eds.), pp. 200{223, Springer-Verlag, 1996. Lect. NotesComput. Sci. vol. 1162.
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