
Packing Schemes for Gang SchedulingDror G. FeitelsonInstitute of Computer ScienceThe Hebrew University, 91904 Jerusalem, Israelfeit@cs.huji.ac.il | http://www.cs.huji.ac.il/~feitAbstract. Jobs that do not require all processors in the system can bepacked together for gang scheduling. We examine accounting traces fromseveral parallel computers to show that indeed many jobs have small sizesand can be packed together. We then formulate a number of such packingalgorithms, and evaluate their e�ectiveness using simulations based onour workload study. The results are that two algorithms are the best:either perform the mapping based on a buddy system of processors, oruse migration to re-map the jobs more tightly whenever a job arrives orterminates. Other approaches, such as mapping to the least loaded PEs,proved to be counterproductive. The buddy system approach depends onthe capability to gang-schedule jobs in multiple slots, if there is space.The migration algorithm is more robust, but is expected to su�er greatlydue to the overhead of the migration itself. In either case fragmentationis not an issue, and utilization may top 90% with su�ciently high loads.1 IntroductionParallel supercomputers are increasingly being used in preference over the moretraditional vector supercomputers. While some of these parallel supercomputersare dedicated to speci�c applications, a large number are also used as generalpurpose servers with large and diverse communities of users. As such they mustprovide convenient scheduling facilities that will handle the allocation of re-sources to di�erent user jobs.A large number of scheduling schemes have been proposed for parallel ma-chines [7, 11]. One of these is gang scheduling, where all the threads of a paralleljob are scheduled for simultaneous execution on distinct PEs [24]. If the totalnumber of threads in all the jobs exceeds the number of PEs in the system,time slicing is used. However, the context switching is coordinated across thePEs, such that all the threads in a job are scheduled and de-scheduled at thesame time. Gang scheduling is a prominent feature of the Connection MachineCM-5 system [28], and is available on the Intel Paragon [17], the Meiko CS-2,and multiprocessor SGI workstations [2]. It has also been used extensively in ahome-grown system on a BBN Buttery at Lawrence Livermore Labs [13], whichhas recently been ported to their new Cray T3D system.The main drawback of using gang scheduling is the problem of fragmentation.Speci�cally, it may happen that a number of jobs are scheduled to run, and afew PEs are left over, but they are insu�cient for any of the other queued jobs.



The severity of this problem depends to a large degree on the distribution of jobsizes [12]. One solution, used in the CM-5, is to use all the PEs for each job,rather than allowing subsets to be used. In this paper, we investigate alternativesolutions based on di�erent schemes for packing the jobs together for scheduling.We show that it is possible to achieve signi�cant improvements over a simplebest-�t packing, using either a buddy system to control the mapping, or bymigrating jobs so as to re-map them.As noted above, the experienced fragmentation depends on the workload.Therefore an accurate workload model is essential in order to evaluate the e�ec-tiveness of the various packing schemes. To this end we have analyzed a numberof accounting traces that include information about many thousands of jobs thathave been executed on a number of parallel machines. It is felt that the resultingworkload model is much more representative of real workloads than other modelsthat have been used in the literature.The rest of this paper is organized as follows. Section 2 describes the di�erentpacking schemes that we are proposing. Section 3 describes the workload analysisand model. Section 4 then describes the experimental results obtained whenusing the di�erent packing schemes in conjunction with the workload model.The conclusions are presented in Section 5.2 Packing SchemesOur work is done within the framework of a gang scheduling system based on thematrix algorithm by Ousterhout [24]. This algorithm views scheduling space asa matrix, where rows represent time slots and columns represent PEs. Each jobis allocated to a single row. If space permits, a number of jobs may be allocatedto the same row. Gang scheduling is done by iteratively scheduling the jobs inone row after the other.The question we wish to investigate is that of packing in this matrix. Thisincludes three sub questions:1. If multiple slots have enough capacity for a new job, which one should bechosen?2. When should a new slot be opened?3. If the chosen slot has more free PEs than required, which ones should beused?The considerations involved are relatively simple. Relating to the second ques-tion, it is generally desirable to pack the jobs into the minimal number of slotspossible, because the run fraction1 for each job is equal to one over the numberof used slots. We therefore only consider algorithms that do not open new slotsunless there are no used slots with su�cient capacity (or, in one case, if the freeprocessors are not organized as needed).1 The run fraction is de�ned as the fraction of wall-clock time that the job is actuallyrunning on the CPUs, as opposed to waiting in the run queue or elsewhere.



alternative scheduling slot unification

terminatedFig. 1. Packing should be done so as to promote alternative scheduling and facilitateslot uni�cation.The other two questions can be tied together, by choosing the slot with theoptimal choice of PEs. A judicious choice of PEs is important for two reasons(Fig. 1). First, choosing a set of PEs that are free in more than one slot may allowthe job to be gang scheduled in multiple slots, thus increasing its run fraction andproviding it with better service (this is called alternative scheduling). Second, ifjobs are in general assigned to disjoint sets of PEs, then when a job terminatesit may happen that the remaining jobs in its slot use PEs that are distinct fromthose used by the jobs in some other slot. This will make it possible to unitethe two slots, thus reducing the number of used slots by one, and improving therun fraction of all jobs. Note that alternative scheduling and slot uni�cation arefeatures of the scheduler, and are independent of the packing scheme used. Thepoint made is that better packing schemes will be able to make better use ofthese features.A number of algorithms have been devised based on these considerations.2.1 Capacity Based AlgorithmsThe �rst two algorithms just check the slot's capacity.First Fit In this algorithm, the used slots are scanned in serial order. The �rstone with su�cient capacity is chosen. If no used slot has su�cient capacity, anew slot is opened. Within the chosen slot, free PEs are allocated in serial order.Best Fit In this algorithm, the used slots are sorted according to their capac-ities. The one with the smallest capacity that is su�cient is chosen. If no usedslot has su�cient capacity, a new slot is opened. Within the chosen slot, freePEs are allocated in serial order.2.2 Left-Right Based AlgorithmsThe next two algorithms are modi�cations of the best �t algorithm, and modifythe way that PEs are allocated within the chosen slot. The idea is to start from



both sides, so as to reduce the overlap between sets of PEs assigned to di�erentjobs.Left-Right by Size In this algorithm,PEs are allocated either in serial order orin reverse serial order. The decision depends on the new job's size: for small jobs,the allocation is left-to-right, and for large jobs it is right-to-left. the thresholdbetween small and large jobs should be near the median job size. In this studywe assume 128 processors and use a threshold of 8, which reects the fact thatsmall jobs are much more common (see Section 3.1).Left-Right by Slots In this algorithm PEs are again allocated either fromthe left or from the right, but here the decision depends on the slot. Slots arealternately designated as being �lled from the left or from the right. All jobsmapped to a certain slot will therefore be allocated PEs in the same order. Whena new slot is opened, its direction is designated so as to make the numbers ofslots with the two directions as nearly equal as possible.2.3 Load Based AlgorithmsAll the previous algorithms were oblivious of the loads on the di�erent PEs.The next two take this new parameter into account. Again, the motivation is toreduce the overlap between sets of PEs assigned to di�erent jobs.Minimal Maximum Load The PEs are sorted according to the load on them,measured in jobs that use each PE. For each slot with su�cient capacity, thePEs that are free in that slot are considered. When allocating PEs to a job of nthreads, the nth PE in the load order thus de�nes the maximal load on any PEthat will be used in that slot. The slot with the minimal maximal load is chosen.Within that slot, the n least loaded free PEs are then used.Minimal Average Load This algorithm is similar to the previous one, exceptthat instead of using the load on the nth PE to prioritize the slots, we use theaverage load on the n least loaded PEs.2.4 Buddy Based AlgorithmThis algorithm is di�erent in the sense that PEs are assigned in groups ratherthan individually. These groups are organized as a buddy system, based on con-cepts that were originally developed for memory allocation [18, 25], and follow-ing the PE allocation mechanism in the Distributed Hierarchical Control scheme(DHC) [9, 10].Speci�cally, the PEs are partitioned recursively into groups that are powersof two. Logically, each group has a controller, thus creating a hierarchy of suchcontrollers. When a job of size n arrives, it is assigned to a controller of size



2dlgne (i.e. the smallest power of 2 that is larger than or equal to n). The choiceis done by scanning all the used slots, and identifying groups of 2dlgne contiguousfree processors that belong to the same controller. Controllers whose groups ofPEs are all free in some slot are candidates for mapping the newly arrived job.If no controller is completely free in any used slot, a new slot is opened2.
my_load = number of jobs mapped here
sup_load = number of jobs mapped to ancestors
sub_load = max{ load on left child, load on right child}
tot_load = my_load + sup_load + sub_load
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adFig. 2. Load calculation for controllers in the buddy system approach.Out of the free controllers, the one with the least load is chosen. Load oncontrollers is de�ned recursively according to the hierarchy as the sum of 3terms: the number of jobs mapped to this controller, the maximum of the loadson the controller's two children, and the sum of the number of jobs mapped tothe controllers ancestors. The data paths needed to compute loads using thisscheme are illustrated in Fig. 2. A simpli�ed scheme where load is simply themaximum of the loads on the PEs under the controller was also considered, butproved to be inferior.If n is not a power of 2, only part of the PEs under the chosen controllerare used. These are selected in groups that are powers of two, based on theloads on the controller's descendents. This scheme is equivalent to the \minimalfragmentation" scheme that was shown to be advantageous for DHC [9, 10].The remaining PEs are not reserved or allocated in any sense, and can later beassigned to other (smaller) jobs. They can also be used to provide additionalruntime to jobs that are mapped to other slots, via alternative scheduling.2 Note that in some cases this may lead to opening a new slot even if there are slotswith n free PEs, because the n PEs are not all under the same controller.



2.5 Migration Based AlgorithmThe �nal algorithm solves the problem of PE assignment in a completely di�erentmanner. Rather than seeking a good initial placement and then sticking to it,this algorithmmigrates jobs from one set of PEs to another as needed in order tounite slots and improve run fractions. Speci�cally, our algorithm re-maps all jobsupon every job arrival and termination, using a �rst-�t-decreasing allocation toslots [4] (this algorithm is optimal if all job sizes divide each other, e.g. if theyare powers of two [5]).It is debatable whether this algorithm is realistic, because of the expectedoverhead, especially on distributed memory machines. It is true that systemsthat support migration have been implemented successfully [1, 6], but thesesystems do not attempt to perform migration at such a high rate. However, thisalgorithm is useful as a bound on the performance that is obtainable.3 Workload ModelingThe most straightforward way to evaluate scheduling algorithms without a fullscale implementation is through simulations. Naturally, the quality of the resultsdepends on the quality of the inputs to the simulation. An important issue is theworkload model. It has often been stated that there is no reliable informationabout workloads on parallel machine [23, 20, 19, 3]. However, this is in fact nottrue. Like uniprocessor systems, most parallel systems maintain administrativetraces of all jobs run on the system. Analyzing these traces reveals a wealth ofinformation about the workload.For this study we used information derived from traces gathered on 6 di�erentsystems, all of which supported a real production workload. The traced systemsare summarized in Table 1.system trace comments128-node iPSC/860 42050 jobs, 4Q93 Intel scheduler [16]NASA Ames 10821 parallel user jobs analysis described in [8]128-node IBM SP1 19980 jobs, 12/94{6/95 home grown scheduler [21]Argonne Natl Lab 15654 were parallel submit trace, not run trace400-node Paragon 32500 jobs, 12/94{4/95 SDSC/Intel scheduler [29, 17]San-Diego SC 25867 were parallel126-node Buttery 35848 jobs, 1991{1992 home grown gang scheduler [14]LLNL >30000 were parallel no direct access to trace [13]512-node IBM SP2 17947 jobs, 9/95{11/95 Scheduling by IBM LoadLevelerCornell Theory Ctr 8598 were parallel no direct access to trace [15]96-node Paragon 1723 jobs Intel schedulerETH Z�urich no direct access to trace [27]Table 1. Summary of systems and traces used in workload analysis.



3.1 Distribution of Job SizesAn important feature of the workload model is the distribution of job sizes, interms of the number of nodes used by each job3. Histograms of the sizes observedin two of the traces are shown in Fig. 3. Examination of such histograms revealsthree distinctive characteristics:{ Small jobs are more common than large ones.{ Some \interesting" sizes appear much more often than others, creating adistribution with pronounced discrete components.{ Practically all possible sizes up to about 100 nodes appear in practice, albeita small number of times. powers multiples full sizessystem of 2 squares of 10 system plus 1NASA Ames iPSC/860 yes (some) no (yes) noANL/IBM SP1 yes some some yes noSDSC Paragon yes some no no noLLNL Buttery yes yes some yes yesCornell SP2 yes some no no noETH Paragon yes no no yes noTable 2. \Interesting" sizes in the di�erent traces.The special sizes that appeared in the di�erent traces are summarized intable 2. The most common one is jobs that use power-of-two nodes | thiswas a pronounced feature of all the traces. The reasons for using such sizes inpreference over others are varied, and include algorithmic suitability (e.g. whenusing a divide-and-conquer paradigm) and system considerations (e.g. systemadministrators tend to create batch queues for power-of-two nodes, and systemsize is often a power of two).A special case is jobs that require the full machine. In some cases, this is apower of two, but using the full machine was also popular in cases where this isnot a power of two. For example, 12.2% of the jobs on the ETH Paragon used all96 nodes, and these jobs used up 63.8% of the total resources (measured in CPU-seconds). On the LLNL Buttery, using the whole machine was represented byjobs that used 112 or 113 nodes, which were typical sizes of the parallel cluster(the rest of the nodes were used for login, and did not participate in runningparallel jobs). Notable exceptions are the SDSC Paragon and Cornell SP2. Forexample, the SDSC Paragon had only three 400-node jobs. This is because thesystem is heterogeneous: 256 nodes have 32MB of memory, and the rest only3 We assume that the number of nodes does not change during execution, as is thecase in many systems that support an SPMD programming model.
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16MB, so for many jobs the e�ective maximum is 256. Also, 32 nodes weretypically reserved for interactive use, so using all 400 nodes required turningo� interactive use. The Cornell SP2 is also heterogeneous [15], and was nevercon�gured for using all 512 nodes.Other popular sizes are squares (25, 49, 64, 81, 100), used when the algorithmis naturally expressed on a square array of processors (even if the architectureis not a mesh), and multiples of 10 (20, 50, 100), probably used mainly foraesthetic reasons when no other size was speci�cally warranted. Jobs using amaster-workers paradigm sometimes created sizes that are larger by one thananother popular size, e.g. 26 = (5�5)+1. Of course, several sizes appear multipletimes in these lists, and it is hard to know what interpretation to attach to them:16 and 64 are both squares and powers of two, 50 is a multiple of 10 and onemore than the square 49, and 100 is a square, a multiple of 10, and a nice roundnumber.Finally, in some cases arbitrary numbers seem to appear for no obvious rea-son. It is possible that this is a result of a speci�c preference by a single user,that uses a certain size for many repeated executions. Such behavior is discussedin Section 3.3 below.3.2 Correlation of Runtime with SizeIt is largely accepted that the runtimes of jobs in a computer system have a widedistribution, with many jobs that have a short runtime but a few jobs that havevery long runtimes. This is typically modeled by a hyperexponential distribution.However, a-priori it was not clear whether or not there is a correlation betweenthe runtime and the size (number of nodes) in parallel systems.
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Plotting the average runtime as a function of the size for the NASA AmesiPSC/860 trace produces the results shown in Fig. 4. There is an obvious corre-lation, with larger jobs running longer than smaller jobs.
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Fig. 5. Runtimes vs. job sizes on the ANL SP1 and SDSC Paragon.For the other systems, plotting the average runtime as a function of thejob size using data from the traces produces graphs with wildly varying shapes(see Fig. 5 for the ANL SP1 and SDSC Paragon). However, this is misleading,because di�erent data points represent di�erent numbers of jobs, and thereforeshould be give di�erent weights. A more meaningful representation is obtainedby dividing the jobs into 10 buckets according to size, and plotting the averageruntime for each bucket. That is, each bucket contains a tenth of the total jobs,with the �rst one containing the smallest jobs, the next bucket containing the



next larger jobs, and so on until the last bucket that contains the jobs usingthe largest number of PEs. In the plot, the representative size for each bucketis calculated as the average of the sizes of the jobs in the bucket. As there aremany more small jobs than large jobs, the plots end at rather small sizes relativeto the maximal size possible.The results, using only parallel jobs, are also shown in Fig. 5. They indicatea weak tendency for larger jobs to have a higher runtime. However, it should beremembered that this is only a general trend, and the runtimes of speci�c jobsare widely distributed. Also, other studies have noticed di�erences between thedistributions of jobs with \interesting" sizes and jobs that have other sizes, orbetween interactive and batch jobs. We intend to study such correlations furtherin the future.3.3 User ModelingAn important issue in workload modeling is the question of whether jobs are in-dependent of each other. The answer is that very often they are not. Speci�cally,users tend to submit sequences of similar jobs, one after the other.In a preliminary e�ort to study this e�ect, the runlengths of such sequenceswere measured. In this context, a sequence is de�ned as the same user submit-ting the same job and using the same number of nodes. Results for the NASAAmes trace and the ANL SP1 trace (the two available traces that included userand job information) are shown in Fig. 6. It is seen that some sequences areextremely long (the maximum observed is 402 runs on the ANL SP1). The factthat the slope is a straight line in these log-log plots indicates a generalized Zipfdistribution (i.e. p(n) / 1=n�) [30, 26]. Using linear regression, the harmonicorder (� in the equation for the probability distribution) is around 2:2 for bothcases, after deleting outliers that appear only a small number of times. Similarresults were obtained for the Cornell trace [15].3.4 Job ClassesIn many cases jobs in a system can be classi�ed into a number of classes, and suchclassi�cation is often an explicit goal of workload analysis. In multiuser parallelsystems an obvious classi�cation is the distinction between interactive and batchjobs, as this distinction is supported directly by many systems: interactive jobsare those that are submitted directly and run immediately, while batch jobs arequeued for later execution (often using NQS).The signi�cance of the class distinction is twofold. First, batch jobs tendto run longer than interactive ones. Second, batch queues are often enabled forexecution only during the night, thus creating a daily cycle of completely di�erentworkloads at prime time and non-prime time. This e�ect is very pronounced inthe NASA Ames trace [8], and can also be seen in the SDSC trace.The reason to delay batch jobs to non-prime time is that in systems that usespace slicing without preemption, the decision to run a batch job might blockfuture requests to run interactive jobs. This consideration is eliminated in time
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Fig. 6. Distribution of runlengths of repeated executions on the NASA AmesiPSC/860 and the ANL SP1.slicing systems, because a batch job can share the processors with interactivejobs that come later. Moreover, interactive jobs can be demoted automaticallyto batch status if they run for too long. For example, this is done in the LLNLButtery (regrettably, there is no data on how often this actually happened).While such options are interesting, we leave them for future work, and ignorethe distinction between batch and interactive jobs in the context of the currentgang scheduling study.3.5 The ModelBased on the above, we model the workload as follows. The distribution of sizesis based on a harmonic distribution, which is then hand tailored to emphasize
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small jobs and interesting sizes. This gives a qualitative approximation to thetypes of distribution observed in practice, as witnessed by the histogram shown inFig. 7. The runtimes are distributed according to a two-stage hyperexponential,with a linear relation between the job size and the probability of using thedistribution with the higher mean (so there is actually a di�erent distributionfor each job size, and the mean for larger jobs is at a higher value). Again,this provides a qualitatively good approximation. The runlengths are from ageneralized Zipf distribution with a harmonic order of 2.5. The interarrival timesare exponentially distributed.In the future we plan to conduct a more thorough and quantitative analysisof the workload traces, taking more statistical properties into account. This willbe used to create a more accurate workload model.4 Experimental ResultsThe packing schemes described in Section 2 were compared by simulation, inwhich they were exercised by a workload model as described in Section 3.4.1 MethodologyA single sequence of job arrivals was generated according to the model. Thissequence was re-used for all data points and for all packing schemes, thus assuringthat the comparison is fair in the sense that they all contend with the sameworkload.Each data point represents the average of 30 experiments, each including1000 job terminations. An additional initial experiment was discarded in orderto account for simulation warmup. 95% con�dence intervals were computed usingthe batch means approach [22].The simulation itself is event-driven, where events are job arrival and ter-mination. The average interarrival time is changed to simulate di�erent loadconditions. Between consecutive events, jobs are assigned constant run fractionsaccording to the number of slots in which they can run. Overheads for contextswitching and for computing the packing are ignored.The main performance metric is the slowdown experienced by jobs, and morespeci�cally, the functional dependence of the slowdown on the system load. Slow-down is just the normalized response time, where the response time of each jobin the loaded system is divided by its response time in an empty system (i.e. itsactual computation time). Alternatively, it can be regarded as the reciprocal ofthe run fraction.4.2 Comparison of Packing SchemesThe simulation results are shown in Fig. 8. They can be summarized by thefollowing points:
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Fig. 8. Average slowdown as a function of load for the di�erent packing schemes.{ The �rst four packing schemes (�rst �t, best �t, left-right by size, and alter-nating left-right) produce essentially identical performance.{ The two load-based schemes (minimal maximum load and minimal averageload) are signi�cantly worse than the previous four schemes. This is surpris-ing since they take additional pertinent information into account.{ The buddy scheme and the migration scheme are similar to each other, andperform better than all other schemes. Migration has a slight advantage atthe highest loads, while buddy has a slight advantage at medium loads.{ When looking at absolute values, rather than just comparing the di�erentschemes, it is apparent that all schemes except the load-based ones can sus-tain loads leading to over 90% system utilization. The buddy and migrationschemes can sustain loads leading to over 95% utilization. This implies thatfragmentation is less of a problem than sometimes thought.Why Load-Based Schemes Are Bad The load based packing schemes wereexpected to out-perform the oblivious schemes, because they judiciously choosethe least loaded PEs to run new jobs. Such a choice was expected to make iteasier to unify slots and to run the jobs in alternate slots. However, the simulationresults show that choosing lightly loaded PEs leads to poor performance!The reason for this situation seems to be that choosing PEs individuallybased on their loads leads to excessive fragmentation. As a result, it actually



becomes harder to unite slots, as can be seen in the low uni�cation counts forthese two schemes in Fig. 10. Also, it is relatively di�cult to schedule jobs torun in additional slots, beyond those to which they are mapped. This can beseen in the low slot counts for these two schemes in Fig. 11, which only improveat the highest sustained loads.
min max load best fit

arrival: 5

arrival: 4

arrival: 6

arrival: 2

arrival: 3

termination: 4Fig. 9. Example explaining the poor performance of load-based packing schemes.The following example shows how such harmful fragmentation can comeabout. Consider a sequence of job arrivals with sizes of 5, 4, 6, 2, and 3, in asystem with 8 PEs. Fig. 9 shows how these jobs will be mapped by the minimalmaximal load scheme and by the best �t scheme. Note that after the third jobarrives, it seems that mapping to less loaded PEs leads to good balancing, as noPE has a load of more than two threads, whereas under best-�t some PEs havea load of 3 and some are completely idle. However, the mapping is fragmented,and becomes more so when the two additional jobs arrive. If now the job withsize 4 terminates, the best �t scheme will end up with two fully-allocated slots,whereas the minimal maximum load scheme will have three lightly populatedslots, and only the 2-PE job will be able to run in an additional slot.
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Fig. 10. Number of slot uni�cation performed with the di�erent packingschemes.How Buddy Packing and Migration Achieve Their Good PerformanceThe simulation results singled out the buddy packing scheme and the migrationscheme as those that provide the best performance. It is interesting to note thatwhile the �nal outcome of these two schemes is very similar, the underlyingmechanisms are very di�erent. To show this, we tabulate the number of slotuni�cations performed by the various schemes (Fig. 10) and the average numberof slots in which a job may run under the various schemes (Fig. 11).The plots show that while buddy packing achieves many more uni�cationsthan most other schemes, they are still a rare event: less than one percent of jobterminations lead to a uni�cation. With migration4, this jumps to nearly 5%.Thus by using migration the system may keep the number of used slots close tothe minimum necessary, at the price of re-mapping jobs frequently.Another result of keeping the number of slots down to the minimum is thatthere is very little free space in each slot, and therefore there is little chance fora job to run in any other slot except the one to which it is mapped. thereforewith migration the average number of slots available to each job is lower thanin any other scheme. With buddy packing, the average number of available slots4 The de�nition of uni�cation under migration is that the number of slots is reducedas a result of a job termination, excluding cases where the terminated job was theonly one mapped to the slot.
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Fig. 11. Average number of slots in which each job runs under the di�erentpacking schemes.is higher than in other schemes, because the buddy packing chooses groups oflightly loaded PEs for new jobs. Thus buddy packing achieves its performancenot by minimizing the number of slots but rather by using alternative schedulingto allow each job to run in more slots.The Importance of Uni�cation and Using Alternate Slots As we saw,the performance of buddy packing is achieved by packing jobs so that they havea better chance to run in multiple slots. It is then interesting to check howimportant it is for the system to support this feature. Also, it is interesting tosee how important it is to support slot uni�cation.The results are plotted in Figs. 12 and 13. Fig. 12, where the system doesnot support slot uni�cation, is essentially identical to Fig. 8. We can thereforeconclude that slot uni�cation is not such an important feature5 In Fig. 13, wherethe system does not support the execution of jobs in alternative slots, all theplots show somewhat reduced performance relative to Fig. 8. The most extremedegradation occurs with buddy packing. In fact, when jobs are not allowed to5 Not allowing uni�cations at all contradicts the de�nition of the migration scheme, soit is not plotted. However, note that migration does its uni�cations itself, and doesnot rely on the scheduler to do it.



0

5

10

15

20

25

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e 

sl
ow

do
w

n

load

first fit
best fit

LR size
LR alt

max load
avg load

buddy

Fig. 12. Average slowdown as a function of load for the di�erent packingschemes, when no slot uni�cations are done.run in alternative slots, buddy packing performs quite poorly. Thus we see thatthis is an essential feature if buddy packing is to be used.5 ConclusionsThe current literature does not include any reference to the question of how topack jobs for e�cient gang scheduling. We have developed a number of packingalgorithms, and evaluated them using simulations based on a realistic workloadmodel. The results are that two approaches can lead to signi�cant performanceimprovements over simple best-�t like algorithms: either use mapping basedon a buddy system, or use migration to re-map jobs upon each job arrival andtermination. Other approaches, such as mapping to the least loaded PEs, provedto be counterproductive.The relatively good performance of the migration approach is a result of thefact that re-mapping leads to using the minimal number of scheduling slots pos-sible. However, an implementation must then contend with the overhead of themigration process itself, which may be onerous. Therefore it is doubtful whetherusing migration is a realistic option, but it is still useful as a bound on the per-formance achieved by a strong on-line algorithm. Mapping based on a buddysystem is much simpler and is not expected to involve considerable overhead.
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Fig. 13. Average slowdown as a function of load for the di�erent packingschemes, when jobs only run with their designated slot and do not use freespace in other slots.However, it requires the system to support gang scheduling of jobs in multipleslots in order to achieve performance bene�ts. Without such a capability, theperformance degrades sharply. Luckily, such support can be provided rather eas-ily by mapping each job to multiple slots to begin with, where one mapping isthe \real" one, and the others are tentative and can be deleted when some otherjob needs the space.It should be noted that when a good mapping scheme is used, very highsystem utilization is possible. In our simulations of the buddy and migrationschemes, the system only saturated when the utilization was higher than 95%,which is signi�cantly higher than the 50-80% range reported for productionsystems using static partitioning [8, 29, 15]. This means that fragmentationis less of a concern than is sometimes thought. The high utilization can beattributed to two factors: �rst, when using time slicing, bad scheduling decisionsare less harmful than when using static partitioning, because they only a�ect onescheduling slot. Other slots that su�er less fragmentation dilute the bad e�ect,and lead to lower average fragmentation. Second, our workload study indicatedthat there are many small jobs and many jobs that are powers of two. Both theseclasses are easier to pack than large jobs with strange sizes.In the future, we would like to extend this work in the following directions:
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