
High-Resolution Analysis of Parallel Job
Workloads

David Krakov Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract. Conventional evaluations of parallel job schedulers are based
on simulating the outcome of using a new scheduler on an existing work-
load, as recorded in a log file. In order to check the scheduler’s perfor-
mance under diverse conditions, crude manipulations of the whole log
are used. We suggest instead to perform a high-resolution analysis of
the natural variability in conditions that occurs within each log. Specif-
ically, we use a heatmap of jobs in the log, where the X axis is the
load experienced by each job, and the Y axis is the job’s performance.
Such heatmaps show that the conventional reporting of average perfor-
mance vs. average load is highly oversimplified. Using the heatmaps, we
can see the joint distribution of performance and load, and use this to
characterize and understand the system performance as recorded in the
different logs. The same methodology can be applied to simulation re-
sults, enabling a better appreciation of different schedulers, and better
comparisons between them.

1 Introduction

The performance of a computer system obviously depends on the workload it
handles. Reliable performance evaluations therefore require the use of represen-
tative workloads. This means that the evaluation workload should not only have
the same marginal distributions as the workloads that the system will have to
handle in production use, but also the same correlations and internal structure.
As a result, logs of real workloads are often used to drive simulations of new
system designs, because such logs obviously contain all the structure found in
real workloads. But replaying a log in a simulation only provides a single data
point of performance for one workload.

The most common approach to obtaining data for different conditions is to
manipulate the log, and run multiple simulations using multiple manipulated
versions. As an alternative, we suggest to exploit the natural variability that is
inherent in real workloads. For example, if we are interested in performance as
a function of load, we can distinguish between high-load periods in the log and
low-load periods in the log.

In developing this idea, we first partition the jobs in each log into a small
number of classes, according to the load that they each experience. Following the



pioneering work of Rudolph and Smith [8], we find the number of jobs in each
class and their average performance, in order to create a “bubbles plot” describ-
ing the performance as a function of the load. We analyze the characteristics of
such plots, and suggest that a higher resolution may be desirable; in particular,
the distribution of performance often has a long tail, and thus the average is not
a good representative value. This leads to the idea of creating heatmaps that
show the full distribution of performance vs. load. Applying this idea to existing
logs reveals several phenomena that have not been known before. The heatmaps
can also be used to compare the performance of simulated schedulers, and reveal
interesting differences between the behavior of EASY and FCFS — and between
simulation results and the behavior of the production schedulers as recorded in
the original logs.

2 Evaluating Parallel Job Schedulers with Log-Based
Simulations

Log-based simulations have emerged as the leading methodology for evaluating
parallel job schedulers. The logs used are actually accounting logs, which contain
data about all the jobs that ran on some large-scale machine during a certain
period of time. Such logs are available from the Parallel Workloads Archive [7],
where they are converted into the Standard Workload Format (SWF) [1]. This
makes them easier to use, as the simulators needs to know how to parse only
this one format.

Given a log, the simulator simulates job arrivals according to the timestamps
in the log. As each job arrives, the simulated scheduler is notified of the number
of processors it requires, and possibly also of the user’s expectation regarding
the runtime. It then decides whether the job should run immediately (in the
simulated system), or be queued and run later. Job terminations are simulated
based on the scheduling decisions of the simulated scheduler, together with the
runtime data provided in the log. Finally some overall average performance met-
ric is computed over all the jobs in the simulation, such as the average response
time or the average slowdown. This can be associated with the average load
(utilization) of the log.

The main problem with the methodology described thus far is that it provides
a single data point: the average performance for the average load. But an im-
portant aspect of systems performance evaluation is often to check the system’s
performance under different load conditions, and in particular, how performance
degrades with increased load. Given a single log, crude manipulations are typi-
cally used in order to change the load. These are

– Multiplying all arrival times by a constant, thus causing jobs to arrive at
a faster rate and increasing the load, or causing them to arrive at a slower
rate and decreasing the load. However, this also changes the daily cycle,
potentially causing jobs that were supposed to terminate during the night to
extend into the next day, or causing the peak arrival rate to occur at night.



An alternative approach that has essentially the same effect is to multiply
all runtimes by a constant. This doesn’t change the arrival pattern, but may
cause jobs that were previously independent to clash with each other. Worse,
it creates an artificial correlation between load and response time, which
essentially invalidates the use of response time as a performance metric.

– Multiplying all job sizes (here meaning the number of processors they use) by
a constant, and rounding to the nearest integer. This has three deficiencies.
First, many jobs and most machine sizes are powers of two. After multiplying
by some constant in order to change the load, they will not be powers of two,
which may have a strong effect on how they pack, and thus on the observed
fragmentation. This effect can be much stronger than the performance effects
we are trying to measure [6]. Second, small jobs cannot be changed with
suitable fidelity as the sizes must always be integers. Third, when large jobs
are multiplied by a constant larger than 1 in order to increase the load, they
may become larger than the full machine.
A variant on this method is to combine scaling with replication. This al-
lows larger jobs to be generated without losing smaller jobs, and has been
suggested as a method to adapt simulations to different machine sizes [2].
An alternative approach that has essentially the same effect is to modify
the simulated machine size. This avoids the problem presented by the small
jobs. However it may suffer from changing the inherent fragmentation when
packing jobs together. Also, when the machine size is reduced to increase
load, the largest jobs in the log may no longer fit.
A possible alternative is not to multiply job sizes by a constant but to change
the distribution of job sizes. Consider the CDF of the distribution of job sizes.
To increase the load we want more larger jobs. Multiplying job sizes by a
constant will cause the CDF to shift to the right, with all the ill-effects noted
above. The alternative is to shift the top-right part of the CDF downwards.
As a result, the relative proportion of large jobs is increased and the total
load increases too. However, the idea of changing the distribution in this way
has only received limited empirical support [12], and more work is needed.

Another alternative is to use multiple logs that have different loads. The
problem then is that the workloads in the different logs may have completely
different characteristics, so comparing them to each other may not be meaningful.
Also, the number of available logs and the available load values may not suffice.

The most common approach used is to artificially change the load of a log by
multiplying arrival times by a constant as described above, despite this method’s
deficiencies. Our goal is to find an alternative to this approach.

3 Evaluations Based on the Variability in a Single Run

As an alternative to evaluating a parallel job scheduler using simulations with a
job log that has been subjected to various manipulations, we suggest to exploit
the natural load fluctuations that occur in any log. In other words, by observing



periods of low load separately from periods of high load, we may try to uncover
the effects of load on performance. This has the following benefits:

– It is more realistic, because it is based on real load conditions that had
occurred in practice when the log was recorded, with no artificial manipula-
tions, and

– It is easier in the sense that a single simulation can be used instead of multiple
simulations.

However, it also has its drawbacks. For example, in a given log the range of load
conditions that have occurred may be limited. Nevertheless, we feel that this
approach is worthy of investigation.

Note that the suggested approach is different from the conventional approach
at a very basic level. In the conventional approach, the average performance is
found as a function of the average load. This is similar to the outcome of queueing
analyses, such as the well-known M/M/1 queue. The suggested approach does
not concern itself with different average load conditions. It is actually about
understanding the variability and dispersion of performance, and the possible
correlation between this dispersion and load — not about performance under
different average loads. We discuss this further in the conclusions.

The approach of analyzing a single log and dissecting it according to load
conditions was pioneered by Rudolph and Smith in the context of evaluating
large-scale systems in the ASCI project [8]. Their goal was to establish whether
these machines were being used efficiently. By analyzing workload logs, they
attempted to show that performance as a function of load exhibits a “knee” at
some load level, and beyond that point performance deteriorates markedly. Then
if most of the jobs execute under a load that is just below the knee, the machine
is being used efficiently.

The procedure employed by Rudolph and Smith to analyze the logs was
somewhat involved. The analysis was performed at the level of individual jobs.
For each job, they first found the average system utilization experienced by that
job during its tenure in the system (this is explained in more detail below).
The jobs were then binned according to the load into deciles: those jobs that
experienced around 0 load, those that experienced around 10% load, those that
experienced around 20% load, and so on up to those that experienced 90% and
100% load. Then a “bubble plot” was drawn. The X axis in these plots is the
load, and the Y axis is the performance metric, e.g. average slowdown. Each class
of jobs is represented by a disk. The coordinates of the center of the disk are at
the average load experienced by jobs in the class and the average slowdown of
jobs in the class. The size of the disk represents the number of jobs in the class.

The load experienced by a job was calculated as follows. The load (or uti-
lization) at each instant is simply the fraction of processors that are allocated
to running jobs (due to fragmentation, there are often some unused processors
even if additional jobs are waiting in the queue). This only changes when the
scheduler decides to start running a job, or a running job terminates. Assume a
certain job arrives at time t and terminates at time t′. Consider the set of time
instants from t to t′ at which any job either starts to run or terminates, and



number them from 0 to n (such that t0 = t and tn = t′). Denote the utilization
during the interval ti to ti+1 by U(ti, ti+1). The load experienced by the job is
then

load =

n∑
i=1

ti − ti−1
tn − t0

U(ti−1, ti)

(Inexplicably, the instantaneous utilization calculation sometimes leads to values
greater than 1, which implies data quality problems in the logs. We discuss such
issues in a separate paper [4]; in the current context they are rare enough to be
largely meaningless.)

In the following we use the Rudolph-Smith bubble plots as our starting point,
and use them to further analyze parallel job logs. But the motivation is not only
to understand the performance as it was on specific machines in the past. Rather,
we contend that the same analysis can be applied to simulation results. In other
words, when running a simulation of a parallel job scheduler on a given workload,
a new log recording the performance of the simulated system can be recorded.
This (single) log can then be analyzed in the same way as real logs are analyzed,
to uncover the performance as a function of load.

4 Evaluating Parallel Job Logs with Bubble Plots

Example bubble plots are shown in Fig. 1. The plot for the CTC SP2 log looks
approximately as expected: the average slowdown tends to grow from around 10
to about 30 with increased load, and most of the jobs observed what appears to
be the maximum sustainable load, which is around 70% in this case. However,
the few jobs that enjoyed near zero load suffered a slowdown of around 50, and
those that suffered a load of 90-100% enjoyed a slowdown of less than 10. Also,
the plots for other logs are messier. For example, the KTH log exhibits a zig-zag
pattern, the SDSC Paragon shows marked decrease in slowdown with increased
load, and in SDSC Blue the jobs are evenly distributed across all loads.

Rudolph and Smith also observed some strange patterns like this. Part of
their solution was to filter some of the jobs in the log. In particular, they filtered
jobs that were shorter than 1 minute, and jobs that had a very high slowdown.
We also did so (the graphs in Fig. 1 are after such filtering, where the threshold
for “high slowdown” was 1000). However, while the strange behavior is reduced,
it is not eliminated.

The high slowdowns with low utilizations are somewhat of a mystery. The
phenomenon seems to happen because jobs are not scheduled to run while pro-
cessors are in fact available. Possible excuses are unrecorded down time, when the
processors were actually not available but we don’t know it, or special scheduler
considerations, such as reserving processors for some other use. Another possible
explanation is that processors are not the only important resource, and perhaps
also not the most important one. Thus jobs may be delayed if sufficient memory
is not available, or if they need to use a floating software license that is being
used by another job. Such considerations do not affect the utilization metric.



0 10 20 30 40 50 60 70 80 90 100
0
2
4
6
8
10
12
14
16

KTH

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CTC

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
SDSC Par95

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0.5

5.5

10.5

15.5

20.5

25.5

30.5

SDSC BLUE

Load

A
vg

. 
sl

ow
do

w
n

0 10 20 30 40 50 60 70 80 90 100
0
2
4
6
8
10
12
14
16

KTH

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CTC

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
SDSC Par95

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0.5

5.5

10.5

15.5

20.5

25.5

30.5

SDSC BLUE

Load

A
vg

. 
sl

ow
do

w
n

0 10 20 30 40 50 60 70 80 90 100
0
2
4
6
8
10
12
14
16

KTH

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CTC

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
SDSC Par95

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0.5

5.5

10.5

15.5

20.5

25.5

30.5

SDSC BLUE

Load

A
vg

. 
sl

ow
do

w
n

0 10 20 30 40 50 60 70 80 90 100
0
2
4
6
8
10
12
14
16

KTH

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CTC

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
SDSC Par95

Load

A
vg

. 
s

lo
w

do
w

n

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

SDSC BLUE

Load
A

vg
. 

sl
ow

do
w

n

Fig. 1. Examples of bubble plots derived from different logs. Short jobs (< 1 minute)
and jobs with high slowdown (> 1000) were filtered out.

The low slowdowns observed with high utilizations can be explained as fol-
lows. Consider a sequential job. When such a job arrives, it will be able to run
immediately if the utilization in less than 100%. Moreover, when the utilization is
high, only such jobs will be able to run immediately (because very few processors
if any are available). So many jobs that see a high utilization throughout their
lifetime can be expected to be serial jobs that run immediately, and therefore
have slowdown 1 — the lowest (and best) slowdown possible.

Conversely, consider a large job that requires many processors. Such a job will
most probably have to wait until the processors become available. Moreover, it
will block other jobs and cause processors to become idle while it waits. Therefore
it will see a lower average load during its lifetime, but suffer a high slowdown
due to the waiting.

Slowdown is sensitive to short jobs that may have very high slowdown values
[11, 3]. This may explain the variability in the bubble plots: if in a certain group
of jobs one happened to have a very high slowdown, this could affect the average
of all of them and cause the bubble to float upwards. Such effects could lead
to the uneven behavior seen in Fig. 1. Additional support for this hypothesis
comes from looking at the median slowdown instead of the average. The plot of
medians and plot of averages turn out to be quite different from each other.

The conclusion is that bubbles may be too coarse, as they represent poten-
tially large groups of unrelated jobs. As an alternative, we suggest looking at all
the jobs at a much higher resolution.



5 Evaluating Parallel Job Logs with Heatmaps

The way to look at the performance vs. load data in more detail is to use
heatmaps. The axes remain the same: the X axis represents load, and the Y
axis represents performance (this can be slowdown, as used in the Rudolph-
Smith bubble plots, but also response time or wait time). But instead of using a
coarse classification of loads and lumping all the jobs that saw approximately the
same load together, we now use a relatively fine classification according to both
load and performance. The number of jobs that experienced approximately the
same load and same performance is then represented by the shading: a darker
shading corresponds to a higher numbers of jobs. The actual numbers differ ac-
cording to the log’s length, so contours are used to give an indication of the
number of jobs in the high-density areas.

Applying this to the different logs leads to the heatmaps shown in Figs. 2 to
9. For each log, heatmaps of slowdown, response time, and wait time vs. load are
shown. Note that the Y axis is logarithmic. Slowdowns of 1 are at the bottom
of the scale, adjacent to the X axis. As wait times can be 0 and this cannot be
shown on a logarithmic scale, we artificially change 0 values to 1, so they too
are shown at the bottom adjacent to the X axis. Bubble plots calculated from
the same data are superimposed on the heatmaps for comparison.

These graphs allow for several general insights and some specific ones. The
main general insights are as follows:

– The average values are unrepresentative. In each heatmap, the point of av-
erage load and average performance is marked with an ‘X’. This represents
the output of conventional analysis. But as we can clearly see, this often falls
in a relatively sparse area of the heatmap.

– Likewise, the bubbles, which are shown overlaid on the heatmap, are unrep-
resentative. (In these graphs the bubbles are based on all the jobs, with no
filtering).

– The performance distribution tends to be highly skewed. Many jobs have
very low wait times and a slowdown of 1. The higher averages are a re-
sult of combining this with relatively few jobs that suffer from much worse
performance.

– In many cases the load distribution is also highly skewed. In particular, many
jobs actually observe very high utilizations of near 100% as they run. The
lower average load is a result of the low-load and idle periods, which actually
affect only a small number of jobs.

– There appears to be only a weak if any functional relationship between ex-
perienced load and performance. In other words, it is not generally true that
jobs that experience higher loads also suffer from worse performance. It is
true that we often see a concentration of jobs at the right of the heatmap
(high loads), and that this includes the top-right area (bad performance),
but it also typically includes the bottom-right area (good performance) to a
similar degree. To quantify the possible correlation of load and performance
we calculated the Spearman rank correlation coefficient between them for



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

25
0

50
0

10002000

CTC-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

2
5
0

5
0
0

CTC-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

2
5
0

2
5
0

500

50
0

CTC-SP2-1996

Fig. 2. Heatmaps for the CTC SP2 log.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250
5001000

SDSC-SP2-1998

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107
R

e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

SDSC-SP2-1998

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

2
5
0

5
0
0

SDSC-SP2-1998

Fig. 3. Heatmaps for the SDSC SP2 log.



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250

2
5
0

50
0

1000
2000

SDSC-BLUE-2000

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0 5

0
0

1000

SDSC-BLUE-2000

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

500

500

SDSC-BLUE-2000

Fig. 4. Heatmaps for the SDSC Blue log.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

25
0

500
1000

SDSC-DS-2004

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107
R

e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250

250

SDSC-DS-2004

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

2
5
0

SDSC-DS-2004

Fig. 5. Heatmaps for the SDSC DS log.



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 500

KTH-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

KTH-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

KTH-SP2-1996

Fig. 6. Heatmaps for the KTH SP2 log.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 500
10002000

HPC2N-2002

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107
R

e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250500

500

HPC2N-2002

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

250

HPC2N-2002

Fig. 7. Heatmaps for the HPC2N log.



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

500

5
0
010002000

SHARCNET-Whale-2006

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

5
0
0

500
500

1
0
0
0100020

00

2
0
0
0

SHARCNET-Whale-2006

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

) 500

5
0
0

500

50
0

1000

1
0
0
0

2000

SHARCNET-Whale-2006

Fig. 8. Heatmaps for the SHARCNET
Whale log.

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 5001000

ANL-Intrepid-2009

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107
R

e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250

ANL-Intrepid-2009

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

ANL-Intrepid-2009

Fig. 9. Heatmaps for the ANL Intrepid log.



different logs. The absolute values of the results are typically less than 0.2,
and often also less than 0.05, indicating very low correlation (Table 1).

Rudolph and Smith in their paper that introduced the bubble plots were
looking for the characteristic behavior of a queueing system: good performance
at low loads, that deteriorates asymptotically as the system load approaches
saturation. Their success varied; some of the bubble plots exhibited the expected
characteristics, while others were rather messy and hard to understand. These
results were replicated in our work above.

Using the heatmaps, we can take a more detailed look at performance as a
function of load. Focusing on slowdown to begin with, we find that for many logs
there is a strong concentration of jobs along the bottom and right boundaries of
the plot. The concentration along the bottom represents the jobs that enjoyed
the best possible performance, namely a slowdown of 1. This happened at all
loads, and dominates low loads. The concentration at the far right represents
jobs that suffered from congestion under a high load. in some logs, e.g. CTC,
this only happens at near 100% utilization. In SDSC SP2 there seem to be two
distinct concentrations, at 90% and at 100%. In SDSC Blue the concentration
is near 90%. In SDSC DS, it happens at around 80%.

Interestingly, there were also logs that did not display the expected pattern at
all. Examples are the KTH, HPC2N, and Intrepid logs. In these systems we see
a wide smear, with no concentration of jobs that experience high loads. Rather,
jobs seem to suffer approximately the same slowdowns regardless of load. An
optimistic interpretation of this result is that the scheduler is doing something
good, and manages to avoid bad performance under high load. As we show
below, however, a more realistic interpretation seems to be that the scheduler
is incapable (or unwilling) to exploit low load conditions in order to improve
performance.

Similar observations may be made for response time. Here we do not see a
concentration of low response times under low loads, because response times are
more varied due to run times being varied. However, in many logs we do see a
concentration of jobs at the right end of the plot, reflecting high loads. These
include CTC, SDSC SP2, SDSC Blue, and SDSC DS.

The concentration at low values (indicating good performance) is clearly
evident when we look at wait times. Several logs actually have a distinct bimodal
distribution of wait times: very short wait times of up to about a minute, and
long wait times of many minutes to several hours (note that in all the plots
the Y axis is logarithmically scaled). Good examples are again CTC, SDSC
SP2, SDSC Blue, and SDSC DS. The short wait times apparently reflect some
minimal granularity of activating the scheduler, such that it only runs say once
a minute and therefore does not schedule newly arrived jobs immediately [4].

Potentially interesting patterns that probably deserve further study appear
in the heatmaps of specific logs. These include

– A distinct blob of jobs at the left side of the CTC heatmap. This is a concen-
tration of jobs that saw very low load, but nevertheless suffered non-trivial
slowdowns.



log metric data EASY FCFS

CTC SP2 slowdown 0.17 0.62 0.51
response time -0.03 0.13 0.20
wait time 0.08 0.56 0.43

KTH SP2 slowdown -0.01 0.55 -0.10
response time 0.15 0.07 -0.28
wait time 0.09 0.44 -0.26

SDSC SP2 slowdown 0.16 0.60 0.40
response time 0.02 0.26 0.28
wait time 0.11 0.55 0.37

HPC2N slowdown 0.08 0.72 0.68
response time 0.05 0.41 0.48
wait time 0.08 0.70 0.69

SDSC Blue slowdown 0.04 0.58 0.48
response time 0.02 0.32 0.39
wait time 0.00 0.57 0.47

ANL Intrepid slowdown -0.05 0.66 0.44
response time -0.07 0.32 0.32
wait time -0.05 0.63 0.41

Table 1. Spearman’s rank correlation coefficient of performance vs. load, showing
much higher values for simulation results than for the original logs.

– Strange patterns in the SHARCNET Whale log. These seem to reflect sets
of jobs that suffered from some congestion conditions.

– A horizontal band in the Intrepid response time map, that probably reflects
many jobs with the same runtime.

6 Comparing Heatmaps of Logs with Heatmaps from
Simulations

We also ran straightforward simulations using the EASY [5] and FCFS schedulers
on the logs, and compared the resulting heatmaps to the heatmaps produced
based on the original log data. Examples are shown in Figs. 10 to 12. The
leftmost column in these figures reproduces the data shown previously for the
original log. The middle column is the result of an EASY simulation, and the
rightmost one is FCFS. The comparison leads to two main observations.

– The simulations tend to produce “nicer” results. Specifically,
∗ More jobs have a slowdown of 1,
∗ High slowdowns and wait times occur only when load is near 100%, and
∗ There are no strange patterns.

– The simulations do not reflect reality! It seems that the schedulers on the real
systems are often restricted in some way, and cannot achieve efficient packing
of the executed jobs. In addition, in the simulations there is a much stronger



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

25
0

50
0

10002000

CTC-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

5001000

CTC-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250500

CTC-SP2-1996-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

2
5
0

5
0
0

CTC-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

5
0
0

CTC-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250 5
0
0

CTC-SP2-1996-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

2
5
0

2
5
0

500

50
0

CTC-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)
2
5
0

5
0
0

CTC-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

2
5
0

CTC-SP2-1996-FCFS

Fig. 10. Heatmaps produced by running EASY and FCFS on the CTC log.

correlation between experienced load and the resulting performance. With
EASY in particular, high slowdowns and wait times are seen exclusively for
jobs that suffered from high load conditions. With FCFS this happens to
a somewhat lesser extent. Spearman rank correlation coefficients for several
logs are shown in Table 1.

In more detail, consider the CTC workload shown in Fig. 10. From the
heatmaps it appears that the original CTC scheduler is closer to FCFS than
to EASY. But in fact it is even worse than FCFS. Looking at the scale, we find
that for EASY simulations the response times are evenly smeared from around
30 seconds to around 80,000 seconds, with rather sharp boundaries. The top
limit probably reflects a runtime limit imposed by the system administrators.
But in the original log we don’t see any such boundary, and response times may
be as high as a million seconds.

Looking at the KTH log we see a different picture (Fig. 11). Here it seems
that the heatmaps produced from the original log are somewhat more similar to
the heatmaps produced by EASY, implying that the original scheduler behaves



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 500

KTH-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 500

KTH-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

KTH-SP2-1996-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

KTH-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)
2
5
0

KTH-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250500

KTH-SP2-1996-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

KTH-SP2-1996

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)
2
5
0

KTH-SP2-1996-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250 500

KTH-SP2-1996-FCFS

Fig. 11. Heatmaps produced by running EASY and FCFS on the KTH log.

more like EASY than like FCFS. FCFS produces much higher response times
and wait times, and they are all concentrated at the same high values. Regarding
slowdowns, EASY produces much lower slowdowns except at the very highest
loads.

Another example comes from the HPC2N log, shown in Fig. 12. Here the
distribution of response times is approximately the same for both the original
scheduler and the simulated ones. However, with the simulated schedulers many
fewer jobs see low loads, and most jobs are concentrated at the extreme right,
indicating near 100% utilization. In the original log, in contradistinction, they
were scattered from about 30% to about 90%.

7 Conclusions

We set out to devise a new way to use data from accounting logs for performance
evaluations. The idea was that the long-term load on a system exhibits natural
fluctuations, and these can be exploited in order to evaluate performance under



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

250 500
10002000

HPC2N-2002

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

5
0
0

10002000

HPC2N-2002-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

500

5
0
0

10002000

HPC2N-2002-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250500

500

HPC2N-2002

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)
250 500 1

0
0
0

2
0
0
0

HPC2N-2002-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

R
e
sp

o
n
se

 T
im

e
 (

lo
g
 s

ca
le

)

250

5
0
0

1
0
0
0

2
0
0
0

HPC2N-2002-FCFS

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

250

250

HPC2N-2002

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

5
0
0

1
0
0
0

2
0
0
0

HPC2N-2002-EASY

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

100

101

102

103

104

105

106

107

W
a
it

 T
im

e
 (

lo
g
 s

ca
le

)

5
0
0

1
0
0
0

HPC2N-2002-FCFS

Fig. 12. Heatmaps produced by running EASY and FCFS on the HPC2N log.

different load conditions. This idea can be applied directly to the available logs
in order to analyze the system in production use. It can also be applied to the
output of simulations, whether driven by real logs or by synthetic workloads.

To implement this idea we use heatmaps, where the X axis represents load
and the Y axis represents performance. The shading at each point reflects the
number of jobs that experienced this load level and enjoyed this level of perfor-
mance.

This analysis led to two main outcomes. The first was the observation that
our heatmaps expose a wealth of information that has been glossed over till
now. In particular, the common practice of reporting average performance as a
function of average load seems ill-advised, as both load and performance have
skewed distributions. Thus the average values do not reflect system behavior.

The second was the observation that conventional simulations do not reflect
what is going on on real systems. Simulations using EASY, and sometimes also
simulations using FCFS, produce behaviors that are markedly different and often
much better than those observed in the original logs. This seems to indicate that



real schedulers employ various considerations that limit their options, and lead
to sub-optimal packing of jobs. It is not clear at this point whether this reflects
deficiencies in production schedulers, or maybe deficiencies in simulations. It is
certainly possible that simulations like those we performed are over simplified,
and do not take all the real world considerations into account. For example,
real schedulers need to consider memory requirements, software licenses, and
heterogeneous configurations, and do not just count processors.

Analyzing the variability in real systems or single simulation runs as we sug-
gest represents a significant departure from current practice. This immediately
leads to the question of whether this can indeed be used to gauge performance as
a function of load, or maybe it is necessary to actually change the overall average
load on the system. In defense of our approach, we note the recent interest in
generative user-based workload models. In such models the simulation includes
not only the system, but also the processes by which users generate the workload
[9, 10]. An important element in such models is the feedback from the system
to the users. In particular, when performance is bad users may elect to leave
the system. Such feedback leads to a self-regulating effect, and may counteract
attempts to increase the average load.

In any case, we suggest that evaluations of parallel job schedulers will do
well to utilize heatmaps like the ones we produced in order to better understand
the behavior of the systems under study. However, this is only the first step.
Additional research is needed in order to make better use of the heatmaps. In
particular, we suggest the following.

– In our work we interpret “load” as the average system utilization observed
by each job (as was done by Rudolph and Smith). This ignores the backlog
that may accumulate in the scheduler’s queue (except for the fact that a
large backlog may cause a job to be delayed in the queue, and therefore the
load calculation will cover a longer interval). But it can be argued that the
overload represented by this backlog is also an important component of the
system load. The question is how to incorporate this information explicitly
in the load calculation.

– Our heatmaps enable patterns to be observed for a specific log and sched-
uler. An important extension would be to find a good way to compare such
heatmaps to each other. In particular, is there a good metric for evaluating
whether one heatmap represents “better performance” than another?

– It may also be useful to consider subsets of jobs, and draw independent
heatmaps for them. For example, this can be done for jobs with a certain
range of degrees of parallelism, or jobs belonging to a certain user.

– Finally, the heatmaps may also be used to characterize and evaluate synthetic
workload models. By comparing a heatmap representing the behavior of a
given scheduler on a synthetic workload with a heatmap of that scheduler’s
behavior on a real log we can see whether the synthetic workload leads to
reasonable behavior.



Acknowledgments

Many thanks to all those who have made their workload data available through
the Parallel Workloads Archive. Thanks are also due to the anonymous reviewers
who contributed many ideas and observations that improved upon the original
paper.

References

1. S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards for the
evaluation of parallel job schedulers”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 67–90, Springer-Verlag, 1999.
Lect. Notes Comput. Sci. vol. 1659.

2. C. Ernemann, B. Song, and R. Yahyapour, “Scaling of workload traces”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 166–182, Springer Verlag, 2003. Lect. Notes Comput.
Sci. vol. 2862.

3. D. G. Feitelson, “Metric and workload effects on computer systems evaluation”.
Computer 36(9), pp. 18–25, Sep 2003.

4. D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with the parallel workloads
archive”, 2012. (In preparation).

5. D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

6. V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces
and synthetic workload models for parallel job scheduling”. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 25–
46, Springer Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.

7. “Parallel workloads archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

8. L. Rudolph and P. Smith, “Valuation of ultra-scale computing systems”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 39–55, Springer Verlag, 2000. Lect. Notes Comput. Sci. vol. 1911.

9. E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the per-
formance of parallel system schedulers”. In 14th Modeling, Anal. & Simulation of
Comput. & Telecomm. Syst., pp. 167–176, Sep 2006.

10. E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-systems
schedulers: Are we doing the right thing?” IEEE Trans. Parallel & Distributed
Syst. 20(7), pp. 983–996, Jul 2009.

11. S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Selective reser-
vation strategies for backfill job scheduling”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp.
55–71, Springer-Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

12. D. Talby, D. G. Feitelson, and A. Raveh, “A co-plot analysis of logs and models
of parallel workloads”. ACM Trans. Modeling & Comput. Simulation 12(3), Jul
2007.


