
Probabilisti Bak�llingAvi Nissimov and Dror G. FeitelsonDepartment of Computer SieneThe Hebrew University of JerusalemAbstratBak�lling is a sheduling optimization that requiresinformation about job runtimes to be known. Suhinformation an ome from either of two soures: esti-mates provided by users when the jobs are submitted,or preditions made by the system based on histor-ial data regarding previous exeutions of jobs. Inboth ases, eah job is assigned a preise preditionof how long it will run. We suggest that instead thewhole distribution of the historial data be used. Asa result, the whole bak�lling framework shifts froma onrete plan for the future shedule to a proba-bilisti plan where jobs are bak�lled based on theprobability that they will terminate in time.1 IntrodutionSheduling parallel jobs for exeution is similar to binpaking: eah job needs a ertain number of proes-sors for a ertain time, and the sheduler has to pakthese jobs together so that most of the proessors willbe utilized most of the time. To perform suh pak-ing e�etively, the sheduler needs to know how manynodes eah job needs, and for how long. The numberof proessors needed is typially spei�ed by the userwhen the job is submitted. The main question is howto estimate how long eah job will run.The simplest solution to this question is to requirethe user to provide a runtime estimate [6℄. However,logs of jobs that have run on large sale parallel su-peromputers reveal that user runtime estimates arevery inaurate [7℄. The reason for this is that sys-tems typially kill jobs that exeed their estimate,giving users a strong inentive to over-estimate theruntimes of their jobs.The alternative to user-provided estimates issystem-generated preditions. Pratially all systemsollet information about jobs that have run in thepast. This information an then be mined to gener-

ate preditions about the runtimes of newly submit-ted jobs. Algorithms for generating suh preditionsare desribed in Setion 2.Predition algorithms typially work in two steps.Given a newly submitted job, they �rst san the avail-able historial data and look for �similar� jobs thathave exeuted in the past. For example, similar jobsmay be de�ned as all the jobs that were exeuted onbehalf of the same user on the same number of proes-sors. They then apply some funtion to the runtimesof this set of jobs. For example, the funtion an beto ompute the distribution of runtimes, and extratthe 90th perentile. This value is then used as theruntime predition for the new job.Our starting point is to observe that thispredition-generation proess loses information: wehave information about the runtimes of many previ-ous similar jobs, but we redue this into the singlenumber � the predition. Why not use all the avail-able information instead? This means that shedul-ing deisions will be made based on assumed distri-butions of runtimes, rather than based on preditionsof spei� runtimes.The advantage of making a spei� predition isthat the sheduling beomes deterministi: when wewant to know whether a job an run or not, we as-sume it will run for the predited time, and then hekwhether we have enough proessors that are free forthis duration. But if we use a distribution, we areredued to probabilisti arguments. For example, wemay �nd that there is an 87% hane that the pro-essors will be free for the required time. But this isatually a more aurate representation of the situa-tion at hand, so it has the potential to lead to betterperformane.We apply the above ideas in the ontext of bak�ll-ing shedulers. Bak�lling is an optimization usuallyapplied to FCFS sheduling that allows small andshort jobs to run ahead of their time provided they�t into holes that were left in the shedule. In our new1

approah, this �t beomes a probabilisti predition;jobs will be bak�lled provided there is a high prob-ability that they will �t. In other words, we de�nea threshold τ and perform the bak�lling providedthat the probability that the job will not terminatein time is less than τ .In keeping with the spirit of bak�lling, the mean-ing of �will not terminate in time� is that the bak-�lled job will delay the �rst queued job. The algo-rithm for alulating this is desribed in detail in Se-tion 4. The results of simulations that assess how wellthis performs are then shown in Setion 5.2 Algorithms that UsePreditionsThere are many di�erent algorithms that require pre-ditions or user estimates of job runtimes, inludingEASY bak�lling and shortest-job-�rst. In EASYbak�lling, jobs are bak�lled provided they do notdelay the �rst queued job [6℄. One of the onditionsused to verify this is that the bak�lled job will ter-minate before the time when enough proessors forthe �rst queued job will beome available. This re-quires the runtimes of urrently exeuting jobs to beknown (in order to �nd out when they will free theirproessors), and the runtime of the potential bak�lljob (to �nd out if it will terminate in time). Shortestjob �rst requires runtime knowledge in order to sortthe jobs.There has been some debate in the literature onwhether aurate runtime preditions are atually im-portant. Somewhat surprisingly, the �rst papers onthis issue indiated that inaurate preditions leadto improved performane [3, 13℄. However, more re-ent researh has shown that aurate estimates areindeed bene�ial [1, 12, 11℄, thus providing added mo-tivation for the quest for more aurate preditions.Several algorithms have been suggested to enableruntime preditions based on historial data. Gib-bons �rst partitions the historial data into lassesbased on the user and the exeutable. Importantly,exeutions on di�erent numbers of proessors are in-luded in the same lass. He then �nds a quadratileast-squares �t of the runtime as a funtion of thenumber of proessors used. This is used to omputea predition for the requested number of proessors[5℄. Smith et al. also divide jobs into lasses, butuse various job attributes in addition to the user andexeutable. They then use the mean runtime of all

previous exeutions in the lass as the predition [10℄.Mu'alem and Feitelson suggest using the mean run-time in the lass plus 1.5 standard deviations, to re-due the danger of under-predition [7℄. Tsafrir etal. use the simplest sheme of all: they just use theaverage runtime of the last two terminated job thathave been submitted by the same user [11℄.The problem with using runtime preditions otherthan user estimates with bak�lling is the fat thatthe jobs may be under-predited. Killing the jobs inthis situation is highly undesirable, sine the usershave neither tools to avoid it nor indiation that thisis going to happen. Therefore, the only reasonableway to solve under-predition is to violate the reser-vation for the �rst job in the queue and delay it untilthe proessors beome available [11℄. But there is nopromise suh delays will ever stop, unless we forbidfuture bak�lling, beause the bak�lled jobs may intheir turn also be under-predited.The same question arises when the preditions areinitially set too large, like when using doubling (ortripling, quadrupling and so on) [11℄. If the systemwere a single-user system, then this strategy wouldprobably be good � it pushes forward the jobs withless requirements (on average), so the average waitingtime is expeted to derease. However, sine we aredealing with multi-user systems, suh an approah isinsu�ient, and may appear extremely unfair.In this work, however, we use EASY-bak�llingas the base algorithm. Aording to [11℄, when thepreditions are orret, the overall performane ofEASY-bak�lling usually improves.3 Prediting Job RuntimeDistributionsBoth bak�lling-based shedulers and SJF use single-value preditions due to their simpliity. But in fatprediting a job's runtime annot usually be done de-terministially. A job's runtime depends on many fa-tors, that inlude not only system internal onditionssuh as the network load, but also terminations due toerrors and user anellations. These last fators areexternal to the system, and they greatly ompliateruntime predition. Errors usually show inorret be-havior pretty soon after a job starts, and many faultsmay be disovered long before a job would have ter-minated without the error. Users also know this, andthey tend to test partial output soundness soon aftertheir jobs start. Therefore, in ases of errors the job2

is usually terminated or aneled almost immediately.For instane, 2613 out of 5275 (�50%) aneled jobsin the SDSC-SP2 trae whose user estimates were setfor at least 200 minutes were aneled within 20 min-utes after their start times (this and other traes weuse ome from the Parallel Workloads Arhive [9℄; seeTable 1). Modeling these senarios is impossible withsingle-value preditions: a single value an give eithera mean or a quantile of the job's runtime distribution,but annot model the whole distribution.Another problem with single-value preditions isthe fat that they should ontain all the informationupon whih sheduling deisions are made. Di�er-ent deviations from the real runtime ause di�erentand possibly inomparable damage. This leads topredition poliies that are sheduler-dependent. Anextreme example is bak�lling, whih kills jobs whoseruntimes are longer than the user estimates. Thus,over-preditions are muh less damaging than under-preditions. Therefore the user estimates tend to bebiased upwards, as users tend to give high estimatesfearing their jobs will be killed.Prediting the distribution of a job's runtime isbased on the onept of loality of sampling [2℄. Thismakes a distintion between the global distributionof runtimes, when looking at a long time span, andthe loal distribution of runtimes that is observed ata ertain instant. The idea is that runtimes � likeother workload attributes � exhibit loality, so theloal distribution is muh more preditable than theglobal one.To utilize this observation, we divide time intoshort slies, and haraterize the runtime distributionin eah one using binning. In partiular, the modelgroups jobs arriving within eah 15-minute slie oftime together. The runtime distribution was modeledfor eah slie individually. The modeling is done byde�ning a set of disrete bins, and ounting howmanyjob runtimes fall in eah bin. The bin sizes used werelogarithmi, with ranges that grow by a fator of 1.8;this gives a better resolution for short jobs, whih aremore numerous. The values 15 minutes and 1.8 wereseleted empirially so as to maximize the observedloality in several di�erent workload traes [8℄.To redue omplexity it is desirable to trak only alimited number of distint distributions. The tradeo�here is that using more distributions inreases au-ray, but also inreases the omplexity of the model-ing. Therefore we want to �nd the number that pro-vides good auray at an aeptable ost. In mostases it turned out that 16 distint distributions pro-

vide reasonable results.Coming up with representative distributions in-volves a learning proess. One enough data is avail-able (we use one week's worth of ativity) a set of 16representative distributions is learned using an itera-tive proess. The learnt distributions are then usedin the HMM model desribed below as preditions forthe di�erent jobs. Typially only 2�3 iterations areneeded to onverge to an aeptable set; using moretypially results in over�tting. The riterion for on-vergene is that the distane from the previous model,multiplied by the square root of the number of sam-ples (all the jobs observed so far) is smaller than agiven threshold. Later, as more data is aumulated,this will grow again beyond the threshold, and thelearning proess is repeated using all the additionaldata aumulated so far. Thus the quality of themodel is expeted to inprove the longer the system isin use.The �nal stage of the modeling is to reate a Hid-den Markov Model (HMM) to desribe transitionsand see how things hange. The model has 16 states,orresponding to the di�erent runtime distributions.States may have self-loops to aount for situationswhere the loal distribution stays the same for morethan 15 minutes. Cheking the observed distributionsof how long eah state is in e�et indeed revealed thatin the vast majority of ases this is geometrially dis-tributed.The distributions and model are learned on-line asmore jobs are submitted and terminate. Thus whenrunning the algorithm on a job trae, initially it isimpossible to provide good preditions. when enoughinformation aumulates, the model traks the statethat the system is in, and uses the distribution thatharaterizes this state as the predition for newlysubmitted jobs.4 Using Distributions in theSheduling AlgorithmGiven historial data regarding previous job exeu-tions, one an �t a model of the distribution of run-times or just use the empirial distribution. This se-tion disusses the ways how this information an bepratially used by a sheduler. In partiular, we baseour work on the EASY bak�lling sheme.Given that runtimes are ontinuous, keeping his-torial data about multiple jobs an burden the sys-tem and inrease the omplexity of the sheduling3

algorithm. For that reason we will assume the distri-bution is disretized by dividing the runtimes into Nbins. The sizes of the bins will be logarithmi: therewill be many bins for short runtimes, and the top binseah represent a large range of runtimes.EASY bak�lling maintains a queue of waiting jobs(ones that have been submitted but have not yetstarted) ordered by their submission times. The stepsof the EASY bak�lling sheduling proedure, whihis exeuted eah time a job arrives or terminates, areas follows:1. As long as there are enough idle proessors tostart the �rst job in the wait queue, remove thisjob from the queue and start it.2. Given the �rst job in the queue that annot startbeause of insu�ient idle proessors, �nd whenthe required number will beome free and makethe reservation for this job.3. Continue sanning the queue, and start (bak�ll)jobs if they don't violate this reservation.However, the idea of the algorithm an be expressedmore onisely. In fat, Step 2 is more of an im-plementation issue than part of the ore of the algo-rithm. Thus steps 2 and 3 an be united as follows:�Continue sanning the queue, and start jobs if thisdoesn't delay the start time of the �rst job in thequeue�. This is independent of how the ondition ofnot delaying the �rst job is veri�ed. And we an alsorelax the ondition, and replae it with a onditionthat it will not be delayed with a high probability.In EASY bak�lling eah job is assigned a singlevalue for its predited runtime, and this preditionis used as the exat runtime in a very deterministiway. But if we don't have a single-value predition,but rather a distribution, it is not possible to makesuh a deision in a deterministi way. Instead, thereare many ases with di�erent probabilities that mayontradit eah other. Therefore we need to summa-rize all these possibilities. To do so, we de�ne a singleparameter that is the on�dene probability τ . Ournew ondition for bak�lling will be that the probabil-ity that the bak�lling postpones the start of the �rstjob in the queue is less than τ .Let us now formalize this idea. For simpliity, it isassumed that the job runtimes are independent; thus,for eah two jobs with runtimes R1, R2, we have that
Pr(R1, R2) = Pr(R1) Pr(R2) (as usual, here and ev-erywhere, Pr(R1) denotes the probability of randomvariable R1 to have its value). In partiular, thismeans that the event of the availability of proessors

at di�erent times due to terminations of the urrentlyrunning jobs and the distribution of the bak�lledjob's runtime are independent.The following notation will be useful. Suppose theurrent time is t0. Assuming that the job we areonsidering is indeed bak�lled, we denote its (un-known) true termination time by te. For eah time t,
t0 ≤ t < ∞, we denote by c(t) the number of proes-sors that are released by the urrently running jobsbefore and inluding time t. Also, let cq be the num-ber of proessors that must be released to start the�rst job in the queue, and c the number needed tostart both the �rst job and the bak�ll job together.Armed with these notations, we an say that the al-gorithm should bak�ll i�

Pr(∃t ∈ (t0, te) : cq ≤ c(t) < c) < τ.In words: the probability that there exists some time
t before the termination of the bak�lled job whenthe number of released proessor's is enough to startthe �rst job in the queue but not enough to run bothjobs � so the bak�lling postpones the start of the�rst job in the queue � is smaller than τ .However, the termination time te is not known. In-stead, we have a distribution. Integrating over all thepossible termination times of the bak�lled job wethen reeive the ondition

∫
∞

t0

Pr(te, ∃t ∈ (t0, te) : cq ≤ c(t) < c)dte < τ.Sine by assumption of job runtimes independene teand c(t) are independent, this probability is
∫

∞

t0

Pr(te) Pr(∃t ∈ (t0, te) : cq ≤ c(t) < c)dte < τ.The �rst fator in the integrand is modeled by thepreditor � it is exatly the predited distribution ofthe job's runtime. As noted above these probabilitiesare typially modeled disretely, by dividing the run-time into bins and prediting the probability to fallinto eah bin. The seond fator is muh harder toalulate.First of all, in order to alulate the seond fator,we must alulate the probability Pr(c(t) ≥ c) forany given time t and any given requirement c. Theprobability of proessor availability given terminationprobabilities at time t of the urrently running jobs isalulated using Dynami Programming. The matrixell Mt[n][c] denotes the probability that at time t,the jobs 1..n have released at least c proessors. This4

Algorithm 1 Runtime bin probability realulation1 double[℄ realulate(Job job)2 // old model3 double old_p[N℄ = job.model;4 // new distribution model5 double new_p[N℄;6 double upperBound = job.userEstimate;7 double lowerBound = urrentTime-job.startTime;8 for eah runtime bin j do {9 double newBinStart =10 max{bin[j℄.start, min{lowerBound, bin[j℄.end}};11 double newBinEnd =12 min{bin[j℄.end, max{upperBound, bin[j℄.start}};13 new_p[j℄ = old_p[j℄*14 (log(newBinEnd)-log(newBinStart)) /15 (log(bin[j℄.end)-log(bin[j℄.start));16 }17 normalize(new_p);18 return new_p;19 }is alulated reursively as
Mt[n][c] = Mt[n − 1][c] +

(Mt[n − 1][c − cn] − Mt[n − 1][c]) · Pt[n].The �rst term denotes the ase when enough pro-essors are already idle without termination of jobnumber n. The seond term is the probability thatonly the termination of job n freed the required pro-essors. This is the produt of two fators: that jobs
1..n − 1 freed at least c − cn but not c proessors,and that the last job terminated in time (cn is num-ber of proessor used by job number n, and Pt[n]is the probability that job number n terminates notlater than t). The initialization of the dynami pro-graming sets the obvious values: Mt[∗][0] = 1 (weare sure that the jobs have released at least 0 pro-essors), and Mt[0][∗] = 0 (zero jobs do not releaseany number proessors). In the algorithm implemen-tation, these values may be alulated on-the-�y; forinstane, if c < cn (the number of required proes-sors is smaller than the number of proessors usedby job number n), then Mt[n− 1][c− cn] doesn't ex-ist in the real matrix, beause the index is negative,but an easily be substituted by 1, so that Mt[n][c] =
Mt[n − 1][c] + (1 − Mt[n − 1][c]) · Pt[n]. If n is thenumber of running jobs, then Pr(c(t) ≥ c) = Mt[n][c].The above requires alulating the probabilities ofrunning job terminations before or at the time t (de-noted above as Pt[]). Eah time the sheduler is

alled, a larger part of the distributions beomes irrel-evant, beause the jobs have already run longer thanthe times represented by the lower bins. Thereforethe distributions needs to be realulated. Beauseour data is disretized, the job runtime probabilitiesare estimated only at the ends of the runtime bins.The upper and lower bounds of job runtimes are theuser estimate (sine the job is killed after it; thisis used even before the job starts) and the urrentruntime of the job (urrentTime-job.startTime).Log-Uniform intra-bin interpolation is used. Algo-rithm 1 presents the realulation proedure for theruntime bin probabilities. Line 3 reeives the jobdistribution model as proposed by the preditor (re-minder: N is the number of the runtime bins, and
j = 1..N is the index of a runtime bin). Lines 9-12 ensure that the new runtime bin boundaries sat-isfy the old bin boundaries and global boundaries. Ifthe runtime bin doesn't interset the global bound-aries then newBinStart==newBinEnd and thereforenew_p[j℄=0. Lines 13-15 realulate the probabil-ity measure remainders after log-uniform interpola-tion.After all the events representing the possible ter-mination of a job are inserted into a list and sortedby the time, one an easily alulate the vetor oftermination probabilities at time t.Let A(t) be the event that t is the real start time ofQ[0℄ (the �rst job in the queue) without bak�lling,5

enough processors
to run Q[0] at time t

c(t) >= c_q

enough processors to run

c(t−1) >= c_q

enough processors to run both
Q[0] and the backfill job at time t
c(t) >= c

want to compute
probability that can
run Q[0] but not both
at time t but not before

intersection hard to compute
so compute an approximation
c(t−1) >= c

Q[0] even at time t−1

Figure 1: Explanation of the Pr(A(t)) formula.and that bak�lling of the job delays the �rst jobbeyond this time. This means that
A(t) = (t ∈ (t0, te))∧(∀s < t, c(s) < cq)∧(cq ≤ c(t) < c)In words, t is before the end time of bak�lled job and
t is the �rst time when the �rst job in the queue anstart but only if this job isn't bak�lled. Therefore,aording to our probabilisti bak�lling ondition,the bak�lling should happen i�

Pr(∃t ∈ (t0, te) : A(t)) < τBut the events are disjoint, therefore the total prob-ability is the integral of probabilities:∫ te

t0

Pr(A(t))dt < τ (1)The problem is to alulate Pr(A(t)).Suppose t ∈ (t0, te). Let us hange the de�nitionof t to be disrete time (in any units). Due to themonotoniity of c(t), Pr(A(t)) = Pr(c(t − 1) < cq ∧
cq ≤ c(t) < c). If c(t) ≥ c or c(t − 1) ≥ c, then
c(t) ≥ cq, sine c > cq and c(t) is monotonous (seeVenn diagram in Figure 1). Therefore,
Pr(A(t)) = Pr(c(t) ≥ cq) − Pr(c(t − 1) ≥ cq ∨ c(t) ≥ c)

= Mt[n][cq] − Pr(c(t − 1) ≥ cq ∨ c(t) ≥ c).But in the seond term, the two events in the dis-juntion don't imply eah other, so
Pr(c (t − 1) ≥ cq ∨ c(t) ≥ c) =

= Pr(c(t − 1) ≥ cq) + Pr(c(t) ≥ c) −

Pr(c(t − 1) ≥ cq ∧ c(t) ≥ c)

= Mt−1[n][cq] + Mt[n][c] −

Pr(c(t − 1) ≥ cq ∧ c(t) ≥ c)

The last term is pretty hard to alulate. However,it has a lower bound of Mt−1[n][c] � the probabilitythat before the last event there were enough proes-sors to run both jobs (whih implies c(t−1) ≥ cq and
c(t) ≥ c). Using all the above onsiderations leads tothe bound

Pr(A(t)) ≥ (Mt[n][cq] − Mt[n][c]) −

(Mt−1[n][cq] − Mt−1[n][c])
(2)The integral over t of Pr(A(t)) in Equation (1)turns into a sum when time is disretized. Repla-ing Pr(A(t)) with the lower bounds from Equation(2) leads to a telesoping series. Sine the �rst itemequals 0 (beause initially the number of proes-sors is less than cq), the total sum is Mte−1[n][cq] −

Mte−1[n][c]. But although eah of Mt[n][cq], Mt[n][c]is monotonially growing as a funtion of t, their dif-ferene is not monotonous; while all Pr(A(t)) ≥ 0,and their sum is monotonous. This means we have atighter bound of
∑

t∈(t0,te)

Pr(A(t)) ≥ max
t∈(t0,te)

{Mt[n][cq] − Mt[n][c]}To summarize, the version of EASY bak�lling thatuses runtime distributions rather than point predi-tions will bak�ll a job if the following ondition holds
∑
te

Pr(te) max
t∈(t0,te)

{Mt[n][cq] − Mt[n][c]} < τThat is, if the probability that suh a time exists isless than the threshold. Algorithm 2 presents thesimpli�ed pseudo-ode of this bak�lling sheduler.Some notes on the implementation: The result vari-able is monotonously growing, so one it is biggerthan the threshold the total result is false for sure, sono further alulations are run. The pMax variable is6

Algorithm 2 The distribution-based ondition for bak�lling.bool shouldBakfill(Job job) {List events = <list of job terminations sorted by time>int n = <# of running jobs>double P[n℄;// max(t){M[n℄[℄-M[n℄[0℄}double pMax = 0;double result = 0;int 0 = <# of proessors needed to run Q[0℄>int = <# of proessors needed to run both jobs>for eah j=runtime bin do {for eah e in events before bin[j℄.end do {P[e.job℄ += e.probability;<alulate M using Dynami Programming, given P>pMax = max{pMax, M[n℄[0℄-M[n℄[℄};}result += job.model[j℄*pMax;}return result < THRESHOLD;}also monotonously growing. This means that if theremaining runtime bin probability multiplied withthe urrent pMax together with the urrent resultare bigger than the threshold, it is also enough to stopalulating and return false. These improvements arevery important, sine the sheduler runs on-line. Oursimulations (reported in the next setion) indiatethat indeed the overhead of the sheduler is very low:simulating a full year of ativity, with order of 100,000alls to the sheduler, takes about half an hour.If the preditor returns no runtime predition(whih might happen if no historial data is avail-able), then the single probability event is inserted,whih is the user estimate with probability of 1. Ifthis is the ase for all the running jobs, then the al-gorithm works exatly like the original EASY algo-rithm: all the termination events ome from the run-ning jobs' terminations by user estimates, and there-fore the algorithm works in a very deterministi way.5 ResultsThe probabilisti bak�lling sheme desribed abovewas evaluated by omparing it with EASY bak�lling,using simulations of several workloads available fromthe Parallel Workloads arhive [9℄ (Table 1). In theseworkload logs, jobs that are aneled before they starthave 0 runtime and also 0 proessors. These jobs wereremoved from the simulation. If a job requires more

avg avglog duration jobs wait runCTC SP2 6/96�5/97 77,222 425.7 188.0KTH SP2 9/96�8/97 28,489 334.6 161.8SDSC SP2 4/98�4/00 59,725 429.6 123.6SDSC Blue 4/00�1/03 243,314 720.2 95.5Table 1: Workloads used in the analysis and simula-tions. Average wait and run times are in minutes.proessors than the mahine has, the requirement isaligned to the mahine size.The runtime distributions were modeled using aHidden-Markov Model with 16 states, where eahstate orresponds to a runtime distribution. Themodel grouped jobs arriving within a 15-minute slieof time together. The runtime distribution was mod-eled using logarithmi bins, with ranges that growby a fator of 1.8. The details of the modeling arepresented in detail in [8℄. The threshold used for theprobabilisti bak�lling was τ = 0.05.In order to avoid the in�uene of the runtime dif-ferenes between the traes we used waiting time forthe performane metri. The system is a multi-usersystem, therefore fairness is also an issue. Therefore,the L1-type metris that take the average or sum ofall the jobs' metri values are not enough � a jobthat su�ers from bad servie is not ompensated bythe fat that in average the jobs wait little in the7

 0

 0.25

 0.5

 0.75

 1

3d1d5h1h10m1m10s1s

Wait Time

SDSC SP2

~
33

%

C
D

F

EASY
EASY+HMM

 0

 0.25

 0.5

 0.75

 1

3d1d5h1h10m1m10s1s

Wait Time

CTC SP2

~
19

%

C
D

F

EASY
EASY+HMM

 0

 0.25

 0.5

 0.75

 1

3d1d5h1h10m1m10s1s

Wait Time

SDSC BLUE

~
50

%

C
D

F

EASY
EASY+HMM

 0

 0.25

 0.5

 0.75

 1

3d1d5h1h10m1m10s1s

Wait Time

KTH SP2

~
43

%

C
D

F

EASY
EASY+HMMFigure 2: CDF of waiting time for Probabilisti EASY vs. base EASY. The arrows show the jobs that bene�tfrom the probabilisti approah.queue. In order to present the omplete piture ofwhat is going on for all the jobs the full CDFs of thewaiting times are presented.Figure 2 ompares the onventional EASY shed-uler with the probability-based sheduler. The X-axisis the waiting times of the jobs in a logarithmi sale,and the Y-axis its CDF. The CDF doesn't start from0, sine there a large fration of the jobs don't waitin the queue at all: around 50% of the jobs for SDSCBlue and KTH, slightly less for SDSC SP2, and morethan 75% of the jobs for CTC.As the results are shown in the form of a CDF,a urve that is lower and more to the right implieshigher wait times and thus worse performane. Con-versely, a urve that is higher and to the left indiateslower wait times and better performane. The arrowsrepresent the fration of jobs for whih waiting timeimproved due to the probabilisti approah � thisis the interval of the CDFs where the results for theprobabilisti sheme (dashed line) are to the left ofand above the EASY results (solid line).The onlusions of this hart is that usually mostof the jobs that had to wait at all are better o� usingthe probabilisti approah. Note that the X-axis islogarithmi, and atually overs a very large range �it hanges by a fator of 2.5 × 106. Therefore, when

Trae name EASY ProbabilistiCTC SP2 21.3 min 18.1 min -15.2%SDSC SP2 364 min 373 min +2.6%SDSC Blue 131 min 105 min -19.5%KTH SP2 114 min 113 min -0.6%Total -8.7%Table 2: Arithmeti mean of waiting times.Trae name EASY ProbabilistiCTC SP2 28.2 se 25.3 se -10.1%SDSC SP2 639 se 635 se -0.7%SDSC Blue 203 se 135 se -33.6%KTH SP2 181 se 147 se -18.9%Total -16.7%Table 3: Geometri mean of waiting times.the line moves left even for a little, this may representan improvement fator of 2. Also, it looks that ifthe job started waiting, it usually waits for at least aminute. Another �nding is that there is a plae in thehart where the line is almost straight. This meansthat the waiting time distribution at some intervalsis lose to a log-uniform distribution.8

Tables 2 and 3 summarize the improvements in thewait time metri in the form of the arithmeti andgeometri means. The formula for alulating thegeometri mean is exp(
∫

f(w) ln max{w, wmin}dw),where w is the job's waiting time, f(w) is its PDF and
wmin is the ommonly used threshold of 10 seonds,see for instane [4℄. Therefore, the improvement inthe geometri mean metri value is exatly the areabetween the lines of the hart that are to the right of
w = wmin.6 ConlusionsSheduling algorithms suh as bak�lling and SJF re-quire job runtimes to be known, or at least predited.Previous work has always assumed that suh predi-tions have to be point estimates. In ontradistintion,we investigate the options of prediting the distribu-tion from whih the atual runtime will be drawn.This is then integrated into the EASY bak�lling al-gorithm, and shown to redue the expeted waitingtime and improve the wait-time distribution.One a distribution-based probabilisti bak�llingalgorithm is in plae, several ourses of additional re-searh suggest themselves. One is a omparison withthe performane obtained by other (single value) pre-dition shemes. Another is a deeper investigationof alternative ways to predit distributions. In thiswork we used a rather omplex HMM-based predi-tion sheme. A possible alternative is to just use theempirial distribution of jobs by the same user. Thisholds promise beause it provides more fous on theloal proess, as opposed to the HMM whih takesa global view at the possible expense of preditionsfor a single job. But an thorough experimental studyis needed to verify and quantify the relative perfor-mane of the two approahes.Referenes[1℄ S-H. Chiang, A. Arpai-Dusseau, and M. K. Ver-non, �The impat of more aurate requestedruntimes on prodution job sheduling perfor-mane�. In Job Sheduling Strategies for ParallelProessing, pp. 103�127, Springer Verlag, 2002.Let. Notes Comput. Si. vol. 2537.[2℄ D. G. Feitelson, �Loality of sampling and diver-sity in parallel system workloads�. In 21st Intl.Conf. Superomputing, Jun 2007.

[3℄ D. G. Feitelson and A. Mu'alem Weil, �Utiliza-tion and preditability in sheduling the IBMSP2 with bak�lling�. In 12th Intl. Parallel Pro-essing Symp., pp. 542�546, Apr 1998.[4℄ D. G. Feitelson, L. Rudolph, U. Shwiegelshohn,K. C. Sevik, and P. Wong, �Theory and pra-tie in parallel job sheduling�. In Job Shedul-ing Strategies for Parallel Proessing, pp. 1�34,Springer Verlag, 1997. Let. Notes Comput. Si.vol. 1291.[5℄ R. Gibbons, �A historial appliation pro�lerfor use by parallel shedulers�. In Job Shedul-ing Strategies for Parallel Proessing, pp. 58�77,Springer Verlag, 1997. Let. Notes Comput. Si.vol. 1291.[6℄ D. Lifka, �The ANL/IBM SP sheduling sys-tem�. In Job Sheduling Strategies for ParallelProessing, pp. 295�303, Springer-Verlag, 1995.Let. Notes Comput. Si. vol. 949.[7℄ A. W. Mu'alem and D. G. Feitelson, �Utiliza-tion, preditability, workloads, and user runtimeestimates in sheduling the IBM SP2 with bak-�lling�. IEEE Trans. Parallel & Distributed Syst.12(6), pp. 529�543, Jun 2001.[8℄ A. Nissimov, Loality And Its Usage In Par-allel Job Runtime Distribution Modeling UsingHMM. Master's thesis, The Hebrew University,Ot 2006.[9℄ �Parallel workloads arhive�. URLhttp://www.s.huji.a.il/labs/parallel/workload/.[10℄ W. Smith, I. Foster, and V. Taylor, �Preditingappliation run times using historial informa-tion�. In Job Sheduling Strategies for ParallelProessing, pp. 122�142, Springer Verlag, 1998.Let. Notes Comput. Si. vol. 1459.[11℄ D. Tsafrir, Y. Etsion, and D. G. Feitelson, �Bak-�lling using system-generated preditions ratherthan user runtime estimates�. IEEE Trans. Par-allel & Distributed Syst. 18(6), pp. 789�803, Jun2007.[12℄ D. Tsafrir and D. G. Feitelson, �The dynamisof bak�lling: solving the mystery of why in-reased inauray may help�. In IEEE Intl.Symp. Workload Charaterization, pp. 131�141,Ot 2006.[13℄ D. Zotkin and P. J. Keleher, �Job-length estima-tion and performane in bak�lling shedulers�.In 8th Intl. Symp. High Performane DistributedComput., Aug 1999.9

