
Metrics for Parallel Job Scheduling
and their Convergence

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

http://www.huji.ac.il/˜feit

Abstract

The arrival process of jobs submitted to a parallel system
is bursty, leading to fluctuations in the load at many time
scales. In particular, rare events of extreme load may oc-
cur. Such events lead to an increase in the standard de-
viation of performance metrics, and thus delay the con-
vergence of simulations used to evaluate the scheduling.
Different performance metrics have been proposed in an
effort to reduce this variability, and indeed display dif-
ferent rates of convergence. However, there is no single
metric that outperforms the others under all conditions.
Rather, the convergence of different metrics depends on
the system being studied.

1 Introduction

It has long been recognized that the performance of com-
puter systems depends not only on their design and im-
plementation, but also on the workload to which they are
subjected. But the results may also depend on themetric
being used for the evaluation. In some cases interactions
may occur between the metric and certain characteristics
of the system, leading to results that actually depend on
the metric being used [21]. In this paper we concentrate
on another effect, whereby some metrics converge more
rapidly than others.

The conventional methodology of simulating computer
systems calls for continuing the simulation until the de-
sired relative precision is achieved with the desired level
of confidence [22]. The relative precision reflects the size
of the confidence interval relative to the estimated value.
The confidence level is a statistical statement regarding
the probability that the actual value we are trying to esti-
mate actually resides within the confidence interval. Put
together, the calculation is based on the ratio of the stan-
dard deviation of the performance metric to its mean, mul-
tiplied by some factor that takes the statistical properties
of the simulation into account.

The standard deviation measures the divergence of in-
dividual measurements from the mean. Due to the averag-
ing over multiple measurements, it tends to shrink as the
simulation is continued. This leads to the conventional
wisdom that any desired relative precision and level of
confidence can be achieved by running the simulation for
long enough. This conventional wisdom has been chal-
lenged lately with the realization that workloads that are
characterized by heavy tailed distributions may prevent
the simulation from reaching a steady state [4]. But even
if the simulation does not diverge, it may take a long time
to reach the desired relative precision. Moreover, the rela-
tive precision may not improve monotonically as the sim-
ulation is extended.

The conventional way to deal with these problems is
to employ advanced statistical techniques for variance re-
duction. An alternative is to use performance metrics
that are more robust in the face of a fluctuating work-
load. Indeed, several different performance metrics have
been proposed for the evaluation of parallel job sched-
ulers, with the goal of reducing the susceptibility to being
affected by extreme workload conditions. We compare
the convergence properties of these metrics, and evaluate
the degree to which they achieve this goal.

2 Variability in Workloads

The root cause for convergence problems is variability in
the workloads. We therefore start by characterizing the
variability in the runtimes and arrivals of workloads ob-
served on different systems, and in models based on them.

2.1 The Distribution of Job Runtimes

We begin by collecting some data about the runtime dis-
tributions of jobs executed on large scale parallel super-
computers. This is based on the following logs, which
are available on-line from the Parallel Workloads Archive
(www.cs.huji.ac.il/labs/parallel/workload/):



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

runtime

LANL-CM5
SDSC-Par
CTC-SP2
KTH-SP2

SDSC-SP2
LANL-O2K

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06

P
r(

X
>

x)
 [l

og
 s

ca
le

]

runtime [log scale]

LANL-CM5
SDSC-Par
CTC-SP2
KTH-SP2

SDSC-SP2

Figure 1:Cumulative distribution of job runtimes for dif-
ferent systems, and log-log complementary distribution
plots.

LANL-CM5: The Los Alamos National Lab 1024-node
CM-5 (201387 jobs, 10/1994 to 9/1996)

SDSC-Par: The San-Diego Supercomputer Center 416-
node Intel Paragon (115595 jobs, 1/1995 to 12/1996)

CTC-SP2: The Cornell theory Center 512-node IBM
SP2 (79296 jobs, 7/1996 to 5/1997)

KTH-SP2: The Swedish Royal Institute of Technology
100-node IBM SP2 (28490 jobs, 10/1996 to 8/1997)

SDSC-SP2: The San-Diego Supercomputer Center 128-
node IBM SP2 (67665 jobs, 4/1998 to 4/2000)

LANL-O2K: The Los Alamos National Lab 2048-
node Origin 2000 cluster (122233 jobs, 12/1999 to
4/2000)

Whenever the logs contain data about jobs that did not
complete execution successfully, this data was discarded.

Regrettably, it is not clear that this data accurately rep-
resents real distributions of job runtimes. One problem
is that most sites have limits on the allowed length of

system mean median std dev CV
LANL-CM5 1232.21 62.00 3268.29 2.65
SDSC-Par 4223.77 43.00 10545.10 2.50
CTC-SP2 9580.50 705.00 16388.91 1.71
KTH-SP2 6146.68 583.00 14483.63 2.36
SDSC-SP2 5481.20 521.00 12776.01 2.33
LANL-O2K 1965.26 23.20 7203.51 3.67

Table 1:Statistics of runtimes in different workloads.

jobs, and these limits can be pretty low during the work-
ing hours of weekdays (e.g. 4 hours or 12 hours). Users
that need to run very long jobs therefore resort to mak-
ing a checkpoint whenever they run out of time, and then
restarting the job. Such behavior appears as a sequence of
short jobs in the data rather than a single long job.

The conjecture that this is the case is strengthened by
observations of the cumulative distribution function of
the job runtimes on the different systems: they all seem
to have about the same upper bound, with little if any
tail (Fig. 1). This bound, at about 50000 seconds (14
hours) looks like an administrative constraint based on
daily work cycles. To verify the absence of a heavy tail
we also create log-log complementary distribution plots
(Fig. 1). Again, the evidence is against such tails as there
are no linear regions that spans several orders of magni-
tude. Note that the limited and seemingly non-dispersive
distributions we see are in stark contrast to data from in-
teractive workstations, where the tail of the distributionis
indeed heavy and follows a Pareto distribution [17, 12].
There is no reason to expect such long jobs to be absent
on supercomputers — on the contrary, sans administra-
tive restrictions, long jobs may be expected to dominate
the workload.

Finally, we note that even if the distribution of job run-
times does not conform to the formal definition of having
a heavy tail, it is nonetheless very skewed, and its mean
is much higher than its median (Table 1). As we show
below, this is enough to cause significant problems in the
analysis and evaluation of job scheduling algorithms.

2.2 Workload Models

Several models have been proposed in the literature for
the distribution of job runtimes.

Traditionally the observation that job runtimes have a
coefficient of variation larger than 1 motivated the use of
a hyperexponential distribution rather than an exponen-
tial distribution [23]. However, crafting a hyperexponen-
tial distribution so as to match the first two moments of
the target distribution may create a distribution with the
wrong shape, resulting in misleading evaluations [16].

Jann et al. have improved on this by using a hyper Er-



model mean median std dev CV
Jann 11547.19 794.12 18616.14 1.61
Feitelson 2700.89 81.11 8786.63 3.25
Downey 638.54 18.84 2107.36 3.30
Lublin 1668.34 18.00 6824.61 4.09

Table 2:Statistics of runtimes in different models.

lang distribution and matching the first three moments of
the data in the CTC-SP2 log [15]. In addition, they di-
vided the jobs submitted to a parallel machine accord-
ing to their degree of parallelism, and created a separate
model for each range of degrees of parallelism. The result
was a model with a large number of parameters (about 40)
that closely mimics the original data.

One problem with creating distributions based on mo-
ments is that with skewed distributions the estimation of
high-order moments (and even the second moment) is
very sensitive to the values of the few highest values sam-
pled [6]. This has lead to the proposed use of distributions
based on direct observations of the CDF and goodness of
fit metrics, in lieu of trying to match the moments.

Feitelson used a two-stage or three-stage hyperexpo-
nential distribution, choosing the parameters so that the
CDF “looked right” (that is, similar to that in various logs)
[8]. To accommodate the slight correlation observed be-
tween runtime and the degree of parallelism, the proba-
bility of using each exponential depends on the degree of
parallelism.

Downey has proposed the log uniform distribution
based on observation of the SDSC-Par log [5]. This uses
the smallest number of parameters, unless multiple seg-
ments are used. Unlike the other distributions, it has an
upper bound on the values it might produce.

Lublin proposed a hyper Gamma distribution, based on
the CTC-SP2, KTH-SP2, and SDSC-Par logs [19]. This
distribution requires 5 parameters: two for each Gamma
distribution, and the probability of selecting one or the
other. This probability is modified based on the degree
of parallelism as was done by Feitelson. The parame-
ters of the Gamma distributions were selected using an
Expectation-Maximization algorithm and goodness of fit
metrics.

Programs for generating workloads according to these
models are available on-line at the Parallel Workloads
Archive. Generating such workloads and calculating their
statistics and running average leads to the results shown
in Fig. 2 and Table 2. The models are much more stable
than any of the real workloads, and quickly converge to a
stable average runtime. However, they are just as skewed
as the original workloads.

0

2000

4000

6000

8000

10000

12000

14000

20000 40000 60000 80000 100000

ru
nn

in
g 

av
er

ag
e 

of
 r

un
tim

e

serial number

Jann
Feitelson
Downey

Lublin

0

2000

4000

6000

8000

10000

12000

0 30000 60000 90000 120000 150000 180000

ru
nn

in
g 

av
er

ag
e 

of
 r

un
tim

e

serial number

LANL-CM5
SDSC-Par
CTC-SP2
KTH-SP2

SDSC-SP2
LANL-O2K

Figure 2:Running average of mean job runtime from dif-
ferent models. Data for logs is shown for comparison.

2.3 Burstiness of Arrivals

The arrival process of parallel jobs has received much less
analysis than the distribution of job runtimes. Most stud-
ies simply make the assumption of a Poisson process, with
exponentially distributed interarrival times. A notable ex-
ception is the Jann model, which creates a model of inter-
arrival times that parallels the model of run times [15].

Burstiness, or self-similarity, in the arrival process can
lead to large fluctuations in load, just like fat-tailed run-
time distributions. To check the degree of burstiness we
first plot the arrival process of 5 logs, using aggregation
in 10-minute buckets. The results are shown in Fig. 3,
and are indeed bursty. Similar results are observed for the
arrival of processes.

In order to test for self-similarity, we use the eyeball
method of plotting the same data using different levels of
aggregation. The righthand side of Fig. 3 shows results at
5 decimal orders of magnitude for the SDSC-Par log, and
seems to indicate that self-similarity is present. Somewhat
surprisingly, job arrivals even show some burstiness at the
very low scale of 36 seconds. Daily cycles are barely dis-



LANL-CM5:

0
50

100
150
200
250
300

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

jo
bs

 p
er

 1
0 

m
in

ut
es

time

0

2

4

6

8

10

380000 382000 384000 386000 388000 390000

jo
bs

 p
er

 3
6 

se
c.

time

SDSC-Par:

0

40

80

120

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

jo
bs

 p
er

 1
0 

m
in

ut
es

time

0

10

20

30

40

50

300000 320000 340000 360000 380000 400000

jo
bs

 p
er

 6
 m

in
.

time

CTC-SP2:

0

40

80

120

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

jo
bs

 p
er

 1
0 

m
in

ut
es

time

0

20

40

60

80

100

1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

jo
bs

 p
er

 1
 h

r.

time

KTH-SP2:

0

10

20

30

40

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pr
oc

es
se

s 
pe

r 
10

 m
in

.

time

0

100

200

300

400

500

3e+07 3.2e+07 3.4e+07 3.6e+07 3.8e+07 4e+07

jo
bs

 p
er

 1
0 

hr
.

time

SDSC-SP2:

0

40

80

120

160

200

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

jo
bs

 p
er

 1
0 

m
in

ut
es

time

0
500

1000
1500
2000
2500
3000

0 2e+07 4e+07 6e+07 8e+07 1e+08

jo
bs

 p
er

 4
 d

ay
s

time

Figure 3:Left: arrival pattern of jobs for five logs. Right: Burstiness of arrivals to SDSC-Par at different time scales.

cernible in the middle plot.

Rather than focusing on the phenomenon of self simi-
larity, we are interested in the distributions describing the
arrival process. Self similarity and burstiness seem to im-
ply that there is a non-negligible probability that many
jobs will arrive practically at once. In other words, we ex-
pect the distribution of the number of jobs (or processes)
arriving per unit time to have a fat tail. To check this, we
plot log-log complementary distribution plots of this dis-
tribution, at different levels of aggregation. This means,

in essence, that different time units are used (e.g. jobs per
6 minutes, jobs per hour, and jobs per 10 hours). Crov-
ella et al. have shown that with heavy-tailed distributions
these plots should be linear with the same slope, whereas
if the tail is not heavy (and the variance is finite) the slope
should become steeper with higher levels of aggregation,
and the plots will seem to converge [3]. Our results are
mixed (Fig. 4). For some workloads the plots do indeed
seem to be parallel (albeit over a smaller scale than for the
web traffic data of [3]). For others they seem to converge.



LANL-CM5: SDSC-Par: CTC-SP2:

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
r(

X
>

x)
 [l

og
]

jobs per unit time [log]

6 min.
1 hr.

10 hr.

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
r(

X
>

x)
 [l

og
]

jobs per unit time [log]

6 min.
1 hr.

10 hr.

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
r(

X
>

x)
 [l

og
]

jobs per unit time [log]

6 min.
1 hr.

10 hr.

KTH-SP2: SDSC-SP2

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
r(

X
>

x)
 [l

og
]

jobs per unit time [log]

6 min.
1 hr.

10 hr.

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
r(

X
>

x)
 [l

og
]

jobs per unit time [log]

6 min.
1 hr.

10 hr.

Figure 4:Log-log complementary distribution plots of job arrivals with different aggregation levels.

In conclusion, a heavy-tailed distribution cannot be pos-
tulated, despite the fact that the arrival process is bursty.

3 The Effect of Workload on
Convergence

The skewed nature of dispersive distributions and the
non-negligible probability of sampling very high values
have significant implications on systems. For example,
Harchol-Balter and Downey have shown that when the
distribution of job runtimes has a heavy tail, migration for
load balancing can be very beneficial [12]. This is based
on the fact that a small number of jobs use more CPU time
than all the others; the benefits come from identifying
these jobs and migrating only them. This contradicts eval-
uations based on a more moderate distribution, in which
migration did not lead to significant benefits [7]. In an-
other work, Harchol-Balter et al. have shown that when
job sizes are heavy tailed it is beneficial to distribute jobs
among servers according to size, thus effectively serving
the short jobs on a dedicated set of servers that are un-
affected by the long jobs from the tail of the distribution
[11]. But what happens with the bounded runtime distri-
bution observed on parallel systems?

As an initial check of how simulations of parallel sys-
tems behave, we simulated two versions of backfilling

1st 5% xing 2nd 5% xing million
EASY 16427.23 16774.40 16865.80
cons 17727.68 18154.75 18313.90

Table 3: Mean response time selected by confidence in-
terval criteria.

when operating on the Jann workload1. The load was
adjusted to 0.75 by modifying all interarrival times by a
constant factor. The algorithms are EASY backfilling, in
which short jobs are allowed to move ahead provided they
do not delay the first job in the queue [18], and a more
conservative version of backfilling, in which jobs move
forward provided they do not delay any previously sched-
uled job [21]. The metric used was the mean response
time. Confidence intervals are calculated using the batch
means method [14], with a batch size of 5000 job comple-
tions (matching the recommendation of MacDougall for a
CV larger than 1 and high load [20]).

The results are shown in Fig. 5. While the mean re-
sponse time does seem to converge, there are relatively

1This model has a problem in that the program occasionally does not
manage to solve the equations used for the distributions, and prints an
error message. This happened 20 times when generating a workload of
1000000 jobs, and was ignored. in an additional 43 jobs the program
created an infinite runtime. These jobs were simply replacedby a clone
of the previous job.



10000

15000

20000

25000

30000

0 200000 400000 600000 800000 1e+06

av
er

ag
e 

re
sp

on
se

 ti
m

e

jobs done

37719 49272 35346 38786
single batch

running average
confidence interval

2

4

6

8

10

12

14

16

0 200000 400000 600000 800000 1e+06

co
nf

id
en

ce
 in

te
rv

al
 / 

m
ea

n 
[%

]

jobs done

EASY
conservative

Figure 5: Backfilling using the Jann model as the work-
load. Top: convergence of mean response time for con-
servative backfilling. Bottom: behavior of the confidence
interval.

big jerks even after half a million job terminations. And it
is not clear that additional jerks will not occur even after
a million jobs were simulated. Note that this represents
more or less the whole lifetime of a large-scale parallel
machine. Thus it is not clear what such simulation results
mean with relation to the use of new machines.

The 95% confidence interval suffers from similar jerks.
As a result the size of the confidence interval is not mono-
tonically decreasing. Using the common methodology of
terminating the simulation when the confidence interval
becomes smaller than say 5% of the mean [22] would lead
to different results for the first and second times such a
crossing is made, though the “final” result — after simu-
lating 1000000 jobs — is within the confidence interval in
both cases (Tab. 3). However, there are points in the simu-
lation (e.g. after the termination of 475000 jobs) where the
confidence interval is smaller than 5% of the mean, and
doesnot contain the final value obtained after simulating
a million jobs. A detailed coverage analysis is needed to
determine whether this occurs more or less than 95% of

the time, but it is troubling that it was so easy to find an
example.

We note in passing that warmup is not a problem in
our setting. The problem leading to the variable and
jerky simulation results shown above is not one of ini-
tialization, but a problem of real variability and burstiness
in the workload, due to its dispersive distributions. In-
deed, Crovella and Lipsky have suggested that such sit-
uations be handled by explicitly noting the time horizon
for which the results are valid [4]. Another approach is
to use the techniques of rare event simulation [13]. We
leave the detailed study of such optimizations in the con-
text of scheduling with dispersive distributions for future
research.

4 Performance Metrics for Job
Scheduling

As we saw above, it may take the average response time a
very long time to converge when the simulated job stream
being scheduled is based on dispersive distributions. Do
other metrics converge more quickly? And indeed, what
is the most meaningful metric?

The first metric we deal with is the response time. We
define “response time” to mean the total wallclock time
from the instant at which the job is submitted to the sys-
tem, until it finishes its run. This can be divided into two
components: the running timeTr, during which the job is
actually running in parallel on multiple processing nodes,
and the waiting timeTw, in which it is waiting to be sched-
uled or for some event such as I/O. The waiting time itself
can also be used as a metric, based on the assumption thatTr does not depend on the scheduling.

Obviously, a lower bound on the response time of a
given job is its running time. As the runtimes of jobs have
a very large variance, so must the response time. It has
therefore been suggested that a better metric may be the
slowdown (also called “expansion factor”), which is the
response time normalized by the running time:

slowdown= Tw + TrTr
Thus if a job takes twice as long to run due to system
load, it suffers from a slowdown factor of 2, etc. This
is expected to reduce the extreme values associated with
very long jobs, because even if a week-long job is de-
layed for a whole year the slowdown is only a factor of
50. Moreover, slowdown is widely perceived as better
matching user expectations that a job’s response time will
be proportional to its running time. Indeed, 30 years ago
Brinch Hansen already suggested that slowdowns be used
to prioritize jobs for scheduling [1].



The problem with the slowdown metric is that it over-
emphasizes the importance of very short jobs. For exam-
ple, a job taking 100 ms that is delayed for 10 minutes
suffers from a slowdown of 6000, whereas a 10-second
job delayed by the same 10 minutes has a slowdown of
only 60. From a user’s perspective, both are probably an-
noying to similar degrees, but the slowdown metric gives
the shorter job an extremely high score, because the run-
ning time appears in the denominator.

To avoid such effects, Feitelson et al. have suggested
the “bounded-slowdown” metric [9]. The difference is
that for short jobs, this measures the slowdown relative
to some “interactive threshold”, rather than relative to the
actual runtime. Denoting this threshold by� , the defini-
tion is

bounded-slowdown= max� Tw + TrmaxfTr; �g ; 1�
The behavior of this metric obviously depends on the
choice of� . In the simulations below, we check three
values: 10 seconds, one minute, and 10 minutes.

The fact that the definition of slowdown (and bounded
slowdown) is based on a job’s running time leads to new
problems. On one hand, it makes practically equivalent
jobs look different. On the other hand, it encourages the
system to make the jobs run longer!

Zotkin and Keleher have noted that jobs that do the
same amount of work with the same response time may
lead to different slowdown results due to their shape (that
is, ratio of processors to time). For example, a job that
runs immediately on one processor for 100 seconds has a
slowdown of 1, whereas a job that is delayed for 90 sec-
onds and then runs for an additional 10 seconds on 10
processors (thus utilizing the same 100 processor-seconds
as the first job, and finishing with the same 100 seconds
response time) has a slowdown of 10. This lead them to
suggest a new metric, which we shall call “per-processor
slowdown” [24]:

pp-slowdown= max� Tw + TrP �maxfTr; �g ; 1�
whereP is the number of processors used by the job. The
name derives from the fact that this has the units of1=P ,
and divides the original bounded slowdown by the number
of processors used; it can be understood as a further nor-
malization of the slowdown metric, for the putative case
where the job runs on a single processor. In terms of the
above example, this normalizes the delayed 10-processor
job to the undelayed single-processor job, so both now
have a pp-slowdown of 1.

A possible counter argument is that if a user makes the
effort to parallelize a program, and runs it on more pro-
cessors, he actually expects it to finish faster. Therefore

a parallel program that is delayed is not equivalent to a
serial one that runs immediately. But what about cases in
which the number of processors used is chosen automati-
cally by the scheduler? Cirne and Berman observe that in
this scenario the system can improve its slowdown met-
ric by choosing to use fewer processors: the job will then
probably start running sooner, and even if not, it will run
for longer. As a result, the ratio of the response time to
the running time will be smaller, even if the response time
itself is larger [2].

Their solution to this problem is to do away with the use
of slowdowns altogether, and stick with response times.
They then go on to suggest the use of a geometric mean
rather than an arithmetic mean to calculate the average
response time, with the goal of reducing the effect of ex-
cessively long jobs. Notably, a similar argument is used
to justify the use of a geometric mean in calculating the
score of SPEC benchmarks. However, it has also been
noted that the geometric mean may order results differ-
ently from the sum of the represented times [10]. In other
words, given two sets of measurementA andB, it is pos-
sible that the sum of the measurements inA is smaller, but
their geometric mean is larger. Obviously, the arithmetic
mean does not suffer from such inversions.

5 Convergence Results for Different
Metrics

To compare the behavior of the different metrics, we ran
long simulations as in Section 3, and observe the way
in which the different metrics converge. This simulation
again uses EASY and conservative backfilling on one mil-
lion jobs generated according to the Jann model.

The results are shown in Fig. 6. The most important
observation from these graphs does not concern the con-
vergence, but rather the ranking produced by the differ-
ent metrics: the response time and wait time metrics give
lower (better) scores to EASY, whereas slowdown-based
metrics give lower (better) scores to conservative. Using
a geometric mean of response times is in the middle: it
asserts that they are both the same. The interactions be-
tween the scheduling algorithms and the workloads that
lead to these divergent results are interesting in their own
right [21], but lie beyond the scope of the current paper;
here we are interested in the convergence properties.

To the naked eye, all the graphs seem to be jerky in
similar degrees. The slowdown graph is distinguished
by the fact that the jerks are in different places than in
other graphs. For slowdown they result from short jobs
that get delayed, whereas for bounded slowdown they re-
sult from long jobs (these jerks actually also appear in the
slowdown curve, but are less prominent there). A some-



4

5

6

0 200000 400000 600000 800000 1e+06

av
g 

bn
d-

sl
d 

60
0 EASY

cons

1

2

0 200000 400000 600000 800000 1e+06

av
g 

pp
-b

nd
-s

ld

EASY
cons

15

20

25

0 200000 400000 600000 800000 1e+06

av
g 

bn
d-

sl
d 

60

2

3

4

5

0 200000 400000 600000 800000 1e+06

av
g 

pp
-b

nd
-s

ld
 6

0

30

50

70

0 200000 400000 600000 800000 1e+06

av
g 

bn
d-

sl
d 

10

3

6

9

0 200000 400000 600000 800000 1e+06
av

g 
pp

-b
nd

-s
ld

 1
0

100

200

300

0 200000 400000 600000 800000 1e+06

av
g 

sl
ow

do
w

n

04000

6000

8000

0 200000 400000 600000 800000 1e+06

av
g 

w
ai

t t
im

e

16000

18000

20000

0 200000 400000 600000 800000 1e+06

av
g 

re
sp

 ti
m

e

jobs done

01800

2000

2200

0 200000 400000 600000 800000 1e+06

ge
o-

av
g 

re
sp

 ti
m

e

jobs done

Figure 6:Convergence of different metrics during long simulation.

what surprising result is that the shape of the graphs for
bounded slowdown are practically identical to that of the
response time! The explanation is that as the value of�
grows larger, more and more jobs are covered — in the
Jann model, specifically, about 48% of the jobs are shorter
than 10 minutes. For these jobs, the definition of bounded
slowdown is just the response time divided by a constant.
As these are the higher values, they dominate the shape
of the curve. Moreover, comparison with the graph for
wait time shows that the wait time is indeed the dominant
factor in these cases.

To quantify the rate of convergence, we plot the size of
the confidence intervals calculated using the batch means
approach. The results for the SDSC-SP2 and CTC-SP2
logs are shown in Fig. 7. It seems that the slowest met-

rics to converge are either the slowdown or the geomet-
ric mean of response times. The arithmetic mean con-
verges rather quickly. Bounded slowdown is in the mid-
dle, and is not very sensitive to the threshold value. Per-
processor slowdown is much more sensitive, and provides
better convergence as the threshold value is increased. It
should be stressed that the differences are very significant:
for some metrics, the confidence interval size is more than
10% of the mean even after the simulation of a million
jobs. For many it would require unrealistically long sim-
ulations to get within 5% of the mean.

Finally, we note that there is another variable that may
influence the convergence: the scheduling algorithm it-
self. Specifically, part of the problem with queue-based
scheduling algorithms such as backfilling is that jobs get



0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

SDSC-S EASY

resp geo
pp bsld 10
pp bsld 60
bsld 60
bsld 10
sld
pp bsld 600
wait
bsld 600
resp

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

SDSC-S cons

resp geo
sld
bsld 60
bsld 10
pp bsld 10
pp bsld 60
bsld 600
wait
pp bsld 600
resp

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

CTC EASY

sld
wait
resp geo
bsld 10
bsld 60
pp bsld 10
pp bsld 60
bsld 600
resp
pp bsld 600

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

CTC cons

sld
pp bsld 10
wait
bsld 10
pp bsld 60
bsld 60
resp geo
bsld 600
resp
pp bsld 600

Figure 7:Convergence of different metrics for real logs.

held up in the queue. They then tend to pile up, leading
to jerks in the various metrics. But with time slicing, jobs
don’t affect each other as much, and as a result smoother
convergence can be expected. To check this conjecture,
we used the same SDSC-SP2 log as an input to a simu-
lation of gang scheduling, with two different time quanta:
one minute and 10 minutes. The results are shown in Fig.
8. With short time quanta, this is indeed similar to pro-
cessor sharing, and leads to smoother convergence. In ad-
dition, the normalization inherent in the slowdown-based
schemes causes them to converge significantly faster than
the un-normalized response-time based metrics. How-
ever, the absolute size of the confidence interval is not any
smaller than for the non-preemptive backfilling schemes.
Things improve somewhat for the longer time quantum.

6 Conclusions

Contrary to common belief, the distribution of job run-
times on parallel supercomputers is not fat tailed, possibly
due to the widespread use of administrative limitations.
However, the distribution of load on these machines is in-

deed fat-tailed (and possibly even heavy tailed) due to the
burstiness of arrivals. This means that occasionally the
load becomes excessively high, enough to counterweigh
the lower load between high-load events.

The existence of high-load events means that it is hard
or impossible to converge to a stable result. The rate
of convergence depends on the metrics being used, and
on the nature of the system. For example, with non-
preemptive scheduling it seems that using the well-known
response-time metric leads to faster convergence, whereas
with preemptive scheduling it seems that slowdown-based
metrics converge faster. Plain slowdown displays very
slow convergence in some cases, indicating that some ver-
sion of bounded slowdown is preferable; within this fam-
ily of metrics, high thresholds lead to faster convergence.
As for using the geometric mean instead of the arithmetic
mean of response times, this too suffers from slow con-
vergence in some cases.

This paper has served to showcase the difficulties re-
sulting from the complexities of real workloads. Much
work remains to be done, both in terms of further char-
acterization, analysis, and modeling of workloads, and
in terms of understanding their effects on system perfor-



0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

quantum = 60

resp geo
wait
resp
bsld 60
bsld 10
sld
bsld 600
pp bsld 10
pp bsld 60
pp bsld 600

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000

95
%

 c
on

fid
en

ce
 in

te
rv

al
 [%

 o
f m

ea
n]

jobs done

quantum = 600

pp bsld 10
wait
bsld 60
bsld 10
sld
pp bsld 60
resp
resp geo
bsld 600
pp bsld 600

Figure 8:Convergence of different metrics for gang scheduling of theSDSC-SP2 log.

mance. Of particular interest is the identification and char-
acterization of cases in which the relative performance of
different systems depends on the workloads and the met-
rics being used.

Acknowledgements

This research was supported by the Israel Science Foundation
founded by the Israel Academy of Sciences and Humanities.
This research could not be conducted without the wealth of data
available on-line at the Parallel Workloads Archive. The fol-
lowing acknowledgements are from there. The workload log
from the LANL CM-5 was graciously provided by Curt Canada,
who also helped with background information and interpreta-
tion. The workload log from the SDSC Paragon was graciously
provided by Reagan Moore and Allen Downey, who also helped
with background information and interpretation. The workload
log from the CTC SP2 was graciously provided by the Cornell
Theory Center, a high-performance computing center at Cor-
nell University, Ithaca, New York, USA. The workload log from
the KTH SP2 was graciously provided by Lars Malinowsky,
who also helped with background information and interpreta-
tion. The workload log from the SDSC SP2 was graciously pro-
vided by Victor Hazlewood of the HPC Systems group of the
San Diego Supercomputer Center (SDSC), which is the leading-
edge site of the National Partnership for Advanced Computa-
tional Infrastructure (NPACI), and is available from the NPACI
JOBLOG repository at http://joblog.npaci.edu. The workload
log from the LANL Origin 2000 was graciously provided by
Fabrizio Petrini, who also helped with background information
and interpretation. Thanks are also due to Joefon Jann, Allen
Downey, and Uri Lublin for providing C programs that imple-
ment their models.

References

[1] P. Brinch Hansen, “An analysis of response ratio schedul-
ing”. In IFIP Congress, Ljubljana, pp. TA–3 150–154,

Aug 1971.

[2] W. Cirne and F. Berman, “Adaptive selection of parti-
tion size for supercomputer requests”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 187–207, Springer Verlag, 2000.
Lect. Notes Comput. Sci. vol. 1911.

[3] M. E. Crovella and A. Bestavros, “Self-similarity in world
wide web traffic: evidence and possible causes”. In SIG-
METRICS Conf. Measurement & Modeling of Comput.
Syst., pp. 160–169, May 1996.

[4] M. E. Crovella and L. Lipsky, “Long-lasting transient con-
ditions in simulations with heavy-tailed workloads”. In
Winter Simulation conf., Dec 1997.

[5] A. B. Downey, “A parallel workload model and its impli-
cations for processor allocation”. In 6th Intl. Symp. High
Performance Distributed Comput., Aug 1997.

[6] A. B. Downey and D. G. Feitelson, “The elusive goal of
workload characterization”. Performance Evaluation Rev.
26(4), pp. 14–29, Mar 1999.

[7] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “The limited
performance benefits of migrating active processes for load
sharing”. In SIGMETRICS Conf. Measurement & Model-
ing of Comput. Syst., pp. 63–72, May 1988.

[8] D. G. Feitelson, “Packing schemes for gang schedul-
ing”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 89–
110, Springer-Verlag, 1996. Lect. Notes Comput. Sci.
vol. 1162.

[9] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. C. Sevcik, and P. Wong, “Theory and practice in paral-
lel job scheduling”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 1–34, Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[10] R. Giladi and N. Ahituv, “SPEC as a performance evalua-
tion measure”. Computer 28(8), pp. 33–42, Aug 1995.



[11] M. Harchol-Balter, M. E. Crovella, and C. D. Murta,
“On choosing a task assignment policy for a distributed
server system”. In Computer Performance Evaluation,
R. Puigjaner, N. Savino, and B. Serra (eds.), pp. 231–242,
Springer-Verlag, 1998.

[12] M. Harchol-Balter and A. B. Downey, “Exploiting process
lifetime distributions for dynamic load balancing”. ACM
Trans. Comput. Syst. 15(3), pp. 253–285, Aug 1997.

[13] P. Heidelberger, “Fast simulation of rare events in queueing
and reliability models”. ACM Trans. Modeling & Comput.
Simulation 5(1), pp. 43–85, Jan 1995.

[14] R. Jain,The Art of Computer Systems Performance Analy-
sis. John Wiley & Sons, 1991.

[15] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and
J. Riodan, “Modeling of workload in MPPs”. In Job
Scheduling Strategies for Parallel Processing, D. G. Fei-
telson and L. Rudolph (eds.), pp. 95–116, Springer Verlag,
1997. Lect. Notes Comput. Sci. vol. 1291.

[16] E. D. Lazowska, “The use of percentiles in modeling CPU
service time distributions”. In Computer Performance,
K. M. Chandy and M. Reiser (eds.), pp. 53–66, North-
Holland, 1977.

[17] W. E. Leland and T. J. Ott, “Load-balancing heuristics and
process behavior”. In SIGMETRICS Conf. Measurement
& Modeling of Comput. Syst., pp. 54–69, 1986.

[18] D. Lifka, “The ANL/IBM SP scheduling system”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitel-
son and L. Rudolph (eds.), pp. 295–303, Springer-Verlag,
1995. Lect. Notes Comput. Sci. vol. 949.

[19] U. Lublin, A Workload Model for Parallel Computer Sys-
tems. Master’s thesis, Hebrew University, 1999. (In He-
brew).

[20] M. H. MacDougall,Simulating Computer Systems: Tech-
niques and Tools. MIT Press, 1987.

[21] A. W. Mu’alem and D. G. Feitelson, “Utilization, pre-
dictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling”. IEEE Trans.
Parallel & Distributed Syst. 12(6), Jun 2001.

[22] K. Pawlikowski, “Steady-state simulation of queueing pro-
cesses: a survey of problems and solutions”. ACM Com-
put. Surv. 22(2), pp. 123–170, Jun 1990.

[23] R. F. Rosin, “Determining a computing center environ-
ment”. Comm. ACM 8(7), pp. 465–468, Jul 1965.

[24] D. Zotkin and P. J. Keleher, “Job-length estimation and
performance in backfilling schedulers”. In 8th Intl. Symp.
High Performance Distributed Comput., Aug 1999.


