
Experimental Computer Science:
The Need for a Cultural Change

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Version of December 3, 2006

Abstract

The culture of computer science emphasizes novelty and self-containment, leading to a
fragmentation where each research project strives to create its own unique world. This ap-
proach is quite distinct from experimentation as it is knownin other sciences — i.e. based
on observations, hypothesis testing, and reproducibility— that is based on a presupposed
common world. But there are many cases in which such experimental procedures can lead
to interesting research results even in computer science. It is therefore proposed that greater
acceptance of such activities would be beneficial and shouldbe fostered.

1 Introduction

“Research is the act of going up alleys to see if they are blind.”
Plutarch

“ In all affairs it’s a healthy thing now and then to hang a question mark on the things
you have long taken for granted.”

Bertrand Russell

We know what theoretical computer science is: the study of what can be computed and at
what cost. But what is experimental computer science? Looking to other branches of science for
inspiration, we can find three components that define experimental science:

1. Observation

2. Hypothesis testing

3. Reproducibility

1

The question is how and whether these apply to computer science. We will attempt to answer this
in the sequel.

As the nature of computer science and the possible role of experimentation have already been
debated at length by others, we first review these discussions in the remainder of this section. While
this provides many historical insights, it is also possibleto skip directly to our main arguments
which start in Section 2.

1.1 Computer Science

“A science is any discipline in which the fool of this generation can go beyond the
point reached by the genius of the last generation.”

Max Gluckman

Computer science is a young and constantly evolving discipline. It is therefore viewed in
different ways by different people, leading to different perceptions of whether it is a “science” at
all [13]. These discussions periodically beget reports on the subject, such as the “Computing as a
discipline” report by Denning at al. [16].

Of course, it all boils down to definitions. One interesting distinction considers three possible
classifications:

Science— this is concerned with uncovering the laws of the universe.It is ananalyticactivity,
based on observing the real world. Obvious examples are physics, chemistry, and biology.

Engineering — this is concerned with building new things that are practically useful. Thus it
is a syntheticactivity. Examples include mechanical engineering, civilengineering, and
electrical engineering.

Mathematics — this is concerned with the abstract, and may be considered to verge on the philo-
sophical. It includes the construction and study of abstract processes and structures, such as
in set theory, graph theory, and logic. While these are obviously used in both science and
engineering, their development is often independent of anysuch potential use.

Research in computer science is typically part of the lattertwo classifications. Much of computer
science is about how to do things that have not been done before, or in other words, inventing new
algorithms [29] and building new tools [5]. This spans a verywide spectrum of activities, from
information retrieval to animation and image processing toprocess control. While in many cases
this does not have the feel of hard-core engineering, it is nevertheless an activity that leads to the
creation of new tools and possibilities.

By contradistinction, the non-algorithmic parts of theoretical computer science (such as com-
plexity theory) are more philosophical in nature. Their domain of study is inspired by real com-
puters, but it is then abstracted away in the form of models that can be studied mathematically.
Structures such as the polynomial hierarchy are the result of a thought process, and do not cor-
respond to any real computational devices. This is proper, as this theory deals with information,
which is not subject to physical laws [29].

2

But computer science seems to have relatively few examples in the first category, that of ob-
serving, describing, and understanding something that wasjust there. Our contention is that the
techniques used for these activities in the natural sciences have good uses in computer science as
well, and that there are in fact things to be found. As a motivating example, consider the finding of
self-similarity in computer network traffic. Up to the early1990s, the prevailing (abstract) model
of traffic was that it constituted a Poisson process. But collecting real data revealed that this was
not the case, and alternative fractal models should be employed [38]. This was an observation of
how the world behaves, that was motivated by scientific curiosity, and led to an unexpected result
of significant consequences.

1.2 Experimentation

“when we ignore experimentation and avoid contact with the reality, we hamper progress.”

Walter Tichy

“The only man I know who behaves sensibly is my tailor; he takesmy measurements
anew each time he sees me. The rest go on with their old measurements and expect
me to fit them.”

George Bernard Shaw

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
Donald Knuth

An immediate objection to the above comments is that experimental computer science is actu-
ally widely practiced. In fact, three distinct definitions of what constitutes experimental computer
science can be identified.

Perhaps the most prominent use of the term “experimental computer science” occurs in several
NSF reports, e.g. theRejuvenating experimental computer sciencereport from 1979 [23], and
theAcademic careers for experimental computer scientists andengineersreport from 1994 [46].
However, these reports don’t really attempt to define experimental science; rather, they use the
phrase “experimental computer science” as a counterpart to“theoretical computer science”. As
such, this is an umbrella term that covers university research that includes the building of real
systems, and therefore needs to be treated differently in terms of funding and expected generation
of papers. The justification for such special treatment is the expectation of a relatively direct effect
on technological progress.

The core of this notion of experimental computer science is the building of systems, whether
hardware or software. This is not done so much to study these systems, as to demonstrate their fea-
sibility [29]. Thus it is more of an engineering activity than a scientific one. And indeed, one of the
reports notes that this notion of experimental computer science is largely divorced from the theory
of computer science, as opposed to the relatively tight coupling of theory and experimentation in
the natural sciences [46].

The second notion of experimental computer science is that used by Denning in his paperPer-
formance evaluation: Experimental computer science at itsbest[14]. In this paper, Denning argues

3

hypothesis
or model

observation

test
experimental

idea

system
design

evaluation
experimental

implementationprediction
concrete concrete

Figure 1:A comparison of the scientific method (on the left) with the role of experimentation in
system design (right).

that the essence of experimental science is the modeling of nature by mathematical laws; therefore,
experimental computer science is the mathematical modeling of the behavior of computer systems.
Moreover, it is suggested that studying the abstract modelsqualifies as experimentation. This no-
tion is carried over to the reportComputing as a discipline[16], where modeling and abstraction
are proposed as one of the three basic paradigms that cut across all of computer science (the other
two being theory and design).

But Denning also mentions the use of experimentation as a feedback step in the engineering
loop: a system is designed that has anticipated properties,but these are then tested experimentally.
If the results do not match the expectations, the system design is modified accordingly (Fig. 1).
One of Denning’s examples of such a cycle is the development of paging systems that implement
virtual memory, which didn’t provide the expected benefits until the page replacement algorithms
were sufficiently refined [15]. This was achieved by a combination of abstract modeling and ex-
perimental verification.

In fact, using experimental feedback can be argued to be the dominant force underlying the
progress of the whole of computer science. This claim is madeby Newell and Simon in their
Turing Award lecture [47]. They start by noting that “the phenomena surrounding computers are
deep and obscure, requiring much experimentation to assesstheir nature”. While they admit that
the nature of this experimentation “do[es] not fit a narrow stereotype of the experimental method”,
they claim that it is nevertheless an experimental process that shapes the evolution of new ideas:
you can’t really decide if a new idea is good until you try it out. As many ideas are tried by many
people, the good ones survive and the bad ones are discarded.This can even lead to the formation
of fundamental hypotheses that unite the work in a whole field. As an example, they cite two such
hypotheses that underlie work in artificial intelligence: one that a physical symbol system has the
necessary and sufficient means for general intelligent action, and the other that intelligent behavior
is achieved by heuristic search.

The third definition of experimental computer science employs the above ideas at a more mod-

4

est and concrete scale. It involves the evaluation of computer systems, but using (more of) the
standard methodologies of the natural sciences. This approach is advocated by Tichy in his paper
Should computer scientists experiment more?[62], and by Fenton et al. in the paperScience and
substance: a challenge to software engineers[24]

A possible argument against such proposals is that experimentation is already being done.
Many systems-oriented papers include “experimental results” sections, which present the results
obtained through simulations or even measurements of real implementations [13]. In addition,
there are at least two journals and a handful of workshops andconferences devoted to empirical
studies:

• The ACM Journal of Experimental Algorithmics, which is devoted to empirical studies of
algorithms and data structures. Its mere existence reflectsthe understanding that such studies
are needed, because some algorithms may simply be too complex to analyze. Experimenta-
tion may also be needed to augment worst-case behavior with an assessment of the typical
case.

• The Springer journalEmpirical Software Engineering. Here the use of experimentation is
a result of the “soft” nature of the material: software construction is a human activity, and
cannot be modeled and analyzed mathematically from first principles [24].

• The annualText REtrieval Conference(TREC) is a forum created by NIST specifically to
promote and standardize the experimental evaluation of systems for information retrieval
[66]. In each year, a large (averaging 800,000) corpus of documents is created, and a set of
50 query topics is announced. Participants then use their respective systems to find topic-
related documents from the corpus, and submit the results for judging.

• The annualInternet Measurement Conference(ICM), which includes papers that study the
Internet as a complex structure that — despite being man-made — needs to be studied ex-
perimentally, often relying on deductions based on external measurements.

• The Workshop on Duplicating, Deconstructing, and Debunking(WDDD), held annually
with ACM’s International Symposium on Computer Architecture (ISCA), which includes
this wording in its call for papers:

Traditionally, computer systems conferences and workshops focus almost exclu-
sively on novelty and performance, neglecting an abundanceof interesting work
that lacks one or both of these attributes. A significant partof research—in fact,
the backbone of the scientific method—involves independentvalidation of exist-
ing work and the exploration of strange ideas that never pan out. This workshop
provides a venue for disseminating such work in our community.

• The International Symposium on Empirical Software Engineering (ISESE), which is ex-
pected to merge with theInternational Symposium on Software Metricsto form a conference
devoted toEmpirical Software Engineering and Measurementin 2007.

• The International Symposium on Experimental Robotics, a bi-annual meeting focusing on
theories and principles which have been validated by experiments.

5

While this listing is encouraging, it is also dishearteningthat most of these venues are vary narrow
in scope. Furthermore, their existence actually accentuates the low esteem by which experimental
work is regarded in computer science. For example, the Internet Measurement conference web site
states

IMC was begun as a workshop in 2001 in response to the difficulty at that time find-
ing appropriate publication/presentation venues for high-quality Internet measurement
research in general, and frustration with the annual ACM SIGCOMM conference’s
treatment of measurement submissions in particular.

Despite the existence of several experimentally oriented venues, this fraction of papers and
journals is much lower than in other scientific fields [63]. Moreover, in many cases system ex-
periments are more demonstrations that the idea or system works than a real experiment (what
constitutes a “real” experiment is detailed below, e.g. in Section 2.3). In the following sections, we
hope to show that there is much more than this to experimentalmethodology.

Another problem with the experimental approach used in manypapers is that the methodology
is inadequate. Fenton et al. write [24]

Five questions should be (but rarely are) asked about any claim arising from software-
engineering research:

• Is it based on empirical evaluation and data?

• Was the experiment designed correctly?

• Is it based on a toy or a real situation?

• Were the measurements used appropriate for the goals of the experiment?

• Was the experiment run for a long enough time?

In addition, comparisons with other work may be inadequate due to lack of real experience and
understanding of the competing approaches [68]. In the systems area, a common problem is the
lack of objectivity. Inevitably, experimental and comparative studies are designed and executed by
an interested party. They don’t measure an independent, “real” world, but rather a system they had
created at substantial investment, and opposite it, some competing systems. In particular, there is
practically no independent replication of the experimentsof others. Thus reported experiments are
susceptible to two problems: a bias in favor of your own system, and a tendency to compare against
restricted, less optimized versions of the competition [6,70]. Obviously, both of these might limit
the validity of the comparison.

The goal of the present paper is not to argue with the above ideas; in fact, we totally accept
them. However, we claim that there is more to experimental computer science. In the following
sections, we return to the three basic components of experimental science and try to show that

• There is a place for observation of the real world, as in the natural sciences,

• There is a use for hypothesis testing at an immediate and direct level as part of the evaluation
and understanding of man-made systems, and

6

• There is a need for reproducibility and repetition of results as advocated by the scientific
method.

And while this may be done already to some degree, it would be beneficial to the field as a whole
if it were done much much more.

2 Observation

“Discovery consists in seeing what everyone else has seen andthinking what no one
else has thought.”

Albert Szent-Gyorgi

In the exact sciences observation means the study of nature.In computer science this means the
measurement of real systems. Note that we exclude simulation from this context. This is analogous
to the distinction between experimental and computationalapproaches to other sciences.

Measurement and observation are the basis for forming a model of the world, which is the
essence of learning something about it. The model can then beused to make predictions, which
can then be tested — as discussed in Section 3.

It should be noted that model building is not the only reason for measurement. Another goal is
just to know more about the world in which we live and operate.For example, what is the locking
overhead or scheduling overhead of an operating system? What is the distribution of runtimes of
processes? What is the behavior of systems that fail? Knowing the answers to such questions can
serve to shape our world view and focus the questions we ask.

Making measurements for the sake of measurements is uncommon in computer science. The
culture favors self-containment and the presentation of a full story, rather than “just” measure-
ments. Our views on why “just measurements” should be tolerated and even encouraged are elab-
orated in the subsections below.

2.1 Challenges

“Art and science have their meeting point in method.”
Edward Bulwer-Lytton

“Genius is the talent for seeing things straight.”
Maude Adams

The prevailing attitude of many computer scientists seems to be that measurements are just
done. In reality, it is indeed very easy to obtain unreliablemeasurements. But making reliable
measurements can be quite challenging [51]. Regrettably, it may also be quite difficult to distin-
guish between the two.

Consider the question of determining the overhead of a context switch, for example. On the
face of it it seems like a rather simple thing to do. In fact, itcan even be done by a user-level
process. For example, Ousterhout proposed to measure context switches by creating two processes

7

that continually send each other a single byte via a pipe [48]. The operating system will then
continually switch between them, because each process blocks trying to read the other process’s
byte immediately after sending its own byte. Thus measuringthe time to pass a byte a thousand
times is essentially a measurement of a thousand context switches.

However, such measurements can only provide an approximation of the context switch’s over-
head. Some of the problems are

1. We are also measuring the time to read and write bytes to a pipe. To factor this out, we need
to measure these activities separately and subtract them from the context switch overhead.

2. It might happen that some system daemon or other process wakes up and is scheduled be-
tween our two processes. In this case we are measuring two context switches and whatever
this other process does too.

3. The resolution of the system timer might be insufficient tomeasure a single context switch.
Even if time is given in microseconds, it does not mean that the resolution is single mi-
croseconds — an implementation may actually only support millisecond resolution, and
always return time values that are integral multiples of 1000 microseconds. Therefore re-
peated context switches need to be performed to make the total overhead measurable. This
increases the danger of interference as noted above from system daemons, and in addition
the loop overhead should also be accounted for. An alternative is to use a cycle counter, as is
provided on most modern architectures. However, accessinga cycle counter actually takes
more than a cycle, and care must be taken to handle wrap-around.

A promising alternative that at least ensures we know exactly what we are measuring is to
make the measurement within the operating system’s kernel.We can identify the kernel code
responsible for context switching, and simply time it. But this is actually not as easy as it sounds
[17]. It requires intimate knowledge of the system, e.g. in case the code has more than one exit
point.

Another problem is that the phrase “context switch overhead” is actually not well-defined. It
could mean at least three different things:

1. The time that the operating system runs in order to performa context switch.

2. The time from when one user process stops running till whenthe next user process starts
running. This is slightly longer than the time the operatingsystem runs, as it includes the
trap into the operating system and the return to user level.

3. The “lost” time that user processes cannot use due to the context switch. This may be much
longer than the direct overhead indicated above, as there may be additional lost time due to
lost cache state that needs to be restored. Note that this hastwo sub-cases: cache lines that
were lost due to the operating system activity, and cache lines lost due to the activity of other
processes since the last time this process ran.

In addition, these values are not singular, but rather come from a distribution: if you repeat the
measurement many times, you will get different numbers, andthe variability may be significant.

8

Of course, these problems are not unique to trying to measurethe context switch overhead.
Once you start thinking about it, similar problems pop up regarding practically any measurement.
For example, how would you measure memory bandwidth, and what does it means when you have
multiple levels of caching? How do you measure processor throughput when you have superscalar
out-of-order execution and multiple functional units?

It should also be stressed that all the above relates to the simplest and most basic of measure-
ments. This goes to show that various decisions have to be made in the process of measurement,
some of which may have subtle implications. It is reasonablethat different people will have dif-
ferent opinions about what decisions to make. Such differences can only be resolved (or acknowl-
edged) by a social process of discussing the alternatives and seeing which are found to be most
useful in practice.

In addition, it is necessary to develop measurement methodologies that avoid perturbations
of the measured system, and are applicable to different situations. For example, one can use a
large memory-mapped buffer to accumulate measurements, and flush it to disk only at the end of
the measurement period. This reduces perturbations duringthe measurement (provided the buffer
does not overflow), at the price of reducing the memory available to the measured system, which
in principle may also cause a change in behavior. Which effect is more troublesome can only be
determined by experience. Such methodologies and experience need to be shared by researchers,
in order to avoid duplication of effort and achieve uniformity of standards. This can only be
done effectively in a culture that appreciates the intellectual effort and expertise needed to perform
reliable measurements.

2.2 Metrics

“When you can measure what you are speaking about and express it in numbers, you
know something about it.”

Lord Kelvin

“ If you can’t measure it, you can’t improve it.”
unknown

A special challenge in performing measurements is coming upwith appropriate metrics. In
physics, there are a few basic units that can be measured: length, time, mass, charge, etc. Then
there are a few derived units: speed is length divided by time, current is charge divided by time,
and so on. Part of the substance of physics is to find relationships between units, e.g. different
combinations that all yield variants of energy.

But what are the units of computer science measurements? Oneobvious candidate, shared
with physics, is time: we are practically obsessed with how long things take, and even more, with
throughput, i.e. how many things we can do per unit of time (MIPS, MFLOPS, MB/s, etc.). But
there are many notions that are hard to measure because we don’t have good metrics.

Maybe the most prominent example is locality. Locality of reference is a very basic notion in
computer science, and underlies the myriad versions of caching, including processor caches, file
system buffer caches, and web proxy caches. We all know aboutthe distinction between spatial

9

SDSC HTTP

0

100

200

300

400

500

600

stack distance
0 300 600 900 1200 1500

nu
m

be
r

of
 r

ef
er

en
ce

s

0

SDSC HTTP

stack distance
0 300 600 900 1200 1500 1800

su
rv

iv
al

 p
ro

ba
bi

lit
y

1

0.1

0.01

0.001

0.0001

0.00001

original trace
scrambled trace

Figure 2:Left: histogram of stack distances for a log of HTTP requestsfrom a SDSC web server.
Right: difference in the tail of the stack-distance distributions for the original data and scrambled
data.

locality and temporal locality. But how does one measure locality? Given a computer program,
can you find a number that represents the degree of locality that it exhibits? Can you compare
two programs and say with confidence which has more locality?Does any course in the computer
science curriculum discuss these issues?

The truth of the matter is that there has been some work on measuring locality. The most
popular metric is the average stack distance [60]. Given a reference stream, insert each new address
into a stack. If the address is already in the stack, note its depth and move it to the top. The average
depth at which addresses are found is the desired metric: if the program exhibits strong locality,
items will be found near the top of the stack, and the average stack distance will be small. If there
is no locality, the average stack distance will be large.

The average stack distance is a simple metric with intuitiveappeal. However, it is seldom
actually used. There are two reasons for this situation. First, it only measures temporal locality, and
there is no corresponding simple metric for spatial locality. Second, temporal locality is actually
the combination of two separate effects:

1. A correlation between an item and nearby items in the reference stream, which tend to be
the same, and

2. A skewed popularity, where some items are much more commonthan others, and therefore
appear much more often in the reference stream.

The intuition of locality leans towards the first effect: we think of locality in terms of references
to the same item that are bunched together at a certain time, and are absent at other times. But in
reality, the second effect may be much stronger.

An example is shown in Fig. 2. The left-hand graph is a histogram of the stack distances ob-
served in a well-known data log, the SDSC HTTP trace available from the Internet Traffic Archive.
This trace contains 25,430 successful requests to 1680 unique files, which were logged on August

10

22, 1995. The distribution shows remarkable locality, as low values are extremely common. How-
ever, the distribution hardly changes when the log is scrambled, and the same requests are viewed
in an arbitrary random order. This implies that the low stackdistances are the result of a few items
being very popular, and not of a correlation structure in thereference stream. And indeed, it is
well-known that popularity often follows the highly skewedZipf distribution [4].

The bottom line is then that we don’t know of a simple metric for locality, and in particular, for
separating the different types of locality. This is actually a pretty common situation. We also don’t
really know how to measure the quantity, quality, or complexity of software, or the productivity of
software production, the performance of microprocessors or supercomputers, or the reliability or
availability of distributed systems, to mention but a few. It’s not that no metric is available. It’s
that the suggested metrics all have obvious deficiencies, none are widely used, and that there is
relatively little discussion about how to improve them.

Of course, coming up with good metrics is not easy. One shouldespecially beware of the
temptation of measuring what is easily accessible, and using it as a proxy for what is really required
[51]. Baseball statistics provide an illuminating examplein this respect [39]. Players were (and
still are) often evaluated by their batting average and how fast they can run, and pitchers by how
fast they can throw the ball. But as it turns out, these metrics don’t correlate with having a positive
effect on winning baseball games. Therefore other metrics are needed. What metrics are the most
effective is determined by experimentation: when you have acandidate metric, try it out and see
if it makes the right predictions. After years of checking vast amounts of data by many people,
simple and effective metrics can be distilled. In the case ofbaseball, the metric for hitters is their
on-base percentage; for pitchers it is hitters struck out and home runs allowed.

Many additional examples of measuring things that initially may seem unmeasurable can be
found in the fields of cognitive psychology and behavioral economics. Especially famous is the
work of Kahneman and Tversky, regarding the biases effecting economic decision making. For
example, they designed experiments that showed that peopletend to give potential losses twice
as much weight as that assigned to potential gains. Such datahelped explain what was seen as
irrational economic behavior, and eventually led to the awarding of the 2002 Nobel Prize in eco-
nomics.

2.3 Surprises

“ I didn’t think; I experimented.”
Wilhelm Roentgen

“The most exciting phrase to hear in science, the one that heralds the most discoveries,
is not “Eureka!”, but “That’s funny...””

Isaac Asimov

“There are two possible outcomes: if the result confirms the hypothesis, then you’ve
made a measurement. If the result is contrary to the hypothesis, then you’ve made a
discovery.”

Enrico Fermi

11

“Fiction is obliged to stick to possibilities. Truth isn’t.”
Mark Twain

An essential element of experimental measurements is the potential for surprises. This is what
distinguishes true experimental exploration from demonstrations and calibrations of system mod-
els. Experiments are out to obtain new (and unexpected) knowledge. In fact, this is what science
is all about, as articulated in John Henry’s writing about the genesis of the scientific method at the
hands of Francis Bacon [32]:

Before Bacon’s time, the study of nature was based largely onarmchair speculation. It
relied almost entirely on abstract reasoning, starting from a restricted range of presup-
positions about the nature of the world, and its aim was to explain known phenomena
in ways that were consistent with those presuppositions. Wenow know that these
presuppositions were incorrect and that much of pre-modernnatural philosophy was
therefore entirely misconceived, but this would never, could never, have been realised
by anyone working within the tradition...

Without experiments, nature doesn’t have the opportunity to tell you anything new. The same goes
for computer-based systems.

Perhaps the best-known example of a surprising discovery (in the context of computer sys-
tems) emanating from empirical measurements is the discovery of self-similarity in network traffic
[38]. This started with the seemingly pointless collectionof voluminous data regarding packets
transmitted on an Ethernet local area network — an observation of the real world. Analyzing this
data showed that it does not conform with the prevailing Poisson models of traffic. In particular,
aggregating the data over increasing time scales did not lead to a fast reduction in variance as was
expected. This led to the creation of the self-similar network traffic models that are now accepted
as much more realistic. And this is not only of academic interest: the new models have major
implications regarding the design of communication systems, e.g. the provisioning of buffer space
and the (im)possibility of guaranteeing various quality ofservice and performance objectives.

Once the discovery of self-similarity in network traffic wasmade, similar discoveries started
to pop up in other domains. Self similarity has now been observed in file systems [27], parallel
computers [61], and the web [10]. Even failures turn out to have such characteristics, and are not
well modeled by Poisson models [56].

Other types of surprises are also possible. Consider, for example, the data shown in Fig. 3. This
shows the level of activity (as measured by the number of submitted jobs) on large-scale parallel
supercomputers over a period of two years. While fluctuations are of course expected, these graphs
show another type of phenomenon as well: flurries of extremely high activity by a single user, that
last for a limited period of time [22]. It is not clear why thishappens, but it is clear that it has
a significant (and unexpected) impact on the statistics of the workload as a whole. generalizing
from this and other examples, there is a good chance that if you look at your computer closely
enough, you will find that it is doing strange things that you wouldn’t have anticipated (and I’m
not referring to a situation in which it had been taken over bya hacker).

The main problem with surprises is that we never fail to be surprised by them. It is very easy
to fall into the trap of assuming that — given that we are dealing with a man-made system — we

12

LANL CM−5

N
1994

D J
1995

FMAMJ J ASOND J
1996

FMAMJ J AS

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000
user 50
user 31
user 38
210 others

SDSC SP2

J
1998

J ASOND J
1999

FMAMJ J ASOND J
2000

FMA

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000
user 374
427 others

Figure 3:Arrivals per week in long logs of activity on parallel supercomputers exhibit flurries of
activity by single users.

know what is going on, and can therefore plan our actions accordingly. But as a scientist, one
needs to develop a sense of healthy skepticism. More often than not, we don’t really know enough.
And the only way to find out is by looking.

2.4 Modeling

“The important thing in science is not so much to obtain new facts as to discover new
ways of thinking about them.”

Sir William Bragg

“Science is built up of facts, as a house is built of stones; butan accumulation of facts
is no more a science than a heap of stones is a house.”

Henri Poincaŕe

Well-executed measurements provide us with data. Modelingthis data is the process that turns
them into information and knowledge. The resulting model embodies what we have learned from
the measurements about our world. A good model includes definitions of new concepts and effects,
and thus enriches our vocabulary and our ability to discuss the properties of the systems we build.
Thus modeling transcends the realm of experimentation, andleads into theory.

An important property of good models is simplicity. A good model doesn’t just define new
useful quantities — it also leaves out many useless ones. Theact of modeling distills the cumulative
experience gained from performing experimental measurements, and sets then in a format that can
be used as the basis for further progress [14]. In fact, this is also the basis for natural science,
where experimental observations are summarized in simple laws that are actually a model of how
nature operates.

It should be stressed that finding new models is not easy. The largest obstacle is actually
noticing that a new model is needed. It is very tempting to interpret experimental results in the

13

light of prevailing preconceptions. This runs the risk of fitting the measurements to the theory,
rather than the theory to the measurements.

As an example, consider the issue of message-passing in parallel systems. Parallel programs
are composed of multiple processes that execute on different processors, and communicate by
sending messages to each other. The performance of the message passing is therefore crucial for
the performance of the parallel application as a whole. Thishas led to extensive measurements of
different message-passing systems. One result is the emergence of two basic concepts that describe
the performance of message passing: latency and bandwidth.

In an informal sense, latency is “how long it takes to get there”, and bandwidth is “how much
can flow in a unit of time”. These concepts can be visualized byconsidering a water hose. The
bandwidth corresponds to the diameter (or rather, the crosssection) of the hose, whereas the latency
corresponds to the water pressure, and hence to the speed with which it propagates. Note that,
somewhat counterintuitively, the two may be independent: while we may expect a system with
low latency to provide higher bandwidth, it is also possibleto have a lot of water flowing at a slow
rate, or just a thin jet of water flowing at a high rate.

But the interesting thing about latency and bandwidth is themindset they imply. Latency and
bandwidth are two parameters, and they imply a model that only has two parameters: a simple
linear model. In particular, the common model for the time totransmit a message is

time = latency+
message length

bandwidth

Given this model, we can perform measurements and find the parameters: simply measure the time
to send messages of different sizes, and fit the results to a linear model. The slope then gives the
bandwidth, and the intercept gives the latency.

But other approaches are also possible. For example, it is common to measure the latency of
a communication system as the time to send a zero-size message. By definition, this is indeed
the time needed to get from here to there. But it does not necessarily correspond to the intercept
of a linear model, because the behavior of a real system may bemuch more complex. This goes
to show two things. First, the definition of latency of problematic, and different approaches are
possible. Second, more sophisticated models of communication systems may be needed. And
indeed, several such models have been proposed, including

• The LogP model, which is similar to the simple linear model, but distinguishes between two
types of bandwidth: what the network can carry, and what the end-node can inject [11].

• The LogGP model, which adds a separate bandwidth for long messages, that are presumably
handled by a different transmission protocol [1].

• The LoGPC model, that adds modeling of network contention [44].

The motivation for all these models is the inadequacy of previous models to describe a real mea-
sured phenomenon that is perceived as important. And even more details are needed when the
messages are generated automatically in a shared-memory system [43].

One field in which massive data is collected but practically no modeling is attempted is com-
puter architecture. Microarchitectural design in particular suffers from immense complexity, with

14

myriad factors that all interact with each other: instruction mixes, instruction dependencies, branch
behavior, working-set sizes, spacial and temporal locality, etc., and also the correlations among all
of them. The commonly used alternative to modeling is to agree on a select set of benchmarks,
e.g. the SPEC benchmarks, and settle for measurement of these benchmarks. However, this comes
at the expense of understanding, as it is impossible to design experiments in which specific char-
acteristics of the workload are modified in a controlled manner.

Other fields suffer from the opposite malady, that of modeling too much. In particular, we tend
to jump to models without sufficient data, and for the wrong reasons. The prevalence of Poisson
models in operating systems and networking is a good example. It is easy to convince oneself that a
Poisson model is reasonable; in essence, it amounts to the claim that events happen independently
and at random. What could be more reasonable for, say, job arrivals, or component failures? But
the fact that it seems reasonable doesn’t mean that this is the truth: more often than not, it just
points to our lack of imagination (in this specific example, regarding the possibility that arrival
processes are often self-similar and display long-range dependence). The use of Poisson models in
the interest of mathematical tractability is even more dangerous, because it may foster a tendency
to ignore known data. For example, the earliest measurements of computer system workloads in
the 1960s exposed non-Poisson behavior and non-exponential distributions [9, 55, 67], but these
were ignored for many years in favor of the mathematical convenience of assuming memoryless
behavior.

2.5 Truth

“Errors using inadequate data are much less than those using no data at all.”
Charles Babbage

“Believe those who are seeking the truth. Doubt those who find it.”
Andre Gide

The scientific method is based on the quest for truth by means of objective observations. Ob-
viously this is a problematic prospect, and the issue of whether objectivity is really possible has
been discussed for hundreds of years. But John Henry writes [32]:

Whether objective knowledge is really possible or not (and sociologists would say it
isn’t), it is clearly better toaspire to a knowledge that is free from ideological bias
rather than to promote claims to truth that have been deliberately conceived to support
a particular ideology or an ungrounded system of belief.

In the quest for objective knowledge, computer science faces a much bigger problem than
the natural sciences: the problem of relevance. The naturalsciences, as their name implies, are
concerned with nature. Nature is unique and enduring, so measurements performed in Paris in
the 17th century are valid to London in the 19th century and Calcutta in the 21st century. But
measurements of a computer in room 218 may be irrelevant to the computer situated in room 219
at the same time, even if they are of the same model, due to subtle differences in their configuration
or use. Results of computer measurements are generally not universal; rather, they are brittle, and

15

are very sensitive to the conditions under which they were gathered and especially to the specific
system being used.

Another problem is the rate of change in the technology-driven realm of computers. Many fea-
tures of computer systems grow at exponential rates: the density of elements in integrated circuits
(Moore’s law [59]), the size of primary memory, and the performance of and number of processors
in typical supercomputers [20], to name a few. Under such circumstances, measurements tend to
be short-lived. By the time you manage to perform a measurement and analyze the results, these
results may already be out of date, because newer and better systems have emerged.

Of course, not all computer-related measurements necessarily suffer from such problems. For
example, some measurements are more closely related to how people use computers than to the
computers per se. As such, they only change very slowly, reflecting changes in user behavior (e.g.
in 2005 people probably type somewhat faster on average thanthey did in 1965, because computer
keyboards are so much more common — but actually this is a merespeculation, and needs to be
checked!).

Moreover, it is also interesting to measure and follow thoseitems that do suffer from brittle
relevance. One reason is simply to characterize and understand this brittleness. Another is to
collect data that will enable longitudinal studies. For example, data is required to claim that certain
properties grow at an exponential rate, and to try and nail down the exponent. A third reason is
that while the actualnumbersmay be of little use, theunderstandingthat is derived from them has
wider applicability. Measurements necessarily yield numbers, but these numbers are typically a
means and not an end in itself. If we learn something from them, we shouldn’t care that they are
not universally correct. If we never measure anything out offear that it will not be relevant, such
irrelevance becomes a self-fulfilling prophecy.

The problem with computer measurement is not that they do notlead to a universal and en-
during truth. The problem is expecting them to do so. Even in the natural sciences measurements
are qualified by the circumstances under which they were collected. Admittedly, with computers
the situation is much more problematic, due to rapid technological change. But partial data is still
useful and better than nothing. It is simply a matter of acknowledging this situation and making
the best of it.

2.6 Sharing

“One of the advantages of being disorderly is that one is constantly making exciting
discoveries.”

A. A. Milne

Getting data is hard. Getting good data is even harder. It is therefore imperative that data be
shared, so that the most benefit possible will be gleaned fromit. In particular, sharing data enables
two important things:

1. Exploration — there is always more to the data than you initially see. By making it available,
you enable others to look at it too. Paraphrasing Linus’s Law, with enough eyeballs, the data
will eventually give up its secrets.

16

2. Reproducibility — given your data, others can redo your analysis and validate it. This notion
is elaborated in Section 4.

Given that data is hard to come by, it is wasteful to require everyone to get the data anew. In
many cases it may even be impossible, as not everyone has access to the measured system. For
example, only the operators of a large-scale supercomputerhave access to it and can measure its
performance and workload. But they are not necessarily the best equipped to analyze this data. It
is therefore much more efficient to share the data, and enableothers to look at it. Of course, if
possible it is highly desirable to get new data too; but the option of using known data is important
to enable more people to work on it, and to foster a measure of uniformity across different analyses.

Sharing the data is extremely important even if you do perform a detailed analysis. Access to
the raw data is required both in order to validate the analysis, and in order to perform new types of
studies. It should be stressed that validation is not a sign of mistrust — this is simply how science
is done. As for innovative analyses, it can be claimed that this is a highly creative endeavor, maybe
even more than the effort needed to collect good data in the first place. For example, consider a
workload log from a parallel supercomputer that includes the following data for each submitted
job:

• User ID, with indication of special users such as system administrators.

• Application identifier for interactive jobs (with explicitidentification of Unix utilities), or an
indication that the job was a batch job.

• Number of nodes used by the job.

• Runtime in seconds.

• Start date and time.

This doesn’t look like much, but still, what can you extract from this data? My initial analysis
found the following [21]:

• The distribution of job sizes (in number of nodes) for systemjobs, and for user jobs classified
according to when they ran: during the day, at night, or on theweekend.

• The distribution of total resource consumption (node seconds), for the same job classifica-
tions.

• The same two distributions, but classifying jobs accordingto their type: those that were
submitted directly, batch jobs, and Unix utilities.

• The changes in system utilization throughout the day, for weekdays and weekends.

• The distribution of multiprogramming level seen during theday, at night, and on weekends.

• The distribution of runtimes for system jobs, sequential jobs, and parallel jobs, and for jobs
with different degrees of parallelism.

• The correlation between resource usage and job size, for jobs that ran during the day, at
night, and over the weekend.

17

• The arrival pattern of jobs during the day, on weekdays and weekends, and the distribution
of interarrival times.

• The correlation between the time of day a job is submitted andits resource consumption.

• The activity of different users, in terms of number of jobs submitted, and how many of them
were different.

• Profiles of application usage, including repeated runs by the same user and by different users,
on the same or on different numbers of nodes.

• The dispersion of runtimes when the same application is executed many times.

While this is a pretty extensive list, I am confident that someone reading this paper will be able
to come up with additional interesting observations. If youare interested, the original data is
available from the Parallel Workloads Archive. In fact, quite a few repositories of data already
exist, including

Internet Traffic Archive at URL http://ita.ee.lbl.gov/

NLANR Internet Traces at URL http://moat.nlanr.net/

CAIDA Internet Traces at URL http://www.caida.org/

MAWI Backbone Traffic Archive at URL http://mawi.wide.ad.jp/mawi/

LBNL/ICSI Enterprise Tracing Project at URLhttp://www.icir.org/enterprise-tracing/index.html

Waikato Internet Traffic Storage at URL http://www.wand.net.nz/wand/wits/

Video Frame Size Tracesat URL http://www-tkn.ee.tu-berlin.de/research/trace/trace.html

BYU Performance Evaluation Laboratory traces of address, instruction, and disk I/O at URL
http://traces.byu.edu/

New Mexico State University traces of address references for processor architecture studies at
URL http://tracebase.nmsu.edu/tracebase.html

Parallel Workload Archive for workloads on parallel supercomputers at URL
http://www.cs.huji.ac.il/labs/parallel/workload/.

Hopefully, in the future all relevant data will be depositedin such repositories, which will be
maintained by professional societies. Regrettably, some of these repositories seem to be dead.
For example, the well-known Internet Traffic Archive was setup to provide access to data used
in networking and web performance studies, and contains thedatasets used in several pioneering
papers. But it only contains data collected between 1995 and1998.

A legitimate issue is the need to get the most out of your hard-earned data before allowing
others to get their hands on it, possibly scooping you to the publication of the results. This concern
is easily handled by fostering a cultural acceptance of somedelay in making the data available.
One option is to keep the data private until you publish your own initial results, as is commonly
done e.g. in biology. Another option is to wait for a fixed period after obtaining the data, e.g. one
year. Deciding on such a fixed timeframe is preferable in thatit avoids situations in which the data

18

is continuously kept private out of anticipation of additional analysis, which never materializes;
there are too many cases of researchers who intend to make data available but are then sidetracked
and the data is lost.

On the other hand, it can be claimed that the fear of being scooped is actually not well founded.
The current situation is that data can lay around for years before anyone bothers to look at it. One
of my personal examples is the workload flurries shown above in Fig. 3, which were discovered
in widely available (and used) data [22]. Another is the analysis of Top500 data, which is also a
well-known and widely cited dataset [19, 20].

Thus the flip side of the argument for keeping data for privateexploitation is the opportunity
for even more exciting discoveries if you make it public. As the above examples show, it can take
many years for someone to come up with a new use for existing data. By making the data public,
we increase the chances that someone will have a use for them.This is especially relevant for large
scale monitoring projects, that just collect data for no obvious reason. For example, Kumar et al.
have used monitors of network address usage to track down theIP address from which an Internet
worm was launched [37]. This use was not anticipated when thedata collection was initiated, and
would not have been possible if the data was not available.

3 Hypothesis Testing

“A fact is a simple statement that everyone believes. It is innocent, unless found guilty.
A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found
effective.”

Edward Teller

“Smart people (like smart lawyers) can come up with very good explanations for mis-
taken points of view.”

Attributed to an un-named “famous scientist” by Frank Wolfs

Hypothesis testing is at the very core of the scientific method. This is where experimentation
comes in. This is where you interrogate nature to see whetherwhat you think you know is indeed
true.

As outlined in the previous section, experimental science starts with observation. Based on
the measured observations, one builds a model. The model is an abstraction of the world, and
embodies a generalization of the results of the measurements; it is an expression of what you have
learned from them.

But such a model is a theory, not a fact. How do you know if this is the correct generalization?
The model or theory by itself is useless. To justify itself, amodel must be used. The way to
use a model is to make predictions about the world, and in particular, about aspects that have
not been measured yet. Such predictions are actuallyhypothesesabout what the outcome of the
missing measurements will be — an educated guess, based on our prior knowledge, but not yet
real knowledge in itself.

To turn a hypothesis into bone-fide knowledge, it has to pass the test of experimentation. A
special test is designed, which will measure specifically whether the hypothesis makes the right

19

prediction. This closes the cycle (Fig. 1): a measurement led to a model, the model to a hypothesis,
and now the hypothesis is used to guide another measurement.This in turn may lead to a refinement
of the model, and so on.

3.1 Emergent Hypotheses

“Wise men profit more from fools than fools from wise men; for the wise men shun
the mistakes of fools, but fools do not imitate the successesof the wise.”

Cato the Elder

“Your theory is crazy, but it’s not crazy enough to be true.”
Niels Bohr

The term “hypothesis” is actually quite loaded, and is used at two quite different levels: the
macro level and the micro level. The above discussion and thenext subsection are focused mainly
towards the micro level, where a specific, concrete, atomic prediction is to be tested. But at least
some previous discussions of hypothesis testing in computer science has focused on the macro
level.

Macro level hypotheses are concerned with the shaping of a whole field, as opposed to the
micro level employed in individual research projects. Perhaps the best-known such hypothesis
in computer science is thatP 6= NP , and thus efficient polynomial algorithms for NP-complete
problems cannot be found. This has led to extensive researchon approximation algorithms, and to
further classifications of problems according to whether ornot good approximations are possible.
While we do not know for a fact thatP 6= NP , we accept this hypothesis because it has passed
extensive tests: generations of computer scientists have tried to refute it and failed.

Various subfields of computer science have their own macro hypotheses. As cited above,
Newell and Simon propose the hypothesis that intelligent behavior is achieved by heuristic search
[47]. Denning suggests that a basic hypothesis in performance analysis is that queueing networks
provide an adequate model for making predictions [14]. These hypotheses can be called emergent
hypotheses — they are not proposed and then tested systematically; rather, they emerge as a sum-
marizing principle that unites a large body of work. The micro-hypotheses discussed next are of
the opposite kind, and can be called ad-hoc hypotheses: theyare formulated for a specific need,
and then tested to see that they fulfill this need.

3.2 Hypothesis-Driven Experiments

“When you have eliminated the impossible, whatever remains,however improbable,
must be the truth.”

Sherlock Holmes

“ If at first the idea is not absurd, then there is no hope for it.”
Albert Einstein

20

 0

 20

 40

 60

 80

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

load

EASY
conservative

difference

-100

-50

 0

 50

 100

 150

 200

 250

 300

 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

load

EASY
conservative

difference

Figure 4:Comparison of EASY and conservative backfilling, using the CTC workload (left) and
the Jann model (right).

The micro level of hypothesis testing is concerned with individual experiments and measure-
ments. In computer science, just like the natural sciences,we need to explain the results of our
measurements. We are interested in some aspect of a computersystem. We measure it. And now
we have to make sense of the results. This is typically done bytrying to explain why the system
behaved in the way it did, or in other words, by coming up with amodel of how the system behaves,
and showing that the model agrees with the measured results.

But what about the other way around? In the natural sciences,it is not enough that the model
fit the measurements — it is also required that new measurements fit the model! In effect, the
claim that the proposed model explains the system behavior is not a proven truth, but merely a
hypothesis. This hypothesis needs to be tested. If it passesthe test, and then another test, and
another, we gain confidence that the model is indeed a faithful representation of the system’s
innermost working. Of course, the tests may also show that our model is wrong, and then we need
to seek other explanations.

While the prevailing culture in computer science does not require the experimental verification
of hypotheses derived from models, such a procedure is nevertheless sorely needed. We show
this by means of a case study (taken from [18]). The case studyconcerns the comparison of
two variants of a scheduler for parallel systems. The scheduler may have some free nodes at its
disposal, and maintains a queue of parallel jobs that cannotrun yet because sufficient nodes are not
available. When a running job terminates and frees some morenodes, or when a new job arrives,
the scheduler scans the queue and starts as many jobs as possible. In particular, when a job that
cannot run is found, the scheduler does not stop. Instead, itcontinues the scan in an effort to find
smaller jobs that will fit — an optimization known as “backfilling” [40].

The difference between the two variants is small. When backfilling is performed, there is a
danger that skipped jobs will be starved. One variant, called “EASY”, counters this by making a
reservation for the first queued job. The other, called “conservative”, makes reservations for all
skipped jobs. The reservation is made for when enough nodes are expected to be free, based on
user-supplied estimates of job runtimes.

The case study starts with a comparison of these two variants, using two workloads: a real

21

workload traced on the IBM SP2 parallel supercomputer installed at the Cornell Theory Center
(CTC), and a statistical model of this workload developed byJann et al. [35]. The performance
metric is bounded slowdown: the response time normalized bythe actual runtime, but using a
value of 10 seconds instead of the real runtime if it was too small, in order to prevent extremely
high values when very short jobs are delayed. The results areshown in Fig.4, and indicate a
problem: the Jann model is based on the CTC workload, but the results differ. With the Jann
model, conservative backfilling is seen to be better. With CTC, they are the same except under
extremely high loads, when EASY is better.

In trying to explain these results, we note that both the backfilling policy and the slowdown
metric are sensitive to job duration. It therefore makes sense to check for statistical differences
between the workloads. The most striking difference is thatthe Jann workload has tails at both
ends of the runtime distribution, which the CTC workload does not.

The long jobs in the tail of the distribution could affect theobserved results by causing longer
delays to other jobs that wait for their termination becausethey need their processors. But wait!
This is not yet an explanation; it is only ahypothesisabout what is happening. To check it, an
appropriate experiment has to be devised. In this particular case, we re-ran the simulations with
a modified version of the Jann workload, in which all jobs longer than 18 hours were deleted (in
CTC, there is an 18-hour limit). However, the results were essentially the same as for the original
workload, refuting the hypothesis that the long jobs are responsible for the difference.

The next candidate hypothesis is that the very short jobs in the Jann workload are the source of
the observed behavior: short jobs could affect the results by contributing very high values to the
average slowdown metric. This was checked by removing all the jobs shorter than 30 seconds. But
again, the results were not significantly different from those of the original workload.

Another major difference between the workloads is that in the original CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jobs are spread evenly between each two
consecutive powers of two. Previous work has shown that the fraction of jobs that are powers
of two is important for performance, as it is easier to pack power-of-two jobs [42]. While it is
not clear a-priori how this may lead to the specific results observed in the original measurements,
it is still possible to check whether the hypothesis that the(lack of) emphasis on power-of-two
nodes lies at their base. This is done by running the simulations on a modified version of the Jann
workload in which the sizes of 80% of the jobs were rounded up to the next power of two. The
experiment yet again demonstrated that the hypothesis is wrong, as this seemed not to make a
qualitative difference.

The next hypothesis is that the difference is due to using accurate runtime estimates when
simulating the Jann workload, as opposed to using (inaccurate) real user estimates in the CTC
workload. If runtime estimates are inaccurate, jobs tend toterminate before the time expected by
the scheduler. This creates holes in the schedule that can beused for backfilling. As such holes
appear at the head of the schedule, when many subsequent jobsare already queued, this strongly
affects conservative backfilling that has to take all subsequent commitments into account. EASY,
on the other hand, only has to consider the first commitment. Therefore conservative achieves
much less backfilling.

One way to test this hypothesis is to add realistic user estimates to the Jann model. However,

22

-20

 0

 20

 40

 60

 80

 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n
load

EASY
conservative

difference

Figure 5:Results for the CTC workload when using actual runtimes as estimates, to verify that this
is the cause of the Jann results.

this is not easy to do [64]. It is much easier to modify the CTC workload, and re-run the CTC
simulations using the actual runtimes rather than the original user estimates to control the backfill-
ing. The results, shown in Figure 5, largely confirm the conjecture: when using accurate estimates,
conservative comes out better than EASY. The hypothesis hastherefore passed the test, and can be
used as the basis for further elaboration.

While such case studies are not very common in systems research, it should be stressed that
they do exist. Another prime example we can cite is the study by Petrini et al. regarding the
performance of the ASCI Q parallel supercomputer [53]. Thiswas different from the case study
described above, in that it was an empirical investigation of the performance of a real system. A
number of hypotheses were made along the way, some of which turned out to be false (e.g. that
the performance problems are the result of deficiencies in the implementation of the allreduce
operation), while others led to an explanation of the problems in terms of interference from system
noise. This explanation passed the ultimate test by leadingto an improved design that resulted in a
factor of 2 improvement in application performance.

In grade school, we are taught to check our work: after you divide, multiply back and verify that
you get what you started with. The same principle applies to the evaluation of computer systems.
These systems are complex, and their behavior is typically the result of many subtle interactions. It
is very easy to fall for wrong explanations that seem very reasonable. The only way to find the right
explanation is to check it experimentally. This is both a technical issue — devising experimental
verifications is not easy, and a cultural one: the notion thatunverified explanations are simply not
good enough.

3.3 Refutable Theory

“ If the facts don’t fit the theory, change the facts.”
Albert Einstein

“A theory which cannot be mortally endangered cannot be alive.”
W. A. H. Rushton

23

Regarding possible explanations of system performance as mere hypotheses, and devising ex-
periments to check their validity, are not only a mechanism for finding the right explanation. Hy-
pothesis testing and refutable theory are the fast lane to scientific progress [54].

Using explanations without thinking about and actually demonstrating proper experimental
verification may lead us to false conclusions. This is of course bad. But the real damage is that
it stifles progress in the right direction, and disregards the scientific method. Platt writes about
hand-waving explanations, which are easily reversed when someone notices that they contradict
the observation at hand [54],

A “theory” of this sort is not a theory at all, because it does not exclude anything.
It predicts everything, and therefore does not predict anything. It becomes simply a
verbal formula which the graduate student repeats and believes because the professor
has said it so often. This is not science, but faith; not theory, but theology. Whether it
is hand-waving, or number-waving, or equation-waving, a theory is not a theory unless
it can be disproved.

Platt’s main examples come from the natural sciences, e.g. molecular biology and high-energy
physics [54]. The theories he talks about are theories regarding nature: that the strands of the dou-
ble helix of DNA separate when a cell divides, that the parityof elementary particles is conserved,
etc. But is this also relevant to the computer systems conjured by humans? The answer lies with
the basic characteristics of the scientific research that Platt is talking about: that it is observational,
and subject to limited resources.

That the natural sciences are based on observing nature is taken for granted. But computer
science? After all, we design these systems; so can’t they beanalyzed mathematically from first
principles? The short answer is no, as we tried to establish above. Whether at the scale of a single
microprocessor or of the whole Internet, we don’t really know what our computer systems are
doing, and there is no alternative to direct observation.

Perhaps more surprising is the observation that limited resources have a crucial role. Why do
limited resources promote good experimental research? Because if you have limited resources,
you need to think about how to best invest them, or in other words, what will yield the best returns
on your investment. And the answer of the scientific method isthat the best return is obtained by
carefully designed experiments, and specifically, those that can best distinguish between competing
theories. Furthermore, this leads to more collaboration between scientists, both in terms of ferment
and cross-pollination of ideas and advances, and in terms ofbuilding large-scale experimental
infrastructure that cannot be built by individual researchteams. These considerations apply equally
well to computer science.

Platt ends his exposition with the following recommendation [54]:

I will mention one severe but useful private test — a touchstone of strong inference
— that removes the necessity for third-person criticism, because it is a test that any-
one can learn to carry with him for use as needed. It is our old friend the Baconian
“exclusion,” but I call it “The Question.” Obviously it should be applied as much to
one’s own thinking as to others’. It consists of asking in your own mind, on hear-
ing any scientific explanation or theory put forward, “But sir, what experiment could

24

disprove your hypothesis?”; or, on hearing a scientific experiment described, “But sir,
what hypothesis does your experimentdisprove?”

4 Reproducibility

“When you steal from one author, it’s plagiarism; if you stealfrom many, it’s re-
search.”

Wilson Mizner

“Mathematicians stand on each other’s shoulders while computer scientists stand on
each other’s toes.”

R. W. Hamming

We’re human. We make mistakes. Even in science. So it is beneficial to allow others to repeat
our work, both to verify it and to refine and extend it.

4.1 Mistakes

“The greatest mistake you can make in life is to be continuallyfearing you will make
one.”

Elbert Hubbard

“Admit your errors before someone else exaggerates them.”
Andrew V. Mason

“An expert is a man who has made all the mistakes which can be made in a very narrow
field.”

Niels Bohr

“ If you don’t make mistakes, you’re not working on hard enoughproblems.”
F. Wikzek

I some fields the propensity for mistakes is well-documented, and accepted as part of life. A
prime example is software engineering. Practically all software life-cycle models are based on
the notion of iteration, where successive iterations of thedevelopment correct the shortcomings
of previous iterations [58]. As mistakes are typically found by testing the software, testing has
become a major part of development. In the Unified Process, testing is one of four main workflows
that span the duration of a software development project [34].

But mistakes happen in all domains of human endeavor, and finding them is a social activity
that requires a time investment by multiple participants. De Millo et al. list several illuminating
examples from mathematics, where proofs of theorems were later found to be flawed [12]. The
history of science has witnessed several great controversies among eminent scholars, who can’t all
be right [30].

25

A recent example closer to computer science is provided by the SIAM 100-digit challenge
[3]. The challenge was to compute 10 digits of the answer to each of 10 difficult computational
problems. 94 groups entered the challenge, and no fewer than20 won, by correctly computing all
100 digits; 5 additional teams got only one digit wrong. But still, three out of four groups made
mistakes, including groups with well-known and experienced computational scientists.

Moreover, in an interview, Nick Trefethen (the initiator ofthe challenge) admitted to not having
known all the answers in advance. But he claimed that such knowledge was not needed, as it was
easy to identify the correct answers from the results: when multiple groups from different places
using different methods got the same numbers, they were mostprobably right. Groups who got a
unique result were probably wrong — even if composed of highly-qualified individuals.

The lesson from these examples is that we cannot really be sure that published research results
are correct, even if they were derived by the best scientistsand were subjected to the most rigorous
peer review. But we can gain confidence if others repeat the work and obtain similar results. Such
repetitions are part of the scientific process, and do not reflect specific mistrust of the authors of
the original results. Rather, they are part of a system to support and gain confidence in the original
results, and at the same time to delimit the range of their applicability.

To enable others to repeat a study, the work has to be reproducible. This has several important
components [45, 36, 51]:

1. Describe the work in sufficient detail. Think in terms of a recipe that lists all what has
to be done, and don’t assume your readers can fill in the gaps. Don’t forget to include
trivial details, e.g. whether MB means106 bytes or220 bytes. Design and use tools that
automatically record full details of the environment in which a measurement is taken [50].

2. Make software available in a usable form, i.e. source coderather than binaries. This is
especially important for new software you developed for thereported experiment; the more
it is used, the better the chance that hidden bugs will be found and removed. If using software
produced by others, specify the version used.

3. Make raw data available, especially input data, e.g. the workload used to drive a simulation.

4. Enable access to infrastructure. This may be crucial in certain cases where the infrastructure
is unique, either because of its novelty or because of its pricetag.

Incidentally, keeping all the data needed in order to reproduce work is also very useful when you
have to reproduce it yourself, e.g. in a followup study or when revising a paper [51].

4.2 Understanding

“ It is by universal misunderstanding that all agree. For if, by ill luck, people under-
stood each other, they would never agree.”

Charles Baudelaire

“All truths are easy to understand once they are discovered; the point is to discover
them.”

Galileo Galilei

26

“ It is not necessary to understand things in order to argue about them.”
Pierre Beaumarchais

While the basic reason for attempting to reproduce previousresults is to verify them, this
is not the only reason. Verification takes time, and by the time we are sure of the validity of
results “beyond a reasonable doubt” they may be no longer relevant. However, a more important
reason may be to improve our understanding of the measured system. This is especially true in
an academic setting, where basic understanding is arguablymore valuable then putting results to
actual use.

One of the arguments against requiring results to be verifiedis that it is too hard to do to be
practical. Michael Foster [45] writes

The difficulty with validating results is the myriad of details in a simulation or ex-
periment that may affect the measurement. Reproducing a result means determining
which details are important and which are inessential...

This claim is perfectly true. But a central point in studyingthe performance of a system is just this:
finding out what are the important parameters that affect performance, the mechanisms by which
they affect performance, and the degree to which they affectperformance. If we manage to do this,
we have learned something from the study. And if verificationis the means to achieve such a level
of understanding, this is a good reason to perform verification.

A rare example of actually trying to repeat measurements done by others is presented by Clark
et al. [8]. Despite being essentially successful, this example underscores the difficulties of re-
producibility, as the reproducing authors seem to have needed significant help from the original
authors in order to achieve similar results. One of their findings was that disabling SMP support in
the operating system turned out to be crucial for the reported performance. This interesting obser-
vation would not have been made if they were not attempting torepeat previous measurements.

To make repeatability easier, results should be accompanied by full details on how they were
obtained. For example, theCONCEPTUAL language for writing communications tests and bench-
marks compiles into code that collects complete information about the system environment, and
embeds it in the output file. In addition, the language itselfis very high-level, allowing the source
code itself to be shown together with the results. This immediately exposes the design of the
benchmark, and answers many possible questions about its details.

On the other hand, it is true thatexact, numericalreproduction is most probably not required.
The point of reproducibility is to reproduce the insights, not the numbers. It is more qualitative
than quantitative.

4.3 Standardization

“The good thing about standards is that there are so many of them.”
Unknown

“The most damaging phrase in the language is: “It’s always been done that way.””
Grace Hopper

27

“Science is a collection of successful recipes.”
Paul Valery

In the context of reproducibility it may also be appropriateto challenge the prevailing emphasis
on novelty and innovation in computer science, and especially in the systems area. Many leading
conferences and journals cite originality as a major factorin accepting works for publication,
leading to a culture where each researcher is motivated to create his own world that is distinct
from (and incomparable with) those of others. This is not only very different from the natural
sciences, that all study the natural world as it is. It is alsodifferent from much of mathematics and
theoretical computer science, where it is much more common to find deep studies based on many
layers of previous work within the same basic framework.

The alternative to innovation and fragmentation is standardization. This implies a canonization
of a certain approach or process. Canonization does not meanthat there is a full agreement that this
approach or process is indeed flawless and the best. It just means that everyone agrees to use them,
because they realize that the benefits of compatibility stemming from using the same approach far
outweigh the possible benefits of using a specialized approach that is not accepted by others and
therefore is incompatible with the work of others.

Standardization is widely used in computer systems. The most obvious use is in system de-
sign, where designers forgo possible optimizations in the interest of interoperability. For example,
communication protocols allow one computer to correctly interpret bits coming over a wire from
another computer; using a non-standard encoding would cause the data to be garbled and com-
munication would be impossible. Standardization is also used in performance evaluation, where
benchmarks such as SPEC are used despite active debate abouttheir merits and shortcomings
[69, 26]. Another example is TREC, the series of text retrieval conferences, where attendees com-
pete at performing a common set of topical queries from a given large corpus of documents [66].

Experimental computer science requires even more standardization. As a first step, papers
should include a methodology section that describes how thework was done in enough detail to
allow it to be reproduced. Later, such methodologies shouldbe collected in laboratory manuals,
like those used in biology and other fields (e.g. [57]). Theseserve as a repository for the collective
experience regarding how things should be done — otherwise called “best practices”. Once such
manuals exist, the onus of writing methodology sections is reduced, as much of it can consist of
references to the manuals.

It should be stressed that having an accepted laboratory manual specifying desirable proce-
dures does not mean that deviations are not allowed and that innovation is stifled. It just allows the
community to be split into two unequal parts. The smaller part is interested in research on method-
ologies, and continues to come up with new approaches and comparisons of existing approaches.
At the same time the rest of the researchers can follow the current established procedure, focusing
on their specific research questions rather than on the methodology used to answer them.

The potential effect of such a split should not be underestimated. The prevailing practice
today is that a paper should present a full story. Thus a paperpresenting a new methodology
may be considered incomplete if it does not also provide an example of a specific situation in
which the methodology was used to advantage. This limits thework on methodologies in two
ways: first, methodologies cannot be discussed in great detail, as space must be left for their uses,

28

and second, improvements in methodology that do not immediately translate to significant impact
are considered uninteresting. In the bottom line, splitting research on methodology into a separate
branch can be expected to foster innovations and developments in this important area.

4.4 Progress

“When the Internet publicity began, I remember being struck by how much the world
was not the way we thought it was, that there was infinite variation in how people
viewed the world.”

Eric Schmidt

“The truth in the matter lies in the fact that anything repeated too long without variation
tends to become boring.”

Don Ellis

It is often thought that replication in science is mainly about verifying results and correcting
mistakes. This was the view suggested by the preceding sections. It is wrong. Replication is more
about moving forward than about reviewing the past.

Replication fosters progress because it is hardly ever completely precise. Each replication also
introduces a small variation. It could be that the same application is implemented on a different
platform. It could be that the same algorithm is exercised using a different input. It could be
that the same experiment is conducted in a slightly different way. Such variations open the door
to meta-studies, which synthesize the results of many previous studies of the same phenomenon.
And this leads to more general theories, that not only pertain to a certain point phenomenon, but
also to a whole context.

Progress is built from a combination of breakthroughs and small steps. The breakthroughs
typically result from new insights, that are based on cumulative experience. The small steps result
from a choice between multiple candidates, just like evolution depends on the selection of the fittest
among several variants. In either case, progress is not pre-ordained. It requires a certain breadth,
a context, alternatives that are tried our and later discarded. They are needed because we cannot
know in advance which will succeed — we need to experiment in the real world to find out.

Remarkably, this process can be accelerated artificially, by tapping on the competitiveness of
humans in general and scientists in particular. This is doneby setting up a common challenge, or
competition. By getting multiple research groups to work onthe same problem, and subjecting
them to a common evaluation framework, it becomes easier to select the approach that promises
the most rapid progress. This can then be used as the basis forthe next round.

There are quite a few examples of such competitions in computer science. Perhaps the most
influential is TREC, the series of Text REtrieval Conferences organized by NIST (the US Na-
tional Institute of Standards and Technology). This series, started in 1992, has been credited with
improving the effectiveness of text retrieval algorithms twofold, by providing large experimental
collections and a relatively subjective and uniform evaluation scheme [66]. And there are other
competitions as well, ranging from competitions among microprocessor branch predictors to com-
petitions among teams of robotic dogs playing soccer.

29

5 What Next?

“Most people are more comfortable with old problems than withnew solutions.”
Unknown

“All truth passes through three stages. First, it is ridiculed. Second, it is violently
opposed. Third, it is accepted as being self-evident.”

Arthur Schopenhauer

“Men occasionally stumble over the truth, but most of them pick themselves up and
hurry off as if nothing ever happened.”

Winston Churchill

Observation and modeling are not unique to the natural sciences. Other examples include

• Environmental studies, where detailed measurements of pollutants are collected and their
effect modeled

• Baseball, with its voluminous collected statistics, and their use to analyze the contributions
of individual players [39]

• Modern economics, with its data mining of buying patterns and its effect on the diminishing
connection between cost and pricing

• Economics theory, which now includes measured psychological influences on human eco-
nomic behavior

Is computer science really so different, that measurementsdo not have a place? Surely computer
science can gain from observation and verified modeling at least as much as these fields [62].

In fact, the situation is not really so bleak. Over the years,there have been many empirical
studies that fit our definition. Examples start with early studies of a computer’s workload and user
behavior [55, 9, 67, 60] and culminate with the studies quoted above on LAN and WAN traffic
[38, 52]. There are also papers devoted to experimental methodology, e.g. [25, 26, 7, 51]. However,
when compared to the full scope of research in computer science, this is still a vanishingly small
fraction. Moreover, the number of studies published is nowhere near enough to achieve a critical
mass from which reliable knowledge can be gleaned. Take measurements from file systems for
example. Three well-known studies are

• The study of the BSD 4.2 file system by Ousterhout et. al in 1985[49].

• The followup study of the Sprite file system in 1991 [2].

• A study of file usage in Windows NT 4.0 by Vogels in 1999 [65].

Indeed, each of these papers dutifully references the previous ones and compares the new findings
to the old ones. Between them the three papers cover Unix systems, distributed systems, and
Windows systems. But there is just a single instance of each system type, from a span of 14 years!
It is very hard to argue that such data is definitive and that the comparisons are valid.

30

In addition to the paucity of empirical studies, they tend tobe thinly distributed over many
different publication venues. It is not surprising, therefore, that the few studies that have been
conducted have had little if any impact on the consequent design of commodity systems. And they
are typically only mentioned in the “further reading” sections of textbooks on operating systems
or architecture, if at all.

If you are concerned about all this, what is there to do? As theabove sections attempted to
show, the crux of the problem is not technical but cultural. To take steps that will improve on the
current situation, we therefore need a cultural change.

One possible contribution would be to create a forum to foster the publication of experimental
work: aConference on Experimental Computer Science(CECS). This would promote papers with
substantial content on

1. Measurement methodology and best practices, and the definition of new metrics

2. Reporting on significant data sets, even without detailedanalysis and full implications

3. Case studies of hypothesis testing leading to deeper understanding of complex systems

4. Repeated studies that strengthen or contradict previousstudies, and experimental work that
bolsters or contradicts established theory

5. Meta-studies using previously published data

And especially those that seem to have little chance to be accepted in conventional venues because
they violate the culture of novelty, self-containment, andfocus on performance. Additionally,
published papers will be accompanied by the relevant datasets and software used to collect and
analyze it.

An encouraging example in this vein is the journal ofEmpirical Software Engineering. This
journal grew out of a perceived need for a forum to publish more experimentally oriented work,
and has been sustained by an active research community for several years now. A similar forum
has been created by no other than the theoretical computer science community. The ACMJournal
of Experimental Algorithmicscaters for researchers who study the behavior of complex algorithms
experimentally, because mathematical analysis is too difficult or intractable altogether [36]. Addi-
tional examples are the DIMACS Implementation Challenges,the Workshops on Efficient and Ex-
perimental Algorithms, the Workshops on Duplicating, Deconstructing, and Debunking that focus
on computer architecture research, the Internet Measurement Conferences, and the International
Symposium on Empirical Software Engineering.

Given that so many (and maybe more) conferences exist, one has to carefully justify the in-
ception of another. One justification is that all the previous efforts a are rather narrowly focused,
and contain a limited number of papers. A general conferencededicated to experimentation in
computer science in general would be beneficial for bolstering the field as a whole, and for encour-
aging interactions and cross-fertilization between the subfields of computer science. In particular,
developments and advances achieved in one field will have theopportunity to be picked up in other
fields as well.

Another justification is that the more major conferences have a sketchy record of accepting
experimental work, partly due to an inbuilt preference for the best possible papers that can be

31

published. This often translates to a preference for work done in a clean abstract setting, ignoring
at least some of the complexities of real life. A new conference will enable the prioritization of
a focus on real systems, and thereby increased relevance to industry and engineering efforts. At
the same time, such a forum will also enable deeper experimental work to flourish by divorcing
the discussion of methodologies from their immediate use inthe context of specific systems and
studies.

Now is a good time to start with such a conference because there seems to be growing recog-
nition of the need for experimental work. In addition to the workshops and conferences quoted
above, we are beginning to see the emergence of large-scale experimentation efforts. One is Plan-
etLab (http://www.planet-lab.org/), touted as “an open platform for developing, deploying, and
accessing planetary-scale services”. Another is RAMP (http://ramp.eecs.berkeley.edu/), the
Research Accelerator for Multiple Processors, an effort touse standard FPGA boards to create a
cycle-accurate environment to emulate and study multi-core microprocessors. A centralized con-
ference has the potential to draw such efforts together, by showcasing the advances and successes
in one fields so that they can be adapted to and adopted in otherfields as well, rather than having
fragmented efforts that do not interact with each other.

A conference can affect the research culture, but this is notenough. To change the culture, it is
also important to have an impact on the education of future generations. Another important contri-
bution would therefore be to boost the experimental approach in the computer science curriculum.
There is nothing much that relates to experimentation in thecurrent ACM/IEEE curriculum rec-
ommendations. This is in stark contrast with common offerings in theoretical computer science:
most departments require students to take courses in data structures, algorithms, and complex-
ity, in addition to courses in mathematics and possible electives on more advanced topics such as
optimization and randomization.

A good start for teaching experimental computer science would be to teach measurement
methodology, e.g. using texts such as Lilja’s bookMeasuring Computer Performance: A Prac-
titioner’s Guide [41]. Additional courses can cover topics such as the simulation of computer
systems, conducting experiments with human subjects, and exploratory data analysis. Some of
these have obvious connections to fields as diverse as psychology, cognition, and statistics, and
will therefore have the added benefit of contributing to the inter-disciplinary education of com-
puter science graduates.

It is also important to include the notions of experimental computer science in all courses, and
not confine them to a sub-specialty. An example of the strength of this approach is the Hennessy
and Patterson book on quantitative computer architecture,which has become the main textbook in
the field [31]. Similar texts are needed for other topics, such as operating systems and computer
communications. For example, measured workload effects can be incorporated in such courses
in several places — how process runtimes affect scheduling and load balancing [28], how file
sizes affect the format and layout of file systems on disk [33], how self-similarity affects quality
of service guarantees, etc. And as noted above, experimentation is also useful in the study of
algorithms.

Finally, it is necessary to promote the creation of repositories for data, making it accessible
and available for repeated and new analyses. Moreover, depositing the raw data and software in

32

a repository can be made a pre-requirement for publication,similar to common practice in fields
such as biology. It is desirable that such repositories be managed by professional societies, to
prevent fragmentation and to ensure that they outlive the interests of a single researcher.

The long term goal, that will really indicate a general acceptance of the importance of the ex-
perimental approach to computer science, would be the awarding of a Turing Award for measure-
ment. As a possible straw-man proposal, how about recognizing the importance of the discovery of
self-similarity in communication workloads, now known to be prevalent in other contexts as well?

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “LogGP: incorporating
long messages into the LogP model — one step closer towards a realistic model for parallel
computations”. In 7th Symp. Parallel Algorithms & Architectures, pp. 95–105, Jul 1995.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout, “Measure-
ments of a distributed file system”. In 13thSymp. Operating Systems Principles, pp. 198–212,
Oct 1991. Correction inOperating Systems Rev.27(1), pp. 7–10, Jan 1993.

[3] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel,The SIAM 100-Digit Challenge: A
Study in High-Accuracy Numerical Computing. SIAM, 2004.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like distribu-
tions: evidence and implications”. In IEEE INFOCOM, pp. 126–134, Mar 1999.

[5] F. P. Brooks, Jr., “The computer scientist as toolsmith II”. Comm. ACM39(3), pp. 61–68,
Mar 1996.

[6] J. Carreira and J. G. Silva, “Computer science and the pygmalion effect”. Computer31(2),
pp. 116–117, Feb 1998.

[7] D. Citron, “MisSPECulation: partial and misleading use of SPEC CPU2000in computer
architecture conferences”. In 30thAnn. Intl. Symp. Computer Architecture Conf. Proc., p. 52,
2003.

[8] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N. Matthews,
“Xen and the art of repeated research”. In USENIX Tech. Conf., Jun 2004.

[9] E. G. Coffman, Jr. and R. C. Wood, “Interarrival statistics for time sharing systems”. Comm.
ACM 9(7), pp. 500–503, Jul 1966.

[10] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: evidence
and possible causes”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,
pp. 160–169, May 1996.

33

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken, “LogP: towards a realistic model of parallel computation”. In 4th Symp.
Principles & Practice of Parallel Programming, pp. 1–12, May 1993.

[12] R. A. DeMillo, R. J. Lipton, and A. J. Perlis, “Social processes and proofs of theorems and
programs”. Comm. ACM22(5), pp. 271–280, May 1979.

[13] P. J. Denning, “Is computer science science?”. Comm. ACM48(4), pp. 27–31, Apr 2005.

[14] P. J. Denning, “Performance analysis: experimental computer science as its best”. Comm.
ACM 24(11), pp. 725–727, Nov 1981.

[15] P. J. Denning, “Working sets past and present”. IEEE Trans. Softw. Eng.SE-6(1), pp. 64–84,
Jan 1980.

[16] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a discipline”. Computer22(2), pp. 63–70, Feb 1989.

[17] Y. Etsion, D. Tsafrir, S. Kirkpatrick, and D. Feitelson, Fine Grained Kernel Logging with
KLogger: Experience and Insights. Technical Report 2005–35, The Hebrew University of
Jerusalem, Jun 2005.

[18] D. G. Feitelson, “Experimental analysis of the root causes of performance evaluation results:
a backfilling case study”. IEEE Trans. Parallel & Distributed Syst.16(2), pp. 175–182, Feb
2005.

[19] D. G. Feitelson, “On the interpretation of Top500 data”. Intl. J. High Performance Comput.
Appl.13(2), pp. 146–153, Summer 1999.

[20] D. G. Feitelson, “The supercomputer industry in light of the Top500 data”. Comput. in Sci.
& Eng. 7(1), pp. 42–47, Jan/Feb 2005.

[21] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific work-
load on the NASA Ames iPSC/860”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 337–360, Springer-Verlag, 1995. Lect. Notes
Comput. Sci. vol. 949.

[22] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”. In IEEE
Intl. Symp. Performance Analysis Syst. & Software., pp. 221–230, Mar 2006.

[23] J. A. Feldman and W. R. Sutherland, “Rejuvenating experimental computer science: a report
to the National Science Foundation and others”. Comm. ACM22(9), pp. 497–502, Sep 1979.

[24] N. Fenton, S. L. Pfleeger, and R. L. Glass, “Science and substance: a challenge to software
engineers”. IEEE Softw.11(4), pp. 86–95, Jul/Aug 1994.

[25] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the correct way to summarize
benchmark results”. Comm. ACM29(3), pp. 218–221, Mar 1986.

34

[26] R. Giladi and N. Ahituv, “SPEC as a performance evaluation measure”. Computer28(8),
pp. 33–42, Aug 1995.

[27] S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J.Gibson, and E. L. Miller, “Self-
similarity in file systems”. In SIGMETRICS Conf. Measurement & Modeling of Comput.
Syst., pp. 141–150, Jun 1998.

[28] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime distributions for dynamic
load balancing”. ACM Trans. Comput. Syst.15(3), pp. 253–285, Aug 1997.

[29] J. Hartmanis, “On computational complexity and the nature of computer science”. Comm.
ACM 37(10), pp. 37–43, Oct 1994.

[30] H. Hellman,Great Feuds in Science: Ten of the Liveliest Disputes Ever. Wiley, 1998.

[31] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers Inc., 1990.

[32] J. Henry,Knowledge is Power: Francis Bacon and the Method of Science. Icon Books Ltd.,
2002.

[33] G. Irlam, “Unix file size survey - 1993”. URL http://www.gordoni.com/ufs93.html.

[34] I. Jacobson, G. Booch, and J. Rumbaugh,The Unified Software Development Process. Addi-
son Wesley, 1999.

[35] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, andJ. Riodan, “Modeling of workload in
MPPs”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 95–116, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[36] D. S. Johnson, “A theoretician’s guide to the experimental analysis of algorithms”. In Data
Structures, Near Neighbor Searches, and Methodology, M. H. Goldwasser, D. S. Johnson,
and C. C. McGeoch (eds.), pp. 215–250, Am. Math. Soc., 2002.

[37] A. Kumar, V. Paxson, and N. Weaver, “Exploiting underlying structure for detailed recon-
struction of an Internet-scale event”. Manuscript, 2005.

[38] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,“On the self-similar nature of
Ethernet traffic”. IEEE/ACM Trans. Networking2(1), pp. 1–15, Feb 1994.

[39] M. Lewis,Moneyball. W. W. Norton & Co., 2003.

[40] D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-Verlag, 1995. Lect.
Notes Comput. Sci. vol. 949.

[41] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide. Cambridge Univer-
sity Press, 2000.

35

[42] V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and synthetic
workload models for parallel job scheduling”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 25–46, Springer Verlag, 1998. Lect.
Notes Comput. Sci. vol. 1459.

[43] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, “Quantifying the performance differ-
ences between PVM and TreadMarks”. J. Parallel & Distributed Comput.43(2), pp. 65–78,
Jun 1997.

[44] C. A. Moritz and M. I. Frank, “LoGPC: modeling network contention in message-passing
programs”. IEEE Trans. Parallel & Distributed Syst.12(4), pp. 404–415, Apr 2001.

[45] T. Mudge, “Report on the panel: how can computer architecture researchers avoid becoming
the society for irreproducible results?”. Comput. Arch. News24(1), pp. 1–5, Mar 1996.

[46] National Academy of Sciences,Academic Careers for Experimental Computer Scientists and
Engineers. 1994. URL http://books.nap.edu/html/acesc/.

[47] A. Newell and H. A. Simon, “Computer science and empirical inquiry: symbols and search”.
Comm. ACM19(3), pp. 113–126, Mar 1976.

[48] J. K. Ousterhout, “Why aren’t operating systems getting faster as fast as hardware?”. In
USENIX Summer Conf., pp. 247–256, Jun 1990.

[49] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G. Thompson, “A
trace-driven analysis of the UNIX 4.2 BSD file system”. In 10th Symp. Operating Systems
Principles, pp. 15–24, Dec 1985.

[50] S. Pakin, “coNCePTuaL: a network correctness and performance testinglanguage”. In 18th
Intl. Parallel & Distributed Processing Symp., Apr 2004.

[51] V. Paxson, “Strategies for sound Internet measurement”. In Internet Measurement Conf., Oct
2004.

[52] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson modeling”. IEEE/ACM
Trans. Networking3(3), pp. 226–244, Jun 1995.

[53] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of missing supercomputer performance:
achieving optimal performance on the 8,192 processors of ASCI Q”. In Supercomputing,
Nov 2003.

[54] J. R. Platt, “Strong inference”. Science146(3642), 16 Oct 1964.

[55] R. F. Rosin, “Determining a computing center environment”. Comm. ACM8(7), pp. 465–468,
Jul 1965.

36

[56] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta, and A. Siva-
subramaniam, “Critical event prediction for proactive management in large-scale computer
clusters”. In SIGKDD, Aug 2003.

[57] J. Sambrook and D. W. Russell,Molecular Cloning: A Laboratory Manual. Cold Spring
Harbor Laboratory Press, 3rd ed., 2001.

[58] S. R. Schach,Object-Oriented and Classical Software Engineering. McGraw-Hill, 6th ed.,
2005.

[59] R. R. Schaller, “Moore’s Law: past, present, and future”. IEEE Spectrum34(6), pp. 52–59,
Jun 1997.

[60] J. R. Spirn,Program Behavior: Models and Measurements. Elsevier North Holland Inc.,
1977.

[61] M. S. Squillante, D. D. Yao, and L. Zhang, “Analysis of job arrival patterns and parallel
scheduling performance”. Performance Evaluation36–37, pp. 137–163, 1999.

[62] W. F. Tichy, “Should computer scientists experiment more?”. Computer31(5), pp. 32–40,
May 1998.

[63] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, “Experimental evaluation in computer
science: a quantitative study”. J. Syst. & Softw.28(1), pp. 9–18, Jan 1995.

[64] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime estimates”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, E. Frachtenberg, L. Rudolph,
and U. Schwiegelshohn (eds.), pp. 1–35, Springer Verlag, 2005. Lect. Notes Comput. Sci.
vol. 3834.

[65] W. Vogels, “File system usage in Windows NT 4.0”. In 17th Symp. Operating Systems
Principles, pp. 93–109, Dec 1999.

[66] E. M. Voorhees, “TREC: improving information access through evaluation”. Bulletin Am.
Soc. Information science & Tech.32(1), Oct/Nov 2005.

[67] E. S. Walter and V. L. Wallace, “Further analysis of a computing center environment”. Comm.
ACM 10(5), pp. 266–272, May 1967.

[68] S. Wartik, “Are comparative analyses worthwhile?”. Computer29(7), p. 120, Jul 1966.

[69] R. P. Weicker, “An overview of common benchmarks”. Computer23(12), pp. 65–75, Dec
1990.

[70] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating technology”. Com-
puter31(5), pp. 23–31, May 1998.

37

