
Self-Tuning SystemsDror G. Feitelson Michael NaamanInstitute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelffeit,mnaamang@cs.huji.ac.ilAbstractModern operating systems are highly parameterized, allowing system administra-tors to tune them in order to achieve optimal performance for the local workload.However, this is a di�cult and time consuming process. We propose a mechanism toautomate this process, by running simulations of system performance for various pa-rameter values instead of the system's idle loop. The simulations are driven by log �lescontaining information about the local workload, and genetic algorithms are used tosearch for the optimal parameter values. We evaluated this idea by running such sim-ulations o�-line. A case study involving batch scheduling on an iPSC hypercube foundparameter values that reduced fragmentation and salvaged a quarter of the computingcycles that were lost when using the default values.1 IntroductionModern operating systems are highly parameterized, meaning that the algorithms and poli-cies used are not completely de�ned. Instead, the policies are controlled by a set of parame-ters that can be modi�ed by the system administrator in order to tune system performance.Perhaps the best know examples come from �le systems, in which various features such asthe block size and the way in which disk blocks are allocated can be modi�ed, albeit withinthe general framework dictated by the system design [11].Regrettably, the process of tuning the system is typically ad-hoc, possibly with somevague guidelines, but nearly always with no direct way to measure the e�ect of changesto the parameter values. Thus system administrators are forced to use a trial-and-errorapproach as they seek parameter values that will optimize system performance for theirlocal workload. We suggest a mechanism to automate this process.Our approach is based on the observation that systems typically make detailed recordsof various aspects of the workload. For example, Unix systems maintain a log of all usersessions and of all processes executed, including detailed resource usage information. Web1

servers can be con�gured to maintain a log of all the pages that they serve. These log �lesrepresent knowledge about the local workload. Our methodology is to use this knowledgeto drive simulations of system behavior with di�erent parameter values, and measure theresulting performance. Genetic algorithms are used to create new parameter combinationsand to conduct a systematic search for optimal parameter values. The simulations are runin place of the system's idle loop, so as not to cause any overhead.The concept of self-tuning is explained in greater detail in Section 3, and evaluated using aspeci�c case study in Section 4. But �rst we provide some background on genetic algorithmsand their use in optimization.2 Genetic Algorithms Thissectionshouldbe asidebarGenetic algorithms, as their name suggests, are based on a biological analogy. In fact, itis now common to view the evolution of sexual reproduction | and the genetic mixingthat comes with it | mainly as a mechanism for sampling and searching the vast space ofpossible genomic con�gurations [7]. In computer science, \genetic algorithms" refers to anoptimization procedure that mimics this biological process. The name is actually a bit of amisnomer, as it refers to a framework more than to a speci�c algorithm.In essence, genetic algorithms involve iterative searching in a large con�guration space.In each iteration, several potential con�gurations from di�erent parts of the space are eval-uated. The best ones are then combined with each other in random ways, and used as thestarting points for the next iteration. The search terminates when additional iterations donot produce additional improvements, or after a prede�ned number of iterations.The biological analogy stems from the theory of evolution and the principle of survival ofthe �ttest. Each iteration is called a generation. Each con�guration is called an individual,and together all the con�gurations being considered in a certain generation are the population.The con�gurations are represented by chromosomes | essentially a list of the parametervalues that de�ne the con�guration in question.The evaluation of the di�erent con�gurations is outside the scope of the optimizationprocedure | it is determined by the goals of the optimization. But the result of the evalua-tion is translated into a single value that reects the quality of each con�guration. In geneticalgorithm terms, this quality index is called the �tness of the individual.The key to the operation of genetic algorithms lies in how the population is changed fromone generation to the next. First, the members of the population are ranked according totheir �tness. Next, they are mated with each other, and produce o�spring (this is the reasonfor the name \genetic algorithms"). The probability of mating is proportional to the �tness;individuals with a higher �tness mate more often, and produce more o�spring, thus passingtheir high-quality genes (con�guration parameters) to the next generation.When two individuals are mated, the cross-over operator may be applied. This operatorchooses a random point in the chromosome, and creates two new chromosomes based on thetwo parents: one gets the �rst part from one parent and the second from the other parent,2

point

random location

resulting

chromosomes

mating mutation

original

chromosomes

random cross-overFigure 1: The genetic algorithm operations on chromosomes.and the other gets the opposite (Fig. 1). Thus parameter combinations that lead to higherperformance are mixed in various ways, potentially leading to new combinations with evenbetter performance. If cross-over is not applied, the two parent chromosomes are simplyinserted into the next generation without change; as they were selected according to their�tness, this means that the �ttest individuals persevere.In addition to cross over, mutations may be inserted into chromosomes, in order to createparameter values that were not present in the original population. This is done by changinga single bit at random (Fig. 1).Many variants on this basic scheme are possible. For example, one must decide on thefollowing issues:� How are con�gurations represented in chromosomes? Speci�cally, what alphabet ofsymbols is used?� When a new generation is created, does one take only the o�spring, or rather the bestindividuals out of the joint pool of parents and o�spring?� What should the size of each generation be?� How does one normalize the �tness values and turn them into mating probabilities?� What are the probabilities of cross-over and mutations?Signi�cant research has been conducted on these and other issues, and on how they a�ectthe convergence properties of the optimization procedure [6].3 Self-Tuning Using Genetic AlgorithmsWhen designing operating system algorithms and policies, many micro-decisions have to bemade: the size of a table, the threshold used to decide when to activate a certain procedure,the order in which a data structure is scanned, and so on. The problem is that these decisionsmay have unknown consequences in terms of performance. However, exhaustive research of3

all the alternatives is impossible, both because it is too much work, and because the resultsnecessarily depend on the local workload at each installation. Not only is such data notavailable when the system is being designed, it also di�ers among installations.An elegant way out is to parameterize the algorithm or policy in question, rather thanhard-coding a speci�c choice. All the parameters then have default values selected by thedesigners, but they can be changed by each installation's system administrators. For example,the table size may be decided by the system administrator as part of the system con�guration.The threshold value may be set by a special system call, executed by an operator's userinterface.While this approach shifts the burden from the system designers to its operators, it doesnot always solve the problem. True, the operators should have more knowledge about thelocal conditions and workload, and should be able to use this knowledge in order to �ne-tune the system. But the operators may lack detailed knowledge about the inner workingsof the system, and thus not appreciate the �ner implications of setting various parametervalues. Also, system administrators are notoriously overworked and busy solving variouscrisis situations, leaving little if any time for elective chores such as tuning.The alternative that we propose is self-tuning systems. In this approach, the systemdesigners create the framework that will carry out the optimizations and tuning. However,the execution of this framework is delayed until the system is deployed in the �eld, and canmeasure its speci�c workload. Technically, the framework simply consists of a systematicsearch of the parameter space.Given that the search space is very large (many parameters that can have many di�erentvalues) and unknown (is there one global optimum? are there many similar maxima? do allparameters have the same impact on performance?), an e�cient search procedure is required.We chose to use genetic algorithms as our optimization procedure. The rest of this sectionexplains the mapping of the system tuning problem into genetic algorithm structures.The easy part is the representation of a set of parameter values as a chromosome. Thiscan be done by simply concatenating the binary representation of the parameter values.Crossing over will then take one set of values from one parent, and the rest from the other.It is also possible to allow the binary representation of a single parameter to be broken in themiddle, thus creating two new values. Likewise, mutations can create new values by ippinga single bit.The harder part is evaluating the �tness of these chromosomes. First, on must de�nean appropriate objective function. This objective function reects the performance metricthat one wishes to optimize, such as utilization or response time. Indeed, it is possible toconstruct a system that can optimize any of a set of metrics, and leave the choice of metricas the only parameter that has to be set by the local system administrator.The evaluation of the chosen function for a certain set of parameters is done by simulatingthe behavior of the system based on a record of the local workload. This implements asampling of the mapping P � W 7! Q, where P is the set of possible parameter valuecombinations,W is the set of possible local workloads, and Q is the set of possible outcomesin terms of the objective function. Thus we are able to rank the di�erent combinations of4

parameter values as they relate to the local workload, and quantify their quality in terms ofthe chosen performance metric. This quanti�cation is the �tness value.Doing the simulation correctly is perhaps the most challenging aspect of the whole pro-cedure. Operating systems are complex things, and a detailed simulation may be needed,involving high overhead and extensive logs. Luckily, this need not always be the case: someaspects of the operating system can be evaluated in isolation, with little information, such asthe batch scheduling algorithm used in our case study. But there are harder cases. Considerthe optimization of the scheduling parameters that govern the priority boost given to pro-cesses that complete an I/O operation. Simulating this requires detailed information aboutindividual CPU bursts and I/O operations, which is not maintained normally. A possiblesolution is to use sampling and collect the required information only for a short durationrather than all day long.Given the de�nition of chromosomes and the procedure to evaluate �tness, the geneticalgorithm machinery can be put into motion. Starting with the default system parametervalues and some other randomly chosen sets of parameter values, the process of iterativelyevaluating these sets using simulation and then combining the best-performing sets togetherwill lead to the generation of new and better combinations.A nice feature of this design is that new and improved parameter values can be usedimmediately as they are found | there is no need to wait for a separate optimizationprocedure to complete. Moreover, by continuously using this procedure with the latestsystem logs, the parameter values will track changes in the workload as they occur. Allthis can be achieved essentially at no cost, by running the optimization procedure in thebackground in place of the idle loop. Thus the system devotes cycles to optimization onlyif there are no user applications that can use them. In particular, idle time at night can beused to optimize a system that is heavily utilized by day.4 Case StudyThe iPSC/860 hypercube has a well de�ned, non-trivial, and highly parameterized batchscheduling algorithm [9]. In addition, a trace of a production workload on such a systemis available [5]. This therefore makes a good case study, even if batch scheduling and theiPSC/860 are not of much interest in themselves.4.1 The iPSC/860 SystemThe iPSC/860 is a parallel supercomputer produced by Intel in the late '80s. The architectureis based on nodes containing an Intel i860 RISC processor and some local memory, whichare connected to each other in a hypercube topology. The topology implies that the numberof nodes in the system has to be a power of two. Our workload data comes from a 128-nodemachine, which is a hypercube of dimension 7. Multiprogramming is possible by running5

time number of nodeslimit 16 32 64 12820 minutes q16s q32s q64s q128s1 hour q16m q32m q64m q128m3 hours q16l q32l q64l q128lTable 1: Batch queues used on the 128-node iPSC/860 at NASA Ames.jobs on subcubes, i.e. on embedded hypercubes of a lower degree. The operating systemimposes a limit of 9 on the degree of multiprogramming.The workload trace used in this study comes from the iPSC/860 installed at NASA Ames,and covers the fourth quarter of 1993 [5]. At the time, this machine was the workhorse forcomputations at the Numerical Aerospace Simulation facility. The log includes a total of1044 batch jobs. The batch queues that were in e�ect at the time are summarized in Table1. The use of these queues is explained below.4.2 The Batch Scheduling Algorithm and its ParametersThe iPSC scheduling algorithm works on two types of jobs | interactive and batch. Inter-active jobs require immediate running, while batch jobs are submitted to some queue andawait their turn. The system divides the day into two: the prime shift during the day andthe non-prime shift at night. During prime time, some of the nodes are allocated to thebatch partition, and the rest are reserved for interactive work. During non-prime time, allnodes are in the batch partition. Batch jobs may only run on nodes from the batch partition,while interactive jobs can run on any nodes that are available. Jobs run to completion (oruntil a time limit is exceeded); preemption is not used.We chose to focus only on the scheduling of batch jobs, as this was su�cient in orderto demonstrate the workings of self-tuning. Thus we only handle the optimization of thoseparameter values that are unique to batch scheduling. We do not optimize other parameters,such as the one that controls the size of the interactive partition during the prime shift.the following description is based on the Intel MACS (Multiuser Accounting, Control, andScheduling) manual [9].The batch scheduling algorithm is based on two main concepts. The �rst is prioritizingthe jobs to decide which job will be scheduled next. The second is the use of reservations inorder to accumulate processors for large jobs, which is called leveling.The scheduler has a set of queues, to which jobs are submitted. Each queue is charac-terized by several attributes. For example, queue attributes include limits on the numberof requested nodes and on the requested run time (the actual values in e�ect in the tracedsystem are given in Table 1). Another attribute is whether the queue is active only duringnon-prime time, or also during prime time. The most important attribute for our work isthe queue's priority, which has a direct impact on the priority of jobs submitted to it. In6

decision

time of leveling

time leveled job

will start

job5

job6job7

job8 (queued)

idleness due to leveling

P1

tim
e

P2 P3 P4 P5 P6 P7 P8

processors

job1

job2

job3

job4

Figure 2: Leveling is done if the induced idleness is smaller than A HOLE SIZE +B HOLE SIZE � req nodes; otherwise it is considered too expensive. Gray shading rep-resents idle nodes.addition, there is a global system parameter called A TIME PRI, which determines the weightof waiting time in the queue. The formula for computing a job's priority is:pri = q pri+ wait time�A TIME PRIwhere q pri is the basic priority of the queue, and wait time is the time the job is alreadywaiting on the queue. This formula is used to sort the jobs, and decide which job to runnext.If the next job to run requires more nodes then there are free, the scheduler considersleveling it. Leveling means not scheduling any more jobs until there are enough nodes torun the waiting job. Obviously such leveling requires the scheduler to leave nodes idle, soprocessing resources are lost. It is therefore necessary to carefully weigh when to engage inleveling. The algorithm tries to estimate how much resources will be lost, and compares thisamount with a tolerance that is determined by these parameters:� A HOLE SIZE | node-hour idleness tolerated forthwith7

� B HOLE SIZE | additional node-hour idleness tolerated per requested node (allowingmore tolerance for large jobs)The maximum idleness to be tolerated is then calculated byA HOLE SIZE +B HOLE SIZE � req nodeswhere req nodes is the number of nodes required by the job.An example is given in Fig. 2. When job 4 terminates, the scheduler has two nodesavailable, and the queued job with the highest priority (job 8) requires all 8 nodes. Usingthe runtime bounds on the currently running jobs (jobs 5, 6, and 7), the scheduler canestimate when all the nodes will be freed and job 8 will be able to run. However, suchleveling will cause nodes 1 through 6 to remain idle for various durations. The schedulersums up these idle node-hours (represented by the dark gray area with the heavy border inthe �gure), and compares it with the value of A HOLE SIZE + B HOLE SIZE � 8. Ifthe wasted area is not bigger than this value, the job will be leveled. If it is bigger, the jobwill remain in the queue and other smaller jobs will be scheduled.To reduce the loss of resources, the scheduler does attempt to schedule small jobs on theidle nodes, provided their time limit indicates that they will end before the time of leveling.However, this is only done after the decision to level.4.3 Formulation for Genetic AlgorithmsThe iPSC batch scheduling algorithm on the NASA system has 15 parameters. But whatparameter values will lead to the best performance? In order to use the self-tuning frameworkto �nd optimal parameter values, it is necessary to encode the algorithm for optimizationusing genetic algorithms.4.3.1 Representation in ChromosomesThe di�erent parameters to be optimized have di�erent ranges of values:� A HOLE SIZE | in the range of 0{255� B HOLE SIZE | in the range of 0{5� A TIME PRI | in the range of 0{5� 12 queue priorities | in the range of 0{255We represented all these parameters as a string of bits, each parameter occupying 8 bits,for a total chromosome length of 120 bits. Thus, the resolution of values in the queuepriorities and A HOLE SIZE was 1, and in B HOLE SIZE and A TIME PRI it was approximately0.02. When running the simulation, the string was �rst transformed to a struct holding theparameters. This struct was then passed to the simulation function, which used it to runthe simulation and compute the �tness. 8

4.3.2 Fitness FunctionAs a �tness parameter, we used the average utilization of the machine. For each day'ssimulation, we calculated the utilization as the ratio between the resources (measured innode-seconds) the jobs actually used:Xi run timei � nodesiand the total resources available for the duration of running all the jobs:total time� batch partition size(where total time is the wall clock time from the start of the �rst job to the completion ofthe last job.)This ratio gives a non-normalized �tness function | the maximum utilization is 1, butthe sum of all �tnesses is bigger than 1. We used utilization as a �tness function for reasonsof simplicity, and because it matches the goals of a batch scheduler. The results may bedi�erent if another de�nition of �tness is used.4.3.3 Evaluating the FitnessFor each set of parameter values (represented by a chromosome in the current population) wesimulated the behavior of the scheduler in order to evaluate its performance. The simulationassumes the following:� Only batch mode | all 128 nodes of the machine are in the batch partition, and weare only optimizing the batch scheduling algorithm.� All jobs were submitted before scheduling begins. This assumption reects a modelwhere batch jobs are submitted during the day, but not scheduled, because most batchqueues are disabled. Then, when the prime-time shift ends, all nodes are allocated tothe batch partition, and all queues are enabled, allowing the jobs that were accumulatedduring the day to be scheduled.� All queues can be scheduled. Again, this is the situation in the non-prime-time shift.As noted above, the workload used to drive the simulation is based on a detailed logof everything that ran on the iPSC/860 at NASA Ames during the fourth quarter of 1993[5]. However, we did not use the recorded workload directly, because the batch load on thatsystem was generally too low to exercise the scheduling algorithm. Instead, we sometimesuni�ed groups of several consecutive days of real workload into a single day of simulatedworkload, thus arti�cially increasing the load during each simulated day. The job character-istics (number of processors and runtime) remain the same as in the original workload. Thecriteria for unifying days was the desire to achieve either of the following: a load of around9

Population size 120Chromosome length 120 bitsProbability of mutation 0.1Probability of cross-over 0.5Run length 150 generationsTable 2: Parameters used in genetic algorithm implementation.20{25 jobs, or 1000{1300 node hours (corresponding to 8{10 hours of using 128 nodes). Afterthese uni�cations, the duration of the log was reduced from three months to 70 days.The simulation handles each day individually, and then reports the average utilizationfor all the days. It is an event driven simulation of the scheduler, where the events are theterminations of running jobs (it is assumed that there are no additional arrivals during thenon-prime shift). The simulation then schedules the next jobs to be run, according to thealgorithm described above. If the next job cannot be scheduled, it tries to level it. If the jobcan be leveled, smaller jobs are scheduled as possible to reduce the idleness. Otherwise, thisjob scheduling is deferred, and the next job will be considered. This is done until there areno free nodes, or no jobs to schedule. Then, simulation time is advanced to the �nish timeof the next �nishing job. Its resources are freed, and scheduling runs again.4.3.4 Genetic Algorithm DynamicsThe implementation of the genetic algorithms framework was done with the sga-c package, animplementation of Goldberg's Simple Genetic Algorithms [6, chap. 3]. This implementationgives a very basic set of tools to implement genetic algorithms, and was su�cient for ourneeds.The parameters used in our experiments are summarized in Table 2. The populationconsisted of 120 individuals. The �rst generation started with randomly generated chro-mosomes; we also checked starting with the Intel defaults as one of the chromosomes, butthis did not a�ect the results. Experiments continued for a total of 150 generations. Ateach generation, the probability of cross-over during mating was 50%, and the probabilityof mutation was 10%.4.4 Experimental ResultsThe following results were obtained by executing the genetic algorithm as described above.This is a retrospective experiment, using old logs, rather than performing a run within a livesystem. However, note that this is not a simulation of the self-tuning idea, but rather theseare exactly the same simulations that would be used in a real implementation.Starting with random sets of parameters, we tracked the best set of parameters found ina run, that is, over all 150 generations. We performed 100 such runs, to see if the geneticalgorithm would converge to a single set of optimal parameter values. We tried two methods10

for selection | one using the \raw" �tness values, and one using normalized �tness whichampli�es the di�erences between individual �tness values. The results were similar, andthose for raw values are shown.Using a Pentium Pro 200 running BSDI, the time to complete one generation was about1 second. This includes the simulation of scheduling about 20 jobs in each of 70 days undereach of 120 di�erent sets of parameters. A run involving 150 generations therefore tookbetween 2 and 3 minutes, and executing all 100 runs with di�erent initial populations tookseveral hours. While this is a signi�cant amount of time, it should be noted that we onlyneeded it in order to evaluate the approach. A real implementation only needs to performa single run, which in our case takes a couple of minutes, to �nd a set of good parametervalues. The overhead for such a procedure is negligible.Moreover, it is not always necessary to perform a complete run. In some of our runs, theoptimal parameter values were found as early as the fourth generation. A real implementationcan also use good parameter values as soon as they are found, and continue the search foreven better values only as time permits.In general the results we achieved showed a signi�cant improvement in utilization. Run-ning the simulation with the default Intel parameters resulted in 88.4% utilization for ourworkload. In all our runs we achieved utilizations of between 91.03% and 91.25%. This is a3.2% increase in utilization in absolute terms, and a 24.6% reduction in wasted processingcapacity because of fragmentation. These results also testify to the e�ciency of genetic al-gorithms as a search procedure: each run included speci�c checks of only 120� 150 = 18000parameter combinations out of the 2120 possible combinations, yet they all achieved essen-tially the same results.Though we found an improvement in utilization, there is no straightforward behavior ofthe parameters. It seems as though the surface of the �tness function is relatively at, withmany local peaks and valleys, but no one outstanding peak. Thus the di�erent runs producedwidely di�erent sets of parameter values, that all lead to about the same utilization. Thisimplies that there are no prameter combinations that can achieve better performance thanthose we found, at least for this workload.The combinations of parameters we found are presented graphically in Fig. 3. There is agraph for each optimized parameter, showing the value of this parameter in the best set fromeach of the 100 runs. It can be easily seen that the values of all parameters do not convergeinto some speci�c value, but are rather scattered. However, it is clear that for job sizesof 16, 32, and 64 nodes, the priority of the short queue should be relatively low, whereasthe priority of the long queue should be relatively high. This indicates that the system\invented" the �rst-�t decreasing bin packing algorithm: it is more e�cient to �rst pack thelong jobs, and then pack the short ones in the space that is left [2]. We note in passing thatthe Intel manual suggests that queues for long jobs be given a priority of 40 rather than15 as for short jobs [9], but our results indicate that this value is still much too low. Thepriority of the 128-long queue is especially interesting as it had a bi-modal distribution: insome cases it was low, and in others high. This may be interpreted as meaning that the11

Parameters:
0

64

128

192

256
a_hole_size

0

1

2

3

4

5
b_hole_size

0

1

2

3

4

5
a_time_priQueue priorities:short (20min) medium (1hr) long (3hr)16nodes

0

64

128

192

256

0

64

128

192

256

0

64

128

192

256

32nodes
0

64

128

192

256

0

64

128

192

256

0

64

128

192

256

64nodes
0

64

128

192

256

0

64

128

192

256

0

64

128

192

256

128nodes
0

64

128

192

256

0

64

128

192

256

0

64

128

192

256Figure 3: Parameter values that produced the best results in di�erent runs (run number isfrom 1 to 100 along the x axis). The dashed lines are the default values; for A HOLE SIZE itis zero. 12

128-node jobs should either be scheduled �rst, or last, but not mixed with other sizes, so asto reduce the waste of multiple leveling actions.It can also be seen that the parameters that control leveling decisions (A HOLE SIZE andB HOLE SIZE) are much higher than the defaults, leading to a tendency to allow more levelingand larger idle times than the default parameters. On average, our results indicate that thedecision was to level in about 84% of the cases when it was considered. The values forA TIME PRI are generally low, as the queueing time of batch jobs is indeed not an importantconsideration when optimizing for utilization. Had response time been included in the �tnessfunction, we expect that this parameter would have been more important.5 Related Work Thissectionshouldbe asidebar,withseparaterefer-encesOur tuning algorithm is related to the concept of systems that learn about their environment.However, to the best of our knowledge, this is the �rst general methodology for creating self-tuning systems. Previous work has only dealt with self tuning that is built into a speci�calgorithm.Interestingly, the concept of tuning system behavior to the workload has been ratherpopular in the �eld of parallel job scheduling. Indeed, the whole area of scheduling withadaptive or dynamic partitioning is based on systems that change the allocation they makeas a function of load conditions. Sevcik has proposed adaptive policies that decide on par-tition sizes based on the load and information about characteristics of the applications [15].McCann et al. have proposed a dynamic policy that changes the allocation at runtime toreect changes in the load and requirements [10]. Severance et al. propose a scheme thatis less dependent on explicit information, in which the system measures the performanceof a barrier synchronization to decide if the current number of threads is appropriate [16].The closest scheme to ours was proposed by Nguyen et al., who measure the e�ciency ofa parallel job on several partition sizes and then decide on the allocation [12]. However,these schemes involve learning about a speci�c application at run time, and are irrelevantfor other jobs. They do not learn about the workload in general, and therefore cannot makea persistent change in the system parameters.Scheduling is not the only area where the systemmay learn something about its workload.Another area where signi�cant research has been performed concerns memory managementand page placement. The question is where to map a memory page, and when to moveit to another processor, in order to reduce communication; this has to be done subject todampening rules that avoid ping-pong situations. For example, Cox and Fowler describe asystem in which pages are replicated and migrated according to their usage, but pages thatmigrate too often are frozen in place [4]. The Millipede system uses a more sophisticatedalgorithm to detect ping-pong conditions, based on the access history of each thread [13].Moreover, it combines page migration with thread migration in order to ease such situations.An on-line competitive algorithm for page placement was suggested by Black et al. [1]: thepage is moved when the cumulative cost of remote accesses matches the cost of moving it.13

Again, these schemes learn about a speci�c job, at the expense of that job; the collectedinformation cannot be used to bene�t the whole workload.There has also been some work that is directly related to our case study, in that ituses genetic algorithms to solve scheduling problems. However, this is typically done in thecontext of o�-line algorithms that search for a speci�c near-optimal schedule [8], whereasour work is about �nding good parameters for an on-line policy. Interestingly, it has alsobeen suggested that the genetic algorithms themselves be parallelized [14].Finally, it should be noted that other search techniques are also possible, in place of ouruse of genetic algorithms. For example, simulated annealing has been used in the context oftask scheduling [3].6 ConclusionsWe have introduced a general framework for the optimization and performance tuning ofoperating systems: using the idle loop to run genetic algorithms that search for optimalparameter values based on data about the local workload. With this approach, the trial-and-error methodology often employed by system administrators is replaced by a scheme that atonce removes load from human system administrators, and uses real data and measurementsfor a more methodological search for optimal solutions.A case study involving the batch scheduling algorithm from the iPSC/860 hypercubewas conducted to validate this approach. We carried out the proposed optimization schemeo�-line, simulating the scheduling of multiple jobs under various scheduler parameter values.The results were very promising. Speci�cally, the search procedure always found parame-ters that lead to about 91% utilization for the workload we used, as opposed to only 88%utilization for the default parameters. While this is only a di�erence of 3 percentage points,it represents a reduction of one quarter of the resources that are lost to fragmentation. Inretrospect, it turns out that the parameter values that were found by self tuning cause longjobs to be scheduled �rst, which is indeed known to lead to better packing.While we are con�dent that the proposed approach has merit, much remains to be done.Our main goal is to implement self tuning in a real system setting, and test its performancein such a context. This will enable us to also consider self-tuning at the price of additionaloverhead. The question is whether the potential improvement in performance is worthrunning the optimization procedure at the expense of user applications, rather than onlyinstead of the idle loop, and also whether the overhead for additional logging of information(beyond that normally collected by the system) is worth while.AcknowledgementsThanks to Bill Nitzberg for providing the NASA Ames iPSC workload log, and to ReaganMoore of SDSC for introducing us to the iPSC batch scheduling algorithm. Thanks are alsodue to the reviewers (especially #4!) for their help in improving this paper.14

References[1] D. L. Black, A. Gupta, and W-D. Weber, \Competitive management of distributedshared memory". In 34th IEEE Comput. Soc. Intl. Conf. (COMPCON), pp. 184{190,Spring 1989.[2] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson, \Approximation algorithms forbin-packing | an updated survey". In Algorithm Design for Computer Systems Design,G. Ausiello, M. Lucertini, and P. Sera�ni (eds.), pp. 49{106, Springer-Verlag, 1984.[3] C. Coroyer and Z. Liu, \E�ectiveness of heuristics and simulated annealing for thescheduling of concurrent tasks | an empirical comparison". In 5th Parallel Arch.& Lang. Europe, pp. 452{463, Springer-Verlag, Jun 1993. Lect. Notes Comput. Sci.vol. 694.[4] A. L. Cox and R. J. Fowler, \The implementation of a coherent memory abstractionon a NUMA multiprocessor: experiences with PLATINUM". In 12th Symp. OperatingSystems Principles, pp. 32{44, Dec 1989.[5] D. G. Feitelson and B. Nitzberg, \Job characteristics of a production parallel scienti�cworkload on the NASA Ames iPSC/860". In Job Scheduling Strategies for ParallelProcessing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995.Lect. Notes Comput. Sci. vol. 949.[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.Addison Wesley, 1989.[7] J. H. Holland, Adaptation in Natural and Arti�cial Systems. MIT Press, 1992.[8] E. S. H. Hou, N. Ansari, and H. Ren, \A genetic algorithm for multiprocessor schedul-ing". IEEE Trans. Parallel & Distributed Syst. 5(2), pp. 113{120, Feb 1994.[9] Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities Manual.Order number 312261-002, May 1992.[10] C. McCann, R. Vaswani, and J. Zahorjan, \A dynamic processor allocation policy formultiprogrammed shared-memory multiprocessors". ACM Trans. Comput. Syst. 11(2),pp. 146{178, May 1993.[11] M. McKusick, W. Joy, S. Le�er, and R. Fabry, \A fast �le system for UNIX". ACMTrans. Comput. Syst. 2(3), pp. 181{197, Aug 1984.[12] T. D. Nguyen, R. Vaswani, and J. Zahorjan, \Maximizing speedup through self-tuningof processor allocation". In 10th Intl. Parallel Processing Symp., pp. 463{468, Apr 1996.15

[13] A. Schuster and L. Shalev, Access Histories: How to Use the Principle of Locality inDistributed Shared Memory Systems. Technical Report LPCR-9701, Computer ScienceDept., The Technion, Jan 1997.[14] M. Schwehm and T. Walter, \Mapping and scheduling by genetic algorithms". InParallel Processing: CONPAR 94 { VAPP VI, pp. 832{841, Springer-Verlag, Sep 1994.Lect. Notes Comput. Sci. vol. 854.[15] K. C. Sevcik, \Characterization of parallelism in applications and their use in schedul-ing". In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 171{180,May 1989.[16] C. Severance, R. Enbody, and P. Petersen, \Managing the overall balance of operatingsystem threads on a multiprocessor using automatic self-allocating threads (ASAT)".J. Parallel & Distributed Comput. 37(1), pp. 106{112, Aug 1996.

16

